| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP |
| M68000 Hi-Performance Microprocessor Division |
| M68060 Software Package |
| Production Release P1.00 -- October 10, 1994 |
| |
| M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. |
| |
| THE SOFTWARE is provided on an "AS IS" basis and without warranty. |
| To the maximum extent permitted by applicable law, |
| MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, |
| INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE |
| and any warranty against infringement with regard to the SOFTWARE |
| (INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. |
| |
| To the maximum extent permitted by applicable law, |
| IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER |
| (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, |
| BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) |
| ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. |
| Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. |
| |
| You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE |
| so long as this entire notice is retained without alteration in any modified and/or |
| redistributed versions, and that such modified versions are clearly identified as such. |
| No licenses are granted by implication, estoppel or otherwise under any patents |
| or trademarks of Motorola, Inc. |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| # |
| # freal.s: |
| # This file is appended to the top of the 060FPSP package |
| # and contains the entry points into the package. The user, in |
| # effect, branches to one of the branch table entries located |
| # after _060FPSP_TABLE. |
| # Also, subroutine stubs exist in this file (_fpsp_done for |
| # example) that are referenced by the FPSP package itself in order |
| # to call a given routine. The stub routine actually performs the |
| # callout. The FPSP code does a "bsr" to the stub routine. This |
| # extra layer of hierarchy adds a slight performance penalty but |
| # it makes the FPSP code easier to read and more mainatinable. |
| # |
| |
| set _off_bsun, 0x00 |
| set _off_snan, 0x04 |
| set _off_operr, 0x08 |
| set _off_ovfl, 0x0c |
| set _off_unfl, 0x10 |
| set _off_dz, 0x14 |
| set _off_inex, 0x18 |
| set _off_fline, 0x1c |
| set _off_fpu_dis, 0x20 |
| set _off_trap, 0x24 |
| set _off_trace, 0x28 |
| set _off_access, 0x2c |
| set _off_done, 0x30 |
| |
| set _off_imr, 0x40 |
| set _off_dmr, 0x44 |
| set _off_dmw, 0x48 |
| set _off_irw, 0x4c |
| set _off_irl, 0x50 |
| set _off_drb, 0x54 |
| set _off_drw, 0x58 |
| set _off_drl, 0x5c |
| set _off_dwb, 0x60 |
| set _off_dww, 0x64 |
| set _off_dwl, 0x68 |
| |
| _060FPSP_TABLE: |
| |
| ############################################################### |
| |
| # Here's the table of ENTRY POINTS for those linking the package. |
| bra.l _fpsp_snan |
| short 0x0000 |
| bra.l _fpsp_operr |
| short 0x0000 |
| bra.l _fpsp_ovfl |
| short 0x0000 |
| bra.l _fpsp_unfl |
| short 0x0000 |
| bra.l _fpsp_dz |
| short 0x0000 |
| bra.l _fpsp_inex |
| short 0x0000 |
| bra.l _fpsp_fline |
| short 0x0000 |
| bra.l _fpsp_unsupp |
| short 0x0000 |
| bra.l _fpsp_effadd |
| short 0x0000 |
| |
| space 56 |
| |
| ############################################################### |
| global _fpsp_done |
| _fpsp_done: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_done,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _real_ovfl |
| _real_ovfl: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _real_unfl |
| _real_unfl: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _real_inex |
| _real_inex: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_inex,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _real_bsun |
| _real_bsun: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _real_operr |
| _real_operr: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_operr,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _real_snan |
| _real_snan: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_snan,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _real_dz |
| _real_dz: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_dz,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _real_fline |
| _real_fline: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_fline,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _real_fpu_disabled |
| _real_fpu_disabled: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _real_trap |
| _real_trap: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_trap,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _real_trace |
| _real_trace: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_trace,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _real_access |
| _real_access: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_access,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| ####################################### |
| |
| global _imem_read |
| _imem_read: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_imr,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _dmem_read |
| _dmem_read: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _dmem_write |
| _dmem_write: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _imem_read_word |
| _imem_read_word: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_irw,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _imem_read_long |
| _imem_read_long: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_irl,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _dmem_read_byte |
| _dmem_read_byte: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_drb,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _dmem_read_word |
| _dmem_read_word: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_drw,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _dmem_read_long |
| _dmem_read_long: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_drl,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _dmem_write_byte |
| _dmem_write_byte: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _dmem_write_word |
| _dmem_write_word: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_dww,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| global _dmem_write_long |
| _dmem_write_long: |
| mov.l %d0,-(%sp) |
| mov.l (_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0 |
| pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| mov.l 0x4(%sp),%d0 |
| rtd &0x4 |
| |
| # |
| # This file contains a set of define statements for constants |
| # in order to promote readability within the corecode itself. |
| # |
| |
| set LOCAL_SIZE, 192 # stack frame size(bytes) |
| set LV, -LOCAL_SIZE # stack offset |
| |
| set EXC_SR, 0x4 # stack status register |
| set EXC_PC, 0x6 # stack pc |
| set EXC_VOFF, 0xa # stacked vector offset |
| set EXC_EA, 0xc # stacked <ea> |
| |
| set EXC_FP, 0x0 # frame pointer |
| |
| set EXC_AREGS, -68 # offset of all address regs |
| set EXC_DREGS, -100 # offset of all data regs |
| set EXC_FPREGS, -36 # offset of all fp regs |
| |
| set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7 |
| set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7 |
| set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6 |
| set EXC_A5, EXC_AREGS+(5*4) |
| set EXC_A4, EXC_AREGS+(4*4) |
| set EXC_A3, EXC_AREGS+(3*4) |
| set EXC_A2, EXC_AREGS+(2*4) |
| set EXC_A1, EXC_AREGS+(1*4) |
| set EXC_A0, EXC_AREGS+(0*4) |
| set EXC_D7, EXC_DREGS+(7*4) |
| set EXC_D6, EXC_DREGS+(6*4) |
| set EXC_D5, EXC_DREGS+(5*4) |
| set EXC_D4, EXC_DREGS+(4*4) |
| set EXC_D3, EXC_DREGS+(3*4) |
| set EXC_D2, EXC_DREGS+(2*4) |
| set EXC_D1, EXC_DREGS+(1*4) |
| set EXC_D0, EXC_DREGS+(0*4) |
| |
| set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0 |
| set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1 |
| set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used) |
| |
| set FP_SCR1, LV+80 # fp scratch 1 |
| set FP_SCR1_EX, FP_SCR1+0 |
| set FP_SCR1_SGN, FP_SCR1+2 |
| set FP_SCR1_HI, FP_SCR1+4 |
| set FP_SCR1_LO, FP_SCR1+8 |
| |
| set FP_SCR0, LV+68 # fp scratch 0 |
| set FP_SCR0_EX, FP_SCR0+0 |
| set FP_SCR0_SGN, FP_SCR0+2 |
| set FP_SCR0_HI, FP_SCR0+4 |
| set FP_SCR0_LO, FP_SCR0+8 |
| |
| set FP_DST, LV+56 # fp destination operand |
| set FP_DST_EX, FP_DST+0 |
| set FP_DST_SGN, FP_DST+2 |
| set FP_DST_HI, FP_DST+4 |
| set FP_DST_LO, FP_DST+8 |
| |
| set FP_SRC, LV+44 # fp source operand |
| set FP_SRC_EX, FP_SRC+0 |
| set FP_SRC_SGN, FP_SRC+2 |
| set FP_SRC_HI, FP_SRC+4 |
| set FP_SRC_LO, FP_SRC+8 |
| |
| set USER_FPIAR, LV+40 # FP instr address register |
| |
| set USER_FPSR, LV+36 # FP status register |
| set FPSR_CC, USER_FPSR+0 # FPSR condition codes |
| set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte |
| set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte |
| set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte |
| |
| set USER_FPCR, LV+32 # FP control register |
| set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable |
| set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control |
| |
| set L_SCR3, LV+28 # integer scratch 3 |
| set L_SCR2, LV+24 # integer scratch 2 |
| set L_SCR1, LV+20 # integer scratch 1 |
| |
| set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst) |
| |
| set EXC_TEMP2, LV+24 # temporary space |
| set EXC_TEMP, LV+16 # temporary space |
| |
| set DTAG, LV+15 # destination operand type |
| set STAG, LV+14 # source operand type |
| |
| set SPCOND_FLG, LV+10 # flag: special case (see below) |
| |
| set EXC_CC, LV+8 # saved condition codes |
| set EXC_EXTWPTR, LV+4 # saved current PC (active) |
| set EXC_EXTWORD, LV+2 # saved extension word |
| set EXC_CMDREG, LV+2 # saved extension word |
| set EXC_OPWORD, LV+0 # saved operation word |
| |
| ################################ |
| |
| # Helpful macros |
| |
| set FTEMP, 0 # offsets within an |
| set FTEMP_EX, 0 # extended precision |
| set FTEMP_SGN, 2 # value saved in memory. |
| set FTEMP_HI, 4 |
| set FTEMP_LO, 8 |
| set FTEMP_GRS, 12 |
| |
| set LOCAL, 0 # offsets within an |
| set LOCAL_EX, 0 # extended precision |
| set LOCAL_SGN, 2 # value saved in memory. |
| set LOCAL_HI, 4 |
| set LOCAL_LO, 8 |
| set LOCAL_GRS, 12 |
| |
| set DST, 0 # offsets within an |
| set DST_EX, 0 # extended precision |
| set DST_HI, 4 # value saved in memory. |
| set DST_LO, 8 |
| |
| set SRC, 0 # offsets within an |
| set SRC_EX, 0 # extended precision |
| set SRC_HI, 4 # value saved in memory. |
| set SRC_LO, 8 |
| |
| set SGL_LO, 0x3f81 # min sgl prec exponent |
| set SGL_HI, 0x407e # max sgl prec exponent |
| set DBL_LO, 0x3c01 # min dbl prec exponent |
| set DBL_HI, 0x43fe # max dbl prec exponent |
| set EXT_LO, 0x0 # min ext prec exponent |
| set EXT_HI, 0x7ffe # max ext prec exponent |
| |
| set EXT_BIAS, 0x3fff # extended precision bias |
| set SGL_BIAS, 0x007f # single precision bias |
| set DBL_BIAS, 0x03ff # double precision bias |
| |
| set NORM, 0x00 # operand type for STAG/DTAG |
| set ZERO, 0x01 # operand type for STAG/DTAG |
| set INF, 0x02 # operand type for STAG/DTAG |
| set QNAN, 0x03 # operand type for STAG/DTAG |
| set DENORM, 0x04 # operand type for STAG/DTAG |
| set SNAN, 0x05 # operand type for STAG/DTAG |
| set UNNORM, 0x06 # operand type for STAG/DTAG |
| |
| ################## |
| # FPSR/FPCR bits # |
| ################## |
| set neg_bit, 0x3 # negative result |
| set z_bit, 0x2 # zero result |
| set inf_bit, 0x1 # infinite result |
| set nan_bit, 0x0 # NAN result |
| |
| set q_sn_bit, 0x7 # sign bit of quotient byte |
| |
| set bsun_bit, 7 # branch on unordered |
| set snan_bit, 6 # signalling NAN |
| set operr_bit, 5 # operand error |
| set ovfl_bit, 4 # overflow |
| set unfl_bit, 3 # underflow |
| set dz_bit, 2 # divide by zero |
| set inex2_bit, 1 # inexact result 2 |
| set inex1_bit, 0 # inexact result 1 |
| |
| set aiop_bit, 7 # accrued inexact operation bit |
| set aovfl_bit, 6 # accrued overflow bit |
| set aunfl_bit, 5 # accrued underflow bit |
| set adz_bit, 4 # accrued dz bit |
| set ainex_bit, 3 # accrued inexact bit |
| |
| ############################# |
| # FPSR individual bit masks # |
| ############################# |
| set neg_mask, 0x08000000 # negative bit mask (lw) |
| set inf_mask, 0x02000000 # infinity bit mask (lw) |
| set z_mask, 0x04000000 # zero bit mask (lw) |
| set nan_mask, 0x01000000 # nan bit mask (lw) |
| |
| set neg_bmask, 0x08 # negative bit mask (byte) |
| set inf_bmask, 0x02 # infinity bit mask (byte) |
| set z_bmask, 0x04 # zero bit mask (byte) |
| set nan_bmask, 0x01 # nan bit mask (byte) |
| |
| set bsun_mask, 0x00008000 # bsun exception mask |
| set snan_mask, 0x00004000 # snan exception mask |
| set operr_mask, 0x00002000 # operr exception mask |
| set ovfl_mask, 0x00001000 # overflow exception mask |
| set unfl_mask, 0x00000800 # underflow exception mask |
| set dz_mask, 0x00000400 # dz exception mask |
| set inex2_mask, 0x00000200 # inex2 exception mask |
| set inex1_mask, 0x00000100 # inex1 exception mask |
| |
| set aiop_mask, 0x00000080 # accrued illegal operation |
| set aovfl_mask, 0x00000040 # accrued overflow |
| set aunfl_mask, 0x00000020 # accrued underflow |
| set adz_mask, 0x00000010 # accrued divide by zero |
| set ainex_mask, 0x00000008 # accrued inexact |
| |
| ###################################### |
| # FPSR combinations used in the FPSP # |
| ###################################### |
| set dzinf_mask, inf_mask+dz_mask+adz_mask |
| set opnan_mask, nan_mask+operr_mask+aiop_mask |
| set nzi_mask, 0x01ffffff #clears N, Z, and I |
| set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask |
| set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask |
| set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask |
| set inx1a_mask, inex1_mask+ainex_mask |
| set inx2a_mask, inex2_mask+ainex_mask |
| set snaniop_mask, nan_mask+snan_mask+aiop_mask |
| set snaniop2_mask, snan_mask+aiop_mask |
| set naniop_mask, nan_mask+aiop_mask |
| set neginf_mask, neg_mask+inf_mask |
| set infaiop_mask, inf_mask+aiop_mask |
| set negz_mask, neg_mask+z_mask |
| set opaop_mask, operr_mask+aiop_mask |
| set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask |
| set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask |
| |
| ######### |
| # misc. # |
| ######### |
| set rnd_stky_bit, 29 # stky bit pos in longword |
| |
| set sign_bit, 0x7 # sign bit |
| set signan_bit, 0x6 # signalling nan bit |
| |
| set sgl_thresh, 0x3f81 # minimum sgl exponent |
| set dbl_thresh, 0x3c01 # minimum dbl exponent |
| |
| set x_mode, 0x0 # extended precision |
| set s_mode, 0x4 # single precision |
| set d_mode, 0x8 # double precision |
| |
| set rn_mode, 0x0 # round-to-nearest |
| set rz_mode, 0x1 # round-to-zero |
| set rm_mode, 0x2 # round-tp-minus-infinity |
| set rp_mode, 0x3 # round-to-plus-infinity |
| |
| set mantissalen, 64 # length of mantissa in bits |
| |
| set BYTE, 1 # len(byte) == 1 byte |
| set WORD, 2 # len(word) == 2 bytes |
| set LONG, 4 # len(longword) == 2 bytes |
| |
| set BSUN_VEC, 0xc0 # bsun vector offset |
| set INEX_VEC, 0xc4 # inexact vector offset |
| set DZ_VEC, 0xc8 # dz vector offset |
| set UNFL_VEC, 0xcc # unfl vector offset |
| set OPERR_VEC, 0xd0 # operr vector offset |
| set OVFL_VEC, 0xd4 # ovfl vector offset |
| set SNAN_VEC, 0xd8 # snan vector offset |
| |
| ########################### |
| # SPecial CONDition FLaGs # |
| ########################### |
| set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception |
| set fbsun_flg, 0x02 # flag bit: bsun exception |
| set mia7_flg, 0x04 # flag bit: (a7)+ <ea> |
| set mda7_flg, 0x08 # flag bit: -(a7) <ea> |
| set fmovm_flg, 0x40 # flag bit: fmovm instruction |
| set immed_flg, 0x80 # flag bit: &<data> <ea> |
| |
| set ftrapcc_bit, 0x0 |
| set fbsun_bit, 0x1 |
| set mia7_bit, 0x2 |
| set mda7_bit, 0x3 |
| set immed_bit, 0x7 |
| |
| ################################## |
| # TRANSCENDENTAL "LAST-OP" FLAGS # |
| ################################## |
| set FMUL_OP, 0x0 # fmul instr performed last |
| set FDIV_OP, 0x1 # fdiv performed last |
| set FADD_OP, 0x2 # fadd performed last |
| set FMOV_OP, 0x3 # fmov performed last |
| |
| ############# |
| # CONSTANTS # |
| ############# |
| T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD |
| T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL |
| |
| PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 |
| PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 |
| |
| TWOBYPI: |
| long 0x3FE45F30,0x6DC9C883 |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # _fpsp_ovfl(): 060FPSP entry point for FP Overflow exception. # |
| # # |
| # This handler should be the first code executed upon taking the # |
| # FP Overflow exception in an operating system. # |
| # # |
| # XREF **************************************************************** # |
| # _imem_read_long() - read instruction longword # |
| # fix_skewed_ops() - adjust src operand in fsave frame # |
| # set_tag_x() - determine optype of src/dst operands # |
| # store_fpreg() - store opclass 0 or 2 result to FP regfile # |
| # unnorm_fix() - change UNNORM operands to NORM or ZERO # |
| # load_fpn2() - load dst operand from FP regfile # |
| # fout() - emulate an opclass 3 instruction # |
| # tbl_unsupp - add of table of emulation routines for opclass 0,2 # |
| # _fpsp_done() - "callout" for 060FPSP exit (all work done!) # |
| # _real_ovfl() - "callout" for Overflow exception enabled code # |
| # _real_inex() - "callout" for Inexact exception enabled code # |
| # _real_trace() - "callout" for Trace exception code # |
| # # |
| # INPUT *************************************************************** # |
| # - The system stack contains the FP Ovfl exception stack frame # |
| # - The fsave frame contains the source operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # Overflow Exception enabled: # |
| # - The system stack is unchanged # |
| # - The fsave frame contains the adjusted src op for opclass 0,2 # |
| # Overflow Exception disabled: # |
| # - The system stack is unchanged # |
| # - The "exception present" flag in the fsave frame is cleared # |
| # # |
| # ALGORITHM *********************************************************** # |
| # On the 060, if an FP overflow is present as the result of any # |
| # instruction, the 060 will take an overflow exception whether the # |
| # exception is enabled or disabled in the FPCR. For the disabled case, # |
| # This handler emulates the instruction to determine what the correct # |
| # default result should be for the operation. This default result is # |
| # then stored in either the FP regfile, data regfile, or memory. # |
| # Finally, the handler exits through the "callout" _fpsp_done() # |
| # denoting that no exceptional conditions exist within the machine. # |
| # If the exception is enabled, then this handler must create the # |
| # exceptional operand and plave it in the fsave state frame, and store # |
| # the default result (only if the instruction is opclass 3). For # |
| # exceptions enabled, this handler must exit through the "callout" # |
| # _real_ovfl() so that the operating system enabled overflow handler # |
| # can handle this case. # |
| # Two other conditions exist. First, if overflow was disabled # |
| # but the inexact exception was enabled, this handler must exit # |
| # through the "callout" _real_inex() regardless of whether the result # |
| # was inexact. # |
| # Also, in the case of an opclass three instruction where # |
| # overflow was disabled and the trace exception was enabled, this # |
| # handler must exit through the "callout" _real_trace(). # |
| # # |
| ######################################################################### |
| |
| global _fpsp_ovfl |
| _fpsp_ovfl: |
| |
| #$# sub.l &24,%sp # make room for src/dst |
| |
| link.w %a6,&-LOCAL_SIZE # init stack frame |
| |
| fsave FP_SRC(%a6) # grab the "busy" frame |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| |
| # the FPIAR holds the "current PC" of the faulting instruction |
| mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) |
| mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| bsr.l _imem_read_long # fetch the instruction words |
| mov.l %d0,EXC_OPWORD(%a6) |
| |
| ############################################################################## |
| |
| btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? |
| bne.w fovfl_out |
| |
| |
| lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| bsr.l fix_skewed_ops # fix src op |
| |
| # since, I believe, only NORMs and DENORMs can come through here, |
| # maybe we can avoid the subroutine call. |
| lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| bsr.l set_tag_x # tag the operand type |
| mov.b %d0,STAG(%a6) # maybe NORM,DENORM |
| |
| # bit five of the fp extension word separates the monadic and dyadic operations |
| # that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos |
| # will never take this exception. |
| btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? |
| beq.b fovfl_extract # monadic |
| |
| bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg |
| bsr.l load_fpn2 # load dst into FP_DST |
| |
| lea FP_DST(%a6),%a0 # pass: ptr to dst op |
| bsr.l set_tag_x # tag the operand type |
| cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| bne.b fovfl_op2_done # no |
| bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO |
| fovfl_op2_done: |
| mov.b %d0,DTAG(%a6) # save dst optype tag |
| |
| fovfl_extract: |
| |
| #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) |
| #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) |
| #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) |
| #$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) |
| #$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) |
| #$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode |
| |
| mov.b 1+EXC_CMDREG(%a6),%d1 |
| andi.w &0x007f,%d1 # extract extension |
| |
| andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field |
| |
| fmov.l &0x0,%fpcr # zero current control regs |
| fmov.l &0x0,%fpsr |
| |
| lea FP_SRC(%a6),%a0 |
| lea FP_DST(%a6),%a1 |
| |
| # maybe we can make these entry points ONLY the OVFL entry points of each routine. |
| mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr |
| jsr (tbl_unsupp.l,%pc,%d1.l*1) |
| |
| # the operation has been emulated. the result is in fp0. |
| # the EXOP, if an exception occurred, is in fp1. |
| # we must save the default result regardless of whether |
| # traps are enabled or disabled. |
| bfextu EXC_CMDREG(%a6){&6:&3},%d0 |
| bsr.l store_fpreg |
| |
| # the exceptional possibilities we have left ourselves with are ONLY overflow |
| # and inexact. and, the inexact is such that overflow occurred and was disabled |
| # but inexact was enabled. |
| btst &ovfl_bit,FPCR_ENABLE(%a6) |
| bne.b fovfl_ovfl_on |
| |
| btst &inex2_bit,FPCR_ENABLE(%a6) |
| bne.b fovfl_inex_on |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| #$# add.l &24,%sp |
| bra.l _fpsp_done |
| |
| # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP |
| # in fp1. now, simply jump to _real_ovfl()! |
| fovfl_ovfl_on: |
| fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack |
| |
| mov.w &0xe005,2+FP_SRC(%a6) # save exc status |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! |
| |
| unlk %a6 |
| |
| bra.l _real_ovfl |
| |
| # overflow occurred but is disabled. meanwhile, inexact is enabled. Therefore, |
| # we must jump to real_inex(). |
| fovfl_inex_on: |
| |
| fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack |
| |
| mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 |
| mov.w &0xe001,2+FP_SRC(%a6) # save exc status |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! |
| |
| unlk %a6 |
| |
| bra.l _real_inex |
| |
| ######################################################################## |
| fovfl_out: |
| |
| |
| #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) |
| #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) |
| #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) |
| |
| # the src operand is definitely a NORM(!), so tag it as such |
| mov.b &NORM,STAG(%a6) # set src optype tag |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode |
| |
| and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field |
| |
| fmov.l &0x0,%fpcr # zero current control regs |
| fmov.l &0x0,%fpsr |
| |
| lea FP_SRC(%a6),%a0 # pass ptr to src operand |
| |
| bsr.l fout |
| |
| btst &ovfl_bit,FPCR_ENABLE(%a6) |
| bne.w fovfl_ovfl_on |
| |
| btst &inex2_bit,FPCR_ENABLE(%a6) |
| bne.w fovfl_inex_on |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| #$# add.l &24,%sp |
| |
| btst &0x7,(%sp) # is trace on? |
| beq.l _fpsp_done # no |
| |
| fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR |
| mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 |
| bra.l _real_trace |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # _fpsp_unfl(): 060FPSP entry point for FP Underflow exception. # |
| # # |
| # This handler should be the first code executed upon taking the # |
| # FP Underflow exception in an operating system. # |
| # # |
| # XREF **************************************************************** # |
| # _imem_read_long() - read instruction longword # |
| # fix_skewed_ops() - adjust src operand in fsave frame # |
| # set_tag_x() - determine optype of src/dst operands # |
| # store_fpreg() - store opclass 0 or 2 result to FP regfile # |
| # unnorm_fix() - change UNNORM operands to NORM or ZERO # |
| # load_fpn2() - load dst operand from FP regfile # |
| # fout() - emulate an opclass 3 instruction # |
| # tbl_unsupp - add of table of emulation routines for opclass 0,2 # |
| # _fpsp_done() - "callout" for 060FPSP exit (all work done!) # |
| # _real_ovfl() - "callout" for Overflow exception enabled code # |
| # _real_inex() - "callout" for Inexact exception enabled code # |
| # _real_trace() - "callout" for Trace exception code # |
| # # |
| # INPUT *************************************************************** # |
| # - The system stack contains the FP Unfl exception stack frame # |
| # - The fsave frame contains the source operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # Underflow Exception enabled: # |
| # - The system stack is unchanged # |
| # - The fsave frame contains the adjusted src op for opclass 0,2 # |
| # Underflow Exception disabled: # |
| # - The system stack is unchanged # |
| # - The "exception present" flag in the fsave frame is cleared # |
| # # |
| # ALGORITHM *********************************************************** # |
| # On the 060, if an FP underflow is present as the result of any # |
| # instruction, the 060 will take an underflow exception whether the # |
| # exception is enabled or disabled in the FPCR. For the disabled case, # |
| # This handler emulates the instruction to determine what the correct # |
| # default result should be for the operation. This default result is # |
| # then stored in either the FP regfile, data regfile, or memory. # |
| # Finally, the handler exits through the "callout" _fpsp_done() # |
| # denoting that no exceptional conditions exist within the machine. # |
| # If the exception is enabled, then this handler must create the # |
| # exceptional operand and plave it in the fsave state frame, and store # |
| # the default result (only if the instruction is opclass 3). For # |
| # exceptions enabled, this handler must exit through the "callout" # |
| # _real_unfl() so that the operating system enabled overflow handler # |
| # can handle this case. # |
| # Two other conditions exist. First, if underflow was disabled # |
| # but the inexact exception was enabled and the result was inexact, # |
| # this handler must exit through the "callout" _real_inex(). # |
| # was inexact. # |
| # Also, in the case of an opclass three instruction where # |
| # underflow was disabled and the trace exception was enabled, this # |
| # handler must exit through the "callout" _real_trace(). # |
| # # |
| ######################################################################### |
| |
| global _fpsp_unfl |
| _fpsp_unfl: |
| |
| #$# sub.l &24,%sp # make room for src/dst |
| |
| link.w %a6,&-LOCAL_SIZE # init stack frame |
| |
| fsave FP_SRC(%a6) # grab the "busy" frame |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| |
| # the FPIAR holds the "current PC" of the faulting instruction |
| mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) |
| mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| bsr.l _imem_read_long # fetch the instruction words |
| mov.l %d0,EXC_OPWORD(%a6) |
| |
| ############################################################################## |
| |
| btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? |
| bne.w funfl_out |
| |
| |
| lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| bsr.l fix_skewed_ops # fix src op |
| |
| lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| bsr.l set_tag_x # tag the operand type |
| mov.b %d0,STAG(%a6) # maybe NORM,DENORM |
| |
| # bit five of the fp ext word separates the monadic and dyadic operations |
| # that can pass through fpsp_unfl(). remember that fcmp, and ftst |
| # will never take this exception. |
| btst &0x5,1+EXC_CMDREG(%a6) # is op monadic or dyadic? |
| beq.b funfl_extract # monadic |
| |
| # now, what's left that's not dyadic is fsincos. we can distinguish it |
| # from all dyadics by the '0110xxx pattern |
| btst &0x4,1+EXC_CMDREG(%a6) # is op an fsincos? |
| bne.b funfl_extract # yes |
| |
| bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg |
| bsr.l load_fpn2 # load dst into FP_DST |
| |
| lea FP_DST(%a6),%a0 # pass: ptr to dst op |
| bsr.l set_tag_x # tag the operand type |
| cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| bne.b funfl_op2_done # no |
| bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO |
| funfl_op2_done: |
| mov.b %d0,DTAG(%a6) # save dst optype tag |
| |
| funfl_extract: |
| |
| #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) |
| #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) |
| #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) |
| #$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) |
| #$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) |
| #$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode |
| |
| mov.b 1+EXC_CMDREG(%a6),%d1 |
| andi.w &0x007f,%d1 # extract extension |
| |
| andi.l &0x00ff01ff,USER_FPSR(%a6) |
| |
| fmov.l &0x0,%fpcr # zero current control regs |
| fmov.l &0x0,%fpsr |
| |
| lea FP_SRC(%a6),%a0 |
| lea FP_DST(%a6),%a1 |
| |
| # maybe we can make these entry points ONLY the OVFL entry points of each routine. |
| mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr |
| jsr (tbl_unsupp.l,%pc,%d1.l*1) |
| |
| bfextu EXC_CMDREG(%a6){&6:&3},%d0 |
| bsr.l store_fpreg |
| |
| # The `060 FPU multiplier hardware is such that if the result of a |
| # multiply operation is the smallest possible normalized number |
| # (0x00000000_80000000_00000000), then the machine will take an |
| # underflow exception. Since this is incorrect, we need to check |
| # if our emulation, after re-doing the operation, decided that |
| # no underflow was called for. We do these checks only in |
| # funfl_{unfl,inex}_on() because w/ both exceptions disabled, this |
| # special case will simply exit gracefully with the correct result. |
| |
| # the exceptional possibilities we have left ourselves with are ONLY overflow |
| # and inexact. and, the inexact is such that overflow occurred and was disabled |
| # but inexact was enabled. |
| btst &unfl_bit,FPCR_ENABLE(%a6) |
| bne.b funfl_unfl_on |
| |
| funfl_chkinex: |
| btst &inex2_bit,FPCR_ENABLE(%a6) |
| bne.b funfl_inex_on |
| |
| funfl_exit: |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| #$# add.l &24,%sp |
| bra.l _fpsp_done |
| |
| # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP |
| # in fp1 (don't forget to save fp0). what to do now? |
| # well, we simply have to get to go to _real_unfl()! |
| funfl_unfl_on: |
| |
| # The `060 FPU multiplier hardware is such that if the result of a |
| # multiply operation is the smallest possible normalized number |
| # (0x00000000_80000000_00000000), then the machine will take an |
| # underflow exception. Since this is incorrect, we check here to see |
| # if our emulation, after re-doing the operation, decided that |
| # no underflow was called for. |
| btst &unfl_bit,FPSR_EXCEPT(%a6) |
| beq.w funfl_chkinex |
| |
| funfl_unfl_on2: |
| fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack |
| |
| mov.w &0xe003,2+FP_SRC(%a6) # save exc status |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! |
| |
| unlk %a6 |
| |
| bra.l _real_unfl |
| |
| # underflow occurred but is disabled. meanwhile, inexact is enabled. Therefore, |
| # we must jump to real_inex(). |
| funfl_inex_on: |
| |
| # The `060 FPU multiplier hardware is such that if the result of a |
| # multiply operation is the smallest possible normalized number |
| # (0x00000000_80000000_00000000), then the machine will take an |
| # underflow exception. |
| # But, whether bogus or not, if inexact is enabled AND it occurred, |
| # then we have to branch to real_inex. |
| |
| btst &inex2_bit,FPSR_EXCEPT(%a6) |
| beq.w funfl_exit |
| |
| funfl_inex_on2: |
| |
| fmovm.x &0x40,FP_SRC(%a6) # save EXOP to stack |
| |
| mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 |
| mov.w &0xe001,2+FP_SRC(%a6) # save exc status |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! |
| |
| unlk %a6 |
| |
| bra.l _real_inex |
| |
| ####################################################################### |
| funfl_out: |
| |
| |
| #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) |
| #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) |
| #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) |
| |
| # the src operand is definitely a NORM(!), so tag it as such |
| mov.b &NORM,STAG(%a6) # set src optype tag |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode |
| |
| and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field |
| |
| fmov.l &0x0,%fpcr # zero current control regs |
| fmov.l &0x0,%fpsr |
| |
| lea FP_SRC(%a6),%a0 # pass ptr to src operand |
| |
| bsr.l fout |
| |
| btst &unfl_bit,FPCR_ENABLE(%a6) |
| bne.w funfl_unfl_on2 |
| |
| btst &inex2_bit,FPCR_ENABLE(%a6) |
| bne.w funfl_inex_on2 |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| #$# add.l &24,%sp |
| |
| btst &0x7,(%sp) # is trace on? |
| beq.l _fpsp_done # no |
| |
| fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR |
| mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 |
| bra.l _real_trace |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # _fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented # |
| # Data Type" exception. # |
| # # |
| # This handler should be the first code executed upon taking the # |
| # FP Unimplemented Data Type exception in an operating system. # |
| # # |
| # XREF **************************************************************** # |
| # _imem_read_{word,long}() - read instruction word/longword # |
| # fix_skewed_ops() - adjust src operand in fsave frame # |
| # set_tag_x() - determine optype of src/dst operands # |
| # store_fpreg() - store opclass 0 or 2 result to FP regfile # |
| # unnorm_fix() - change UNNORM operands to NORM or ZERO # |
| # load_fpn2() - load dst operand from FP regfile # |
| # load_fpn1() - load src operand from FP regfile # |
| # fout() - emulate an opclass 3 instruction # |
| # tbl_unsupp - add of table of emulation routines for opclass 0,2 # |
| # _real_inex() - "callout" to operating system inexact handler # |
| # _fpsp_done() - "callout" for exit; work all done # |
| # _real_trace() - "callout" for Trace enabled exception # |
| # funimp_skew() - adjust fsave src ops to "incorrect" value # |
| # _real_snan() - "callout" for SNAN exception # |
| # _real_operr() - "callout" for OPERR exception # |
| # _real_ovfl() - "callout" for OVFL exception # |
| # _real_unfl() - "callout" for UNFL exception # |
| # get_packed() - fetch packed operand from memory # |
| # # |
| # INPUT *************************************************************** # |
| # - The system stack contains the "Unimp Data Type" stk frame # |
| # - The fsave frame contains the ssrc op (for UNNORM/DENORM) # |
| # # |
| # OUTPUT ************************************************************** # |
| # If Inexact exception (opclass 3): # |
| # - The system stack is changed to an Inexact exception stk frame # |
| # If SNAN exception (opclass 3): # |
| # - The system stack is changed to an SNAN exception stk frame # |
| # If OPERR exception (opclass 3): # |
| # - The system stack is changed to an OPERR exception stk frame # |
| # If OVFL exception (opclass 3): # |
| # - The system stack is changed to an OVFL exception stk frame # |
| # If UNFL exception (opclass 3): # |
| # - The system stack is changed to an UNFL exception stack frame # |
| # If Trace exception enabled: # |
| # - The system stack is changed to a Trace exception stack frame # |
| # Else: (normal case) # |
| # - Correct result has been stored as appropriate # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Two main instruction types can enter here: (1) DENORM or UNNORM # |
| # unimplemented data types. These can be either opclass 0,2 or 3 # |
| # instructions, and (2) PACKED unimplemented data format instructions # |
| # also of opclasses 0,2, or 3. # |
| # For UNNORM/DENORM opclass 0 and 2, the handler fetches the src # |
| # operand from the fsave state frame and the dst operand (if dyadic) # |
| # from the FP register file. The instruction is then emulated by # |
| # choosing an emulation routine from a table of routines indexed by # |
| # instruction type. Once the instruction has been emulated and result # |
| # saved, then we check to see if any enabled exceptions resulted from # |
| # instruction emulation. If none, then we exit through the "callout" # |
| # _fpsp_done(). If there is an enabled FP exception, then we insert # |
| # this exception into the FPU in the fsave state frame and then exit # |
| # through _fpsp_done(). # |
| # PACKED opclass 0 and 2 is similar in how the instruction is # |
| # emulated and exceptions handled. The differences occur in how the # |
| # handler loads the packed op (by calling get_packed() routine) and # |
| # by the fact that a Trace exception could be pending for PACKED ops. # |
| # If a Trace exception is pending, then the current exception stack # |
| # frame is changed to a Trace exception stack frame and an exit is # |
| # made through _real_trace(). # |
| # For UNNORM/DENORM opclass 3, the actual move out to memory is # |
| # performed by calling the routine fout(). If no exception should occur # |
| # as the result of emulation, then an exit either occurs through # |
| # _fpsp_done() or through _real_trace() if a Trace exception is pending # |
| # (a Trace stack frame must be created here, too). If an FP exception # |
| # should occur, then we must create an exception stack frame of that # |
| # type and jump to either _real_snan(), _real_operr(), _real_inex(), # |
| # _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3 # |
| # emulation is performed in a similar manner. # |
| # # |
| ######################################################################### |
| |
| # |
| # (1) DENORM and UNNORM (unimplemented) data types: |
| # |
| # post-instruction |
| # ***************** |
| # * EA * |
| # pre-instruction * * |
| # ***************** ***************** |
| # * 0x0 * 0x0dc * * 0x3 * 0x0dc * |
| # ***************** ***************** |
| # * Next * * Next * |
| # * PC * * PC * |
| # ***************** ***************** |
| # * SR * * SR * |
| # ***************** ***************** |
| # |
| # (2) PACKED format (unsupported) opclasses two and three: |
| # ***************** |
| # * EA * |
| # * * |
| # ***************** |
| # * 0x2 * 0x0dc * |
| # ***************** |
| # * Next * |
| # * PC * |
| # ***************** |
| # * SR * |
| # ***************** |
| # |
| global _fpsp_unsupp |
| _fpsp_unsupp: |
| |
| link.w %a6,&-LOCAL_SIZE # init stack frame |
| |
| fsave FP_SRC(%a6) # save fp state |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| |
| btst &0x5,EXC_SR(%a6) # user or supervisor mode? |
| bne.b fu_s |
| fu_u: |
| mov.l %usp,%a0 # fetch user stack pointer |
| mov.l %a0,EXC_A7(%a6) # save on stack |
| bra.b fu_cont |
| # if the exception is an opclass zero or two unimplemented data type |
| # exception, then the a7' calculated here is wrong since it doesn't |
| # stack an ea. however, we don't need an a7' for this case anyways. |
| fu_s: |
| lea 0x4+EXC_EA(%a6),%a0 # load old a7' |
| mov.l %a0,EXC_A7(%a6) # save on stack |
| |
| fu_cont: |
| |
| # the FPIAR holds the "current PC" of the faulting instruction |
| # the FPIAR should be set correctly for ALL exceptions passing through |
| # this point. |
| mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) |
| mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| bsr.l _imem_read_long # fetch the instruction words |
| mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD |
| |
| ############################ |
| |
| clr.b SPCOND_FLG(%a6) # clear special condition flag |
| |
| # Separate opclass three (fpn-to-mem) ops since they have a different |
| # stack frame and protocol. |
| btst &0x5,EXC_CMDREG(%a6) # is it an fmove out? |
| bne.w fu_out # yes |
| |
| # Separate packed opclass two instructions. |
| bfextu EXC_CMDREG(%a6){&0:&6},%d0 |
| cmpi.b %d0,&0x13 |
| beq.w fu_in_pack |
| |
| |
| # I'm not sure at this point what FPSR bits are valid for this instruction. |
| # so, since the emulation routines re-create them anyways, zero exception field |
| andi.l &0x00ff00ff,USER_FPSR(%a6) # zero exception field |
| |
| fmov.l &0x0,%fpcr # zero current control regs |
| fmov.l &0x0,%fpsr |
| |
| # Opclass two w/ memory-to-fpn operation will have an incorrect extended |
| # precision format if the src format was single or double and the |
| # source data type was an INF, NAN, DENORM, or UNNORM |
| lea FP_SRC(%a6),%a0 # pass ptr to input |
| bsr.l fix_skewed_ops |
| |
| # we don't know whether the src operand or the dst operand (or both) is the |
| # UNNORM or DENORM. call the function that tags the operand type. if the |
| # input is an UNNORM, then convert it to a NORM, DENORM, or ZERO. |
| lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| bsr.l set_tag_x # tag the operand type |
| cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| bne.b fu_op2 # no |
| bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO |
| |
| fu_op2: |
| mov.b %d0,STAG(%a6) # save src optype tag |
| |
| bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg |
| |
| # bit five of the fp extension word separates the monadic and dyadic operations |
| # at this point |
| btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? |
| beq.b fu_extract # monadic |
| cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? |
| beq.b fu_extract # yes, so it's monadic, too |
| |
| bsr.l load_fpn2 # load dst into FP_DST |
| |
| lea FP_DST(%a6),%a0 # pass: ptr to dst op |
| bsr.l set_tag_x # tag the operand type |
| cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| bne.b fu_op2_done # no |
| bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO |
| fu_op2_done: |
| mov.b %d0,DTAG(%a6) # save dst optype tag |
| |
| fu_extract: |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec |
| |
| bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension |
| |
| lea FP_SRC(%a6),%a0 |
| lea FP_DST(%a6),%a1 |
| |
| mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr |
| jsr (tbl_unsupp.l,%pc,%d1.l*1) |
| |
| # |
| # Exceptions in order of precedence: |
| # BSUN : none |
| # SNAN : all dyadic ops |
| # OPERR : fsqrt(-NORM) |
| # OVFL : all except ftst,fcmp |
| # UNFL : all except ftst,fcmp |
| # DZ : fdiv |
| # INEX2 : all except ftst,fcmp |
| # INEX1 : none (packed doesn't go through here) |
| # |
| |
| # we determine the highest priority exception(if any) set by the |
| # emulation routine that has also been enabled by the user. |
| mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions set |
| bne.b fu_in_ena # some are enabled |
| |
| fu_in_cont: |
| # fcmp and ftst do not store any result. |
| mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension |
| andi.b &0x38,%d0 # extract bits 3-5 |
| cmpi.b %d0,&0x38 # is instr fcmp or ftst? |
| beq.b fu_in_exit # yes |
| |
| bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg |
| bsr.l store_fpreg # store the result |
| |
| fu_in_exit: |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| |
| bra.l _fpsp_done |
| |
| fu_in_ena: |
| and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled |
| bfffo %d0{&24:&8},%d0 # find highest priority exception |
| bne.b fu_in_exc # there is at least one set |
| |
| # |
| # No exceptions occurred that were also enabled. Now: |
| # |
| # if (OVFL && ovfl_disabled && inexact_enabled) { |
| # branch to _real_inex() (even if the result was exact!); |
| # } else { |
| # save the result in the proper fp reg (unless the op is fcmp or ftst); |
| # return; |
| # } |
| # |
| btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? |
| beq.b fu_in_cont # no |
| |
| fu_in_ovflchk: |
| btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? |
| beq.b fu_in_cont # no |
| bra.w fu_in_exc_ovfl # go insert overflow frame |
| |
| # |
| # An exception occurred and that exception was enabled: |
| # |
| # shift enabled exception field into lo byte of d0; |
| # if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || |
| # ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { |
| # /* |
| # * this is the case where we must call _real_inex() now or else |
| # * there will be no other way to pass it the exceptional operand |
| # */ |
| # call _real_inex(); |
| # } else { |
| # restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; |
| # } |
| # |
| fu_in_exc: |
| subi.l &24,%d0 # fix offset to be 0-8 |
| cmpi.b %d0,&0x6 # is exception INEX? (6) |
| bne.b fu_in_exc_exit # no |
| |
| # the enabled exception was inexact |
| btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? |
| bne.w fu_in_exc_unfl # yes |
| btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? |
| bne.w fu_in_exc_ovfl # yes |
| |
| # here, we insert the correct fsave status value into the fsave frame for the |
| # corresponding exception. the operand in the fsave frame should be the original |
| # src operand. |
| fu_in_exc_exit: |
| mov.l %d0,-(%sp) # save d0 |
| bsr.l funimp_skew # skew sgl or dbl inputs |
| mov.l (%sp)+,%d0 # restore d0 |
| |
| mov.w (tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| frestore FP_SRC(%a6) # restore src op |
| |
| unlk %a6 |
| |
| bra.l _fpsp_done |
| |
| tbl_except: |
| short 0xe000,0xe006,0xe004,0xe005 |
| short 0xe003,0xe002,0xe001,0xe001 |
| |
| fu_in_exc_unfl: |
| mov.w &0x4,%d0 |
| bra.b fu_in_exc_exit |
| fu_in_exc_ovfl: |
| mov.w &0x03,%d0 |
| bra.b fu_in_exc_exit |
| |
| # If the input operand to this operation was opclass two and a single |
| # or double precision denorm, inf, or nan, the operand needs to be |
| # "corrected" in order to have the proper equivalent extended precision |
| # number. |
| global fix_skewed_ops |
| fix_skewed_ops: |
| bfextu EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt |
| cmpi.b %d0,&0x11 # is class = 2 & fmt = sgl? |
| beq.b fso_sgl # yes |
| cmpi.b %d0,&0x15 # is class = 2 & fmt = dbl? |
| beq.b fso_dbl # yes |
| rts # no |
| |
| fso_sgl: |
| mov.w LOCAL_EX(%a0),%d0 # fetch src exponent |
| andi.w &0x7fff,%d0 # strip sign |
| cmpi.w %d0,&0x3f80 # is |exp| == $3f80? |
| beq.b fso_sgl_dnrm_zero # yes |
| cmpi.w %d0,&0x407f # no; is |exp| == $407f? |
| beq.b fso_infnan # yes |
| rts # no |
| |
| fso_sgl_dnrm_zero: |
| andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit |
| beq.b fso_zero # it's a skewed zero |
| fso_sgl_dnrm: |
| # here, we count on norm not to alter a0... |
| bsr.l norm # normalize mantissa |
| neg.w %d0 # -shft amt |
| addi.w &0x3f81,%d0 # adjust new exponent |
| andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent |
| or.w %d0,LOCAL_EX(%a0) # insert new exponent |
| rts |
| |
| fso_zero: |
| andi.w &0x8000,LOCAL_EX(%a0) # clear bogus exponent |
| rts |
| |
| fso_infnan: |
| andi.b &0x7f,LOCAL_HI(%a0) # clear j-bit |
| ori.w &0x7fff,LOCAL_EX(%a0) # make exponent = $7fff |
| rts |
| |
| fso_dbl: |
| mov.w LOCAL_EX(%a0),%d0 # fetch src exponent |
| andi.w &0x7fff,%d0 # strip sign |
| cmpi.w %d0,&0x3c00 # is |exp| == $3c00? |
| beq.b fso_dbl_dnrm_zero # yes |
| cmpi.w %d0,&0x43ff # no; is |exp| == $43ff? |
| beq.b fso_infnan # yes |
| rts # no |
| |
| fso_dbl_dnrm_zero: |
| andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit |
| bne.b fso_dbl_dnrm # it's a skewed denorm |
| tst.l LOCAL_LO(%a0) # is it a zero? |
| beq.b fso_zero # yes |
| fso_dbl_dnrm: |
| # here, we count on norm not to alter a0... |
| bsr.l norm # normalize mantissa |
| neg.w %d0 # -shft amt |
| addi.w &0x3c01,%d0 # adjust new exponent |
| andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent |
| or.w %d0,LOCAL_EX(%a0) # insert new exponent |
| rts |
| |
| ################################################################# |
| |
| # fmove out took an unimplemented data type exception. |
| # the src operand is in FP_SRC. Call _fout() to write out the result and |
| # to determine which exceptions, if any, to take. |
| fu_out: |
| |
| # Separate packed move outs from the UNNORM and DENORM move outs. |
| bfextu EXC_CMDREG(%a6){&3:&3},%d0 |
| cmpi.b %d0,&0x3 |
| beq.w fu_out_pack |
| cmpi.b %d0,&0x7 |
| beq.w fu_out_pack |
| |
| |
| # I'm not sure at this point what FPSR bits are valid for this instruction. |
| # so, since the emulation routines re-create them anyways, zero exception field. |
| # fmove out doesn't affect ccodes. |
| and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field |
| |
| fmov.l &0x0,%fpcr # zero current control regs |
| fmov.l &0x0,%fpsr |
| |
| # the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine |
| # call here. just figure out what it is... |
| mov.w FP_SRC_EX(%a6),%d0 # get exponent |
| andi.w &0x7fff,%d0 # strip sign |
| beq.b fu_out_denorm # it's a DENORM |
| |
| lea FP_SRC(%a6),%a0 |
| bsr.l unnorm_fix # yes; fix it |
| |
| mov.b %d0,STAG(%a6) |
| |
| bra.b fu_out_cont |
| fu_out_denorm: |
| mov.b &DENORM,STAG(%a6) |
| fu_out_cont: |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec |
| |
| lea FP_SRC(%a6),%a0 # pass ptr to src operand |
| |
| mov.l (%a6),EXC_A6(%a6) # in case a6 changes |
| bsr.l fout # call fmove out routine |
| |
| # Exceptions in order of precedence: |
| # BSUN : none |
| # SNAN : none |
| # OPERR : fmove.{b,w,l} out of large UNNORM |
| # OVFL : fmove.{s,d} |
| # UNFL : fmove.{s,d,x} |
| # DZ : none |
| # INEX2 : all |
| # INEX1 : none (packed doesn't travel through here) |
| |
| # determine the highest priority exception(if any) set by the |
| # emulation routine that has also been enabled by the user. |
| mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled |
| bne.w fu_out_ena # some are enabled |
| |
| fu_out_done: |
| |
| mov.l EXC_A6(%a6),(%a6) # in case a6 changed |
| |
| # on extended precision opclass three instructions using pre-decrement or |
| # post-increment addressing mode, the address register is not updated. is the |
| # address register was the stack pointer used from user mode, then let's update |
| # it here. if it was used from supervisor mode, then we have to handle this |
| # as a special case. |
| btst &0x5,EXC_SR(%a6) |
| bne.b fu_out_done_s |
| |
| mov.l EXC_A7(%a6),%a0 # restore a7 |
| mov.l %a0,%usp |
| |
| fu_out_done_cont: |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| |
| btst &0x7,(%sp) # is trace on? |
| bne.b fu_out_trace # yes |
| |
| bra.l _fpsp_done |
| |
| # is the ea mode pre-decrement of the stack pointer from supervisor mode? |
| # ("fmov.x fpm,-(a7)") if so, |
| fu_out_done_s: |
| cmpi.b SPCOND_FLG(%a6),&mda7_flg |
| bne.b fu_out_done_cont |
| |
| # the extended precision result is still in fp0. but, we need to save it |
| # somewhere on the stack until we can copy it to its final resting place. |
| # here, we're counting on the top of the stack to be the old place-holders |
| # for fp0/fp1 which have already been restored. that way, we can write |
| # over those destinations with the shifted stack frame. |
| fmovm.x &0x80,FP_SRC(%a6) # put answer on stack |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| mov.l (%a6),%a6 # restore frame pointer |
| |
| mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) |
| mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) |
| |
| # now, copy the result to the proper place on the stack |
| mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) |
| mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) |
| mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) |
| |
| add.l &LOCAL_SIZE-0x8,%sp |
| |
| btst &0x7,(%sp) |
| bne.b fu_out_trace |
| |
| bra.l _fpsp_done |
| |
| fu_out_ena: |
| and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled |
| bfffo %d0{&24:&8},%d0 # find highest priority exception |
| bne.b fu_out_exc # there is at least one set |
| |
| # no exceptions were set. |
| # if a disabled overflow occurred and inexact was enabled but the result |
| # was exact, then a branch to _real_inex() is made. |
| btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? |
| beq.w fu_out_done # no |
| |
| fu_out_ovflchk: |
| btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? |
| beq.w fu_out_done # no |
| bra.w fu_inex # yes |
| |
| # |
| # The fp move out that took the "Unimplemented Data Type" exception was |
| # being traced. Since the stack frames are similar, get the "current" PC |
| # from FPIAR and put it in the trace stack frame then jump to _real_trace(). |
| # |
| # UNSUPP FRAME TRACE FRAME |
| # ***************** ***************** |
| # * EA * * Current * |
| # * * * PC * |
| # ***************** ***************** |
| # * 0x3 * 0x0dc * * 0x2 * 0x024 * |
| # ***************** ***************** |
| # * Next * * Next * |
| # * PC * * PC * |
| # ***************** ***************** |
| # * SR * * SR * |
| # ***************** ***************** |
| # |
| fu_out_trace: |
| mov.w &0x2024,0x6(%sp) |
| fmov.l %fpiar,0x8(%sp) |
| bra.l _real_trace |
| |
| # an exception occurred and that exception was enabled. |
| fu_out_exc: |
| subi.l &24,%d0 # fix offset to be 0-8 |
| |
| # we don't mess with the existing fsave frame. just re-insert it and |
| # jump to the "_real_{}()" handler... |
| mov.w (tbl_fu_out.b,%pc,%d0.w*2),%d0 |
| jmp (tbl_fu_out.b,%pc,%d0.w*1) |
| |
| swbeg &0x8 |
| tbl_fu_out: |
| short tbl_fu_out - tbl_fu_out # BSUN can't happen |
| short tbl_fu_out - tbl_fu_out # SNAN can't happen |
| short fu_operr - tbl_fu_out # OPERR |
| short fu_ovfl - tbl_fu_out # OVFL |
| short fu_unfl - tbl_fu_out # UNFL |
| short tbl_fu_out - tbl_fu_out # DZ can't happen |
| short fu_inex - tbl_fu_out # INEX2 |
| short tbl_fu_out - tbl_fu_out # INEX1 won't make it here |
| |
| # for snan,operr,ovfl,unfl, src op is still in FP_SRC so just |
| # frestore it. |
| fu_snan: |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd8 |
| mov.w &0xe006,2+FP_SRC(%a6) |
| |
| frestore FP_SRC(%a6) |
| |
| unlk %a6 |
| |
| |
| bra.l _real_snan |
| |
| fu_operr: |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 |
| mov.w &0xe004,2+FP_SRC(%a6) |
| |
| frestore FP_SRC(%a6) |
| |
| unlk %a6 |
| |
| |
| bra.l _real_operr |
| |
| fu_ovfl: |
| fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| mov.w &0x30d4,EXC_VOFF(%a6) # vector offset = 0xd4 |
| mov.w &0xe005,2+FP_SRC(%a6) |
| |
| frestore FP_SRC(%a6) # restore EXOP |
| |
| unlk %a6 |
| |
| bra.l _real_ovfl |
| |
| # underflow can happen for extended precision. extended precision opclass |
| # three instruction exceptions don't update the stack pointer. so, if the |
| # exception occurred from user mode, then simply update a7 and exit normally. |
| # if the exception occurred from supervisor mode, check if |
| fu_unfl: |
| mov.l EXC_A6(%a6),(%a6) # restore a6 |
| |
| btst &0x5,EXC_SR(%a6) |
| bne.w fu_unfl_s |
| |
| mov.l EXC_A7(%a6),%a0 # restore a7 whether we need |
| mov.l %a0,%usp # to or not... |
| |
| fu_unfl_cont: |
| fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc |
| mov.w &0xe003,2+FP_SRC(%a6) |
| |
| frestore FP_SRC(%a6) # restore EXOP |
| |
| unlk %a6 |
| |
| bra.l _real_unfl |
| |
| fu_unfl_s: |
| cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)? |
| bne.b fu_unfl_cont |
| |
| # the extended precision result is still in fp0. but, we need to save it |
| # somewhere on the stack until we can copy it to its final resting place |
| # (where the exc frame is currently). make sure it's not at the top of the |
| # frame or it will get overwritten when the exc stack frame is shifted "down". |
| fmovm.x &0x80,FP_SRC(%a6) # put answer on stack |
| fmovm.x &0x40,FP_DST(%a6) # put EXOP on stack |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc |
| mov.w &0xe003,2+FP_DST(%a6) |
| |
| frestore FP_DST(%a6) # restore EXOP |
| |
| mov.l (%a6),%a6 # restore frame pointer |
| |
| mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) |
| mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) |
| mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) |
| |
| # now, copy the result to the proper place on the stack |
| mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) |
| mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) |
| mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) |
| |
| add.l &LOCAL_SIZE-0x8,%sp |
| |
| bra.l _real_unfl |
| |
| # fmove in and out enter here. |
| fu_inex: |
| fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 |
| mov.w &0xe001,2+FP_SRC(%a6) |
| |
| frestore FP_SRC(%a6) # restore EXOP |
| |
| unlk %a6 |
| |
| |
| bra.l _real_inex |
| |
| ######################################################################### |
| ######################################################################### |
| fu_in_pack: |
| |
| |
| # I'm not sure at this point what FPSR bits are valid for this instruction. |
| # so, since the emulation routines re-create them anyways, zero exception field |
| andi.l &0x0ff00ff,USER_FPSR(%a6) # zero exception field |
| |
| fmov.l &0x0,%fpcr # zero current control regs |
| fmov.l &0x0,%fpsr |
| |
| bsr.l get_packed # fetch packed src operand |
| |
| lea FP_SRC(%a6),%a0 # pass ptr to src |
| bsr.l set_tag_x # set src optype tag |
| |
| mov.b %d0,STAG(%a6) # save src optype tag |
| |
| bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg |
| |
| # bit five of the fp extension word separates the monadic and dyadic operations |
| # at this point |
| btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? |
| beq.b fu_extract_p # monadic |
| cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? |
| beq.b fu_extract_p # yes, so it's monadic, too |
| |
| bsr.l load_fpn2 # load dst into FP_DST |
| |
| lea FP_DST(%a6),%a0 # pass: ptr to dst op |
| bsr.l set_tag_x # tag the operand type |
| cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| bne.b fu_op2_done_p # no |
| bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO |
| fu_op2_done_p: |
| mov.b %d0,DTAG(%a6) # save dst optype tag |
| |
| fu_extract_p: |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec |
| |
| bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension |
| |
| lea FP_SRC(%a6),%a0 |
| lea FP_DST(%a6),%a1 |
| |
| mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr |
| jsr (tbl_unsupp.l,%pc,%d1.l*1) |
| |
| # |
| # Exceptions in order of precedence: |
| # BSUN : none |
| # SNAN : all dyadic ops |
| # OPERR : fsqrt(-NORM) |
| # OVFL : all except ftst,fcmp |
| # UNFL : all except ftst,fcmp |
| # DZ : fdiv |
| # INEX2 : all except ftst,fcmp |
| # INEX1 : all |
| # |
| |
| # we determine the highest priority exception(if any) set by the |
| # emulation routine that has also been enabled by the user. |
| mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled |
| bne.w fu_in_ena_p # some are enabled |
| |
| fu_in_cont_p: |
| # fcmp and ftst do not store any result. |
| mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension |
| andi.b &0x38,%d0 # extract bits 3-5 |
| cmpi.b %d0,&0x38 # is instr fcmp or ftst? |
| beq.b fu_in_exit_p # yes |
| |
| bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg |
| bsr.l store_fpreg # store the result |
| |
| fu_in_exit_p: |
| |
| btst &0x5,EXC_SR(%a6) # user or supervisor? |
| bne.w fu_in_exit_s_p # supervisor |
| |
| mov.l EXC_A7(%a6),%a0 # update user a7 |
| mov.l %a0,%usp |
| |
| fu_in_exit_cont_p: |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 # unravel stack frame |
| |
| btst &0x7,(%sp) # is trace on? |
| bne.w fu_trace_p # yes |
| |
| bra.l _fpsp_done # exit to os |
| |
| # the exception occurred in supervisor mode. check to see if the |
| # addressing mode was (a7)+. if so, we'll need to shift the |
| # stack frame "up". |
| fu_in_exit_s_p: |
| btst &mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+ |
| beq.b fu_in_exit_cont_p # no |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 # unravel stack frame |
| |
| # shift the stack frame "up". we don't really care about the <ea> field. |
| mov.l 0x4(%sp),0x10(%sp) |
| mov.l 0x0(%sp),0xc(%sp) |
| add.l &0xc,%sp |
| |
| btst &0x7,(%sp) # is trace on? |
| bne.w fu_trace_p # yes |
| |
| bra.l _fpsp_done # exit to os |
| |
| fu_in_ena_p: |
| and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled & set |
| bfffo %d0{&24:&8},%d0 # find highest priority exception |
| bne.b fu_in_exc_p # at least one was set |
| |
| # |
| # No exceptions occurred that were also enabled. Now: |
| # |
| # if (OVFL && ovfl_disabled && inexact_enabled) { |
| # branch to _real_inex() (even if the result was exact!); |
| # } else { |
| # save the result in the proper fp reg (unless the op is fcmp or ftst); |
| # return; |
| # } |
| # |
| btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? |
| beq.w fu_in_cont_p # no |
| |
| fu_in_ovflchk_p: |
| btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? |
| beq.w fu_in_cont_p # no |
| bra.w fu_in_exc_ovfl_p # do _real_inex() now |
| |
| # |
| # An exception occurred and that exception was enabled: |
| # |
| # shift enabled exception field into lo byte of d0; |
| # if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || |
| # ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { |
| # /* |
| # * this is the case where we must call _real_inex() now or else |
| # * there will be no other way to pass it the exceptional operand |
| # */ |
| # call _real_inex(); |
| # } else { |
| # restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; |
| # } |
| # |
| fu_in_exc_p: |
| subi.l &24,%d0 # fix offset to be 0-8 |
| cmpi.b %d0,&0x6 # is exception INEX? (6 or 7) |
| blt.b fu_in_exc_exit_p # no |
| |
| # the enabled exception was inexact |
| btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? |
| bne.w fu_in_exc_unfl_p # yes |
| btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? |
| bne.w fu_in_exc_ovfl_p # yes |
| |
| # here, we insert the correct fsave status value into the fsave frame for the |
| # corresponding exception. the operand in the fsave frame should be the original |
| # src operand. |
| # as a reminder for future predicted pain and agony, we are passing in fsave the |
| # "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs. |
| # this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!! |
| fu_in_exc_exit_p: |
| btst &0x5,EXC_SR(%a6) # user or supervisor? |
| bne.w fu_in_exc_exit_s_p # supervisor |
| |
| mov.l EXC_A7(%a6),%a0 # update user a7 |
| mov.l %a0,%usp |
| |
| fu_in_exc_exit_cont_p: |
| mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| frestore FP_SRC(%a6) # restore src op |
| |
| unlk %a6 |
| |
| btst &0x7,(%sp) # is trace enabled? |
| bne.w fu_trace_p # yes |
| |
| bra.l _fpsp_done |
| |
| tbl_except_p: |
| short 0xe000,0xe006,0xe004,0xe005 |
| short 0xe003,0xe002,0xe001,0xe001 |
| |
| fu_in_exc_ovfl_p: |
| mov.w &0x3,%d0 |
| bra.w fu_in_exc_exit_p |
| |
| fu_in_exc_unfl_p: |
| mov.w &0x4,%d0 |
| bra.w fu_in_exc_exit_p |
| |
| fu_in_exc_exit_s_p: |
| btst &mia7_bit,SPCOND_FLG(%a6) |
| beq.b fu_in_exc_exit_cont_p |
| |
| mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| frestore FP_SRC(%a6) # restore src op |
| |
| unlk %a6 # unravel stack frame |
| |
| # shift stack frame "up". who cares about <ea> field. |
| mov.l 0x4(%sp),0x10(%sp) |
| mov.l 0x0(%sp),0xc(%sp) |
| add.l &0xc,%sp |
| |
| btst &0x7,(%sp) # is trace on? |
| bne.b fu_trace_p # yes |
| |
| bra.l _fpsp_done # exit to os |
| |
| # |
| # The opclass two PACKED instruction that took an "Unimplemented Data Type" |
| # exception was being traced. Make the "current" PC the FPIAR and put it in the |
| # trace stack frame then jump to _real_trace(). |
| # |
| # UNSUPP FRAME TRACE FRAME |
| # ***************** ***************** |
| # * EA * * Current * |
| # * * * PC * |
| # ***************** ***************** |
| # * 0x2 * 0x0dc * * 0x2 * 0x024 * |
| # ***************** ***************** |
| # * Next * * Next * |
| # * PC * * PC * |
| # ***************** ***************** |
| # * SR * * SR * |
| # ***************** ***************** |
| fu_trace_p: |
| mov.w &0x2024,0x6(%sp) |
| fmov.l %fpiar,0x8(%sp) |
| |
| bra.l _real_trace |
| |
| ######################################################### |
| ######################################################### |
| fu_out_pack: |
| |
| |
| # I'm not sure at this point what FPSR bits are valid for this instruction. |
| # so, since the emulation routines re-create them anyways, zero exception field. |
| # fmove out doesn't affect ccodes. |
| and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field |
| |
| fmov.l &0x0,%fpcr # zero current control regs |
| fmov.l &0x0,%fpsr |
| |
| bfextu EXC_CMDREG(%a6){&6:&3},%d0 |
| bsr.l load_fpn1 |
| |
| # unlike other opclass 3, unimplemented data type exceptions, packed must be |
| # able to detect all operand types. |
| lea FP_SRC(%a6),%a0 |
| bsr.l set_tag_x # tag the operand type |
| cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| bne.b fu_op2_p # no |
| bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO |
| |
| fu_op2_p: |
| mov.b %d0,STAG(%a6) # save src optype tag |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec |
| |
| lea FP_SRC(%a6),%a0 # pass ptr to src operand |
| |
| mov.l (%a6),EXC_A6(%a6) # in case a6 changes |
| bsr.l fout # call fmove out routine |
| |
| # Exceptions in order of precedence: |
| # BSUN : no |
| # SNAN : yes |
| # OPERR : if ((k_factor > +17) || (dec. exp exceeds 3 digits)) |
| # OVFL : no |
| # UNFL : no |
| # DZ : no |
| # INEX2 : yes |
| # INEX1 : no |
| |
| # determine the highest priority exception(if any) set by the |
| # emulation routine that has also been enabled by the user. |
| mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled |
| bne.w fu_out_ena_p # some are enabled |
| |
| fu_out_exit_p: |
| mov.l EXC_A6(%a6),(%a6) # restore a6 |
| |
| btst &0x5,EXC_SR(%a6) # user or supervisor? |
| bne.b fu_out_exit_s_p # supervisor |
| |
| mov.l EXC_A7(%a6),%a0 # update user a7 |
| mov.l %a0,%usp |
| |
| fu_out_exit_cont_p: |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 # unravel stack frame |
| |
| btst &0x7,(%sp) # is trace on? |
| bne.w fu_trace_p # yes |
| |
| bra.l _fpsp_done # exit to os |
| |
| # the exception occurred in supervisor mode. check to see if the |
| # addressing mode was -(a7). if so, we'll need to shift the |
| # stack frame "down". |
| fu_out_exit_s_p: |
| btst &mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7) |
| beq.b fu_out_exit_cont_p # no |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| mov.l (%a6),%a6 # restore frame pointer |
| |
| mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) |
| mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) |
| |
| # now, copy the result to the proper place on the stack |
| mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) |
| mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) |
| mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) |
| |
| add.l &LOCAL_SIZE-0x8,%sp |
| |
| btst &0x7,(%sp) |
| bne.w fu_trace_p |
| |
| bra.l _fpsp_done |
| |
| fu_out_ena_p: |
| and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled |
| bfffo %d0{&24:&8},%d0 # find highest priority exception |
| beq.w fu_out_exit_p |
| |
| mov.l EXC_A6(%a6),(%a6) # restore a6 |
| |
| # an exception occurred and that exception was enabled. |
| # the only exception possible on packed move out are INEX, OPERR, and SNAN. |
| fu_out_exc_p: |
| cmpi.b %d0,&0x1a |
| bgt.w fu_inex_p2 |
| beq.w fu_operr_p |
| |
| fu_snan_p: |
| btst &0x5,EXC_SR(%a6) |
| bne.b fu_snan_s_p |
| |
| mov.l EXC_A7(%a6),%a0 |
| mov.l %a0,%usp |
| bra.w fu_snan |
| |
| fu_snan_s_p: |
| cmpi.b SPCOND_FLG(%a6),&mda7_flg |
| bne.w fu_snan |
| |
| # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. |
| # the strategy is to move the exception frame "down" 12 bytes. then, we |
| # can store the default result where the exception frame was. |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd0 |
| mov.w &0xe006,2+FP_SRC(%a6) # set fsave status |
| |
| frestore FP_SRC(%a6) # restore src operand |
| |
| mov.l (%a6),%a6 # restore frame pointer |
| |
| mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) |
| mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) |
| mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) |
| |
| # now, we copy the default result to its proper location |
| mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) |
| mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) |
| mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) |
| |
| add.l &LOCAL_SIZE-0x8,%sp |
| |
| |
| bra.l _real_snan |
| |
| fu_operr_p: |
| btst &0x5,EXC_SR(%a6) |
| bne.w fu_operr_p_s |
| |
| mov.l EXC_A7(%a6),%a0 |
| mov.l %a0,%usp |
| bra.w fu_operr |
| |
| fu_operr_p_s: |
| cmpi.b SPCOND_FLG(%a6),&mda7_flg |
| bne.w fu_operr |
| |
| # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. |
| # the strategy is to move the exception frame "down" 12 bytes. then, we |
| # can store the default result where the exception frame was. |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 |
| mov.w &0xe004,2+FP_SRC(%a6) # set fsave status |
| |
| frestore FP_SRC(%a6) # restore src operand |
| |
| mov.l (%a6),%a6 # restore frame pointer |
| |
| mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) |
| mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) |
| mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) |
| |
| # now, we copy the default result to its proper location |
| mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) |
| mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) |
| mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) |
| |
| add.l &LOCAL_SIZE-0x8,%sp |
| |
| |
| bra.l _real_operr |
| |
| fu_inex_p2: |
| btst &0x5,EXC_SR(%a6) |
| bne.w fu_inex_s_p2 |
| |
| mov.l EXC_A7(%a6),%a0 |
| mov.l %a0,%usp |
| bra.w fu_inex |
| |
| fu_inex_s_p2: |
| cmpi.b SPCOND_FLG(%a6),&mda7_flg |
| bne.w fu_inex |
| |
| # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. |
| # the strategy is to move the exception frame "down" 12 bytes. then, we |
| # can store the default result where the exception frame was. |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 |
| mov.w &0xe001,2+FP_SRC(%a6) # set fsave status |
| |
| frestore FP_SRC(%a6) # restore src operand |
| |
| mov.l (%a6),%a6 # restore frame pointer |
| |
| mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) |
| mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) |
| mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) |
| |
| # now, we copy the default result to its proper location |
| mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) |
| mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) |
| mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) |
| |
| add.l &LOCAL_SIZE-0x8,%sp |
| |
| |
| bra.l _real_inex |
| |
| ######################################################################### |
| |
| # |
| # if we're stuffing a source operand back into an fsave frame then we |
| # have to make sure that for single or double source operands that the |
| # format stuffed is as weird as the hardware usually makes it. |
| # |
| global funimp_skew |
| funimp_skew: |
| bfextu EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier |
| cmpi.b %d0,&0x1 # was src sgl? |
| beq.b funimp_skew_sgl # yes |
| cmpi.b %d0,&0x5 # was src dbl? |
| beq.b funimp_skew_dbl # yes |
| rts |
| |
| funimp_skew_sgl: |
| mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent |
| andi.w &0x7fff,%d0 # strip sign |
| beq.b funimp_skew_sgl_not |
| cmpi.w %d0,&0x3f80 |
| bgt.b funimp_skew_sgl_not |
| neg.w %d0 # make exponent negative |
| addi.w &0x3f81,%d0 # find amt to shift |
| mov.l FP_SRC_HI(%a6),%d1 # fetch DENORM hi(man) |
| lsr.l %d0,%d1 # shift it |
| bset &31,%d1 # set j-bit |
| mov.l %d1,FP_SRC_HI(%a6) # insert new hi(man) |
| andi.w &0x8000,FP_SRC_EX(%a6) # clear old exponent |
| ori.w &0x3f80,FP_SRC_EX(%a6) # insert new "skewed" exponent |
| funimp_skew_sgl_not: |
| rts |
| |
| funimp_skew_dbl: |
| mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent |
| andi.w &0x7fff,%d0 # strip sign |
| beq.b funimp_skew_dbl_not |
| cmpi.w %d0,&0x3c00 |
| bgt.b funimp_skew_dbl_not |
| |
| tst.b FP_SRC_EX(%a6) # make "internal format" |
| smi.b 0x2+FP_SRC(%a6) |
| mov.w %d0,FP_SRC_EX(%a6) # insert exponent with cleared sign |
| clr.l %d0 # clear g,r,s |
| lea FP_SRC(%a6),%a0 # pass ptr to src op |
| mov.w &0x3c01,%d1 # pass denorm threshold |
| bsr.l dnrm_lp # denorm it |
| mov.w &0x3c00,%d0 # new exponent |
| tst.b 0x2+FP_SRC(%a6) # is sign set? |
| beq.b fss_dbl_denorm_done # no |
| bset &15,%d0 # set sign |
| fss_dbl_denorm_done: |
| bset &0x7,FP_SRC_HI(%a6) # set j-bit |
| mov.w %d0,FP_SRC_EX(%a6) # insert new exponent |
| funimp_skew_dbl_not: |
| rts |
| |
| ######################################################################### |
| global _mem_write2 |
| _mem_write2: |
| btst &0x5,EXC_SR(%a6) |
| beq.l _dmem_write |
| mov.l 0x0(%a0),FP_DST_EX(%a6) |
| mov.l 0x4(%a0),FP_DST_HI(%a6) |
| mov.l 0x8(%a0),FP_DST_LO(%a6) |
| clr.l %d1 |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # _fpsp_effadd(): 060FPSP entry point for FP "Unimplemented # |
| # effective address" exception. # |
| # # |
| # This handler should be the first code executed upon taking the # |
| # FP Unimplemented Effective Address exception in an operating # |
| # system. # |
| # # |
| # XREF **************************************************************** # |
| # _imem_read_long() - read instruction longword # |
| # fix_skewed_ops() - adjust src operand in fsave frame # |
| # set_tag_x() - determine optype of src/dst operands # |
| # store_fpreg() - store opclass 0 or 2 result to FP regfile # |
| # unnorm_fix() - change UNNORM operands to NORM or ZERO # |
| # load_fpn2() - load dst operand from FP regfile # |
| # tbl_unsupp - add of table of emulation routines for opclass 0,2 # |
| # decbin() - convert packed data to FP binary data # |
| # _real_fpu_disabled() - "callout" for "FPU disabled" exception # |
| # _real_access() - "callout" for access error exception # |
| # _mem_read() - read extended immediate operand from memory # |
| # _fpsp_done() - "callout" for exit; work all done # |
| # _real_trace() - "callout" for Trace enabled exception # |
| # fmovm_dynamic() - emulate dynamic fmovm instruction # |
| # fmovm_ctrl() - emulate fmovm control instruction # |
| # # |
| # INPUT *************************************************************** # |
| # - The system stack contains the "Unimplemented <ea>" stk frame # |
| # # |
| # OUTPUT ************************************************************** # |
| # If access error: # |
| # - The system stack is changed to an access error stack frame # |
| # If FPU disabled: # |
| # - The system stack is changed to an FPU disabled stack frame # |
| # If Trace exception enabled: # |
| # - The system stack is changed to a Trace exception stack frame # |
| # Else: (normal case) # |
| # - None (correct result has been stored as appropriate) # |
| # # |
| # ALGORITHM *********************************************************** # |
| # This exception handles 3 types of operations: # |
| # (1) FP Instructions using extended precision or packed immediate # |
| # addressing mode. # |
| # (2) The "fmovm.x" instruction w/ dynamic register specification. # |
| # (3) The "fmovm.l" instruction w/ 2 or 3 control registers. # |
| # # |
| # For immediate data operations, the data is read in w/ a # |
| # _mem_read() "callout", converted to FP binary (if packed), and used # |
| # as the source operand to the instruction specified by the instruction # |
| # word. If no FP exception should be reported ads a result of the # |
| # emulation, then the result is stored to the destination register and # |
| # the handler exits through _fpsp_done(). If an enabled exc has been # |
| # signalled as a result of emulation, then an fsave state frame # |
| # corresponding to the FP exception type must be entered into the 060 # |
| # FPU before exiting. In either the enabled or disabled cases, we # |
| # must also check if a Trace exception is pending, in which case, we # |
| # must create a Trace exception stack frame from the current exception # |
| # stack frame. If no Trace is pending, we simply exit through # |
| # _fpsp_done(). # |
| # For "fmovm.x", call the routine fmovm_dynamic() which will # |
| # decode and emulate the instruction. No FP exceptions can be pending # |
| # as a result of this operation emulation. A Trace exception can be # |
| # pending, though, which means the current stack frame must be changed # |
| # to a Trace stack frame and an exit made through _real_trace(). # |
| # For the case of "fmovm.x Dn,-(a7)", where the offending instruction # |
| # was executed from supervisor mode, this handler must store the FP # |
| # register file values to the system stack by itself since # |
| # fmovm_dynamic() can't handle this. A normal exit is made through # |
| # fpsp_done(). # |
| # For "fmovm.l", fmovm_ctrl() is used to emulate the instruction. # |
| # Again, a Trace exception may be pending and an exit made through # |
| # _real_trace(). Else, a normal exit is made through _fpsp_done(). # |
| # # |
| # Before any of the above is attempted, it must be checked to # |
| # see if the FPU is disabled. Since the "Unimp <ea>" exception is taken # |
| # before the "FPU disabled" exception, but the "FPU disabled" exception # |
| # has higher priority, we check the disabled bit in the PCR. If set, # |
| # then we must create an 8 word "FPU disabled" exception stack frame # |
| # from the current 4 word exception stack frame. This includes # |
| # reproducing the effective address of the instruction to put on the # |
| # new stack frame. # |
| # # |
| # In the process of all emulation work, if a _mem_read() # |
| # "callout" returns a failing result indicating an access error, then # |
| # we must create an access error stack frame from the current stack # |
| # frame. This information includes a faulting address and a fault- # |
| # status-longword. These are created within this handler. # |
| # # |
| ######################################################################### |
| |
| global _fpsp_effadd |
| _fpsp_effadd: |
| |
| # This exception type takes priority over the "Line F Emulator" |
| # exception. Therefore, the FPU could be disabled when entering here. |
| # So, we must check to see if it's disabled and handle that case separately. |
| mov.l %d0,-(%sp) # save d0 |
| movc %pcr,%d0 # load proc cr |
| btst &0x1,%d0 # is FPU disabled? |
| bne.w iea_disabled # yes |
| mov.l (%sp)+,%d0 # restore d0 |
| |
| link %a6,&-LOCAL_SIZE # init stack frame |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| |
| # PC of instruction that took the exception is the PC in the frame |
| mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) |
| |
| mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| bsr.l _imem_read_long # fetch the instruction words |
| mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD |
| |
| ######################################################################### |
| |
| tst.w %d0 # is operation fmovem? |
| bmi.w iea_fmovm # yes |
| |
| # |
| # here, we will have: |
| # fabs fdabs fsabs facos fmod |
| # fadd fdadd fsadd fasin frem |
| # fcmp fatan fscale |
| # fdiv fddiv fsdiv fatanh fsin |
| # fint fcos fsincos |
| # fintrz fcosh fsinh |
| # fmove fdmove fsmove fetox ftan |
| # fmul fdmul fsmul fetoxm1 ftanh |
| # fneg fdneg fsneg fgetexp ftentox |
| # fsgldiv fgetman ftwotox |
| # fsglmul flog10 |
| # fsqrt flog2 |
| # fsub fdsub fssub flogn |
| # ftst flognp1 |
| # which can all use f<op>.{x,p} |
| # so, now it's immediate data extended precision AND PACKED FORMAT! |
| # |
| iea_op: |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| btst &0xa,%d0 # is src fmt x or p? |
| bne.b iea_op_pack # packed |
| |
| |
| mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> |
| lea FP_SRC(%a6),%a1 # pass: ptr to super addr |
| mov.l &0xc,%d0 # pass: 12 bytes |
| bsr.l _imem_read # read extended immediate |
| |
| tst.l %d1 # did ifetch fail? |
| bne.w iea_iacc # yes |
| |
| bra.b iea_op_setsrc |
| |
| iea_op_pack: |
| |
| mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> |
| lea FP_SRC(%a6),%a1 # pass: ptr to super dst |
| mov.l &0xc,%d0 # pass: 12 bytes |
| bsr.l _imem_read # read packed operand |
| |
| tst.l %d1 # did ifetch fail? |
| bne.w iea_iacc # yes |
| |
| # The packed operand is an INF or a NAN if the exponent field is all ones. |
| bfextu FP_SRC(%a6){&1:&15},%d0 # get exp |
| cmpi.w %d0,&0x7fff # INF or NAN? |
| beq.b iea_op_setsrc # operand is an INF or NAN |
| |
| # The packed operand is a zero if the mantissa is all zero, else it's |
| # a normal packed op. |
| mov.b 3+FP_SRC(%a6),%d0 # get byte 4 |
| andi.b &0x0f,%d0 # clear all but last nybble |
| bne.b iea_op_gp_not_spec # not a zero |
| tst.l FP_SRC_HI(%a6) # is lw 2 zero? |
| bne.b iea_op_gp_not_spec # not a zero |
| tst.l FP_SRC_LO(%a6) # is lw 3 zero? |
| beq.b iea_op_setsrc # operand is a ZERO |
| iea_op_gp_not_spec: |
| lea FP_SRC(%a6),%a0 # pass: ptr to packed op |
| bsr.l decbin # convert to extended |
| fmovm.x &0x80,FP_SRC(%a6) # make this the srcop |
| |
| iea_op_setsrc: |
| addi.l &0xc,EXC_EXTWPTR(%a6) # update extension word pointer |
| |
| # FP_SRC now holds the src operand. |
| lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| bsr.l set_tag_x # tag the operand type |
| mov.b %d0,STAG(%a6) # could be ANYTHING!!! |
| cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| bne.b iea_op_getdst # no |
| bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO |
| mov.b %d0,STAG(%a6) # set new optype tag |
| iea_op_getdst: |
| clr.b STORE_FLG(%a6) # clear "store result" boolean |
| |
| btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? |
| beq.b iea_op_extract # monadic |
| btst &0x4,1+EXC_CMDREG(%a6) # is operation fsincos,ftst,fcmp? |
| bne.b iea_op_spec # yes |
| |
| iea_op_loaddst: |
| bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno |
| bsr.l load_fpn2 # load dst operand |
| |
| lea FP_DST(%a6),%a0 # pass: ptr to dst op |
| bsr.l set_tag_x # tag the operand type |
| mov.b %d0,DTAG(%a6) # could be ANYTHING!!! |
| cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| bne.b iea_op_extract # no |
| bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO |
| mov.b %d0,DTAG(%a6) # set new optype tag |
| bra.b iea_op_extract |
| |
| # the operation is fsincos, ftst, or fcmp. only fcmp is dyadic |
| iea_op_spec: |
| btst &0x3,1+EXC_CMDREG(%a6) # is operation fsincos? |
| beq.b iea_op_extract # yes |
| # now, we're left with ftst and fcmp. so, first let's tag them so that they don't |
| # store a result. then, only fcmp will branch back and pick up a dst operand. |
| st STORE_FLG(%a6) # don't store a final result |
| btst &0x1,1+EXC_CMDREG(%a6) # is operation fcmp? |
| beq.b iea_op_loaddst # yes |
| |
| iea_op_extract: |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass: rnd mode,prec |
| |
| mov.b 1+EXC_CMDREG(%a6),%d1 |
| andi.w &0x007f,%d1 # extract extension |
| |
| fmov.l &0x0,%fpcr |
| fmov.l &0x0,%fpsr |
| |
| lea FP_SRC(%a6),%a0 |
| lea FP_DST(%a6),%a1 |
| |
| mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr |
| jsr (tbl_unsupp.l,%pc,%d1.l*1) |
| |
| # |
| # Exceptions in order of precedence: |
| # BSUN : none |
| # SNAN : all operations |
| # OPERR : all reg-reg or mem-reg operations that can normally operr |
| # OVFL : same as OPERR |
| # UNFL : same as OPERR |
| # DZ : same as OPERR |
| # INEX2 : same as OPERR |
| # INEX1 : all packed immediate operations |
| # |
| |
| # we determine the highest priority exception(if any) set by the |
| # emulation routine that has also been enabled by the user. |
| mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled |
| bne.b iea_op_ena # some are enabled |
| |
| # now, we save the result, unless, of course, the operation was ftst or fcmp. |
| # these don't save results. |
| iea_op_save: |
| tst.b STORE_FLG(%a6) # does this op store a result? |
| bne.b iea_op_exit1 # exit with no frestore |
| |
| iea_op_store: |
| bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno |
| bsr.l store_fpreg # store the result |
| |
| iea_op_exit1: |
| mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" |
| mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 # unravel the frame |
| |
| btst &0x7,(%sp) # is trace on? |
| bne.w iea_op_trace # yes |
| |
| bra.l _fpsp_done # exit to os |
| |
| iea_op_ena: |
| and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enable and set |
| bfffo %d0{&24:&8},%d0 # find highest priority exception |
| bne.b iea_op_exc # at least one was set |
| |
| # no exception occurred. now, did a disabled, exact overflow occur with inexact |
| # enabled? if so, then we have to stuff an overflow frame into the FPU. |
| btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? |
| beq.b iea_op_save |
| |
| iea_op_ovfl: |
| btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? |
| beq.b iea_op_store # no |
| bra.b iea_op_exc_ovfl # yes |
| |
| # an enabled exception occurred. we have to insert the exception type back into |
| # the machine. |
| iea_op_exc: |
| subi.l &24,%d0 # fix offset to be 0-8 |
| cmpi.b %d0,&0x6 # is exception INEX? |
| bne.b iea_op_exc_force # no |
| |
| # the enabled exception was inexact. so, if it occurs with an overflow |
| # or underflow that was disabled, then we have to force an overflow or |
| # underflow frame. |
| btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? |
| bne.b iea_op_exc_ovfl # yes |
| btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? |
| bne.b iea_op_exc_unfl # yes |
| |
| iea_op_exc_force: |
| mov.w (tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) |
| bra.b iea_op_exit2 # exit with frestore |
| |
| tbl_iea_except: |
| short 0xe002, 0xe006, 0xe004, 0xe005 |
| short 0xe003, 0xe002, 0xe001, 0xe001 |
| |
| iea_op_exc_ovfl: |
| mov.w &0xe005,2+FP_SRC(%a6) |
| bra.b iea_op_exit2 |
| |
| iea_op_exc_unfl: |
| mov.w &0xe003,2+FP_SRC(%a6) |
| |
| iea_op_exit2: |
| mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" |
| mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame |
| |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| frestore FP_SRC(%a6) # restore exceptional state |
| |
| unlk %a6 # unravel the frame |
| |
| btst &0x7,(%sp) # is trace on? |
| bne.b iea_op_trace # yes |
| |
| bra.l _fpsp_done # exit to os |
| |
| # |
| # The opclass two instruction that took an "Unimplemented Effective Address" |
| # exception was being traced. Make the "current" PC the FPIAR and put it in |
| # the trace stack frame then jump to _real_trace(). |
| # |
| # UNIMP EA FRAME TRACE FRAME |
| # ***************** ***************** |
| # * 0x0 * 0x0f0 * * Current * |
| # ***************** * PC * |
| # * Current * ***************** |
| # * PC * * 0x2 * 0x024 * |
| # ***************** ***************** |
| # * SR * * Next * |
| # ***************** * PC * |
| # ***************** |
| # * SR * |
| # ***************** |
| iea_op_trace: |
| mov.l (%sp),-(%sp) # shift stack frame "down" |
| mov.w 0x8(%sp),0x4(%sp) |
| mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 |
| fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR |
| |
| bra.l _real_trace |
| |
| ######################################################################### |
| iea_fmovm: |
| btst &14,%d0 # ctrl or data reg |
| beq.w iea_fmovm_ctrl |
| |
| iea_fmovm_data: |
| |
| btst &0x5,EXC_SR(%a6) # user or supervisor mode |
| bne.b iea_fmovm_data_s |
| |
| iea_fmovm_data_u: |
| mov.l %usp,%a0 |
| mov.l %a0,EXC_A7(%a6) # store current a7 |
| bsr.l fmovm_dynamic # do dynamic fmovm |
| mov.l EXC_A7(%a6),%a0 # load possibly new a7 |
| mov.l %a0,%usp # update usp |
| bra.w iea_fmovm_exit |
| |
| iea_fmovm_data_s: |
| clr.b SPCOND_FLG(%a6) |
| lea 0x2+EXC_VOFF(%a6),%a0 |
| mov.l %a0,EXC_A7(%a6) |
| bsr.l fmovm_dynamic # do dynamic fmovm |
| |
| cmpi.b SPCOND_FLG(%a6),&mda7_flg |
| beq.w iea_fmovm_data_predec |
| cmpi.b SPCOND_FLG(%a6),&mia7_flg |
| bne.w iea_fmovm_exit |
| |
| # right now, d0 = the size. |
| # the data has been fetched from the supervisor stack, but we have not |
| # incremented the stack pointer by the appropriate number of bytes. |
| # do it here. |
| iea_fmovm_data_postinc: |
| btst &0x7,EXC_SR(%a6) |
| bne.b iea_fmovm_data_pi_trace |
| |
| mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) |
| mov.l EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0) |
| mov.w &0x00f0,(EXC_VOFF,%a6,%d0) |
| |
| lea (EXC_SR,%a6,%d0),%a0 |
| mov.l %a0,EXC_SR(%a6) |
| |
| fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| mov.l (%sp)+,%sp |
| bra.l _fpsp_done |
| |
| iea_fmovm_data_pi_trace: |
| mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) |
| mov.l EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0) |
| mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) |
| mov.l EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0) |
| |
| lea (EXC_SR-0x4,%a6,%d0),%a0 |
| mov.l %a0,EXC_SR(%a6) |
| |
| fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| mov.l (%sp)+,%sp |
| bra.l _real_trace |
| |
| # right now, d1 = size and d0 = the strg. |
| iea_fmovm_data_predec: |
| mov.b %d1,EXC_VOFF(%a6) # store strg |
| mov.b %d0,0x1+EXC_VOFF(%a6) # store size |
| |
| fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| mov.l (%a6),-(%sp) # make a copy of a6 |
| mov.l %d0,-(%sp) # save d0 |
| mov.l %d1,-(%sp) # save d1 |
| mov.l EXC_EXTWPTR(%a6),-(%sp) # make a copy of Next PC |
| |
| clr.l %d0 |
| mov.b 0x1+EXC_VOFF(%a6),%d0 # fetch size |
| neg.l %d0 # get negative of size |
| |
| btst &0x7,EXC_SR(%a6) # is trace enabled? |
| beq.b iea_fmovm_data_p2 |
| |
| mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) |
| mov.l EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0) |
| mov.l (%sp)+,(EXC_PC-0x4,%a6,%d0) |
| mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) |
| |
| pea (%a6,%d0) # create final sp |
| bra.b iea_fmovm_data_p3 |
| |
| iea_fmovm_data_p2: |
| mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) |
| mov.l (%sp)+,(EXC_PC,%a6,%d0) |
| mov.w &0x00f0,(EXC_VOFF,%a6,%d0) |
| |
| pea (0x4,%a6,%d0) # create final sp |
| |
| iea_fmovm_data_p3: |
| clr.l %d1 |
| mov.b EXC_VOFF(%a6),%d1 # fetch strg |
| |
| tst.b %d1 |
| bpl.b fm_1 |
| fmovm.x &0x80,(0x4+0x8,%a6,%d0) |
| addi.l &0xc,%d0 |
| fm_1: |
| lsl.b &0x1,%d1 |
| bpl.b fm_2 |
| fmovm.x &0x40,(0x4+0x8,%a6,%d0) |
| addi.l &0xc,%d0 |
| fm_2: |
| lsl.b &0x1,%d1 |
| bpl.b fm_3 |
| fmovm.x &0x20,(0x4+0x8,%a6,%d0) |
| addi.l &0xc,%d0 |
| fm_3: |
| lsl.b &0x1,%d1 |
| bpl.b fm_4 |
| fmovm.x &0x10,(0x4+0x8,%a6,%d0) |
| addi.l &0xc,%d0 |
| fm_4: |
| lsl.b &0x1,%d1 |
| bpl.b fm_5 |
| fmovm.x &0x08,(0x4+0x8,%a6,%d0) |
| addi.l &0xc,%d0 |
| fm_5: |
| lsl.b &0x1,%d1 |
| bpl.b fm_6 |
| fmovm.x &0x04,(0x4+0x8,%a6,%d0) |
| addi.l &0xc,%d0 |
| fm_6: |
| lsl.b &0x1,%d1 |
| bpl.b fm_7 |
| fmovm.x &0x02,(0x4+0x8,%a6,%d0) |
| addi.l &0xc,%d0 |
| fm_7: |
| lsl.b &0x1,%d1 |
| bpl.b fm_end |
| fmovm.x &0x01,(0x4+0x8,%a6,%d0) |
| fm_end: |
| mov.l 0x4(%sp),%d1 |
| mov.l 0x8(%sp),%d0 |
| mov.l 0xc(%sp),%a6 |
| mov.l (%sp)+,%sp |
| |
| btst &0x7,(%sp) # is trace enabled? |
| beq.l _fpsp_done |
| bra.l _real_trace |
| |
| ######################################################################### |
| iea_fmovm_ctrl: |
| |
| bsr.l fmovm_ctrl # load ctrl regs |
| |
| iea_fmovm_exit: |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| btst &0x7,EXC_SR(%a6) # is trace on? |
| bne.b iea_fmovm_trace # yes |
| |
| mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC |
| |
| unlk %a6 # unravel the frame |
| |
| bra.l _fpsp_done # exit to os |
| |
| # |
| # The control reg instruction that took an "Unimplemented Effective Address" |
| # exception was being traced. The "Current PC" for the trace frame is the |
| # PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR. |
| # After fixing the stack frame, jump to _real_trace(). |
| # |
| # UNIMP EA FRAME TRACE FRAME |
| # ***************** ***************** |
| # * 0x0 * 0x0f0 * * Current * |
| # ***************** * PC * |
| # * Current * ***************** |
| # * PC * * 0x2 * 0x024 * |
| # ***************** ***************** |
| # * SR * * Next * |
| # ***************** * PC * |
| # ***************** |
| # * SR * |
| # ***************** |
| # this ain't a pretty solution, but it works: |
| # -restore a6 (not with unlk) |
| # -shift stack frame down over where old a6 used to be |
| # -add LOCAL_SIZE to stack pointer |
| iea_fmovm_trace: |
| mov.l (%a6),%a6 # restore frame pointer |
| mov.w EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp) |
| mov.l EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp) |
| mov.l EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp) |
| mov.w &0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024 |
| add.l &LOCAL_SIZE,%sp # clear stack frame |
| |
| bra.l _real_trace |
| |
| ######################################################################### |
| # The FPU is disabled and so we should really have taken the "Line |
| # F Emulator" exception. So, here we create an 8-word stack frame |
| # from our 4-word stack frame. This means we must calculate the length |
| # the faulting instruction to get the "next PC". This is trivial for |
| # immediate operands but requires some extra work for fmovm dynamic |
| # which can use most addressing modes. |
| iea_disabled: |
| mov.l (%sp)+,%d0 # restore d0 |
| |
| link %a6,&-LOCAL_SIZE # init stack frame |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| |
| # PC of instruction that took the exception is the PC in the frame |
| mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) |
| mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| bsr.l _imem_read_long # fetch the instruction words |
| mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD |
| |
| tst.w %d0 # is instr fmovm? |
| bmi.b iea_dis_fmovm # yes |
| # instruction is using an extended precision immediate operand. Therefore, |
| # the total instruction length is 16 bytes. |
| iea_dis_immed: |
| mov.l &0x10,%d0 # 16 bytes of instruction |
| bra.b iea_dis_cont |
| iea_dis_fmovm: |
| btst &0xe,%d0 # is instr fmovm ctrl |
| bne.b iea_dis_fmovm_data # no |
| # the instruction is a fmovm.l with 2 or 3 registers. |
| bfextu %d0{&19:&3},%d1 |
| mov.l &0xc,%d0 |
| cmpi.b %d1,&0x7 # move all regs? |
| bne.b iea_dis_cont |
| addq.l &0x4,%d0 |
| bra.b iea_dis_cont |
| # the instruction is an fmovm.x dynamic which can use many addressing |
| # modes and thus can have several different total instruction lengths. |
| # call fmovm_calc_ea which will go through the ea calc process and, |
| # as a by-product, will tell us how long the instruction is. |
| iea_dis_fmovm_data: |
| clr.l %d0 |
| bsr.l fmovm_calc_ea |
| mov.l EXC_EXTWPTR(%a6),%d0 |
| sub.l EXC_PC(%a6),%d0 |
| iea_dis_cont: |
| mov.w %d0,EXC_VOFF(%a6) # store stack shift value |
| |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| |
| # here, we actually create the 8-word frame from the 4-word frame, |
| # with the "next PC" as additional info. |
| # the <ea> field is let as undefined. |
| subq.l &0x8,%sp # make room for new stack |
| mov.l %d0,-(%sp) # save d0 |
| mov.w 0xc(%sp),0x4(%sp) # move SR |
| mov.l 0xe(%sp),0x6(%sp) # move Current PC |
| clr.l %d0 |
| mov.w 0x12(%sp),%d0 |
| mov.l 0x6(%sp),0x10(%sp) # move Current PC |
| add.l %d0,0x6(%sp) # make Next PC |
| mov.w &0x402c,0xa(%sp) # insert offset,frame format |
| mov.l (%sp)+,%d0 # restore d0 |
| |
| bra.l _real_fpu_disabled |
| |
| ########## |
| |
| iea_iacc: |
| movc %pcr,%d0 |
| btst &0x1,%d0 |
| bne.b iea_iacc_cont |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack |
| iea_iacc_cont: |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| |
| subq.w &0x8,%sp # make stack frame bigger |
| mov.l 0x8(%sp),(%sp) # store SR,hi(PC) |
| mov.w 0xc(%sp),0x4(%sp) # store lo(PC) |
| mov.w &0x4008,0x6(%sp) # store voff |
| mov.l 0x2(%sp),0x8(%sp) # store ea |
| mov.l &0x09428001,0xc(%sp) # store fslw |
| |
| iea_acc_done: |
| btst &0x5,(%sp) # user or supervisor mode? |
| beq.b iea_acc_done2 # user |
| bset &0x2,0xd(%sp) # set supervisor TM bit |
| |
| iea_acc_done2: |
| bra.l _real_access |
| |
| iea_dacc: |
| lea -LOCAL_SIZE(%a6),%sp |
| |
| movc %pcr,%d1 |
| btst &0x1,%d1 |
| bne.b iea_dacc_cont |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack |
| fmovm.l LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| iea_dacc_cont: |
| mov.l (%a6),%a6 |
| |
| mov.l 0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp) |
| mov.w 0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp) |
| mov.w &0x4008,-0x8+0xa+LOCAL_SIZE(%sp) |
| mov.l %a0,-0x8+0xc+LOCAL_SIZE(%sp) |
| mov.w %d0,-0x8+0x10+LOCAL_SIZE(%sp) |
| mov.w &0x0001,-0x8+0x12+LOCAL_SIZE(%sp) |
| |
| movm.l LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1 |
| add.w &LOCAL_SIZE-0x4,%sp |
| |
| bra.b iea_acc_done |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # _fpsp_operr(): 060FPSP entry point for FP Operr exception. # |
| # # |
| # This handler should be the first code executed upon taking the # |
| # FP Operand Error exception in an operating system. # |
| # # |
| # XREF **************************************************************** # |
| # _imem_read_long() - read instruction longword # |
| # fix_skewed_ops() - adjust src operand in fsave frame # |
| # _real_operr() - "callout" to operating system operr handler # |
| # _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # |
| # store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # |
| # facc_out_{b,w,l}() - store to memory took access error (opcl 3) # |
| # # |
| # INPUT *************************************************************** # |
| # - The system stack contains the FP Operr exception frame # |
| # - The fsave frame contains the source operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # No access error: # |
| # - The system stack is unchanged # |
| # - The fsave frame contains the adjusted src op for opclass 0,2 # |
| # # |
| # ALGORITHM *********************************************************** # |
| # In a system where the FP Operr exception is enabled, the goal # |
| # is to get to the handler specified at _real_operr(). But, on the 060, # |
| # for opclass zero and two instruction taking this exception, the # |
| # input operand in the fsave frame may be incorrect for some cases # |
| # and needs to be corrected. This handler calls fix_skewed_ops() to # |
| # do just this and then exits through _real_operr(). # |
| # For opclass 3 instructions, the 060 doesn't store the default # |
| # operr result out to memory or data register file as it should. # |
| # This code must emulate the move out before finally exiting through # |
| # _real_inex(). The move out, if to memory, is performed using # |
| # _mem_write() "callout" routines that may return a failing result. # |
| # In this special case, the handler must exit through facc_out() # |
| # which creates an access error stack frame from the current operr # |
| # stack frame. # |
| # # |
| ######################################################################### |
| |
| global _fpsp_operr |
| _fpsp_operr: |
| |
| link.w %a6,&-LOCAL_SIZE # init stack frame |
| |
| fsave FP_SRC(%a6) # grab the "busy" frame |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| |
| # the FPIAR holds the "current PC" of the faulting instruction |
| mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) |
| |
| mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| bsr.l _imem_read_long # fetch the instruction words |
| mov.l %d0,EXC_OPWORD(%a6) |
| |
| ############################################################################## |
| |
| btst &13,%d0 # is instr an fmove out? |
| bne.b foperr_out # fmove out |
| |
| |
| # here, we simply see if the operand in the fsave frame needs to be "unskewed". |
| # this would be the case for opclass two operations with a source infinity or |
| # denorm operand in the sgl or dbl format. NANs also become skewed, but can't |
| # cause an operr so we don't need to check for them here. |
| lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| bsr.l fix_skewed_ops # fix src op |
| |
| foperr_exit: |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| frestore FP_SRC(%a6) |
| |
| unlk %a6 |
| bra.l _real_operr |
| |
| ######################################################################## |
| |
| # |
| # the hardware does not save the default result to memory on enabled |
| # operand error exceptions. we do this here before passing control to |
| # the user operand error handler. |
| # |
| # byte, word, and long destination format operations can pass |
| # through here. we simply need to test the sign of the src |
| # operand and save the appropriate minimum or maximum integer value |
| # to the effective address as pointed to by the stacked effective address. |
| # |
| # although packed opclass three operations can take operand error |
| # exceptions, they won't pass through here since they are caught |
| # first by the unsupported data format exception handler. that handler |
| # sends them directly to _real_operr() if necessary. |
| # |
| foperr_out: |
| |
| mov.w FP_SRC_EX(%a6),%d1 # fetch exponent |
| andi.w &0x7fff,%d1 |
| cmpi.w %d1,&0x7fff |
| bne.b foperr_out_not_qnan |
| # the operand is either an infinity or a QNAN. |
| tst.l FP_SRC_LO(%a6) |
| bne.b foperr_out_qnan |
| mov.l FP_SRC_HI(%a6),%d1 |
| andi.l &0x7fffffff,%d1 |
| beq.b foperr_out_not_qnan |
| foperr_out_qnan: |
| mov.l FP_SRC_HI(%a6),L_SCR1(%a6) |
| bra.b foperr_out_jmp |
| |
| foperr_out_not_qnan: |
| mov.l &0x7fffffff,%d1 |
| tst.b FP_SRC_EX(%a6) |
| bpl.b foperr_out_not_qnan2 |
| addq.l &0x1,%d1 |
| foperr_out_not_qnan2: |
| mov.l %d1,L_SCR1(%a6) |
| |
| foperr_out_jmp: |
| bfextu %d0{&19:&3},%d0 # extract dst format field |
| mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg |
| mov.w (tbl_operr.b,%pc,%d0.w*2),%a0 |
| jmp (tbl_operr.b,%pc,%a0) |
| |
| tbl_operr: |
| short foperr_out_l - tbl_operr # long word integer |
| short tbl_operr - tbl_operr # sgl prec shouldn't happen |
| short tbl_operr - tbl_operr # ext prec shouldn't happen |
| short foperr_exit - tbl_operr # packed won't enter here |
| short foperr_out_w - tbl_operr # word integer |
| short tbl_operr - tbl_operr # dbl prec shouldn't happen |
| short foperr_out_b - tbl_operr # byte integer |
| short tbl_operr - tbl_operr # packed won't enter here |
| |
| foperr_out_b: |
| mov.b L_SCR1(%a6),%d0 # load positive default result |
| cmpi.b %d1,&0x7 # is <ea> mode a data reg? |
| ble.b foperr_out_b_save_dn # yes |
| mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result |
| bsr.l _dmem_write_byte # write the default result |
| |
| tst.l %d1 # did dstore fail? |
| bne.l facc_out_b # yes |
| |
| bra.w foperr_exit |
| foperr_out_b_save_dn: |
| andi.w &0x0007,%d1 |
| bsr.l store_dreg_b # store result to regfile |
| bra.w foperr_exit |
| |
| foperr_out_w: |
| mov.w L_SCR1(%a6),%d0 # load positive default result |
| cmpi.b %d1,&0x7 # is <ea> mode a data reg? |
| ble.b foperr_out_w_save_dn # yes |
| mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result |
| bsr.l _dmem_write_word # write the default result |
| |
| tst.l %d1 # did dstore fail? |
| bne.l facc_out_w # yes |
| |
| bra.w foperr_exit |
| foperr_out_w_save_dn: |
| andi.w &0x0007,%d1 |
| bsr.l store_dreg_w # store result to regfile |
| bra.w foperr_exit |
| |
| foperr_out_l: |
| mov.l L_SCR1(%a6),%d0 # load positive default result |
| cmpi.b %d1,&0x7 # is <ea> mode a data reg? |
| ble.b foperr_out_l_save_dn # yes |
| mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result |
| bsr.l _dmem_write_long # write the default result |
| |
| tst.l %d1 # did dstore fail? |
| bne.l facc_out_l # yes |
| |
| bra.w foperr_exit |
| foperr_out_l_save_dn: |
| andi.w &0x0007,%d1 |
| bsr.l store_dreg_l # store result to regfile |
| bra.w foperr_exit |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # _fpsp_snan(): 060FPSP entry point for FP SNAN exception. # |
| # # |
| # This handler should be the first code executed upon taking the # |
| # FP Signalling NAN exception in an operating system. # |
| # # |
| # XREF **************************************************************** # |
| # _imem_read_long() - read instruction longword # |
| # fix_skewed_ops() - adjust src operand in fsave frame # |
| # _real_snan() - "callout" to operating system SNAN handler # |
| # _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # |
| # store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # |
| # facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3) # |
| # _calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea> # |
| # # |
| # INPUT *************************************************************** # |
| # - The system stack contains the FP SNAN exception frame # |
| # - The fsave frame contains the source operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # No access error: # |
| # - The system stack is unchanged # |
| # - The fsave frame contains the adjusted src op for opclass 0,2 # |
| # # |
| # ALGORITHM *********************************************************** # |
| # In a system where the FP SNAN exception is enabled, the goal # |
| # is to get to the handler specified at _real_snan(). But, on the 060, # |
| # for opclass zero and two instructions taking this exception, the # |
| # input operand in the fsave frame may be incorrect for some cases # |
| # and needs to be corrected. This handler calls fix_skewed_ops() to # |
| # do just this and then exits through _real_snan(). # |
| # For opclass 3 instructions, the 060 doesn't store the default # |
| # SNAN result out to memory or data register file as it should. # |
| # This code must emulate the move out before finally exiting through # |
| # _real_snan(). The move out, if to memory, is performed using # |
| # _mem_write() "callout" routines that may return a failing result. # |
| # In this special case, the handler must exit through facc_out() # |
| # which creates an access error stack frame from the current SNAN # |
| # stack frame. # |
| # For the case of an extended precision opclass 3 instruction, # |
| # if the effective addressing mode was -() or ()+, then the address # |
| # register must get updated by calling _calc_ea_fout(). If the <ea> # |
| # was -(a7) from supervisor mode, then the exception frame currently # |
| # on the system stack must be carefully moved "down" to make room # |
| # for the operand being moved. # |
| # # |
| ######################################################################### |
| |
| global _fpsp_snan |
| _fpsp_snan: |
| |
| link.w %a6,&-LOCAL_SIZE # init stack frame |
| |
| fsave FP_SRC(%a6) # grab the "busy" frame |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| |
| # the FPIAR holds the "current PC" of the faulting instruction |
| mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) |
| |
| mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| bsr.l _imem_read_long # fetch the instruction words |
| mov.l %d0,EXC_OPWORD(%a6) |
| |
| ############################################################################## |
| |
| btst &13,%d0 # is instr an fmove out? |
| bne.w fsnan_out # fmove out |
| |
| |
| # here, we simply see if the operand in the fsave frame needs to be "unskewed". |
| # this would be the case for opclass two operations with a source infinity or |
| # denorm operand in the sgl or dbl format. NANs also become skewed and must be |
| # fixed here. |
| lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| bsr.l fix_skewed_ops # fix src op |
| |
| fsnan_exit: |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| frestore FP_SRC(%a6) |
| |
| unlk %a6 |
| bra.l _real_snan |
| |
| ######################################################################## |
| |
| # |
| # the hardware does not save the default result to memory on enabled |
| # snan exceptions. we do this here before passing control to |
| # the user snan handler. |
| # |
| # byte, word, long, and packed destination format operations can pass |
| # through here. since packed format operations already were handled by |
| # fpsp_unsupp(), then we need to do nothing else for them here. |
| # for byte, word, and long, we simply need to test the sign of the src |
| # operand and save the appropriate minimum or maximum integer value |
| # to the effective address as pointed to by the stacked effective address. |
| # |
| fsnan_out: |
| |
| bfextu %d0{&19:&3},%d0 # extract dst format field |
| mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg |
| mov.w (tbl_snan.b,%pc,%d0.w*2),%a0 |
| jmp (tbl_snan.b,%pc,%a0) |
| |
| tbl_snan: |
| short fsnan_out_l - tbl_snan # long word integer |
| short fsnan_out_s - tbl_snan # sgl prec shouldn't happen |
| short fsnan_out_x - tbl_snan # ext prec shouldn't happen |
| short tbl_snan - tbl_snan # packed needs no help |
| short fsnan_out_w - tbl_snan # word integer |
| short fsnan_out_d - tbl_snan # dbl prec shouldn't happen |
| short fsnan_out_b - tbl_snan # byte integer |
| short tbl_snan - tbl_snan # packed needs no help |
| |
| fsnan_out_b: |
| mov.b FP_SRC_HI(%a6),%d0 # load upper byte of SNAN |
| bset &6,%d0 # set SNAN bit |
| cmpi.b %d1,&0x7 # is <ea> mode a data reg? |
| ble.b fsnan_out_b_dn # yes |
| mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result |
| bsr.l _dmem_write_byte # write the default result |
| |
| tst.l %d1 # did dstore fail? |
| bne.l facc_out_b # yes |
| |
| bra.w fsnan_exit |
| fsnan_out_b_dn: |
| andi.w &0x0007,%d1 |
| bsr.l store_dreg_b # store result to regfile |
| bra.w fsnan_exit |
| |
| fsnan_out_w: |
| mov.w FP_SRC_HI(%a6),%d0 # load upper word of SNAN |
| bset &14,%d0 # set SNAN bit |
| cmpi.b %d1,&0x7 # is <ea> mode a data reg? |
| ble.b fsnan_out_w_dn # yes |
| mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result |
| bsr.l _dmem_write_word # write the default result |
| |
| tst.l %d1 # did dstore fail? |
| bne.l facc_out_w # yes |
| |
| bra.w fsnan_exit |
| fsnan_out_w_dn: |
| andi.w &0x0007,%d1 |
| bsr.l store_dreg_w # store result to regfile |
| bra.w fsnan_exit |
| |
| fsnan_out_l: |
| mov.l FP_SRC_HI(%a6),%d0 # load upper longword of SNAN |
| bset &30,%d0 # set SNAN bit |
| cmpi.b %d1,&0x7 # is <ea> mode a data reg? |
| ble.b fsnan_out_l_dn # yes |
| mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result |
| bsr.l _dmem_write_long # write the default result |
| |
| tst.l %d1 # did dstore fail? |
| bne.l facc_out_l # yes |
| |
| bra.w fsnan_exit |
| fsnan_out_l_dn: |
| andi.w &0x0007,%d1 |
| bsr.l store_dreg_l # store result to regfile |
| bra.w fsnan_exit |
| |
| fsnan_out_s: |
| cmpi.b %d1,&0x7 # is <ea> mode a data reg? |
| ble.b fsnan_out_d_dn # yes |
| mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign |
| andi.l &0x80000000,%d0 # keep sign |
| ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit |
| mov.l FP_SRC_HI(%a6),%d1 # load mantissa |
| lsr.l &0x8,%d1 # shift mantissa for sgl |
| or.l %d1,%d0 # create sgl SNAN |
| mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result |
| bsr.l _dmem_write_long # write the default result |
| |
| tst.l %d1 # did dstore fail? |
| bne.l facc_out_l # yes |
| |
| bra.w fsnan_exit |
| fsnan_out_d_dn: |
| mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign |
| andi.l &0x80000000,%d0 # keep sign |
| ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit |
| mov.l %d1,-(%sp) |
| mov.l FP_SRC_HI(%a6),%d1 # load mantissa |
| lsr.l &0x8,%d1 # shift mantissa for sgl |
| or.l %d1,%d0 # create sgl SNAN |
| mov.l (%sp)+,%d1 |
| andi.w &0x0007,%d1 |
| bsr.l store_dreg_l # store result to regfile |
| bra.w fsnan_exit |
| |
| fsnan_out_d: |
| mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign |
| andi.l &0x80000000,%d0 # keep sign |
| ori.l &0x7ff80000,%d0 # insert new exponent,SNAN bit |
| mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa |
| mov.l %d0,FP_SCR0_EX(%a6) # store to temp space |
| mov.l &11,%d0 # load shift amt |
| lsr.l %d0,%d1 |
| or.l %d1,FP_SCR0_EX(%a6) # create dbl hi |
| mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa |
| andi.l &0x000007ff,%d1 |
| ror.l %d0,%d1 |
| mov.l %d1,FP_SCR0_HI(%a6) # store to temp space |
| mov.l FP_SRC_LO(%a6),%d1 # load lo mantissa |
| lsr.l %d0,%d1 |
| or.l %d1,FP_SCR0_HI(%a6) # create dbl lo |
| lea FP_SCR0(%a6),%a0 # pass: ptr to operand |
| mov.l EXC_EA(%a6),%a1 # pass: dst addr |
| movq.l &0x8,%d0 # pass: size of 8 bytes |
| bsr.l _dmem_write # write the default result |
| |
| tst.l %d1 # did dstore fail? |
| bne.l facc_out_d # yes |
| |
| bra.w fsnan_exit |
| |
| # for extended precision, if the addressing mode is pre-decrement or |
| # post-increment, then the address register did not get updated. |
| # in addition, for pre-decrement, the stacked <ea> is incorrect. |
| fsnan_out_x: |
| clr.b SPCOND_FLG(%a6) # clear special case flag |
| |
| mov.w FP_SRC_EX(%a6),FP_SCR0_EX(%a6) |
| clr.w 2+FP_SCR0(%a6) |
| mov.l FP_SRC_HI(%a6),%d0 |
| bset &30,%d0 |
| mov.l %d0,FP_SCR0_HI(%a6) |
| mov.l FP_SRC_LO(%a6),FP_SCR0_LO(%a6) |
| |
| btst &0x5,EXC_SR(%a6) # supervisor mode exception? |
| bne.b fsnan_out_x_s # yes |
| |
| mov.l %usp,%a0 # fetch user stack pointer |
| mov.l %a0,EXC_A7(%a6) # save on stack for calc_ea() |
| mov.l (%a6),EXC_A6(%a6) |
| |
| bsr.l _calc_ea_fout # find the correct ea,update An |
| mov.l %a0,%a1 |
| mov.l %a0,EXC_EA(%a6) # stack correct <ea> |
| |
| mov.l EXC_A7(%a6),%a0 |
| mov.l %a0,%usp # restore user stack pointer |
| mov.l EXC_A6(%a6),(%a6) |
| |
| fsnan_out_x_save: |
| lea FP_SCR0(%a6),%a0 # pass: ptr to operand |
| movq.l &0xc,%d0 # pass: size of extended |
| bsr.l _dmem_write # write the default result |
| |
| tst.l %d1 # did dstore fail? |
| bne.l facc_out_x # yes |
| |
| bra.w fsnan_exit |
| |
| fsnan_out_x_s: |
| mov.l (%a6),EXC_A6(%a6) |
| |
| bsr.l _calc_ea_fout # find the correct ea,update An |
| mov.l %a0,%a1 |
| mov.l %a0,EXC_EA(%a6) # stack correct <ea> |
| |
| mov.l EXC_A6(%a6),(%a6) |
| |
| cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? |
| bne.b fsnan_out_x_save # no |
| |
| # the operation was "fmove.x SNAN,-(a7)" from supervisor mode. |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| frestore FP_SRC(%a6) |
| |
| mov.l EXC_A6(%a6),%a6 # restore frame pointer |
| |
| mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) |
| mov.l LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp) |
| mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) |
| |
| mov.l LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp) |
| mov.l LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp) |
| mov.l LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp) |
| |
| add.l &LOCAL_SIZE-0x8,%sp |
| |
| bra.l _real_snan |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # _fpsp_inex(): 060FPSP entry point for FP Inexact exception. # |
| # # |
| # This handler should be the first code executed upon taking the # |
| # FP Inexact exception in an operating system. # |
| # # |
| # XREF **************************************************************** # |
| # _imem_read_long() - read instruction longword # |
| # fix_skewed_ops() - adjust src operand in fsave frame # |
| # set_tag_x() - determine optype of src/dst operands # |
| # store_fpreg() - store opclass 0 or 2 result to FP regfile # |
| # unnorm_fix() - change UNNORM operands to NORM or ZERO # |
| # load_fpn2() - load dst operand from FP regfile # |
| # smovcr() - emulate an "fmovcr" instruction # |
| # fout() - emulate an opclass 3 instruction # |
| # tbl_unsupp - add of table of emulation routines for opclass 0,2 # |
| # _real_inex() - "callout" to operating system inexact handler # |
| # # |
| # INPUT *************************************************************** # |
| # - The system stack contains the FP Inexact exception frame # |
| # - The fsave frame contains the source operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # - The system stack is unchanged # |
| # - The fsave frame contains the adjusted src op for opclass 0,2 # |
| # # |
| # ALGORITHM *********************************************************** # |
| # In a system where the FP Inexact exception is enabled, the goal # |
| # is to get to the handler specified at _real_inex(). But, on the 060, # |
| # for opclass zero and two instruction taking this exception, the # |
| # hardware doesn't store the correct result to the destination FP # |
| # register as did the '040 and '881/2. This handler must emulate the # |
| # instruction in order to get this value and then store it to the # |
| # correct register before calling _real_inex(). # |
| # For opclass 3 instructions, the 060 doesn't store the default # |
| # inexact result out to memory or data register file as it should. # |
| # This code must emulate the move out by calling fout() before finally # |
| # exiting through _real_inex(). # |
| # # |
| ######################################################################### |
| |
| global _fpsp_inex |
| _fpsp_inex: |
| |
| link.w %a6,&-LOCAL_SIZE # init stack frame |
| |
| fsave FP_SRC(%a6) # grab the "busy" frame |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| |
| # the FPIAR holds the "current PC" of the faulting instruction |
| mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) |
| |
| mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| bsr.l _imem_read_long # fetch the instruction words |
| mov.l %d0,EXC_OPWORD(%a6) |
| |
| ############################################################################## |
| |
| btst &13,%d0 # is instr an fmove out? |
| bne.w finex_out # fmove out |
| |
| |
| # the hardware, for "fabs" and "fneg" w/ a long source format, puts the |
| # longword integer directly into the upper longword of the mantissa along |
| # w/ an exponent value of 0x401e. we convert this to extended precision here. |
| bfextu %d0{&19:&3},%d0 # fetch instr size |
| bne.b finex_cont # instr size is not long |
| cmpi.w FP_SRC_EX(%a6),&0x401e # is exponent 0x401e? |
| bne.b finex_cont # no |
| fmov.l &0x0,%fpcr |
| fmov.l FP_SRC_HI(%a6),%fp0 # load integer src |
| fmov.x %fp0,FP_SRC(%a6) # store integer as extended precision |
| mov.w &0xe001,0x2+FP_SRC(%a6) |
| |
| finex_cont: |
| lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| bsr.l fix_skewed_ops # fix src op |
| |
| # Here, we zero the ccode and exception byte field since we're going to |
| # emulate the whole instruction. Notice, though, that we don't kill the |
| # INEX1 bit. This is because a packed op has long since been converted |
| # to extended before arriving here. Therefore, we need to retain the |
| # INEX1 bit from when the operand was first converted. |
| andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field |
| |
| fmov.l &0x0,%fpcr # zero current control regs |
| fmov.l &0x0,%fpsr |
| |
| bfextu EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg |
| cmpi.b %d1,&0x17 # is op an fmovecr? |
| beq.w finex_fmovcr # yes |
| |
| lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| bsr.l set_tag_x # tag the operand type |
| mov.b %d0,STAG(%a6) # maybe NORM,DENORM |
| |
| # bits four and five of the fp extension word separate the monadic and dyadic |
| # operations that can pass through fpsp_inex(). remember that fcmp and ftst |
| # will never take this exception, but fsincos will. |
| btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? |
| beq.b finex_extract # monadic |
| |
| btst &0x4,1+EXC_CMDREG(%a6) # is operation an fsincos? |
| bne.b finex_extract # yes |
| |
| bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg |
| bsr.l load_fpn2 # load dst into FP_DST |
| |
| lea FP_DST(%a6),%a0 # pass: ptr to dst op |
| bsr.l set_tag_x # tag the operand type |
| cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| bne.b finex_op2_done # no |
| bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO |
| finex_op2_done: |
| mov.b %d0,DTAG(%a6) # save dst optype tag |
| |
| finex_extract: |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode |
| |
| mov.b 1+EXC_CMDREG(%a6),%d1 |
| andi.w &0x007f,%d1 # extract extension |
| |
| lea FP_SRC(%a6),%a0 |
| lea FP_DST(%a6),%a1 |
| |
| mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr |
| jsr (tbl_unsupp.l,%pc,%d1.l*1) |
| |
| # the operation has been emulated. the result is in fp0. |
| finex_save: |
| bfextu EXC_CMDREG(%a6){&6:&3},%d0 |
| bsr.l store_fpreg |
| |
| finex_exit: |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| frestore FP_SRC(%a6) |
| |
| unlk %a6 |
| bra.l _real_inex |
| |
| finex_fmovcr: |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode |
| mov.b 1+EXC_CMDREG(%a6),%d1 |
| andi.l &0x0000007f,%d1 # pass rom offset |
| bsr.l smovcr |
| bra.b finex_save |
| |
| ######################################################################## |
| |
| # |
| # the hardware does not save the default result to memory on enabled |
| # inexact exceptions. we do this here before passing control to |
| # the user inexact handler. |
| # |
| # byte, word, and long destination format operations can pass |
| # through here. so can double and single precision. |
| # although packed opclass three operations can take inexact |
| # exceptions, they won't pass through here since they are caught |
| # first by the unsupported data format exception handler. that handler |
| # sends them directly to _real_inex() if necessary. |
| # |
| finex_out: |
| |
| mov.b &NORM,STAG(%a6) # src is a NORM |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode |
| |
| andi.l &0xffff00ff,USER_FPSR(%a6) # zero exception field |
| |
| lea FP_SRC(%a6),%a0 # pass ptr to src operand |
| |
| bsr.l fout # store the default result |
| |
| bra.b finex_exit |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # _fpsp_dz(): 060FPSP entry point for FP DZ exception. # |
| # # |
| # This handler should be the first code executed upon taking # |
| # the FP DZ exception in an operating system. # |
| # # |
| # XREF **************************************************************** # |
| # _imem_read_long() - read instruction longword from memory # |
| # fix_skewed_ops() - adjust fsave operand # |
| # _real_dz() - "callout" exit point from FP DZ handler # |
| # # |
| # INPUT *************************************************************** # |
| # - The system stack contains the FP DZ exception stack. # |
| # - The fsave frame contains the source operand. # |
| # # |
| # OUTPUT ************************************************************** # |
| # - The system stack contains the FP DZ exception stack. # |
| # - The fsave frame contains the adjusted source operand. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # In a system where the DZ exception is enabled, the goal is to # |
| # get to the handler specified at _real_dz(). But, on the 060, when the # |
| # exception is taken, the input operand in the fsave state frame may # |
| # be incorrect for some cases and need to be adjusted. So, this package # |
| # adjusts the operand using fix_skewed_ops() and then branches to # |
| # _real_dz(). # |
| # # |
| ######################################################################### |
| |
| global _fpsp_dz |
| _fpsp_dz: |
| |
| link.w %a6,&-LOCAL_SIZE # init stack frame |
| |
| fsave FP_SRC(%a6) # grab the "busy" frame |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| |
| # the FPIAR holds the "current PC" of the faulting instruction |
| mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) |
| |
| mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| bsr.l _imem_read_long # fetch the instruction words |
| mov.l %d0,EXC_OPWORD(%a6) |
| |
| ############################################################################## |
| |
| |
| # here, we simply see if the operand in the fsave frame needs to be "unskewed". |
| # this would be the case for opclass two operations with a source zero |
| # in the sgl or dbl format. |
| lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| bsr.l fix_skewed_ops # fix src op |
| |
| fdz_exit: |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| frestore FP_SRC(%a6) |
| |
| unlk %a6 |
| bra.l _real_dz |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # _fpsp_fline(): 060FPSP entry point for "Line F emulator" exc. # |
| # # |
| # This handler should be the first code executed upon taking the # |
| # "Line F Emulator" exception in an operating system. # |
| # # |
| # XREF **************************************************************** # |
| # _fpsp_unimp() - handle "FP Unimplemented" exceptions # |
| # _real_fpu_disabled() - handle "FPU disabled" exceptions # |
| # _real_fline() - handle "FLINE" exceptions # |
| # _imem_read_long() - read instruction longword # |
| # # |
| # INPUT *************************************************************** # |
| # - The system stack contains a "Line F Emulator" exception # |
| # stack frame. # |
| # # |
| # OUTPUT ************************************************************** # |
| # - The system stack is unchanged # |
| # # |
| # ALGORITHM *********************************************************** # |
| # When a "Line F Emulator" exception occurs, there are 3 possible # |
| # exception types, denoted by the exception stack frame format number: # |
| # (1) FPU unimplemented instruction (6 word stack frame) # |
| # (2) FPU disabled (8 word stack frame) # |
| # (3) Line F (4 word stack frame) # |
| # # |
| # This module determines which and forks the flow off to the # |
| # appropriate "callout" (for "disabled" and "Line F") or to the # |
| # correct emulation code (for "FPU unimplemented"). # |
| # This code also must check for "fmovecr" instructions w/ a # |
| # non-zero <ea> field. These may get flagged as "Line F" but should # |
| # really be flagged as "FPU Unimplemented". (This is a "feature" on # |
| # the '060. # |
| # # |
| ######################################################################### |
| |
| global _fpsp_fline |
| _fpsp_fline: |
| |
| # check to see if this exception is a "FP Unimplemented Instruction" |
| # exception. if so, branch directly to that handler's entry point. |
| cmpi.w 0x6(%sp),&0x202c |
| beq.l _fpsp_unimp |
| |
| # check to see if the FPU is disabled. if so, jump to the OS entry |
| # point for that condition. |
| cmpi.w 0x6(%sp),&0x402c |
| beq.l _real_fpu_disabled |
| |
| # the exception was an "F-Line Illegal" exception. we check to see |
| # if the F-Line instruction is an "fmovecr" w/ a non-zero <ea>. if |
| # so, convert the F-Line exception stack frame to an FP Unimplemented |
| # Instruction exception stack frame else branch to the OS entry |
| # point for the F-Line exception handler. |
| link.w %a6,&-LOCAL_SIZE # init stack frame |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| |
| mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) |
| mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| bsr.l _imem_read_long # fetch instruction words |
| |
| bfextu %d0{&0:&10},%d1 # is it an fmovecr? |
| cmpi.w %d1,&0x03c8 |
| bne.b fline_fline # no |
| |
| bfextu %d0{&16:&6},%d1 # is it an fmovecr? |
| cmpi.b %d1,&0x17 |
| bne.b fline_fline # no |
| |
| # it's an fmovecr w/ a non-zero <ea> that has entered through |
| # the F-Line Illegal exception. |
| # so, we need to convert the F-Line exception stack frame into an |
| # FP Unimplemented Instruction stack frame and jump to that entry |
| # point. |
| # |
| # but, if the FPU is disabled, then we need to jump to the FPU disabled |
| # entry point. |
| movc %pcr,%d0 |
| btst &0x1,%d0 |
| beq.b fline_fmovcr |
| |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| |
| sub.l &0x8,%sp # make room for "Next PC", <ea> |
| mov.w 0x8(%sp),(%sp) |
| mov.l 0xa(%sp),0x2(%sp) # move "Current PC" |
| mov.w &0x402c,0x6(%sp) |
| mov.l 0x2(%sp),0xc(%sp) |
| addq.l &0x4,0x2(%sp) # set "Next PC" |
| |
| bra.l _real_fpu_disabled |
| |
| fline_fmovcr: |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| |
| fmov.l 0x2(%sp),%fpiar # set current PC |
| addq.l &0x4,0x2(%sp) # set Next PC |
| |
| mov.l (%sp),-(%sp) |
| mov.l 0x8(%sp),0x4(%sp) |
| mov.b &0x20,0x6(%sp) |
| |
| bra.l _fpsp_unimp |
| |
| fline_fline: |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| |
| bra.l _real_fline |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # _fpsp_unimp(): 060FPSP entry point for FP "Unimplemented # |
| # Instruction" exception. # |
| # # |
| # This handler should be the first code executed upon taking the # |
| # FP Unimplemented Instruction exception in an operating system. # |
| # # |
| # XREF **************************************************************** # |
| # _imem_read_{word,long}() - read instruction word/longword # |
| # load_fop() - load src/dst ops from memory and/or FP regfile # |
| # store_fpreg() - store opclass 0 or 2 result to FP regfile # |
| # tbl_trans - addr of table of emulation routines for trnscndls # |
| # _real_access() - "callout" for access error exception # |
| # _fpsp_done() - "callout" for exit; work all done # |
| # _real_trace() - "callout" for Trace enabled exception # |
| # smovcr() - emulate "fmovecr" instruction # |
| # funimp_skew() - adjust fsave src ops to "incorrect" value # |
| # _ftrapcc() - emulate an "ftrapcc" instruction # |
| # _fdbcc() - emulate an "fdbcc" instruction # |
| # _fscc() - emulate an "fscc" instruction # |
| # _real_trap() - "callout" for Trap exception # |
| # _real_bsun() - "callout" for enabled Bsun exception # |
| # # |
| # INPUT *************************************************************** # |
| # - The system stack contains the "Unimplemented Instr" stk frame # |
| # # |
| # OUTPUT ************************************************************** # |
| # If access error: # |
| # - The system stack is changed to an access error stack frame # |
| # If Trace exception enabled: # |
| # - The system stack is changed to a Trace exception stack frame # |
| # Else: (normal case) # |
| # - Correct result has been stored as appropriate # |
| # # |
| # ALGORITHM *********************************************************** # |
| # There are two main cases of instructions that may enter here to # |
| # be emulated: (1) the FPgen instructions, most of which were also # |
| # unimplemented on the 040, and (2) "ftrapcc", "fscc", and "fdbcc". # |
| # For the first set, this handler calls the routine load_fop() # |
| # to load the source and destination (for dyadic) operands to be used # |
| # for instruction emulation. The correct emulation routine is then # |
| # chosen by decoding the instruction type and indexing into an # |
| # emulation subroutine index table. After emulation returns, this # |
| # handler checks to see if an exception should occur as a result of the # |
| # FP instruction emulation. If so, then an FP exception of the correct # |
| # type is inserted into the FPU state frame using the "frestore" # |
| # instruction before exiting through _fpsp_done(). In either the # |
| # exceptional or non-exceptional cases, we must check to see if the # |
| # Trace exception is enabled. If so, then we must create a Trace # |
| # exception frame from the current exception frame and exit through # |
| # _real_trace(). # |
| # For "fdbcc", "ftrapcc", and "fscc", the emulation subroutines # |
| # _fdbcc(), _ftrapcc(), and _fscc() respectively are used. All three # |
| # may flag that a BSUN exception should be taken. If so, then the # |
| # current exception stack frame is converted into a BSUN exception # |
| # stack frame and an exit is made through _real_bsun(). If the # |
| # instruction was "ftrapcc" and a Trap exception should result, a Trap # |
| # exception stack frame is created from the current frame and an exit # |
| # is made through _real_trap(). If a Trace exception is pending, then # |
| # a Trace exception frame is created from the current frame and a jump # |
| # is made to _real_trace(). Finally, if none of these conditions exist, # |
| # then the handler exits though the callout _fpsp_done(). # |
| # # |
| # In any of the above scenarios, if a _mem_read() or _mem_write() # |
| # "callout" returns a failing value, then an access error stack frame # |
| # is created from the current stack frame and an exit is made through # |
| # _real_access(). # |
| # # |
| ######################################################################### |
| |
| # |
| # FP UNIMPLEMENTED INSTRUCTION STACK FRAME: |
| # |
| # ***************** |
| # * * => <ea> of fp unimp instr. |
| # - EA - |
| # * * |
| # ***************** |
| # * 0x2 * 0x02c * => frame format and vector offset(vector #11) |
| # ***************** |
| # * * |
| # - Next PC - => PC of instr to execute after exc handling |
| # * * |
| # ***************** |
| # * SR * => SR at the time the exception was taken |
| # ***************** |
| # |
| # Note: the !NULL bit does not get set in the fsave frame when the |
| # machine encounters an fp unimp exception. Therefore, it must be set |
| # before leaving this handler. |
| # |
| global _fpsp_unimp |
| _fpsp_unimp: |
| |
| link.w %a6,&-LOCAL_SIZE # init stack frame |
| |
| movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 |
| |
| btst &0x5,EXC_SR(%a6) # user mode exception? |
| bne.b funimp_s # no; supervisor mode |
| |
| # save the value of the user stack pointer onto the stack frame |
| funimp_u: |
| mov.l %usp,%a0 # fetch user stack pointer |
| mov.l %a0,EXC_A7(%a6) # store in stack frame |
| bra.b funimp_cont |
| |
| # store the value of the supervisor stack pointer BEFORE the exc occurred. |
| # old_sp is address just above stacked effective address. |
| funimp_s: |
| lea 4+EXC_EA(%a6),%a0 # load old a7' |
| mov.l %a0,EXC_A7(%a6) # store a7' |
| mov.l %a0,OLD_A7(%a6) # make a copy |
| |
| funimp_cont: |
| |
| # the FPIAR holds the "current PC" of the faulting instruction. |
| mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) |
| |
| mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| bsr.l _imem_read_long # fetch the instruction words |
| mov.l %d0,EXC_OPWORD(%a6) |
| |
| ############################################################################ |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| clr.b SPCOND_FLG(%a6) # clear "special case" flag |
| |
| # Divide the fp instructions into 8 types based on the TYPE field in |
| # bits 6-8 of the opword(classes 6,7 are undefined). |
| # (for the '060, only two types can take this exception) |
| # bftst %d0{&7:&3} # test TYPE |
| btst &22,%d0 # type 0 or 1 ? |
| bne.w funimp_misc # type 1 |
| |
| ######################################### |
| # TYPE == 0: General instructions # |
| ######################################### |
| funimp_gen: |
| |
| clr.b STORE_FLG(%a6) # clear "store result" flag |
| |
| # clear the ccode byte and exception status byte |
| andi.l &0x00ff00ff,USER_FPSR(%a6) |
| |
| bfextu %d0{&16:&6},%d1 # extract upper 6 of cmdreg |
| cmpi.b %d1,&0x17 # is op an fmovecr? |
| beq.w funimp_fmovcr # yes |
| |
| funimp_gen_op: |
| bsr.l _load_fop # load |
| |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode |
| |
| mov.b 1+EXC_CMDREG(%a6),%d1 |
| andi.w &0x003f,%d1 # extract extension bits |
| lsl.w &0x3,%d1 # shift right 3 bits |
| or.b STAG(%a6),%d1 # insert src optag bits |
| |
| lea FP_DST(%a6),%a1 # pass dst ptr in a1 |
| lea FP_SRC(%a6),%a0 # pass src ptr in a0 |
| |
| mov.w (tbl_trans.w,%pc,%d1.w*2),%d1 |
| jsr (tbl_trans.w,%pc,%d1.w*1) # emulate |
| |
| funimp_fsave: |
| mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled |
| bne.w funimp_ena # some are enabled |
| |
| funimp_store: |
| bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch Dn |
| bsr.l store_fpreg # store result to fp regfile |
| |
| funimp_gen_exit: |
| fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| funimp_gen_exit_cmp: |
| cmpi.b SPCOND_FLG(%a6),&mia7_flg # was the ea mode (sp)+ ? |
| beq.b funimp_gen_exit_a7 # yes |
| |
| cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the ea mode -(sp) ? |
| beq.b funimp_gen_exit_a7 # yes |
| |
| funimp_gen_exit_cont: |
| unlk %a6 |
| |
| funimp_gen_exit_cont2: |
| btst &0x7,(%sp) # is trace on? |
| beq.l _fpsp_done # no |
| |
| # this catches a problem with the case where an exception will be re-inserted |
| # into the machine. the frestore has already been executed...so, the fmov.l |
| # alone of the control register would trigger an unwanted exception. |
| # until I feel like fixing this, we'll sidestep the exception. |
| fsave -(%sp) |
| fmov.l %fpiar,0x14(%sp) # "Current PC" is in FPIAR |
| frestore (%sp)+ |
| mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x24 |
| bra.l _real_trace |
| |
| funimp_gen_exit_a7: |
| btst &0x5,EXC_SR(%a6) # supervisor or user mode? |
| bne.b funimp_gen_exit_a7_s # supervisor |
| |
| mov.l %a0,-(%sp) |
| mov.l EXC_A7(%a6),%a0 |
| mov.l %a0,%usp |
| mov.l (%sp)+,%a0 |
| bra.b funimp_gen_exit_cont |
| |
| # if the instruction was executed from supervisor mode and the addressing |
| # mode was (a7)+, then the stack frame for the rte must be shifted "up" |
| # "n" bytes where "n" is the size of the src operand type. |
| # f<op>.{b,w,l,s,d,x,p} |
| funimp_gen_exit_a7_s: |
| mov.l %d0,-(%sp) # save d0 |
| mov.l EXC_A7(%a6),%d0 # load new a7' |
| sub.l OLD_A7(%a6),%d0 # subtract old a7' |
| mov.l 0x2+EXC_PC(%a6),(0x2+EXC_PC,%a6,%d0) # shift stack frame |
| mov.l EXC_SR(%a6),(EXC_SR,%a6,%d0) # shift stack frame |
| mov.w %d0,EXC_SR(%a6) # store incr number |
| mov.l (%sp)+,%d0 # restore d0 |
| |
| unlk %a6 |
| |
| add.w (%sp),%sp # stack frame shifted |
| bra.b funimp_gen_exit_cont2 |
| |
| ###################### |
| # fmovecr.x #ccc,fpn # |
| ###################### |
| funimp_fmovcr: |
| clr.l %d0 |
| mov.b FPCR_MODE(%a6),%d0 |
| mov.b 1+EXC_CMDREG(%a6),%d1 |
| andi.l &0x0000007f,%d1 # pass rom offset in d1 |
| bsr.l smovcr |
| bra.w funimp_fsave |
| |
| ######################################################################### |
| |
| # |
| # the user has enabled some exceptions. we figure not to see this too |
| # often so that's why it gets lower priority. |
| # |
| funimp_ena: |
| |
| # was an exception set that was also enabled? |
| and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled and set |
| bfffo %d0{&24:&8},%d0 # find highest priority exception |
| bne.b funimp_exc # at least one was set |
| |
| # no exception that was enabled was set BUT if we got an exact overflow |
| # and overflow wasn't enabled but inexact was (yech!) then this is |
| # an inexact exception; otherwise, return to normal non-exception flow. |
| btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? |
| beq.w funimp_store # no; return to normal flow |
| |
| # the overflow w/ exact result happened but was inexact set in the FPCR? |
| funimp_ovfl: |
| btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? |
| beq.w funimp_store # no; return to normal flow |
| bra.b funimp_exc_ovfl # yes |
| |
| # some exception happened that was actually enabled. |
| # we'll insert this new exception into the FPU and then return. |
| funimp_exc: |
| subi.l &24,%d0 # fix offset to be 0-8 |
| cmpi.b %d0,&0x6 # is exception INEX? |
| bne.b funimp_exc_force # no |
| |
| # the enabled exception was inexact. so, if it occurs with an overflow |
| # or underflow that was disabled, then we have to force an overflow or |
| # underflow frame. the eventual overflow or underflow handler will see that |
| # it's actually an inexact and act appropriately. this is the only easy |
| # way to have the EXOP available for the enabled inexact handler when |
| # a disabled overflow or underflow has also happened. |
| btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? |
| bne.b funimp_exc_ovfl # yes |
| btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? |
| bne.b funimp_exc_unfl # yes |
| |
| # force the fsave exception status bits to signal an exception of the |
| # appropriate type. don't forget to "skew" the source operand in case we |
| # "unskewed" the one the hardware initially gave us. |
| funimp_exc_force: |
| mov.l %d0,-(%sp) # save d0 |
| bsr.l funimp_skew # check for special case |
| mov.l (%sp)+,%d0 # restore d0 |
| mov.w (tbl_funimp_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) |
| bra.b funimp_gen_exit2 # exit with frestore |
| |
| tbl_funimp_except: |
| short 0xe002, 0xe006, 0xe004, 0xe005 |
| short 0xe003, 0xe002, 0xe001, 0xe001 |
| |
| # insert an overflow frame |
| funimp_exc_ovfl: |
| bsr.l funimp_skew # check for special case |
| mov.w &0xe005,2+FP_SRC(%a6) |
| bra.b funimp_gen_exit2 |
| |
| # insert an underflow frame |
| funimp_exc_unfl: |
| bsr.l funimp_skew # check for special case |
| mov.w &0xe003,2+FP_SRC(%a6) |
| |
| # this is the general exit point for an enabled exception that will be |
| # restored into the machine for the instruction just emulated. |
| funimp_gen_exit2: |
| fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| frestore FP_SRC(%a6) # insert exceptional status |
| |
| bra.w funimp_gen_exit_cmp |
| |
| ############################################################################ |
| |
| # |
| # TYPE == 1: FDB<cc>, FS<cc>, FTRAP<cc> |
| # |
| # These instructions were implemented on the '881/2 and '040 in hardware but |
| # are emulated in software on the '060. |
| # |
| funimp_misc: |
| bfextu %d0{&10:&3},%d1 # extract mode field |
| cmpi.b %d1,&0x1 # is it an fdb<cc>? |
| beq.w funimp_fdbcc # yes |
| cmpi.b %d1,&0x7 # is it an fs<cc>? |
| bne.w funimp_fscc # yes |
| bfextu %d0{&13:&3},%d1 |
| cmpi.b %d1,&0x2 # is it an fs<cc>? |
| blt.w funimp_fscc # yes |
| |
| ######################### |
| # ftrap<cc> # |
| # ftrap<cc>.w #<data> # |
| # ftrap<cc>.l #<data> # |
| ######################### |
| funimp_ftrapcc: |
| |
| bsr.l _ftrapcc # FTRAP<cc>() |
| |
| cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? |
| beq.w funimp_bsun # yes |
| |
| cmpi.b SPCOND_FLG(%a6),&ftrapcc_flg # should a trap occur? |
| bne.w funimp_done # no |
| |
| # FP UNIMP FRAME TRAP FRAME |
| # ***************** ***************** |
| # ** <EA> ** ** Current PC ** |
| # ***************** ***************** |
| # * 0x2 * 0x02c * * 0x2 * 0x01c * |
| # ***************** ***************** |
| # ** Next PC ** ** Next PC ** |
| # ***************** ***************** |
| # * SR * * SR * |
| # ***************** ***************** |
| # (6 words) (6 words) |
| # |
| # the ftrapcc instruction should take a trap. so, here we must create a |
| # trap stack frame from an unimplemented fp instruction stack frame and |
| # jump to the user supplied entry point for the trap exception |
| funimp_ftrapcc_tp: |
| mov.l USER_FPIAR(%a6),EXC_EA(%a6) # Address = Current PC |
| mov.w &0x201c,EXC_VOFF(%a6) # Vector Offset = 0x01c |
| |
| fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| bra.l _real_trap |
| |
| ######################### |
| # fdb<cc> Dn,<label> # |
| ######################### |
| funimp_fdbcc: |
| |
| mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr |
| bsr.l _imem_read_word # read displacement |
| |
| tst.l %d1 # did ifetch fail? |
| bne.w funimp_iacc # yes |
| |
| ext.l %d0 # sign extend displacement |
| |
| bsr.l _fdbcc # FDB<cc>() |
| |
| cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? |
| beq.w funimp_bsun |
| |
| bra.w funimp_done # branch to finish |
| |
| ################# |
| # fs<cc>.b <ea> # |
| ################# |
| funimp_fscc: |
| |
| bsr.l _fscc # FS<cc>() |
| |
| # I am assuming here that an "fs<cc>.b -(An)" or "fs<cc>.b (An)+" instruction |
| # does not need to update "An" before taking a bsun exception. |
| cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? |
| beq.w funimp_bsun |
| |
| btst &0x5,EXC_SR(%a6) # yes; is it a user mode exception? |
| bne.b funimp_fscc_s # no |
| |
| funimp_fscc_u: |
| mov.l EXC_A7(%a6),%a0 # yes; set new USP |
| mov.l %a0,%usp |
| bra.w funimp_done # branch to finish |
| |
| # remember, I'm assuming that post-increment is bogus...(it IS!!!) |
| # so, the least significant WORD of the stacked effective address got |
| # overwritten by the "fs<cc> -(An)". We must shift the stack frame "down" |
| # so that the rte will work correctly without destroying the result. |
| # even though the operation size is byte, the stack ptr is decr by 2. |
| # |
| # remember, also, this instruction may be traced. |
| funimp_fscc_s: |
| cmpi.b SPCOND_FLG(%a6),&mda7_flg # was a7 modified? |
| bne.w funimp_done # no |
| |
| fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| |
| btst &0x7,(%sp) # is trace enabled? |
| bne.b funimp_fscc_s_trace # yes |
| |
| subq.l &0x2,%sp |
| mov.l 0x2(%sp),(%sp) # shift SR,hi(PC) "down" |
| mov.l 0x6(%sp),0x4(%sp) # shift lo(PC),voff "down" |
| bra.l _fpsp_done |
| |
| funimp_fscc_s_trace: |
| subq.l &0x2,%sp |
| mov.l 0x2(%sp),(%sp) # shift SR,hi(PC) "down" |
| mov.w 0x6(%sp),0x4(%sp) # shift lo(PC) |
| mov.w &0x2024,0x6(%sp) # fmt/voff = $2024 |
| fmov.l %fpiar,0x8(%sp) # insert "current PC" |
| |
| bra.l _real_trace |
| |
| # |
| # The ftrap<cc>, fs<cc>, or fdb<cc> is to take an enabled bsun. we must convert |
| # the fp unimplemented instruction exception stack frame into a bsun stack frame, |
| # restore a bsun exception into the machine, and branch to the user |
| # supplied bsun hook. |
| # |
| # FP UNIMP FRAME BSUN FRAME |
| # ***************** ***************** |
| # ** <EA> ** * 0x0 * 0x0c0 * |
| # ***************** ***************** |
| # * 0x2 * 0x02c * ** Current PC ** |
| # ***************** ***************** |
| # ** Next PC ** * SR * |
| # ***************** ***************** |
| # * SR * (4 words) |
| # ***************** |
| # (6 words) |
| # |
| funimp_bsun: |
| mov.w &0x00c0,2+EXC_EA(%a6) # Fmt = 0x0; Vector Offset = 0x0c0 |
| mov.l USER_FPIAR(%a6),EXC_VOFF(%a6) # PC = Current PC |
| mov.w EXC_SR(%a6),2+EXC_PC(%a6) # shift SR "up" |
| |
| mov.w &0xe000,2+FP_SRC(%a6) # bsun exception enabled |
| |
| fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| frestore FP_SRC(%a6) # restore bsun exception |
| |
| unlk %a6 |
| |
| addq.l &0x4,%sp # erase sludge |
| |
| bra.l _real_bsun # branch to user bsun hook |
| |
| # |
| # all ftrapcc/fscc/fdbcc processing has been completed. unwind the stack frame |
| # and return. |
| # |
| # as usual, we have to check for trace mode being on here. since instructions |
| # modifying the supervisor stack frame don't pass through here, this is a |
| # relatively easy task. |
| # |
| funimp_done: |
| fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| |
| unlk %a6 |
| |
| btst &0x7,(%sp) # is trace enabled? |
| bne.b funimp_trace # yes |
| |
| bra.l _fpsp_done |
| |
| # FP UNIMP FRAME TRACE FRAME |
| # ***************** ***************** |
| # ** <EA> ** ** Current PC ** |
| # ***************** ***************** |
| # * 0x2 * 0x02c * * 0x2 * 0x024 * |
| # ***************** ***************** |
| # ** Next PC ** ** Next PC ** |
| # ***************** ***************** |
| # * SR * * SR * |
| # ***************** ***************** |
| # (6 words) (6 words) |
| # |
| # the fscc instruction should take a trace trap. so, here we must create a |
| # trace stack frame from an unimplemented fp instruction stack frame and |
| # jump to the user supplied entry point for the trace exception |
| funimp_trace: |
| fmov.l %fpiar,0x8(%sp) # current PC is in fpiar |
| mov.b &0x24,0x7(%sp) # vector offset = 0x024 |
| |
| bra.l _real_trace |
| |
| ################################################################ |
| |
| global tbl_trans |
| swbeg &0x1c0 |
| tbl_trans: |
| short tbl_trans - tbl_trans # $00-0 fmovecr all |
| short tbl_trans - tbl_trans # $00-1 fmovecr all |
| short tbl_trans - tbl_trans # $00-2 fmovecr all |
| short tbl_trans - tbl_trans # $00-3 fmovecr all |
| short tbl_trans - tbl_trans # $00-4 fmovecr all |
| short tbl_trans - tbl_trans # $00-5 fmovecr all |
| short tbl_trans - tbl_trans # $00-6 fmovecr all |
| short tbl_trans - tbl_trans # $00-7 fmovecr all |
| |
| short tbl_trans - tbl_trans # $01-0 fint norm |
| short tbl_trans - tbl_trans # $01-1 fint zero |
| short tbl_trans - tbl_trans # $01-2 fint inf |
| short tbl_trans - tbl_trans # $01-3 fint qnan |
| short tbl_trans - tbl_trans # $01-5 fint denorm |
| short tbl_trans - tbl_trans # $01-4 fint snan |
| short tbl_trans - tbl_trans # $01-6 fint unnorm |
| short tbl_trans - tbl_trans # $01-7 ERROR |
| |
| short ssinh - tbl_trans # $02-0 fsinh norm |
| short src_zero - tbl_trans # $02-1 fsinh zero |
| short src_inf - tbl_trans # $02-2 fsinh inf |
| short src_qnan - tbl_trans # $02-3 fsinh qnan |
| short ssinhd - tbl_trans # $02-5 fsinh denorm |
| short src_snan - tbl_trans # $02-4 fsinh snan |
| short tbl_trans - tbl_trans # $02-6 fsinh unnorm |
| short tbl_trans - tbl_trans # $02-7 ERROR |
| |
| short tbl_trans - tbl_trans # $03-0 fintrz norm |
| short tbl_trans - tbl_trans # $03-1 fintrz zero |
| short tbl_trans - tbl_trans # $03-2 fintrz inf |
| short tbl_trans - tbl_trans # $03-3 fintrz qnan |
| short tbl_trans - tbl_trans # $03-5 fintrz denorm |
| short tbl_trans - tbl_trans # $03-4 fintrz snan |
| short tbl_trans - tbl_trans # $03-6 fintrz unnorm |
| short tbl_trans - tbl_trans # $03-7 ERROR |
| |
| short tbl_trans - tbl_trans # $04-0 fsqrt norm |
| short tbl_trans - tbl_trans # $04-1 fsqrt zero |
| short tbl_trans - tbl_trans # $04-2 fsqrt inf |
| short tbl_trans - tbl_trans # $04-3 fsqrt qnan |
| short tbl_trans - tbl_trans # $04-5 fsqrt denorm |
| short tbl_trans - tbl_trans # $04-4 fsqrt snan |
| short tbl_trans - tbl_trans # $04-6 fsqrt unnorm |
| short tbl_trans - tbl_trans # $04-7 ERROR |
| |
| short tbl_trans - tbl_trans # $05-0 ERROR |
| short tbl_trans - tbl_trans # $05-1 ERROR |
| short tbl_trans - tbl_trans # $05-2 ERROR |
| short tbl_trans - tbl_trans # $05-3 ERROR |
| short tbl_trans - tbl_trans # $05-4 ERROR |
| short tbl_trans - tbl_trans # $05-5 ERROR |
| short tbl_trans - tbl_trans # $05-6 ERROR |
| short tbl_trans - tbl_trans # $05-7 ERROR |
| |
| short slognp1 - tbl_trans # $06-0 flognp1 norm |
| short src_zero - tbl_trans # $06-1 flognp1 zero |
| short sopr_inf - tbl_trans # $06-2 flognp1 inf |
| short src_qnan - tbl_trans # $06-3 flognp1 qnan |
| short slognp1d - tbl_trans # $06-5 flognp1 denorm |
| short src_snan - tbl_trans # $06-4 flognp1 snan |
| short tbl_trans - tbl_trans # $06-6 flognp1 unnorm |
| short tbl_trans - tbl_trans # $06-7 ERROR |
| |
| short tbl_trans - tbl_trans # $07-0 ERROR |
| short tbl_trans - tbl_trans # $07-1 ERROR |
| short tbl_trans - tbl_trans # $07-2 ERROR |
| short tbl_trans - tbl_trans # $07-3 ERROR |
| short tbl_trans - tbl_trans # $07-4 ERROR |
| short tbl_trans - tbl_trans # $07-5 ERROR |
| short tbl_trans - tbl_trans # $07-6 ERROR |
| short tbl_trans - tbl_trans # $07-7 ERROR |
| |
| short setoxm1 - tbl_trans # $08-0 fetoxm1 norm |
| short src_zero - tbl_trans # $08-1 fetoxm1 zero |
| short setoxm1i - tbl_trans # $08-2 fetoxm1 inf |
| short src_qnan - tbl_trans # $08-3 fetoxm1 qnan |
| short setoxm1d - tbl_trans # $08-5 fetoxm1 denorm |
| short src_snan - tbl_trans # $08-4 fetoxm1 snan |
| short tbl_trans - tbl_trans # $08-6 fetoxm1 unnorm |
| short tbl_trans - tbl_trans # $08-7 ERROR |
| |
| short stanh - tbl_trans # $09-0 ftanh norm |
| short src_zero - tbl_trans # $09-1 ftanh zero |
| short src_one - tbl_trans # $09-2 ftanh inf |
| short src_qnan - tbl_trans # $09-3 ftanh qnan |
| short stanhd - tbl_trans # $09-5 ftanh denorm |
| short src_snan - tbl_trans # $09-4 ftanh snan |
| short tbl_trans - tbl_trans # $09-6 ftanh unnorm |
| short tbl_trans - tbl_trans # $09-7 ERROR |
| |
| short satan - tbl_trans # $0a-0 fatan norm |
| short src_zero - tbl_trans # $0a-1 fatan zero |
| short spi_2 - tbl_trans # $0a-2 fatan inf |
| short src_qnan - tbl_trans # $0a-3 fatan qnan |
| short satand - tbl_trans # $0a-5 fatan denorm |
| short src_snan - tbl_trans # $0a-4 fatan snan |
| short tbl_trans - tbl_trans # $0a-6 fatan unnorm |
| short tbl_trans - tbl_trans # $0a-7 ERROR |
| |
| short tbl_trans - tbl_trans # $0b-0 ERROR |
| short tbl_trans - tbl_trans # $0b-1 ERROR |
| short tbl_trans - tbl_trans # $0b-2 ERROR |
| short tbl_trans - tbl_trans # $0b-3 ERROR |
| short tbl_trans - tbl_trans # $0b-4 ERROR |
| short tbl_trans - tbl_trans # $0b-5 ERROR |
| short tbl_trans - tbl_trans # $0b-6 ERROR |
| short tbl_trans - tbl_trans # $0b-7 ERROR |
| |
| short sasin - tbl_trans # $0c-0 fasin norm |
| short src_zero - tbl_trans # $0c-1 fasin zero |
| short t_operr - tbl_trans # $0c-2 fasin inf |
| short src_qnan - tbl_trans # $0c-3 fasin qnan |
| short sasind - tbl_trans # $0c-5 fasin denorm |
| short src_snan - tbl_trans # $0c-4 fasin snan |
| short tbl_trans - tbl_trans # $0c-6 fasin unnorm |
| short tbl_trans - tbl_trans # $0c-7 ERROR |
| |
| short satanh - tbl_trans # $0d-0 fatanh norm |
| short src_zero - tbl_trans # $0d-1 fatanh zero |
| short t_operr - tbl_trans # $0d-2 fatanh inf |
| short src_qnan - tbl_trans # $0d-3 fatanh qnan |
| short satanhd - tbl_trans # $0d-5 fatanh denorm |
| short src_snan - tbl_trans # $0d-4 fatanh snan |
| short tbl_trans - tbl_trans # $0d-6 fatanh unnorm |
| short tbl_trans - tbl_trans # $0d-7 ERROR |
| |
| short ssin - tbl_trans # $0e-0 fsin norm |
| short src_zero - tbl_trans # $0e-1 fsin zero |
| short t_operr - tbl_trans # $0e-2 fsin inf |
| short src_qnan - tbl_trans # $0e-3 fsin qnan |
| short ssind - tbl_trans # $0e-5 fsin denorm |
| short src_snan - tbl_trans # $0e-4 fsin snan |
| short tbl_trans - tbl_trans # $0e-6 fsin unnorm |
| short tbl_trans - tbl_trans # $0e-7 ERROR |
| |
| short stan - tbl_trans # $0f-0 ftan norm |
| short src_zero - tbl_trans # $0f-1 ftan zero |
| short t_operr - tbl_trans # $0f-2 ftan inf |
| short src_qnan - tbl_trans # $0f-3 ftan qnan |
| short stand - tbl_trans # $0f-5 ftan denorm |
| short src_snan - tbl_trans # $0f-4 ftan snan |
| short tbl_trans - tbl_trans # $0f-6 ftan unnorm |
| short tbl_trans - tbl_trans # $0f-7 ERROR |
| |
| short setox - tbl_trans # $10-0 fetox norm |
| short ld_pone - tbl_trans # $10-1 fetox zero |
| short szr_inf - tbl_trans # $10-2 fetox inf |
| short src_qnan - tbl_trans # $10-3 fetox qnan |
| short setoxd - tbl_trans # $10-5 fetox denorm |
| short src_snan - tbl_trans # $10-4 fetox snan |
| short tbl_trans - tbl_trans # $10-6 fetox unnorm |
| short tbl_trans - tbl_trans # $10-7 ERROR |
| |
| short stwotox - tbl_trans # $11-0 ftwotox norm |
| short ld_pone - tbl_trans # $11-1 ftwotox zero |
| short szr_inf - tbl_trans # $11-2 ftwotox inf |
| short src_qnan - tbl_trans # $11-3 ftwotox qnan |
| short stwotoxd - tbl_trans # $11-5 ftwotox denorm |
| short src_snan - tbl_trans # $11-4 ftwotox snan |
| short tbl_trans - tbl_trans # $11-6 ftwotox unnorm |
| short tbl_trans - tbl_trans # $11-7 ERROR |
| |
| short stentox - tbl_trans # $12-0 ftentox norm |
| short ld_pone - tbl_trans # $12-1 ftentox zero |
| short szr_inf - tbl_trans # $12-2 ftentox inf |
| short src_qnan - tbl_trans # $12-3 ftentox qnan |
| short stentoxd - tbl_trans # $12-5 ftentox denorm |
| short src_snan - tbl_trans # $12-4 ftentox snan |
| short tbl_trans - tbl_trans # $12-6 ftentox unnorm |
| short tbl_trans - tbl_trans # $12-7 ERROR |
| |
| short tbl_trans - tbl_trans # $13-0 ERROR |
| short tbl_trans - tbl_trans # $13-1 ERROR |
| short tbl_trans - tbl_trans # $13-2 ERROR |
| short tbl_trans - tbl_trans # $13-3 ERROR |
| short tbl_trans - tbl_trans # $13-4 ERROR |
| short tbl_trans - tbl_trans # $13-5 ERROR |
| short tbl_trans - tbl_trans # $13-6 ERROR |
| short tbl_trans - tbl_trans # $13-7 ERROR |
| |
| short slogn - tbl_trans # $14-0 flogn norm |
| short t_dz2 - tbl_trans # $14-1 flogn zero |
| short sopr_inf - tbl_trans # $14-2 flogn inf |
| short src_qnan - tbl_trans # $14-3 flogn qnan |
| short slognd - tbl_trans # $14-5 flogn denorm |
| short src_snan - tbl_trans # $14-4 flogn snan |
| short tbl_trans - tbl_trans # $14-6 flogn unnorm |
| short tbl_trans - tbl_trans # $14-7 ERROR |
| |
| short slog10 - tbl_trans # $15-0 flog10 norm |
| short t_dz2 - tbl_trans # $15-1 flog10 zero |
| short sopr_inf - tbl_trans # $15-2 flog10 inf |
| short src_qnan - tbl_trans # $15-3 flog10 qnan |
| short slog10d - tbl_trans # $15-5 flog10 denorm |
| short src_snan - tbl_trans # $15-4 flog10 snan |
| short tbl_trans - tbl_trans # $15-6 flog10 unnorm |
| short tbl_trans - tbl_trans # $15-7 ERROR |
| |
| short slog2 - tbl_trans # $16-0 flog2 norm |
| short t_dz2 - tbl_trans # $16-1 flog2 zero |
| short sopr_inf - tbl_trans # $16-2 flog2 inf |
| short src_qnan - tbl_trans # $16-3 flog2 qnan |
| short slog2d - tbl_trans # $16-5 flog2 denorm |
| short src_snan - tbl_trans # $16-4 flog2 snan |
| short tbl_trans - tbl_trans # $16-6 flog2 unnorm |
| short tbl_trans - tbl_trans # $16-7 ERROR |
| |
| short tbl_trans - tbl_trans # $17-0 ERROR |
| short tbl_trans - tbl_trans # $17-1 ERROR |
| short tbl_trans - tbl_trans # $17-2 ERROR |
| short tbl_trans - tbl_trans # $17-3 ERROR |
| short tbl_trans - tbl_trans # $17-4 ERROR |
| short tbl_trans - tbl_trans # $17-5 ERROR |
| short tbl_trans - tbl_trans # $17-6 ERROR |
| short tbl_trans - tbl_trans # $17-7 ERROR |
| |
| short tbl_trans - tbl_trans # $18-0 fabs norm |
| short tbl_trans - tbl_trans # $18-1 fabs zero |
| short tbl_trans - tbl_trans # $18-2 fabs inf |
| short tbl_trans - tbl_trans # $18-3 fabs qnan |
| short tbl_trans - tbl_trans # $18-5 fabs denorm |
| short tbl_trans - tbl_trans # $18-4 fabs snan |
| short tbl_trans - tbl_trans # $18-6 fabs unnorm |
| short tbl_trans - tbl_trans # $18-7 ERROR |
| |
| short scosh - tbl_trans # $19-0 fcosh norm |
| short ld_pone - tbl_trans # $19-1 fcosh zero |
| short ld_pinf - tbl_trans # $19-2 fcosh inf |
| short src_qnan - tbl_trans # $19-3 fcosh qnan |
| short scoshd - tbl_trans # $19-5 fcosh denorm |
| short src_snan - tbl_trans # $19-4 fcosh snan |
| short tbl_trans - tbl_trans # $19-6 fcosh unnorm |
| short tbl_trans - tbl_trans # $19-7 ERROR |
| |
| short tbl_trans - tbl_trans # $1a-0 fneg norm |
| short tbl_trans - tbl_trans # $1a-1 fneg zero |
| short tbl_trans - tbl_trans # $1a-2 fneg inf |
| short tbl_trans - tbl_trans # $1a-3 fneg qnan |
| short tbl_trans - tbl_trans # $1a-5 fneg denorm |
| short tbl_trans - tbl_trans # $1a-4 fneg snan |
| short tbl_trans - tbl_trans # $1a-6 fneg unnorm |
| short tbl_trans - tbl_trans # $1a-7 ERROR |
| |
| short tbl_trans - tbl_trans # $1b-0 ERROR |
| short tbl_trans - tbl_trans # $1b-1 ERROR |
| short tbl_trans - tbl_trans # $1b-2 ERROR |
| short tbl_trans - tbl_trans # $1b-3 ERROR |
| short tbl_trans - tbl_trans # $1b-4 ERROR |
| short tbl_trans - tbl_trans # $1b-5 ERROR |
| short tbl_trans - tbl_trans # $1b-6 ERROR |
| short tbl_trans - tbl_trans # $1b-7 ERROR |
| |
| short sacos - tbl_trans # $1c-0 facos norm |
| short ld_ppi2 - tbl_trans # $1c-1 facos zero |
| short t_operr - tbl_trans # $1c-2 facos inf |
| short src_qnan - tbl_trans # $1c-3 facos qnan |
| short sacosd - tbl_trans # $1c-5 facos denorm |
| short src_snan - tbl_trans # $1c-4 facos snan |
| short tbl_trans - tbl_trans # $1c-6 facos unnorm |
| short tbl_trans - tbl_trans # $1c-7 ERROR |
| |
| short scos - tbl_trans # $1d-0 fcos norm |
| short ld_pone - tbl_trans # $1d-1 fcos zero |
| short t_operr - tbl_trans # $1d-2 fcos inf |
| short src_qnan - tbl_trans # $1d-3 fcos qnan |
| short scosd - tbl_trans # $1d-5 fcos denorm |
| short src_snan - tbl_trans # $1d-4 fcos snan |
| short tbl_trans - tbl_trans # $1d-6 fcos unnorm |
| short tbl_trans - tbl_trans # $1d-7 ERROR |
| |
| short sgetexp - tbl_trans # $1e-0 fgetexp norm |
| short src_zero - tbl_trans # $1e-1 fgetexp zero |
| short t_operr - tbl_trans # $1e-2 fgetexp inf |
| short src_qnan - tbl_trans # $1e-3 fgetexp qnan |
| short sgetexpd - tbl_trans # $1e-5 fgetexp denorm |
| short src_snan - tbl_trans # $1e-4 fgetexp snan |
| short tbl_trans - tbl_trans # $1e-6 fgetexp unnorm |
| short tbl_trans - tbl_trans # $1e-7 ERROR |
| |
| short sgetman - tbl_trans # $1f-0 fgetman norm |
| short src_zero - tbl_trans # $1f-1 fgetman zero |
| short t_operr - tbl_trans # $1f-2 fgetman inf |
| short src_qnan - tbl_trans # $1f-3 fgetman qnan |
| short sgetmand - tbl_trans # $1f-5 fgetman denorm |
| short src_snan - tbl_trans # $1f-4 fgetman snan |
| short tbl_trans - tbl_trans # $1f-6 fgetman unnorm |
| short tbl_trans - tbl_trans # $1f-7 ERROR |
| |
| short tbl_trans - tbl_trans # $20-0 fdiv norm |
| short tbl_trans - tbl_trans # $20-1 fdiv zero |
| short tbl_trans - tbl_trans # $20-2 fdiv inf |
| short tbl_trans - tbl_trans # $20-3 fdiv qnan |
| short tbl_trans - tbl_trans # $20-5 fdiv denorm |
| short tbl_trans - tbl_trans # $20-4 fdiv snan |
| short tbl_trans - tbl_trans # $20-6 fdiv unnorm |
| short tbl_trans - tbl_trans # $20-7 ERROR |
| |
| short smod_snorm - tbl_trans # $21-0 fmod norm |
| short smod_szero - tbl_trans # $21-1 fmod zero |
| short smod_sinf - tbl_trans # $21-2 fmod inf |
| short sop_sqnan - tbl_trans # $21-3 fmod qnan |
| short smod_sdnrm - tbl_trans # $21-5 fmod denorm |
| short sop_ssnan - tbl_trans # $21-4 fmod snan |
| short tbl_trans - tbl_trans # $21-6 fmod unnorm |
| short tbl_trans - tbl_trans # $21-7 ERROR |
| |
| short tbl_trans - tbl_trans # $22-0 fadd norm |
| short tbl_trans - tbl_trans # $22-1 fadd zero |
| short tbl_trans - tbl_trans # $22-2 fadd inf |
| short tbl_trans - tbl_trans # $22-3 fadd qnan |
| short tbl_trans - tbl_trans # $22-5 fadd denorm |
| short tbl_trans - tbl_trans # $22-4 fadd snan |
| short tbl_trans - tbl_trans # $22-6 fadd unnorm |
| short tbl_trans - tbl_trans # $22-7 ERROR |
| |
| short tbl_trans - tbl_trans # $23-0 fmul norm |
| short tbl_trans - tbl_trans # $23-1 fmul zero |
| short tbl_trans - tbl_trans # $23-2 fmul inf |
| short tbl_trans - tbl_trans # $23-3 fmul qnan |
| short tbl_trans - tbl_trans # $23-5 fmul denorm |
| short tbl_trans - tbl_trans # $23-4 fmul snan |
| short tbl_trans - tbl_trans # $23-6 fmul unnorm |
| short tbl_trans - tbl_trans # $23-7 ERROR |
| |
| short tbl_trans - tbl_trans # $24-0 fsgldiv norm |
| short tbl_trans - tbl_trans # $24-1 fsgldiv zero |
| short tbl_trans - tbl_trans # $24-2 fsgldiv inf |
| short tbl_trans - tbl_trans # $24-3 fsgldiv qnan |
| short tbl_trans - tbl_trans # $24-5 fsgldiv denorm |
| short tbl_trans - tbl_trans # $24-4 fsgldiv snan |
| short tbl_trans - tbl_trans # $24-6 fsgldiv unnorm |
| short tbl_trans - tbl_trans # $24-7 ERROR |
| |
| short srem_snorm - tbl_trans # $25-0 frem norm |
| short srem_szero - tbl_trans # $25-1 frem zero |
| short srem_sinf - tbl_trans # $25-2 frem inf |
| short sop_sqnan - tbl_trans # $25-3 frem qnan |
| short srem_sdnrm - tbl_trans # $25-5 frem denorm |
| short sop_ssnan - tbl_trans # $25-4 frem snan |
| short tbl_trans - tbl_trans # $25-6 frem unnorm |
| short tbl_trans - tbl_trans # $25-7 ERROR |
| |
| short sscale_snorm - tbl_trans # $26-0 fscale norm |
| short sscale_szero - tbl_trans # $26-1 fscale zero |
| short sscale_sinf - tbl_trans # $26-2 fscale inf |
| short sop_sqnan - tbl_trans # $26-3 fscale qnan |
| short sscale_sdnrm - tbl_trans # $26-5 fscale denorm |
| short sop_ssnan - tbl_trans # $26-4 fscale snan |
| short tbl_trans - tbl_trans # $26-6 fscale unnorm |
| short tbl_trans - tbl_trans # $26-7 ERROR |
| |
| short tbl_trans - tbl_trans # $27-0 fsglmul norm |
| short tbl_trans - tbl_trans # $27-1 fsglmul zero |
| short tbl_trans - tbl_trans # $27-2 fsglmul inf |
| short tbl_trans - tbl_trans # $27-3 fsglmul qnan |
| short tbl_trans - tbl_trans # $27-5 fsglmul denorm |
| short tbl_trans - tbl_trans # $27-4 fsglmul snan |
| short tbl_trans - tbl_trans # $27-6 fsglmul unnorm |
| short tbl_trans - tbl_trans # $27-7 ERROR |
| |
| short tbl_trans - tbl_trans # $28-0 fsub norm |
| short tbl_trans - tbl_trans # $28-1 fsub zero |
| short tbl_trans - tbl_trans # $28-2 fsub inf |
| short tbl_trans - tbl_trans # $28-3 fsub qnan |
| short tbl_trans - tbl_trans # $28-5 fsub denorm |
| short tbl_trans - tbl_trans # $28-4 fsub snan |
| short tbl_trans - tbl_trans # $28-6 fsub unnorm |
| short tbl_trans - tbl_trans # $28-7 ERROR |
| |
| short tbl_trans - tbl_trans # $29-0 ERROR |
| short tbl_trans - tbl_trans # $29-1 ERROR |
| short tbl_trans - tbl_trans # $29-2 ERROR |
| short tbl_trans - tbl_trans # $29-3 ERROR |
| short tbl_trans - tbl_trans # $29-4 ERROR |
| short tbl_trans - tbl_trans # $29-5 ERROR |
| short tbl_trans - tbl_trans # $29-6 ERROR |
| short tbl_trans - tbl_trans # $29-7 ERROR |
| |
| short tbl_trans - tbl_trans # $2a-0 ERROR |
| short tbl_trans - tbl_trans # $2a-1 ERROR |
| short tbl_trans - tbl_trans # $2a-2 ERROR |
| short tbl_trans - tbl_trans # $2a-3 ERROR |
| short tbl_trans - tbl_trans # $2a-4 ERROR |
| short tbl_trans - tbl_trans # $2a-5 ERROR |
| short tbl_trans - tbl_trans # $2a-6 ERROR |
| short tbl_trans - tbl_trans # $2a-7 ERROR |
| |
| short tbl_trans - tbl_trans # $2b-0 ERROR |
| short tbl_trans - tbl_trans # $2b-1 ERROR |
| short tbl_trans - tbl_trans # $2b-2 ERROR |
| short tbl_trans - tbl_trans # $2b-3 ERROR |
| short tbl_trans - tbl_trans # $2b-4 ERROR |
| short tbl_trans - tbl_trans # $2b-5 ERROR |
| short tbl_trans - tbl_trans # $2b-6 ERROR |
| short tbl_trans - tbl_trans # $2b-7 ERROR |
| |
| short tbl_trans - tbl_trans # $2c-0 ERROR |
| short tbl_trans - tbl_trans # $2c-1 ERROR |
| short tbl_trans - tbl_trans # $2c-2 ERROR |
| short tbl_trans - tbl_trans # $2c-3 ERROR |
| short tbl_trans - tbl_trans # $2c-4 ERROR |
| short tbl_trans - tbl_trans # $2c-5 ERROR |
| short tbl_trans - tbl_trans # $2c-6 ERROR |
| short tbl_trans - tbl_trans # $2c-7 ERROR |
| |
| short tbl_trans - tbl_trans # $2d-0 ERROR |
| short tbl_trans - tbl_trans # $2d-1 ERROR |
| short tbl_trans - tbl_trans # $2d-2 ERROR |
| short tbl_trans - tbl_trans # $2d-3 ERROR |
| short tbl_trans - tbl_trans # $2d-4 ERROR |
| short tbl_trans - tbl_trans # $2d-5 ERROR |
| short tbl_trans - tbl_trans # $2d-6 ERROR |
| short tbl_trans - tbl_trans # $2d-7 ERROR |
| |
| short tbl_trans - tbl_trans # $2e-0 ERROR |
| short tbl_trans - tbl_trans # $2e-1 ERROR |
| short tbl_trans - tbl_trans # $2e-2 ERROR |
| short tbl_trans - tbl_trans # $2e-3 ERROR |
| short tbl_trans - tbl_trans # $2e-4 ERROR |
| short tbl_trans - tbl_trans # $2e-5 ERROR |
| short tbl_trans - tbl_trans # $2e-6 ERROR |
| short tbl_trans - tbl_trans # $2e-7 ERROR |
| |
| short tbl_trans - tbl_trans # $2f-0 ERROR |
| short tbl_trans - tbl_trans # $2f-1 ERROR |
| short tbl_trans - tbl_trans # $2f-2 ERROR |
| short tbl_trans - tbl_trans # $2f-3 ERROR |
| short tbl_trans - tbl_trans # $2f-4 ERROR |
| short tbl_trans - tbl_trans # $2f-5 ERROR |
| short tbl_trans - tbl_trans # $2f-6 ERROR |
| short tbl_trans - tbl_trans # $2f-7 ERROR |
| |
| short ssincos - tbl_trans # $30-0 fsincos norm |
| short ssincosz - tbl_trans # $30-1 fsincos zero |
| short ssincosi - tbl_trans # $30-2 fsincos inf |
| short ssincosqnan - tbl_trans # $30-3 fsincos qnan |
| short ssincosd - tbl_trans # $30-5 fsincos denorm |
| short ssincossnan - tbl_trans # $30-4 fsincos snan |
| short tbl_trans - tbl_trans # $30-6 fsincos unnorm |
| short tbl_trans - tbl_trans # $30-7 ERROR |
| |
| short ssincos - tbl_trans # $31-0 fsincos norm |
| short ssincosz - tbl_trans # $31-1 fsincos zero |
| short ssincosi - tbl_trans # $31-2 fsincos inf |
| short ssincosqnan - tbl_trans # $31-3 fsincos qnan |
| short ssincosd - tbl_trans # $31-5 fsincos denorm |
| short ssincossnan - tbl_trans # $31-4 fsincos snan |
| short tbl_trans - tbl_trans # $31-6 fsincos unnorm |
| short tbl_trans - tbl_trans # $31-7 ERROR |
| |
| short ssincos - tbl_trans # $32-0 fsincos norm |
| short ssincosz - tbl_trans # $32-1 fsincos zero |
| short ssincosi - tbl_trans # $32-2 fsincos inf |
| short ssincosqnan - tbl_trans # $32-3 fsincos qnan |
| short ssincosd - tbl_trans # $32-5 fsincos denorm |
| short ssincossnan - tbl_trans # $32-4 fsincos snan |
| short tbl_trans - tbl_trans # $32-6 fsincos unnorm |
| short tbl_trans - tbl_trans # $32-7 ERROR |
| |
| short ssincos - tbl_trans # $33-0 fsincos norm |
| short ssincosz - tbl_trans # $33-1 fsincos zero |
| short ssincosi - tbl_trans # $33-2 fsincos inf |
| short ssincosqnan - tbl_trans # $33-3 fsincos qnan |
| short ssincosd - tbl_trans # $33-5 fsincos denorm |
| short ssincossnan - tbl_trans # $33-4 fsincos snan |
| short tbl_trans - tbl_trans # $33-6 fsincos unnorm |
| short tbl_trans - tbl_trans # $33-7 ERROR |
| |
| short ssincos - tbl_trans # $34-0 fsincos norm |
| short ssincosz - tbl_trans # $34-1 fsincos zero |
| short ssincosi - tbl_trans # $34-2 fsincos inf |
| short ssincosqnan - tbl_trans # $34-3 fsincos qnan |
| short ssincosd - tbl_trans # $34-5 fsincos denorm |
| short ssincossnan - tbl_trans # $34-4 fsincos snan |
| short tbl_trans - tbl_trans # $34-6 fsincos unnorm |
| short tbl_trans - tbl_trans # $34-7 ERROR |
| |
| short ssincos - tbl_trans # $35-0 fsincos norm |
| short ssincosz - tbl_trans # $35-1 fsincos zero |
| short ssincosi - tbl_trans # $35-2 fsincos inf |
| short ssincosqnan - tbl_trans # $35-3 fsincos qnan |
| short ssincosd - tbl_trans # $35-5 fsincos denorm |
| short ssincossnan - tbl_trans # $35-4 fsincos snan |
| short tbl_trans - tbl_trans # $35-6 fsincos unnorm |
| short tbl_trans - tbl_trans # $35-7 ERROR |
| |
| short ssincos - tbl_trans # $36-0 fsincos norm |
| short ssincosz - tbl_trans # $36-1 fsincos zero |
| short ssincosi - tbl_trans # $36-2 fsincos inf |
| short ssincosqnan - tbl_trans # $36-3 fsincos qnan |
| short ssincosd - tbl_trans # $36-5 fsincos denorm |
| short ssincossnan - tbl_trans # $36-4 fsincos snan |
| short tbl_trans - tbl_trans # $36-6 fsincos unnorm |
| short tbl_trans - tbl_trans # $36-7 ERROR |
| |
| short ssincos - tbl_trans # $37-0 fsincos norm |
| short ssincosz - tbl_trans # $37-1 fsincos zero |
| short ssincosi - tbl_trans # $37-2 fsincos inf |
| short ssincosqnan - tbl_trans # $37-3 fsincos qnan |
| short ssincosd - tbl_trans # $37-5 fsincos denorm |
| short ssincossnan - tbl_trans # $37-4 fsincos snan |
| short tbl_trans - tbl_trans # $37-6 fsincos unnorm |
| short tbl_trans - tbl_trans # $37-7 ERROR |
| |
| ########## |
| |
| # the instruction fetch access for the displacement word for the |
| # fdbcc emulation failed. here, we create an access error frame |
| # from the current frame and branch to _real_access(). |
| funimp_iacc: |
| movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| |
| mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC |
| |
| unlk %a6 |
| |
| mov.l (%sp),-(%sp) # store SR,hi(PC) |
| mov.w 0x8(%sp),0x4(%sp) # store lo(PC) |
| mov.w &0x4008,0x6(%sp) # store voff |
| mov.l 0x2(%sp),0x8(%sp) # store EA |
| mov.l &0x09428001,0xc(%sp) # store FSLW |
| |
| btst &0x5,(%sp) # user or supervisor mode? |
| beq.b funimp_iacc_end # user |
| bset &0x2,0xd(%sp) # set supervisor TM bit |
| |
| funimp_iacc_end: |
| bra.l _real_access |
| |
| ######################################################################### |
| # ssin(): computes the sine of a normalized input # |
| # ssind(): computes the sine of a denormalized input # |
| # scos(): computes the cosine of a normalized input # |
| # scosd(): computes the cosine of a denormalized input # |
| # ssincos(): computes the sine and cosine of a normalized input # |
| # ssincosd(): computes the sine and cosine of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = sin(X) or cos(X) # |
| # # |
| # For ssincos(X): # |
| # fp0 = sin(X) # |
| # fp1 = cos(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 1 ulp in 64 significant bit, i.e. # |
| # within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # SIN and COS: # |
| # 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. # |
| # # |
| # 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. # |
| # # |
| # 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # |
| # k = N mod 4, so in particular, k = 0,1,2,or 3. # |
| # Overwrite k by k := k + AdjN. # |
| # # |
| # 4. If k is even, go to 6. # |
| # # |
| # 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. # |
| # Return sgn*cos(r) where cos(r) is approximated by an # |
| # even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), # |
| # s = r*r. # |
| # Exit. # |
| # # |
| # 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) # |
| # where sin(r) is approximated by an odd polynomial in r # |
| # r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. # |
| # Exit. # |
| # # |
| # 7. If |X| > 1, go to 9. # |
| # # |
| # 8. (|X|<2**(-40)) If SIN is invoked, return X; # |
| # otherwise return 1. # |
| # # |
| # 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # |
| # go back to 3. # |
| # # |
| # SINCOS: # |
| # 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # |
| # # |
| # 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # |
| # k = N mod 4, so in particular, k = 0,1,2,or 3. # |
| # # |
| # 3. If k is even, go to 5. # |
| # # |
| # 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. # |
| # j1 exclusive or with the l.s.b. of k. # |
| # sgn1 := (-1)**j1, sgn2 := (-1)**j2. # |
| # SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where # |
| # sin(r) and cos(r) are computed as odd and even # |
| # polynomials in r, respectively. Exit # |
| # # |
| # 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. # |
| # SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where # |
| # sin(r) and cos(r) are computed as odd and even # |
| # polynomials in r, respectively. Exit # |
| # # |
| # 6. If |X| > 1, go to 8. # |
| # # |
| # 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. # |
| # # |
| # 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # |
| # go back to 2. # |
| # # |
| ######################################################################### |
| |
| SINA7: long 0xBD6AAA77,0xCCC994F5 |
| SINA6: long 0x3DE61209,0x7AAE8DA1 |
| SINA5: long 0xBE5AE645,0x2A118AE4 |
| SINA4: long 0x3EC71DE3,0xA5341531 |
| SINA3: long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000 |
| SINA2: long 0x3FF80000,0x88888888,0x888859AF,0x00000000 |
| SINA1: long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000 |
| |
| COSB8: long 0x3D2AC4D0,0xD6011EE3 |
| COSB7: long 0xBDA9396F,0x9F45AC19 |
| COSB6: long 0x3E21EED9,0x0612C972 |
| COSB5: long 0xBE927E4F,0xB79D9FCF |
| COSB4: long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000 |
| COSB3: long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000 |
| COSB2: long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E |
| COSB1: long 0xBF000000 |
| |
| set INARG,FP_SCR0 |
| |
| set X,FP_SCR0 |
| # set XDCARE,X+2 |
| set XFRAC,X+4 |
| |
| set RPRIME,FP_SCR0 |
| set SPRIME,FP_SCR1 |
| |
| set POSNEG1,L_SCR1 |
| set TWOTO63,L_SCR1 |
| |
| set ENDFLAG,L_SCR2 |
| set INT,L_SCR2 |
| |
| set ADJN,L_SCR3 |
| |
| ############################################ |
| global ssin |
| ssin: |
| mov.l &0,ADJN(%a6) # yes; SET ADJN TO 0 |
| bra.b SINBGN |
| |
| ############################################ |
| global scos |
| scos: |
| mov.l &1,ADJN(%a6) # yes; SET ADJN TO 1 |
| |
| ############################################ |
| SINBGN: |
| #--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE |
| |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| fmov.x %fp0,X(%a6) # save input at X |
| |
| # "COMPACTIFY" X |
| mov.l (%a0),%d1 # put exp in hi word |
| mov.w 4(%a0),%d1 # fetch hi(man) |
| and.l &0x7FFFFFFF,%d1 # strip sign |
| |
| cmpi.l %d1,&0x3FD78000 # is |X| >= 2**(-40)? |
| bge.b SOK1 # no |
| bra.w SINSM # yes; input is very small |
| |
| SOK1: |
| cmp.l %d1,&0x4004BC7E # is |X| < 15 PI? |
| blt.b SINMAIN # no |
| bra.w SREDUCEX # yes; input is very large |
| |
| #--THIS IS THE USUAL CASE, |X| <= 15 PI. |
| #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. |
| SINMAIN: |
| fmov.x %fp0,%fp1 |
| fmul.d TWOBYPI(%pc),%fp1 # X*2/PI |
| |
| lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 |
| |
| fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER |
| |
| mov.l INT(%a6),%d1 # make a copy of N |
| asl.l &4,%d1 # N *= 16 |
| add.l %d1,%a1 # tbl_addr = a1 + (N*16) |
| |
| # A1 IS THE ADDRESS OF N*PIBY2 |
| # ...WHICH IS IN TWO PIECES Y1 & Y2 |
| fsub.x (%a1)+,%fp0 # X-Y1 |
| fsub.s (%a1),%fp0 # fp0 = R = (X-Y1)-Y2 |
| |
| SINCONT: |
| #--continuation from REDUCEX |
| |
| #--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED |
| mov.l INT(%a6),%d1 |
| add.l ADJN(%a6),%d1 # SEE IF D0 IS ODD OR EVEN |
| ror.l &1,%d1 # D0 WAS ODD IFF D0 IS NEGATIVE |
| cmp.l %d1,&0 |
| blt.w COSPOLY |
| |
| #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. |
| #--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY |
| #--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE |
| #--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS |
| #--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))]) |
| #--WHERE T=S*S. |
| #--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION |
| #--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT. |
| SINPOLY: |
| fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| |
| fmov.x %fp0,X(%a6) # X IS R |
| fmul.x %fp0,%fp0 # FP0 IS S |
| |
| fmov.d SINA7(%pc),%fp3 |
| fmov.d SINA6(%pc),%fp2 |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # FP1 IS T |
| |
| ror.l &1,%d1 |
| and.l &0x80000000,%d1 |
| # ...LEAST SIG. BIT OF D0 IN SIGN POSITION |
| eor.l %d1,X(%a6) # X IS NOW R'= SGN*R |
| |
| fmul.x %fp1,%fp3 # TA7 |
| fmul.x %fp1,%fp2 # TA6 |
| |
| fadd.d SINA5(%pc),%fp3 # A5+TA7 |
| fadd.d SINA4(%pc),%fp2 # A4+TA6 |
| |
| fmul.x %fp1,%fp3 # T(A5+TA7) |
| fmul.x %fp1,%fp2 # T(A4+TA6) |
| |
| fadd.d SINA3(%pc),%fp3 # A3+T(A5+TA7) |
| fadd.x SINA2(%pc),%fp2 # A2+T(A4+TA6) |
| |
| fmul.x %fp3,%fp1 # T(A3+T(A5+TA7)) |
| |
| fmul.x %fp0,%fp2 # S(A2+T(A4+TA6)) |
| fadd.x SINA1(%pc),%fp1 # A1+T(A3+T(A5+TA7)) |
| fmul.x X(%a6),%fp0 # R'*S |
| |
| fadd.x %fp2,%fp1 # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))] |
| |
| fmul.x %fp1,%fp0 # SIN(R')-R' |
| |
| fmovm.x (%sp)+,&0x30 # restore fp2/fp3 |
| |
| fmov.l %d0,%fpcr # restore users round mode,prec |
| fadd.x X(%a6),%fp0 # last inst - possible exception set |
| bra t_inx2 |
| |
| #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. |
| #--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY |
| #--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE |
| #--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS |
| #--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))]) |
| #--WHERE T=S*S. |
| #--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION |
| #--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2 |
| #--AND IS THEREFORE STORED AS SINGLE PRECISION. |
| COSPOLY: |
| fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| |
| fmul.x %fp0,%fp0 # FP0 IS S |
| |
| fmov.d COSB8(%pc),%fp2 |
| fmov.d COSB7(%pc),%fp3 |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # FP1 IS T |
| |
| fmov.x %fp0,X(%a6) # X IS S |
| ror.l &1,%d1 |
| and.l &0x80000000,%d1 |
| # ...LEAST SIG. BIT OF D0 IN SIGN POSITION |
| |
| fmul.x %fp1,%fp2 # TB8 |
| |
| eor.l %d1,X(%a6) # X IS NOW S'= SGN*S |
| and.l &0x80000000,%d1 |
| |
| fmul.x %fp1,%fp3 # TB7 |
| |
| or.l &0x3F800000,%d1 # D0 IS SGN IN SINGLE |
| mov.l %d1,POSNEG1(%a6) |
| |
| fadd.d COSB6(%pc),%fp2 # B6+TB8 |
| fadd.d COSB5(%pc),%fp3 # B5+TB7 |
| |
| fmul.x %fp1,%fp2 # T(B6+TB8) |
| fmul.x %fp1,%fp3 # T(B5+TB7) |
| |
| fadd.d COSB4(%pc),%fp2 # B4+T(B6+TB8) |
| fadd.x COSB3(%pc),%fp3 # B3+T(B5+TB7) |
| |
| fmul.x %fp1,%fp2 # T(B4+T(B6+TB8)) |
| fmul.x %fp3,%fp1 # T(B3+T(B5+TB7)) |
| |
| fadd.x COSB2(%pc),%fp2 # B2+T(B4+T(B6+TB8)) |
| fadd.s COSB1(%pc),%fp1 # B1+T(B3+T(B5+TB7)) |
| |
| fmul.x %fp2,%fp0 # S(B2+T(B4+T(B6+TB8))) |
| |
| fadd.x %fp1,%fp0 |
| |
| fmul.x X(%a6),%fp0 |
| |
| fmovm.x (%sp)+,&0x30 # restore fp2/fp3 |
| |
| fmov.l %d0,%fpcr # restore users round mode,prec |
| fadd.s POSNEG1(%a6),%fp0 # last inst - possible exception set |
| bra t_inx2 |
| |
| ############################################## |
| |
| # SINe: Big OR Small? |
| #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. |
| #--IF |X| < 2**(-40), RETURN X OR 1. |
| SINBORS: |
| cmp.l %d1,&0x3FFF8000 |
| bgt.l SREDUCEX |
| |
| SINSM: |
| mov.l ADJN(%a6),%d1 |
| cmp.l %d1,&0 |
| bgt.b COSTINY |
| |
| # here, the operation may underflow iff the precision is sgl or dbl. |
| # extended denorms are handled through another entry point. |
| SINTINY: |
| # mov.w &0x0000,XDCARE(%a6) # JUST IN CASE |
| |
| fmov.l %d0,%fpcr # restore users round mode,prec |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x X(%a6),%fp0 # last inst - possible exception set |
| bra t_catch |
| |
| COSTINY: |
| fmov.s &0x3F800000,%fp0 # fp0 = 1.0 |
| fmov.l %d0,%fpcr # restore users round mode,prec |
| fadd.s &0x80800000,%fp0 # last inst - possible exception set |
| bra t_pinx2 |
| |
| ################################################ |
| global ssind |
| #--SIN(X) = X FOR DENORMALIZED X |
| ssind: |
| bra t_extdnrm |
| |
| ############################################ |
| global scosd |
| #--COS(X) = 1 FOR DENORMALIZED X |
| scosd: |
| fmov.s &0x3F800000,%fp0 # fp0 = 1.0 |
| bra t_pinx2 |
| |
| ################################################## |
| |
| global ssincos |
| ssincos: |
| #--SET ADJN TO 4 |
| mov.l &4,ADJN(%a6) |
| |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| fmov.x %fp0,X(%a6) |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| and.l &0x7FFFFFFF,%d1 # COMPACTIFY X |
| |
| cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? |
| bge.b SCOK1 |
| bra.w SCSM |
| |
| SCOK1: |
| cmp.l %d1,&0x4004BC7E # |X| < 15 PI? |
| blt.b SCMAIN |
| bra.w SREDUCEX |
| |
| |
| #--THIS IS THE USUAL CASE, |X| <= 15 PI. |
| #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. |
| SCMAIN: |
| fmov.x %fp0,%fp1 |
| |
| fmul.d TWOBYPI(%pc),%fp1 # X*2/PI |
| |
| lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 |
| |
| fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER |
| |
| mov.l INT(%a6),%d1 |
| asl.l &4,%d1 |
| add.l %d1,%a1 # ADDRESS OF N*PIBY2, IN Y1, Y2 |
| |
| fsub.x (%a1)+,%fp0 # X-Y1 |
| fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 |
| |
| SCCONT: |
| #--continuation point from REDUCEX |
| |
| mov.l INT(%a6),%d1 |
| ror.l &1,%d1 |
| cmp.l %d1,&0 # D0 < 0 IFF N IS ODD |
| bge.w NEVEN |
| |
| SNODD: |
| #--REGISTERS SAVED SO FAR: D0, A0, FP2. |
| fmovm.x &0x04,-(%sp) # save fp2 |
| |
| fmov.x %fp0,RPRIME(%a6) |
| fmul.x %fp0,%fp0 # FP0 IS S = R*R |
| fmov.d SINA7(%pc),%fp1 # A7 |
| fmov.d COSB8(%pc),%fp2 # B8 |
| fmul.x %fp0,%fp1 # SA7 |
| fmul.x %fp0,%fp2 # SB8 |
| |
| mov.l %d2,-(%sp) |
| mov.l %d1,%d2 |
| ror.l &1,%d2 |
| and.l &0x80000000,%d2 |
| eor.l %d1,%d2 |
| and.l &0x80000000,%d2 |
| |
| fadd.d SINA6(%pc),%fp1 # A6+SA7 |
| fadd.d COSB7(%pc),%fp2 # B7+SB8 |
| |
| fmul.x %fp0,%fp1 # S(A6+SA7) |
| eor.l %d2,RPRIME(%a6) |
| mov.l (%sp)+,%d2 |
| fmul.x %fp0,%fp2 # S(B7+SB8) |
| ror.l &1,%d1 |
| and.l &0x80000000,%d1 |
| mov.l &0x3F800000,POSNEG1(%a6) |
| eor.l %d1,POSNEG1(%a6) |
| |
| fadd.d SINA5(%pc),%fp1 # A5+S(A6+SA7) |
| fadd.d COSB6(%pc),%fp2 # B6+S(B7+SB8) |
| |
| fmul.x %fp0,%fp1 # S(A5+S(A6+SA7)) |
| fmul.x %fp0,%fp2 # S(B6+S(B7+SB8)) |
| fmov.x %fp0,SPRIME(%a6) |
| |
| fadd.d SINA4(%pc),%fp1 # A4+S(A5+S(A6+SA7)) |
| eor.l %d1,SPRIME(%a6) |
| fadd.d COSB5(%pc),%fp2 # B5+S(B6+S(B7+SB8)) |
| |
| fmul.x %fp0,%fp1 # S(A4+...) |
| fmul.x %fp0,%fp2 # S(B5+...) |
| |
| fadd.d SINA3(%pc),%fp1 # A3+S(A4+...) |
| fadd.d COSB4(%pc),%fp2 # B4+S(B5+...) |
| |
| fmul.x %fp0,%fp1 # S(A3+...) |
| fmul.x %fp0,%fp2 # S(B4+...) |
| |
| fadd.x SINA2(%pc),%fp1 # A2+S(A3+...) |
| fadd.x COSB3(%pc),%fp2 # B3+S(B4+...) |
| |
| fmul.x %fp0,%fp1 # S(A2+...) |
| fmul.x %fp0,%fp2 # S(B3+...) |
| |
| fadd.x SINA1(%pc),%fp1 # A1+S(A2+...) |
| fadd.x COSB2(%pc),%fp2 # B2+S(B3+...) |
| |
| fmul.x %fp0,%fp1 # S(A1+...) |
| fmul.x %fp2,%fp0 # S(B2+...) |
| |
| fmul.x RPRIME(%a6),%fp1 # R'S(A1+...) |
| fadd.s COSB1(%pc),%fp0 # B1+S(B2...) |
| fmul.x SPRIME(%a6),%fp0 # S'(B1+S(B2+...)) |
| |
| fmovm.x (%sp)+,&0x20 # restore fp2 |
| |
| fmov.l %d0,%fpcr |
| fadd.x RPRIME(%a6),%fp1 # COS(X) |
| bsr sto_cos # store cosine result |
| fadd.s POSNEG1(%a6),%fp0 # SIN(X) |
| bra t_inx2 |
| |
| NEVEN: |
| #--REGISTERS SAVED SO FAR: FP2. |
| fmovm.x &0x04,-(%sp) # save fp2 |
| |
| fmov.x %fp0,RPRIME(%a6) |
| fmul.x %fp0,%fp0 # FP0 IS S = R*R |
| |
| fmov.d COSB8(%pc),%fp1 # B8 |
| fmov.d SINA7(%pc),%fp2 # A7 |
| |
| fmul.x %fp0,%fp1 # SB8 |
| fmov.x %fp0,SPRIME(%a6) |
| fmul.x %fp0,%fp2 # SA7 |
| |
| ror.l &1,%d1 |
| and.l &0x80000000,%d1 |
| |
| fadd.d COSB7(%pc),%fp1 # B7+SB8 |
| fadd.d SINA6(%pc),%fp2 # A6+SA7 |
| |
| eor.l %d1,RPRIME(%a6) |
| eor.l %d1,SPRIME(%a6) |
| |
| fmul.x %fp0,%fp1 # S(B7+SB8) |
| |
| or.l &0x3F800000,%d1 |
| mov.l %d1,POSNEG1(%a6) |
| |
| fmul.x %fp0,%fp2 # S(A6+SA7) |
| |
| fadd.d COSB6(%pc),%fp1 # B6+S(B7+SB8) |
| fadd.d SINA5(%pc),%fp2 # A5+S(A6+SA7) |
| |
| fmul.x %fp0,%fp1 # S(B6+S(B7+SB8)) |
| fmul.x %fp0,%fp2 # S(A5+S(A6+SA7)) |
| |
| fadd.d COSB5(%pc),%fp1 # B5+S(B6+S(B7+SB8)) |
| fadd.d SINA4(%pc),%fp2 # A4+S(A5+S(A6+SA7)) |
| |
| fmul.x %fp0,%fp1 # S(B5+...) |
| fmul.x %fp0,%fp2 # S(A4+...) |
| |
| fadd.d COSB4(%pc),%fp1 # B4+S(B5+...) |
| fadd.d SINA3(%pc),%fp2 # A3+S(A4+...) |
| |
| fmul.x %fp0,%fp1 # S(B4+...) |
| fmul.x %fp0,%fp2 # S(A3+...) |
| |
| fadd.x COSB3(%pc),%fp1 # B3+S(B4+...) |
| fadd.x SINA2(%pc),%fp2 # A2+S(A3+...) |
| |
| fmul.x %fp0,%fp1 # S(B3+...) |
| fmul.x %fp0,%fp2 # S(A2+...) |
| |
| fadd.x COSB2(%pc),%fp1 # B2+S(B3+...) |
| fadd.x SINA1(%pc),%fp2 # A1+S(A2+...) |
| |
| fmul.x %fp0,%fp1 # S(B2+...) |
| fmul.x %fp2,%fp0 # s(a1+...) |
| |
| |
| fadd.s COSB1(%pc),%fp1 # B1+S(B2...) |
| fmul.x RPRIME(%a6),%fp0 # R'S(A1+...) |
| fmul.x SPRIME(%a6),%fp1 # S'(B1+S(B2+...)) |
| |
| fmovm.x (%sp)+,&0x20 # restore fp2 |
| |
| fmov.l %d0,%fpcr |
| fadd.s POSNEG1(%a6),%fp1 # COS(X) |
| bsr sto_cos # store cosine result |
| fadd.x RPRIME(%a6),%fp0 # SIN(X) |
| bra t_inx2 |
| |
| ################################################ |
| |
| SCBORS: |
| cmp.l %d1,&0x3FFF8000 |
| bgt.w SREDUCEX |
| |
| ################################################ |
| |
| SCSM: |
| # mov.w &0x0000,XDCARE(%a6) |
| fmov.s &0x3F800000,%fp1 |
| |
| fmov.l %d0,%fpcr |
| fsub.s &0x00800000,%fp1 |
| bsr sto_cos # store cosine result |
| fmov.l %fpcr,%d0 # d0 must have fpcr,too |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x X(%a6),%fp0 |
| bra t_catch |
| |
| ############################################## |
| |
| global ssincosd |
| #--SIN AND COS OF X FOR DENORMALIZED X |
| ssincosd: |
| mov.l %d0,-(%sp) # save d0 |
| fmov.s &0x3F800000,%fp1 |
| bsr sto_cos # store cosine result |
| mov.l (%sp)+,%d0 # restore d0 |
| bra t_extdnrm |
| |
| ############################################ |
| |
| #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. |
| #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING |
| #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. |
| SREDUCEX: |
| fmovm.x &0x3c,-(%sp) # save {fp2-fp5} |
| mov.l %d2,-(%sp) # save d2 |
| fmov.s &0x00000000,%fp1 # fp1 = 0 |
| |
| #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that |
| #--there is a danger of unwanted overflow in first LOOP iteration. In this |
| #--case, reduce argument by one remainder step to make subsequent reduction |
| #--safe. |
| cmp.l %d1,&0x7ffeffff # is arg dangerously large? |
| bne.b SLOOP # no |
| |
| # yes; create 2**16383*PI/2 |
| mov.w &0x7ffe,FP_SCR0_EX(%a6) |
| mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) |
| clr.l FP_SCR0_LO(%a6) |
| |
| # create low half of 2**16383*PI/2 at FP_SCR1 |
| mov.w &0x7fdc,FP_SCR1_EX(%a6) |
| mov.l &0x85a308d3,FP_SCR1_HI(%a6) |
| clr.l FP_SCR1_LO(%a6) |
| |
| ftest.x %fp0 # test sign of argument |
| fblt.w sred_neg |
| |
| or.b &0x80,FP_SCR0_EX(%a6) # positive arg |
| or.b &0x80,FP_SCR1_EX(%a6) |
| sred_neg: |
| fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact |
| fmov.x %fp0,%fp1 # save high result in fp1 |
| fadd.x FP_SCR1(%a6),%fp0 # low part of reduction |
| fsub.x %fp0,%fp1 # determine low component of result |
| fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. |
| |
| #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. |
| #--integer quotient will be stored in N |
| #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) |
| SLOOP: |
| fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 |
| mov.w INARG(%a6),%d1 |
| mov.l %d1,%a1 # save a copy of D0 |
| and.l &0x00007FFF,%d1 |
| sub.l &0x00003FFF,%d1 # d0 = K |
| cmp.l %d1,&28 |
| ble.b SLASTLOOP |
| SCONTLOOP: |
| sub.l &27,%d1 # d0 = L := K-27 |
| mov.b &0,ENDFLAG(%a6) |
| bra.b SWORK |
| SLASTLOOP: |
| clr.l %d1 # d0 = L := 0 |
| mov.b &1,ENDFLAG(%a6) |
| |
| SWORK: |
| #--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN |
| #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. |
| |
| #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), |
| #--2**L * (PIby2_1), 2**L * (PIby2_2) |
| |
| mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI |
| sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) |
| |
| mov.l &0xA2F9836E,FP_SCR0_HI(%a6) |
| mov.l &0x4E44152A,FP_SCR0_LO(%a6) |
| mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) |
| |
| fmov.x %fp0,%fp2 |
| fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) |
| |
| #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN |
| #--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N |
| #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT |
| #--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE |
| #--US THE DESIRED VALUE IN FLOATING POINT. |
| mov.l %a1,%d2 |
| swap %d2 |
| and.l &0x80000000,%d2 |
| or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL |
| mov.l %d2,TWOTO63(%a6) |
| fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED |
| fsub.s TWOTO63(%a6),%fp2 # fp2 = N |
| # fint.x %fp2 |
| |
| #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 |
| mov.l %d1,%d2 # d2 = L |
| |
| add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) |
| mov.w %d2,FP_SCR0_EX(%a6) |
| mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) |
| clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 |
| |
| add.l &0x00003FDD,%d1 |
| mov.w %d1,FP_SCR1_EX(%a6) |
| mov.l &0x85A308D3,FP_SCR1_HI(%a6) |
| clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 |
| |
| mov.b ENDFLAG(%a6),%d1 |
| |
| #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and |
| #--P2 = 2**(L) * Piby2_2 |
| fmov.x %fp2,%fp4 # fp4 = N |
| fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 |
| fmov.x %fp2,%fp5 # fp5 = N |
| fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 |
| fmov.x %fp4,%fp3 # fp3 = W = N*P1 |
| |
| #--we want P+p = W+w but |p| <= half ulp of P |
| #--Then, we need to compute A := R-P and a := r-p |
| fadd.x %fp5,%fp3 # fp3 = P |
| fsub.x %fp3,%fp4 # fp4 = W-P |
| |
| fsub.x %fp3,%fp0 # fp0 = A := R - P |
| fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w |
| |
| fmov.x %fp0,%fp3 # fp3 = A |
| fsub.x %fp4,%fp1 # fp1 = a := r - p |
| |
| #--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but |
| #--|r| <= half ulp of R. |
| fadd.x %fp1,%fp0 # fp0 = R := A+a |
| #--No need to calculate r if this is the last loop |
| cmp.b %d1,&0 |
| bgt.w SRESTORE |
| |
| #--Need to calculate r |
| fsub.x %fp0,%fp3 # fp3 = A-R |
| fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a |
| bra.w SLOOP |
| |
| SRESTORE: |
| fmov.l %fp2,INT(%a6) |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} |
| |
| mov.l ADJN(%a6),%d1 |
| cmp.l %d1,&4 |
| |
| blt.w SINCONT |
| bra.w SCCONT |
| |
| ######################################################################### |
| # stan(): computes the tangent of a normalized input # |
| # stand(): computes the tangent of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = tan(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 3 ulp in 64 significant bit, i.e. # |
| # within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # |
| # # |
| # 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # |
| # k = N mod 2, so in particular, k = 0 or 1. # |
| # # |
| # 3. If k is odd, go to 5. # |
| # # |
| # 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a # |
| # rational function U/V where # |
| # U = r + r*s*(P1 + s*(P2 + s*P3)), and # |
| # V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. # |
| # Exit. # |
| # # |
| # 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by # |
| # a rational function U/V where # |
| # U = r + r*s*(P1 + s*(P2 + s*P3)), and # |
| # V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, # |
| # -Cot(r) = -V/U. Exit. # |
| # # |
| # 6. If |X| > 1, go to 8. # |
| # # |
| # 7. (|X|<2**(-40)) Tan(X) = X. Exit. # |
| # # |
| # 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back # |
| # to 2. # |
| # # |
| ######################################################################### |
| |
| TANQ4: |
| long 0x3EA0B759,0xF50F8688 |
| TANP3: |
| long 0xBEF2BAA5,0xA8924F04 |
| |
| TANQ3: |
| long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000 |
| |
| TANP2: |
| long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000 |
| |
| TANQ2: |
| long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000 |
| |
| TANP1: |
| long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000 |
| |
| TANQ1: |
| long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000 |
| |
| INVTWOPI: |
| long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000 |
| |
| TWOPI1: |
| long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 |
| TWOPI2: |
| long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 |
| |
| #--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING |
| #--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT |
| #--MOST 69 BITS LONG. |
| # global PITBL |
| PITBL: |
| long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000 |
| long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000 |
| long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000 |
| long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000 |
| long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000 |
| long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000 |
| long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000 |
| long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000 |
| long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000 |
| long 0xC0040000,0x90836524,0x88034B96,0x20B00000 |
| long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000 |
| long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000 |
| long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000 |
| long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000 |
| long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000 |
| long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000 |
| long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000 |
| long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000 |
| long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000 |
| long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000 |
| long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000 |
| long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000 |
| long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000 |
| long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000 |
| long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000 |
| long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000 |
| long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000 |
| long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000 |
| long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000 |
| long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000 |
| long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000 |
| long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000 |
| long 0x00000000,0x00000000,0x00000000,0x00000000 |
| long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000 |
| long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000 |
| long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000 |
| long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000 |
| long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000 |
| long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000 |
| long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000 |
| long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000 |
| long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000 |
| long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000 |
| long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000 |
| long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000 |
| long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000 |
| long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000 |
| long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000 |
| long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000 |
| long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000 |
| long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000 |
| long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000 |
| long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000 |
| long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000 |
| long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000 |
| long 0x40040000,0x90836524,0x88034B96,0xA0B00000 |
| long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000 |
| long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000 |
| long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000 |
| long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000 |
| long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000 |
| long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000 |
| long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000 |
| long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000 |
| long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000 |
| |
| set INARG,FP_SCR0 |
| |
| set TWOTO63,L_SCR1 |
| set INT,L_SCR1 |
| set ENDFLAG,L_SCR2 |
| |
| global stan |
| stan: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| and.l &0x7FFFFFFF,%d1 |
| |
| cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? |
| bge.b TANOK1 |
| bra.w TANSM |
| TANOK1: |
| cmp.l %d1,&0x4004BC7E # |X| < 15 PI? |
| blt.b TANMAIN |
| bra.w REDUCEX |
| |
| TANMAIN: |
| #--THIS IS THE USUAL CASE, |X| <= 15 PI. |
| #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. |
| fmov.x %fp0,%fp1 |
| fmul.d TWOBYPI(%pc),%fp1 # X*2/PI |
| |
| lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 |
| |
| fmov.l %fp1,%d1 # CONVERT TO INTEGER |
| |
| asl.l &4,%d1 |
| add.l %d1,%a1 # ADDRESS N*PIBY2 IN Y1, Y2 |
| |
| fsub.x (%a1)+,%fp0 # X-Y1 |
| |
| fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 |
| |
| ror.l &5,%d1 |
| and.l &0x80000000,%d1 # D0 WAS ODD IFF D0 < 0 |
| |
| TANCONT: |
| fmovm.x &0x0c,-(%sp) # save fp2,fp3 |
| |
| cmp.l %d1,&0 |
| blt.w NODD |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # S = R*R |
| |
| fmov.d TANQ4(%pc),%fp3 |
| fmov.d TANP3(%pc),%fp2 |
| |
| fmul.x %fp1,%fp3 # SQ4 |
| fmul.x %fp1,%fp2 # SP3 |
| |
| fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 |
| fadd.x TANP2(%pc),%fp2 # P2+SP3 |
| |
| fmul.x %fp1,%fp3 # S(Q3+SQ4) |
| fmul.x %fp1,%fp2 # S(P2+SP3) |
| |
| fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) |
| fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) |
| |
| fmul.x %fp1,%fp3 # S(Q2+S(Q3+SQ4)) |
| fmul.x %fp1,%fp2 # S(P1+S(P2+SP3)) |
| |
| fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) |
| fmul.x %fp0,%fp2 # RS(P1+S(P2+SP3)) |
| |
| fmul.x %fp3,%fp1 # S(Q1+S(Q2+S(Q3+SQ4))) |
| |
| fadd.x %fp2,%fp0 # R+RS(P1+S(P2+SP3)) |
| |
| fadd.s &0x3F800000,%fp1 # 1+S(Q1+...) |
| |
| fmovm.x (%sp)+,&0x30 # restore fp2,fp3 |
| |
| fmov.l %d0,%fpcr # restore users round mode,prec |
| fdiv.x %fp1,%fp0 # last inst - possible exception set |
| bra t_inx2 |
| |
| NODD: |
| fmov.x %fp0,%fp1 |
| fmul.x %fp0,%fp0 # S = R*R |
| |
| fmov.d TANQ4(%pc),%fp3 |
| fmov.d TANP3(%pc),%fp2 |
| |
| fmul.x %fp0,%fp3 # SQ4 |
| fmul.x %fp0,%fp2 # SP3 |
| |
| fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 |
| fadd.x TANP2(%pc),%fp2 # P2+SP3 |
| |
| fmul.x %fp0,%fp3 # S(Q3+SQ4) |
| fmul.x %fp0,%fp2 # S(P2+SP3) |
| |
| fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) |
| fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) |
| |
| fmul.x %fp0,%fp3 # S(Q2+S(Q3+SQ4)) |
| fmul.x %fp0,%fp2 # S(P1+S(P2+SP3)) |
| |
| fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) |
| fmul.x %fp1,%fp2 # RS(P1+S(P2+SP3)) |
| |
| fmul.x %fp3,%fp0 # S(Q1+S(Q2+S(Q3+SQ4))) |
| |
| fadd.x %fp2,%fp1 # R+RS(P1+S(P2+SP3)) |
| fadd.s &0x3F800000,%fp0 # 1+S(Q1+...) |
| |
| fmovm.x (%sp)+,&0x30 # restore fp2,fp3 |
| |
| fmov.x %fp1,-(%sp) |
| eor.l &0x80000000,(%sp) |
| |
| fmov.l %d0,%fpcr # restore users round mode,prec |
| fdiv.x (%sp)+,%fp0 # last inst - possible exception set |
| bra t_inx2 |
| |
| TANBORS: |
| #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. |
| #--IF |X| < 2**(-40), RETURN X OR 1. |
| cmp.l %d1,&0x3FFF8000 |
| bgt.b REDUCEX |
| |
| TANSM: |
| fmov.x %fp0,-(%sp) |
| fmov.l %d0,%fpcr # restore users round mode,prec |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x (%sp)+,%fp0 # last inst - posibble exception set |
| bra t_catch |
| |
| global stand |
| #--TAN(X) = X FOR DENORMALIZED X |
| stand: |
| bra t_extdnrm |
| |
| #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. |
| #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING |
| #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. |
| REDUCEX: |
| fmovm.x &0x3c,-(%sp) # save {fp2-fp5} |
| mov.l %d2,-(%sp) # save d2 |
| fmov.s &0x00000000,%fp1 # fp1 = 0 |
| |
| #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that |
| #--there is a danger of unwanted overflow in first LOOP iteration. In this |
| #--case, reduce argument by one remainder step to make subsequent reduction |
| #--safe. |
| cmp.l %d1,&0x7ffeffff # is arg dangerously large? |
| bne.b LOOP # no |
| |
| # yes; create 2**16383*PI/2 |
| mov.w &0x7ffe,FP_SCR0_EX(%a6) |
| mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) |
| clr.l FP_SCR0_LO(%a6) |
| |
| # create low half of 2**16383*PI/2 at FP_SCR1 |
| mov.w &0x7fdc,FP_SCR1_EX(%a6) |
| mov.l &0x85a308d3,FP_SCR1_HI(%a6) |
| clr.l FP_SCR1_LO(%a6) |
| |
| ftest.x %fp0 # test sign of argument |
| fblt.w red_neg |
| |
| or.b &0x80,FP_SCR0_EX(%a6) # positive arg |
| or.b &0x80,FP_SCR1_EX(%a6) |
| red_neg: |
| fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact |
| fmov.x %fp0,%fp1 # save high result in fp1 |
| fadd.x FP_SCR1(%a6),%fp0 # low part of reduction |
| fsub.x %fp0,%fp1 # determine low component of result |
| fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. |
| |
| #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. |
| #--integer quotient will be stored in N |
| #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) |
| LOOP: |
| fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 |
| mov.w INARG(%a6),%d1 |
| mov.l %d1,%a1 # save a copy of D0 |
| and.l &0x00007FFF,%d1 |
| sub.l &0x00003FFF,%d1 # d0 = K |
| cmp.l %d1,&28 |
| ble.b LASTLOOP |
| CONTLOOP: |
| sub.l &27,%d1 # d0 = L := K-27 |
| mov.b &0,ENDFLAG(%a6) |
| bra.b WORK |
| LASTLOOP: |
| clr.l %d1 # d0 = L := 0 |
| mov.b &1,ENDFLAG(%a6) |
| |
| WORK: |
| #--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN |
| #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. |
| |
| #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), |
| #--2**L * (PIby2_1), 2**L * (PIby2_2) |
| |
| mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI |
| sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) |
| |
| mov.l &0xA2F9836E,FP_SCR0_HI(%a6) |
| mov.l &0x4E44152A,FP_SCR0_LO(%a6) |
| mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) |
| |
| fmov.x %fp0,%fp2 |
| fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) |
| |
| #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN |
| #--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N |
| #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT |
| #--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE |
| #--US THE DESIRED VALUE IN FLOATING POINT. |
| mov.l %a1,%d2 |
| swap %d2 |
| and.l &0x80000000,%d2 |
| or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL |
| mov.l %d2,TWOTO63(%a6) |
| fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED |
| fsub.s TWOTO63(%a6),%fp2 # fp2 = N |
| # fintrz.x %fp2,%fp2 |
| |
| #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 |
| mov.l %d1,%d2 # d2 = L |
| |
| add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) |
| mov.w %d2,FP_SCR0_EX(%a6) |
| mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) |
| clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 |
| |
| add.l &0x00003FDD,%d1 |
| mov.w %d1,FP_SCR1_EX(%a6) |
| mov.l &0x85A308D3,FP_SCR1_HI(%a6) |
| clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 |
| |
| mov.b ENDFLAG(%a6),%d1 |
| |
| #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and |
| #--P2 = 2**(L) * Piby2_2 |
| fmov.x %fp2,%fp4 # fp4 = N |
| fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 |
| fmov.x %fp2,%fp5 # fp5 = N |
| fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 |
| fmov.x %fp4,%fp3 # fp3 = W = N*P1 |
| |
| #--we want P+p = W+w but |p| <= half ulp of P |
| #--Then, we need to compute A := R-P and a := r-p |
| fadd.x %fp5,%fp3 # fp3 = P |
| fsub.x %fp3,%fp4 # fp4 = W-P |
| |
| fsub.x %fp3,%fp0 # fp0 = A := R - P |
| fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w |
| |
| fmov.x %fp0,%fp3 # fp3 = A |
| fsub.x %fp4,%fp1 # fp1 = a := r - p |
| |
| #--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but |
| #--|r| <= half ulp of R. |
| fadd.x %fp1,%fp0 # fp0 = R := A+a |
| #--No need to calculate r if this is the last loop |
| cmp.b %d1,&0 |
| bgt.w RESTORE |
| |
| #--Need to calculate r |
| fsub.x %fp0,%fp3 # fp3 = A-R |
| fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a |
| bra.w LOOP |
| |
| RESTORE: |
| fmov.l %fp2,INT(%a6) |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} |
| |
| mov.l INT(%a6),%d1 |
| ror.l &1,%d1 |
| |
| bra.w TANCONT |
| |
| ######################################################################### |
| # satan(): computes the arctangent of a normalized number # |
| # satand(): computes the arctangent of a denormalized number # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = arctan(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 2 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. # |
| # # |
| # Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. # |
| # Note that k = -4, -3,..., or 3. # |
| # Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 # |
| # significant bits of X with a bit-1 attached at the 6-th # |
| # bit position. Define u to be u = (X-F) / (1 + X*F). # |
| # # |
| # Step 3. Approximate arctan(u) by a polynomial poly. # |
| # # |
| # Step 4. Return arctan(F) + poly, arctan(F) is fetched from a # |
| # table of values calculated beforehand. Exit. # |
| # # |
| # Step 5. If |X| >= 16, go to Step 7. # |
| # # |
| # Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. # |
| # # |
| # Step 7. Define X' = -1/X. Approximate arctan(X') by an odd # |
| # polynomial in X'. # |
| # Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. # |
| # # |
| ######################################################################### |
| |
| ATANA3: long 0xBFF6687E,0x314987D8 |
| ATANA2: long 0x4002AC69,0x34A26DB3 |
| ATANA1: long 0xBFC2476F,0x4E1DA28E |
| |
| ATANB6: long 0x3FB34444,0x7F876989 |
| ATANB5: long 0xBFB744EE,0x7FAF45DB |
| ATANB4: long 0x3FBC71C6,0x46940220 |
| ATANB3: long 0xBFC24924,0x921872F9 |
| ATANB2: long 0x3FC99999,0x99998FA9 |
| ATANB1: long 0xBFD55555,0x55555555 |
| |
| ATANC5: long 0xBFB70BF3,0x98539E6A |
| ATANC4: long 0x3FBC7187,0x962D1D7D |
| ATANC3: long 0xBFC24924,0x827107B8 |
| ATANC2: long 0x3FC99999,0x9996263E |
| ATANC1: long 0xBFD55555,0x55555536 |
| |
| PPIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 |
| NPIBY2: long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000 |
| |
| PTINY: long 0x00010000,0x80000000,0x00000000,0x00000000 |
| NTINY: long 0x80010000,0x80000000,0x00000000,0x00000000 |
| |
| ATANTBL: |
| long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000 |
| long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000 |
| long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000 |
| long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000 |
| long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000 |
| long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000 |
| long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000 |
| long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000 |
| long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000 |
| long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000 |
| long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000 |
| long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000 |
| long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000 |
| long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000 |
| long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000 |
| long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000 |
| long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000 |
| long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000 |
| long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000 |
| long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000 |
| long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000 |
| long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000 |
| long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000 |
| long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000 |
| long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000 |
| long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000 |
| long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000 |
| long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000 |
| long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000 |
| long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000 |
| long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000 |
| long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000 |
| long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000 |
| long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000 |
| long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000 |
| long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000 |
| long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000 |
| long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000 |
| long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000 |
| long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000 |
| long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000 |
| long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000 |
| long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000 |
| long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000 |
| long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000 |
| long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000 |
| long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000 |
| long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000 |
| long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000 |
| long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000 |
| long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000 |
| long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000 |
| long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000 |
| long 0x3FFE0000,0x97731420,0x365E538C,0x00000000 |
| long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000 |
| long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000 |
| long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000 |
| long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000 |
| long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000 |
| long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000 |
| long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000 |
| long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000 |
| long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000 |
| long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000 |
| long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000 |
| long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000 |
| long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000 |
| long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000 |
| long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000 |
| long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000 |
| long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000 |
| long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000 |
| long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000 |
| long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000 |
| long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000 |
| long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000 |
| long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000 |
| long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000 |
| long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000 |
| long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000 |
| long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000 |
| long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000 |
| long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000 |
| long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000 |
| long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000 |
| long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000 |
| long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000 |
| long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000 |
| long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000 |
| long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000 |
| long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000 |
| long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000 |
| long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000 |
| long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000 |
| long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000 |
| long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000 |
| long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000 |
| long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000 |
| long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000 |
| long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000 |
| long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000 |
| long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000 |
| long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000 |
| long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000 |
| long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000 |
| long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000 |
| long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000 |
| long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000 |
| long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000 |
| long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000 |
| long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000 |
| long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000 |
| long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000 |
| long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000 |
| long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000 |
| long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000 |
| long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000 |
| long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000 |
| long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000 |
| long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000 |
| long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000 |
| long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000 |
| long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000 |
| long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000 |
| long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000 |
| long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000 |
| long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000 |
| long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000 |
| |
| set X,FP_SCR0 |
| set XDCARE,X+2 |
| set XFRAC,X+4 |
| set XFRACLO,X+8 |
| |
| set ATANF,FP_SCR1 |
| set ATANFHI,ATANF+4 |
| set ATANFLO,ATANF+8 |
| |
| global satan |
| #--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S |
| satan: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| fmov.x %fp0,X(%a6) |
| and.l &0x7FFFFFFF,%d1 |
| |
| cmp.l %d1,&0x3FFB8000 # |X| >= 1/16? |
| bge.b ATANOK1 |
| bra.w ATANSM |
| |
| ATANOK1: |
| cmp.l %d1,&0x4002FFFF # |X| < 16 ? |
| ble.b ATANMAIN |
| bra.w ATANBIG |
| |
| #--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE |
| #--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ). |
| #--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN |
| #--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE |
| #--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS |
| #--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR |
| #--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO |
| #--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE |
| #--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL |
| #--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE |
| #--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION |
| #--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION |
| #--WILL INVOLVE A VERY LONG POLYNOMIAL. |
| |
| #--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS |
| #--WE CHOSE F TO BE +-2^K * 1.BBBB1 |
| #--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE |
| #--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE |
| #--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS |
| #-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|). |
| |
| ATANMAIN: |
| |
| and.l &0xF8000000,XFRAC(%a6) # FIRST 5 BITS |
| or.l &0x04000000,XFRAC(%a6) # SET 6-TH BIT TO 1 |
| mov.l &0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F |
| |
| fmov.x %fp0,%fp1 # FP1 IS X |
| fmul.x X(%a6),%fp1 # FP1 IS X*F, NOTE THAT X*F > 0 |
| fsub.x X(%a6),%fp0 # FP0 IS X-F |
| fadd.s &0x3F800000,%fp1 # FP1 IS 1 + X*F |
| fdiv.x %fp1,%fp0 # FP0 IS U = (X-F)/(1+X*F) |
| |
| #--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|) |
| #--CREATE ATAN(F) AND STORE IT IN ATANF, AND |
| #--SAVE REGISTERS FP2. |
| |
| mov.l %d2,-(%sp) # SAVE d2 TEMPORARILY |
| mov.l %d1,%d2 # THE EXP AND 16 BITS OF X |
| and.l &0x00007800,%d1 # 4 VARYING BITS OF F'S FRACTION |
| and.l &0x7FFF0000,%d2 # EXPONENT OF F |
| sub.l &0x3FFB0000,%d2 # K+4 |
| asr.l &1,%d2 |
| add.l %d2,%d1 # THE 7 BITS IDENTIFYING F |
| asr.l &7,%d1 # INDEX INTO TBL OF ATAN(|F|) |
| lea ATANTBL(%pc),%a1 |
| add.l %d1,%a1 # ADDRESS OF ATAN(|F|) |
| mov.l (%a1)+,ATANF(%a6) |
| mov.l (%a1)+,ATANFHI(%a6) |
| mov.l (%a1)+,ATANFLO(%a6) # ATANF IS NOW ATAN(|F|) |
| mov.l X(%a6),%d1 # LOAD SIGN AND EXPO. AGAIN |
| and.l &0x80000000,%d1 # SIGN(F) |
| or.l %d1,ATANF(%a6) # ATANF IS NOW SIGN(F)*ATAN(|F|) |
| mov.l (%sp)+,%d2 # RESTORE d2 |
| |
| #--THAT'S ALL I HAVE TO DO FOR NOW, |
| #--BUT ALAS, THE DIVIDE IS STILL CRANKING! |
| |
| #--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS |
| #--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U |
| #--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT. |
| #--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3)) |
| #--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3. |
| #--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT |
| #--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED |
| |
| fmovm.x &0x04,-(%sp) # save fp2 |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 |
| fmov.d ATANA3(%pc),%fp2 |
| fadd.x %fp1,%fp2 # A3+V |
| fmul.x %fp1,%fp2 # V*(A3+V) |
| fmul.x %fp0,%fp1 # U*V |
| fadd.d ATANA2(%pc),%fp2 # A2+V*(A3+V) |
| fmul.d ATANA1(%pc),%fp1 # A1*U*V |
| fmul.x %fp2,%fp1 # A1*U*V*(A2+V*(A3+V)) |
| fadd.x %fp1,%fp0 # ATAN(U), FP1 RELEASED |
| |
| fmovm.x (%sp)+,&0x20 # restore fp2 |
| |
| fmov.l %d0,%fpcr # restore users rnd mode,prec |
| fadd.x ATANF(%a6),%fp0 # ATAN(X) |
| bra t_inx2 |
| |
| ATANBORS: |
| #--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED. |
| #--FP0 IS X AND |X| <= 1/16 OR |X| >= 16. |
| cmp.l %d1,&0x3FFF8000 |
| bgt.w ATANBIG # I.E. |X| >= 16 |
| |
| ATANSM: |
| #--|X| <= 1/16 |
| #--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE |
| #--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6))))) |
| #--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] ) |
| #--WHERE Y = X*X, AND Z = Y*Y. |
| |
| cmp.l %d1,&0x3FD78000 |
| blt.w ATANTINY |
| |
| #--COMPUTE POLYNOMIAL |
| fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| |
| fmul.x %fp0,%fp0 # FPO IS Y = X*X |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y |
| |
| fmov.d ATANB6(%pc),%fp2 |
| fmov.d ATANB5(%pc),%fp3 |
| |
| fmul.x %fp1,%fp2 # Z*B6 |
| fmul.x %fp1,%fp3 # Z*B5 |
| |
| fadd.d ATANB4(%pc),%fp2 # B4+Z*B6 |
| fadd.d ATANB3(%pc),%fp3 # B3+Z*B5 |
| |
| fmul.x %fp1,%fp2 # Z*(B4+Z*B6) |
| fmul.x %fp3,%fp1 # Z*(B3+Z*B5) |
| |
| fadd.d ATANB2(%pc),%fp2 # B2+Z*(B4+Z*B6) |
| fadd.d ATANB1(%pc),%fp1 # B1+Z*(B3+Z*B5) |
| |
| fmul.x %fp0,%fp2 # Y*(B2+Z*(B4+Z*B6)) |
| fmul.x X(%a6),%fp0 # X*Y |
| |
| fadd.x %fp2,%fp1 # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))] |
| |
| fmul.x %fp1,%fp0 # X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]) |
| |
| fmovm.x (%sp)+,&0x30 # restore fp2/fp3 |
| |
| fmov.l %d0,%fpcr # restore users rnd mode,prec |
| fadd.x X(%a6),%fp0 |
| bra t_inx2 |
| |
| ATANTINY: |
| #--|X| < 2^(-40), ATAN(X) = X |
| |
| fmov.l %d0,%fpcr # restore users rnd mode,prec |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x X(%a6),%fp0 # last inst - possible exception set |
| |
| bra t_catch |
| |
| ATANBIG: |
| #--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE, |
| #--RETURN SIGN(X)*PI/2 + ATAN(-1/X). |
| cmp.l %d1,&0x40638000 |
| bgt.w ATANHUGE |
| |
| #--APPROXIMATE ATAN(-1/X) BY |
| #--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X' |
| #--THIS CAN BE RE-WRITTEN AS |
| #--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y. |
| |
| fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| |
| fmov.s &0xBF800000,%fp1 # LOAD -1 |
| fdiv.x %fp0,%fp1 # FP1 IS -1/X |
| |
| #--DIVIDE IS STILL CRANKING |
| |
| fmov.x %fp1,%fp0 # FP0 IS X' |
| fmul.x %fp0,%fp0 # FP0 IS Y = X'*X' |
| fmov.x %fp1,X(%a6) # X IS REALLY X' |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y |
| |
| fmov.d ATANC5(%pc),%fp3 |
| fmov.d ATANC4(%pc),%fp2 |
| |
| fmul.x %fp1,%fp3 # Z*C5 |
| fmul.x %fp1,%fp2 # Z*B4 |
| |
| fadd.d ATANC3(%pc),%fp3 # C3+Z*C5 |
| fadd.d ATANC2(%pc),%fp2 # C2+Z*C4 |
| |
| fmul.x %fp3,%fp1 # Z*(C3+Z*C5), FP3 RELEASED |
| fmul.x %fp0,%fp2 # Y*(C2+Z*C4) |
| |
| fadd.d ATANC1(%pc),%fp1 # C1+Z*(C3+Z*C5) |
| fmul.x X(%a6),%fp0 # X'*Y |
| |
| fadd.x %fp2,%fp1 # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)] |
| |
| fmul.x %fp1,%fp0 # X'*Y*([B1+Z*(B3+Z*B5)] |
| # ... +[Y*(B2+Z*(B4+Z*B6))]) |
| fadd.x X(%a6),%fp0 |
| |
| fmovm.x (%sp)+,&0x30 # restore fp2/fp3 |
| |
| fmov.l %d0,%fpcr # restore users rnd mode,prec |
| tst.b (%a0) |
| bpl.b pos_big |
| |
| neg_big: |
| fadd.x NPIBY2(%pc),%fp0 |
| bra t_minx2 |
| |
| pos_big: |
| fadd.x PPIBY2(%pc),%fp0 |
| bra t_pinx2 |
| |
| ATANHUGE: |
| #--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY |
| tst.b (%a0) |
| bpl.b pos_huge |
| |
| neg_huge: |
| fmov.x NPIBY2(%pc),%fp0 |
| fmov.l %d0,%fpcr |
| fadd.x PTINY(%pc),%fp0 |
| bra t_minx2 |
| |
| pos_huge: |
| fmov.x PPIBY2(%pc),%fp0 |
| fmov.l %d0,%fpcr |
| fadd.x NTINY(%pc),%fp0 |
| bra t_pinx2 |
| |
| global satand |
| #--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT |
| satand: |
| bra t_extdnrm |
| |
| ######################################################################### |
| # sasin(): computes the inverse sine of a normalized input # |
| # sasind(): computes the inverse sine of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = arcsin(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 3 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # ASIN # |
| # 1. If |X| >= 1, go to 3. # |
| # # |
| # 2. (|X| < 1) Calculate asin(X) by # |
| # z := sqrt( [1-X][1+X] ) # |
| # asin(X) = atan( x / z ). # |
| # Exit. # |
| # # |
| # 3. If |X| > 1, go to 5. # |
| # # |
| # 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.# |
| # # |
| # 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # |
| # Exit. # |
| # # |
| ######################################################################### |
| |
| global sasin |
| sasin: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| and.l &0x7FFFFFFF,%d1 |
| cmp.l %d1,&0x3FFF8000 |
| bge.b ASINBIG |
| |
| # This catch is added here for the '060 QSP. Originally, the call to |
| # satan() would handle this case by causing the exception which would |
| # not be caught until gen_except(). Now, with the exceptions being |
| # detected inside of satan(), the exception would have been handled there |
| # instead of inside sasin() as expected. |
| cmp.l %d1,&0x3FD78000 |
| blt.w ASINTINY |
| |
| #--THIS IS THE USUAL CASE, |X| < 1 |
| #--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) ) |
| |
| ASINMAIN: |
| fmov.s &0x3F800000,%fp1 |
| fsub.x %fp0,%fp1 # 1-X |
| fmovm.x &0x4,-(%sp) # {fp2} |
| fmov.s &0x3F800000,%fp2 |
| fadd.x %fp0,%fp2 # 1+X |
| fmul.x %fp2,%fp1 # (1+X)(1-X) |
| fmovm.x (%sp)+,&0x20 # {fp2} |
| fsqrt.x %fp1 # SQRT([1-X][1+X]) |
| fdiv.x %fp1,%fp0 # X/SQRT([1-X][1+X]) |
| fmovm.x &0x01,-(%sp) # save X/SQRT(...) |
| lea (%sp),%a0 # pass ptr to X/SQRT(...) |
| bsr satan |
| add.l &0xc,%sp # clear X/SQRT(...) from stack |
| bra t_inx2 |
| |
| ASINBIG: |
| fabs.x %fp0 # |X| |
| fcmp.s %fp0,&0x3F800000 |
| fbgt t_operr # cause an operr exception |
| |
| #--|X| = 1, ASIN(X) = +- PI/2. |
| ASINONE: |
| fmov.x PIBY2(%pc),%fp0 |
| mov.l (%a0),%d1 |
| and.l &0x80000000,%d1 # SIGN BIT OF X |
| or.l &0x3F800000,%d1 # +-1 IN SGL FORMAT |
| mov.l %d1,-(%sp) # push SIGN(X) IN SGL-FMT |
| fmov.l %d0,%fpcr |
| fmul.s (%sp)+,%fp0 |
| bra t_inx2 |
| |
| #--|X| < 2^(-40), ATAN(X) = X |
| ASINTINY: |
| fmov.l %d0,%fpcr # restore users rnd mode,prec |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x (%a0),%fp0 # last inst - possible exception |
| bra t_catch |
| |
| global sasind |
| #--ASIN(X) = X FOR DENORMALIZED X |
| sasind: |
| bra t_extdnrm |
| |
| ######################################################################### |
| # sacos(): computes the inverse cosine of a normalized input # |
| # sacosd(): computes the inverse cosine of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = arccos(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 3 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # ACOS # |
| # 1. If |X| >= 1, go to 3. # |
| # # |
| # 2. (|X| < 1) Calculate acos(X) by # |
| # z := (1-X) / (1+X) # |
| # acos(X) = 2 * atan( sqrt(z) ). # |
| # Exit. # |
| # # |
| # 3. If |X| > 1, go to 5. # |
| # # |
| # 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. # |
| # # |
| # 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # |
| # Exit. # |
| # # |
| ######################################################################### |
| |
| global sacos |
| sacos: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| |
| mov.l (%a0),%d1 # pack exp w/ upper 16 fraction |
| mov.w 4(%a0),%d1 |
| and.l &0x7FFFFFFF,%d1 |
| cmp.l %d1,&0x3FFF8000 |
| bge.b ACOSBIG |
| |
| #--THIS IS THE USUAL CASE, |X| < 1 |
| #--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) ) |
| |
| ACOSMAIN: |
| fmov.s &0x3F800000,%fp1 |
| fadd.x %fp0,%fp1 # 1+X |
| fneg.x %fp0 # -X |
| fadd.s &0x3F800000,%fp0 # 1-X |
| fdiv.x %fp1,%fp0 # (1-X)/(1+X) |
| fsqrt.x %fp0 # SQRT((1-X)/(1+X)) |
| mov.l %d0,-(%sp) # save original users fpcr |
| clr.l %d0 |
| fmovm.x &0x01,-(%sp) # save SQRT(...) to stack |
| lea (%sp),%a0 # pass ptr to sqrt |
| bsr satan # ATAN(SQRT([1-X]/[1+X])) |
| add.l &0xc,%sp # clear SQRT(...) from stack |
| |
| fmov.l (%sp)+,%fpcr # restore users round prec,mode |
| fadd.x %fp0,%fp0 # 2 * ATAN( STUFF ) |
| bra t_pinx2 |
| |
| ACOSBIG: |
| fabs.x %fp0 |
| fcmp.s %fp0,&0x3F800000 |
| fbgt t_operr # cause an operr exception |
| |
| #--|X| = 1, ACOS(X) = 0 OR PI |
| tst.b (%a0) # is X positive or negative? |
| bpl.b ACOSP1 |
| |
| #--X = -1 |
| #Returns PI and inexact exception |
| ACOSM1: |
| fmov.x PI(%pc),%fp0 # load PI |
| fmov.l %d0,%fpcr # load round mode,prec |
| fadd.s &0x00800000,%fp0 # add a small value |
| bra t_pinx2 |
| |
| ACOSP1: |
| bra ld_pzero # answer is positive zero |
| |
| global sacosd |
| #--ACOS(X) = PI/2 FOR DENORMALIZED X |
| sacosd: |
| fmov.l %d0,%fpcr # load user's rnd mode/prec |
| fmov.x PIBY2(%pc),%fp0 |
| bra t_pinx2 |
| |
| ######################################################################### |
| # setox(): computes the exponential for a normalized input # |
| # setoxd(): computes the exponential for a denormalized input # |
| # setoxm1(): computes the exponential minus 1 for a normalized input # |
| # setoxm1d(): computes the exponential minus 1 for a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = exp(X) or exp(X)-1 # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 0.85 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM and IMPLEMENTATION **************************************** # |
| # # |
| # setoxd # |
| # ------ # |
| # Step 1. Set ans := 1.0 # |
| # # |
| # Step 2. Return ans := ans + sign(X)*2^(-126). Exit. # |
| # Notes: This will always generate one exception -- inexact. # |
| # # |
| # # |
| # setox # |
| # ----- # |
| # # |
| # Step 1. Filter out extreme cases of input argument. # |
| # 1.1 If |X| >= 2^(-65), go to Step 1.3. # |
| # 1.2 Go to Step 7. # |
| # 1.3 If |X| < 16380 log(2), go to Step 2. # |
| # 1.4 Go to Step 8. # |
| # Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# |
| # To avoid the use of floating-point comparisons, a # |
| # compact representation of |X| is used. This format is a # |
| # 32-bit integer, the upper (more significant) 16 bits # |
| # are the sign and biased exponent field of |X|; the # |
| # lower 16 bits are the 16 most significant fraction # |
| # (including the explicit bit) bits of |X|. Consequently, # |
| # the comparisons in Steps 1.1 and 1.3 can be performed # |
| # by integer comparison. Note also that the constant # |
| # 16380 log(2) used in Step 1.3 is also in the compact # |
| # form. Thus taking the branch to Step 2 guarantees # |
| # |X| < 16380 log(2). There is no harm to have a small # |
| # number of cases where |X| is less than, but close to, # |
| # 16380 log(2) and the branch to Step 9 is taken. # |
| # # |
| # Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # |
| # 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 # |
| # was taken) # |
| # 2.2 N := round-to-nearest-integer( X * 64/log2 ). # |
| # 2.3 Calculate J = N mod 64; so J = 0,1,2,..., # |
| # or 63. # |
| # 2.4 Calculate M = (N - J)/64; so N = 64M + J. # |
| # 2.5 Calculate the address of the stored value of # |
| # 2^(J/64). # |
| # 2.6 Create the value Scale = 2^M. # |
| # Notes: The calculation in 2.2 is really performed by # |
| # Z := X * constant # |
| # N := round-to-nearest-integer(Z) # |
| # where # |
| # constant := single-precision( 64/log 2 ). # |
| # # |
| # Using a single-precision constant avoids memory # |
| # access. Another effect of using a single-precision # |
| # "constant" is that the calculated value Z is # |
| # # |
| # Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). # |
| # # |
| # This error has to be considered later in Steps 3 and 4. # |
| # # |
| # Step 3. Calculate X - N*log2/64. # |
| # 3.1 R := X + N*L1, # |
| # where L1 := single-precision(-log2/64). # |
| # 3.2 R := R + N*L2, # |
| # L2 := extended-precision(-log2/64 - L1).# |
| # Notes: a) The way L1 and L2 are chosen ensures L1+L2 # |
| # approximate the value -log2/64 to 88 bits of accuracy. # |
| # b) N*L1 is exact because N is no longer than 22 bits # |
| # and L1 is no longer than 24 bits. # |
| # c) The calculation X+N*L1 is also exact due to # |
| # cancellation. Thus, R is practically X+N(L1+L2) to full # |
| # 64 bits. # |
| # d) It is important to estimate how large can |R| be # |
| # after Step 3.2. # |
| # # |
| # N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) # |
| # X*64/log2 (1+eps) = N + f, |f| <= 0.5 # |
| # X*64/log2 - N = f - eps*X 64/log2 # |
| # X - N*log2/64 = f*log2/64 - eps*X # |
| # # |
| # # |
| # Now |X| <= 16446 log2, thus # |
| # # |
| # |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 # |
| # <= 0.57 log2/64. # |
| # This bound will be used in Step 4. # |
| # # |
| # Step 4. Approximate exp(R)-1 by a polynomial # |
| # p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) # |
| # Notes: a) In order to reduce memory access, the coefficients # |
| # are made as "short" as possible: A1 (which is 1/2), A4 # |
| # and A5 are single precision; A2 and A3 are double # |
| # precision. # |
| # b) Even with the restrictions above, # |
| # |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. # |
| # Note that 0.0062 is slightly bigger than 0.57 log2/64. # |
| # c) To fully utilize the pipeline, p is separated into # |
| # two independent pieces of roughly equal complexities # |
| # p = [ R + R*S*(A2 + S*A4) ] + # |
| # [ S*(A1 + S*(A3 + S*A5)) ] # |
| # where S = R*R. # |
| # # |
| # Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by # |
| # ans := T + ( T*p + t) # |
| # where T and t are the stored values for 2^(J/64). # |
| # Notes: 2^(J/64) is stored as T and t where T+t approximates # |
| # 2^(J/64) to roughly 85 bits; T is in extended precision # |
| # and t is in single precision. Note also that T is # |
| # rounded to 62 bits so that the last two bits of T are # |
| # zero. The reason for such a special form is that T-1, # |
| # T-2, and T-8 will all be exact --- a property that will # |
| # give much more accurate computation of the function # |
| # EXPM1. # |
| # # |
| # Step 6. Reconstruction of exp(X) # |
| # exp(X) = 2^M * 2^(J/64) * exp(R). # |
| # 6.1 If AdjFlag = 0, go to 6.3 # |
| # 6.2 ans := ans * AdjScale # |
| # 6.3 Restore the user FPCR # |
| # 6.4 Return ans := ans * Scale. Exit. # |
| # Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, # |
| # |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will # |
| # neither overflow nor underflow. If AdjFlag = 1, that # |
| # means that # |
| # X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. # |
| # Hence, exp(X) may overflow or underflow or neither. # |
| # When that is the case, AdjScale = 2^(M1) where M1 is # |
| # approximately M. Thus 6.2 will never cause # |
| # over/underflow. Possible exception in 6.4 is overflow # |
| # or underflow. The inexact exception is not generated in # |
| # 6.4. Although one can argue that the inexact flag # |
| # should always be raised, to simulate that exception # |
| # cost to much than the flag is worth in practical uses. # |
| # # |
| # Step 7. Return 1 + X. # |
| # 7.1 ans := X # |
| # 7.2 Restore user FPCR. # |
| # 7.3 Return ans := 1 + ans. Exit # |
| # Notes: For non-zero X, the inexact exception will always be # |
| # raised by 7.3. That is the only exception raised by 7.3.# |
| # Note also that we use the FMOVEM instruction to move X # |
| # in Step 7.1 to avoid unnecessary trapping. (Although # |
| # the FMOVEM may not seem relevant since X is normalized, # |
| # the precaution will be useful in the library version of # |
| # this code where the separate entry for denormalized # |
| # inputs will be done away with.) # |
| # # |
| # Step 8. Handle exp(X) where |X| >= 16380log2. # |
| # 8.1 If |X| > 16480 log2, go to Step 9. # |
| # (mimic 2.2 - 2.6) # |
| # 8.2 N := round-to-integer( X * 64/log2 ) # |
| # 8.3 Calculate J = N mod 64, J = 0,1,...,63 # |
| # 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, # |
| # AdjFlag := 1. # |
| # 8.5 Calculate the address of the stored value # |
| # 2^(J/64). # |
| # 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. # |
| # 8.7 Go to Step 3. # |
| # Notes: Refer to notes for 2.2 - 2.6. # |
| # # |
| # Step 9. Handle exp(X), |X| > 16480 log2. # |
| # 9.1 If X < 0, go to 9.3 # |
| # 9.2 ans := Huge, go to 9.4 # |
| # 9.3 ans := Tiny. # |
| # 9.4 Restore user FPCR. # |
| # 9.5 Return ans := ans * ans. Exit. # |
| # Notes: Exp(X) will surely overflow or underflow, depending on # |
| # X's sign. "Huge" and "Tiny" are respectively large/tiny # |
| # extended-precision numbers whose square over/underflow # |
| # with an inexact result. Thus, 9.5 always raises the # |
| # inexact together with either overflow or underflow. # |
| # # |
| # setoxm1d # |
| # -------- # |
| # # |
| # Step 1. Set ans := 0 # |
| # # |
| # Step 2. Return ans := X + ans. Exit. # |
| # Notes: This will return X with the appropriate rounding # |
| # precision prescribed by the user FPCR. # |
| # # |
| # setoxm1 # |
| # ------- # |
| # # |
| # Step 1. Check |X| # |
| # 1.1 If |X| >= 1/4, go to Step 1.3. # |
| # 1.2 Go to Step 7. # |
| # 1.3 If |X| < 70 log(2), go to Step 2. # |
| # 1.4 Go to Step 10. # |
| # Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# |
| # However, it is conceivable |X| can be small very often # |
| # because EXPM1 is intended to evaluate exp(X)-1 # |
| # accurately when |X| is small. For further details on # |
| # the comparisons, see the notes on Step 1 of setox. # |
| # # |
| # Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # |
| # 2.1 N := round-to-nearest-integer( X * 64/log2 ). # |
| # 2.2 Calculate J = N mod 64; so J = 0,1,2,..., # |
| # or 63. # |
| # 2.3 Calculate M = (N - J)/64; so N = 64M + J. # |
| # 2.4 Calculate the address of the stored value of # |
| # 2^(J/64). # |
| # 2.5 Create the values Sc = 2^M and # |
| # OnebySc := -2^(-M). # |
| # Notes: See the notes on Step 2 of setox. # |
| # # |
| # Step 3. Calculate X - N*log2/64. # |
| # 3.1 R := X + N*L1, # |
| # where L1 := single-precision(-log2/64). # |
| # 3.2 R := R + N*L2, # |
| # L2 := extended-precision(-log2/64 - L1).# |
| # Notes: Applying the analysis of Step 3 of setox in this case # |
| # shows that |R| <= 0.0055 (note that |X| <= 70 log2 in # |
| # this case). # |
| # # |
| # Step 4. Approximate exp(R)-1 by a polynomial # |
| # p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) # |
| # Notes: a) In order to reduce memory access, the coefficients # |
| # are made as "short" as possible: A1 (which is 1/2), A5 # |
| # and A6 are single precision; A2, A3 and A4 are double # |
| # precision. # |
| # b) Even with the restriction above, # |
| # |p - (exp(R)-1)| < |R| * 2^(-72.7) # |
| # for all |R| <= 0.0055. # |
| # c) To fully utilize the pipeline, p is separated into # |
| # two independent pieces of roughly equal complexity # |
| # p = [ R*S*(A2 + S*(A4 + S*A6)) ] + # |
| # [ R + S*(A1 + S*(A3 + S*A5)) ] # |
| # where S = R*R. # |
| # # |
| # Step 5. Compute 2^(J/64)*p by # |
| # p := T*p # |
| # where T and t are the stored values for 2^(J/64). # |
| # Notes: 2^(J/64) is stored as T and t where T+t approximates # |
| # 2^(J/64) to roughly 85 bits; T is in extended precision # |
| # and t is in single precision. Note also that T is # |
| # rounded to 62 bits so that the last two bits of T are # |
| # zero. The reason for such a special form is that T-1, # |
| # T-2, and T-8 will all be exact --- a property that will # |
| # be exploited in Step 6 below. The total relative error # |
| # in p is no bigger than 2^(-67.7) compared to the final # |
| # result. # |
| # # |
| # Step 6. Reconstruction of exp(X)-1 # |
| # exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). # |
| # 6.1 If M <= 63, go to Step 6.3. # |
| # 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 # |
| # 6.3 If M >= -3, go to 6.5. # |
| # 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 # |
| # 6.5 ans := (T + OnebySc) + (p + t). # |
| # 6.6 Restore user FPCR. # |
| # 6.7 Return ans := Sc * ans. Exit. # |
| # Notes: The various arrangements of the expressions give # |
| # accurate evaluations. # |
| # # |
| # Step 7. exp(X)-1 for |X| < 1/4. # |
| # 7.1 If |X| >= 2^(-65), go to Step 9. # |
| # 7.2 Go to Step 8. # |
| # # |
| # Step 8. Calculate exp(X)-1, |X| < 2^(-65). # |
| # 8.1 If |X| < 2^(-16312), goto 8.3 # |
| # 8.2 Restore FPCR; return ans := X - 2^(-16382). # |
| # Exit. # |
| # 8.3 X := X * 2^(140). # |
| # 8.4 Restore FPCR; ans := ans - 2^(-16382). # |
| # Return ans := ans*2^(140). Exit # |
| # Notes: The idea is to return "X - tiny" under the user # |
| # precision and rounding modes. To avoid unnecessary # |
| # inefficiency, we stay away from denormalized numbers # |
| # the best we can. For |X| >= 2^(-16312), the # |
| # straightforward 8.2 generates the inexact exception as # |
| # the case warrants. # |
| # # |
| # Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial # |
| # p = X + X*X*(B1 + X*(B2 + ... + X*B12)) # |
| # Notes: a) In order to reduce memory access, the coefficients # |
| # are made as "short" as possible: B1 (which is 1/2), B9 # |
| # to B12 are single precision; B3 to B8 are double # |
| # precision; and B2 is double extended. # |
| # b) Even with the restriction above, # |
| # |p - (exp(X)-1)| < |X| 2^(-70.6) # |
| # for all |X| <= 0.251. # |
| # Note that 0.251 is slightly bigger than 1/4. # |
| # c) To fully preserve accuracy, the polynomial is # |
| # computed as # |
| # X + ( S*B1 + Q ) where S = X*X and # |
| # Q = X*S*(B2 + X*(B3 + ... + X*B12)) # |
| # d) To fully utilize the pipeline, Q is separated into # |
| # two independent pieces of roughly equal complexity # |
| # Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + # |
| # [ S*S*(B3 + S*(B5 + ... + S*B11)) ] # |
| # # |
| # Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. # |
| # 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all # |
| # practical purposes. Therefore, go to Step 1 of setox. # |
| # 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical # |
| # purposes. # |
| # ans := -1 # |
| # Restore user FPCR # |
| # Return ans := ans + 2^(-126). Exit. # |
| # Notes: 10.2 will always create an inexact and return -1 + tiny # |
| # in the user rounding precision and mode. # |
| # # |
| ######################################################################### |
| |
| L2: long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000 |
| |
| EEXPA3: long 0x3FA55555,0x55554CC1 |
| EEXPA2: long 0x3FC55555,0x55554A54 |
| |
| EM1A4: long 0x3F811111,0x11174385 |
| EM1A3: long 0x3FA55555,0x55554F5A |
| |
| EM1A2: long 0x3FC55555,0x55555555,0x00000000,0x00000000 |
| |
| EM1B8: long 0x3EC71DE3,0xA5774682 |
| EM1B7: long 0x3EFA01A0,0x19D7CB68 |
| |
| EM1B6: long 0x3F2A01A0,0x1A019DF3 |
| EM1B5: long 0x3F56C16C,0x16C170E2 |
| |
| EM1B4: long 0x3F811111,0x11111111 |
| EM1B3: long 0x3FA55555,0x55555555 |
| |
| EM1B2: long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB |
| long 0x00000000 |
| |
| TWO140: long 0x48B00000,0x00000000 |
| TWON140: |
| long 0x37300000,0x00000000 |
| |
| EEXPTBL: |
| long 0x3FFF0000,0x80000000,0x00000000,0x00000000 |
| long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B |
| long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9 |
| long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369 |
| long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C |
| long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F |
| long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729 |
| long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF |
| long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF |
| long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA |
| long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051 |
| long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029 |
| long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494 |
| long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0 |
| long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D |
| long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537 |
| long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD |
| long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087 |
| long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818 |
| long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D |
| long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890 |
| long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C |
| long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05 |
| long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126 |
| long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140 |
| long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA |
| long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A |
| long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC |
| long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC |
| long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610 |
| long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90 |
| long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A |
| long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13 |
| long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30 |
| long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC |
| long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6 |
| long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70 |
| long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518 |
| long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41 |
| long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B |
| long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568 |
| long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E |
| long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03 |
| long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D |
| long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4 |
| long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C |
| long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9 |
| long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21 |
| long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F |
| long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F |
| long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207 |
| long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175 |
| long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B |
| long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5 |
| long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A |
| long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22 |
| long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945 |
| long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B |
| long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3 |
| long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05 |
| long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19 |
| long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5 |
| long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22 |
| long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A |
| |
| set ADJFLAG,L_SCR2 |
| set SCALE,FP_SCR0 |
| set ADJSCALE,FP_SCR1 |
| set SC,FP_SCR0 |
| set ONEBYSC,FP_SCR1 |
| |
| global setox |
| setox: |
| #--entry point for EXP(X), here X is finite, non-zero, and not NaN's |
| |
| #--Step 1. |
| mov.l (%a0),%d1 # load part of input X |
| and.l &0x7FFF0000,%d1 # biased expo. of X |
| cmp.l %d1,&0x3FBE0000 # 2^(-65) |
| bge.b EXPC1 # normal case |
| bra EXPSM |
| |
| EXPC1: |
| #--The case |X| >= 2^(-65) |
| mov.w 4(%a0),%d1 # expo. and partial sig. of |X| |
| cmp.l %d1,&0x400CB167 # 16380 log2 trunc. 16 bits |
| blt.b EXPMAIN # normal case |
| bra EEXPBIG |
| |
| EXPMAIN: |
| #--Step 2. |
| #--This is the normal branch: 2^(-65) <= |X| < 16380 log2. |
| fmov.x (%a0),%fp0 # load input from (a0) |
| |
| fmov.x %fp0,%fp1 |
| fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X |
| fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} |
| mov.l &0,ADJFLAG(%a6) |
| fmov.l %fp0,%d1 # N = int( X * 64/log2 ) |
| lea EEXPTBL(%pc),%a1 |
| fmov.l %d1,%fp0 # convert to floating-format |
| |
| mov.l %d1,L_SCR1(%a6) # save N temporarily |
| and.l &0x3F,%d1 # D0 is J = N mod 64 |
| lsl.l &4,%d1 |
| add.l %d1,%a1 # address of 2^(J/64) |
| mov.l L_SCR1(%a6),%d1 |
| asr.l &6,%d1 # D0 is M |
| add.w &0x3FFF,%d1 # biased expo. of 2^(M) |
| mov.w L2(%pc),L_SCR1(%a6) # prefetch L2, no need in CB |
| |
| EXPCONT1: |
| #--Step 3. |
| #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, |
| #--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) |
| fmov.x %fp0,%fp2 |
| fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) |
| fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 |
| fadd.x %fp1,%fp0 # X + N*L1 |
| fadd.x %fp2,%fp0 # fp0 is R, reduced arg. |
| |
| #--Step 4. |
| #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL |
| #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) |
| #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R |
| #--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # fp1 IS S = R*R |
| |
| fmov.s &0x3AB60B70,%fp2 # fp2 IS A5 |
| |
| fmul.x %fp1,%fp2 # fp2 IS S*A5 |
| fmov.x %fp1,%fp3 |
| fmul.s &0x3C088895,%fp3 # fp3 IS S*A4 |
| |
| fadd.d EEXPA3(%pc),%fp2 # fp2 IS A3+S*A5 |
| fadd.d EEXPA2(%pc),%fp3 # fp3 IS A2+S*A4 |
| |
| fmul.x %fp1,%fp2 # fp2 IS S*(A3+S*A5) |
| mov.w %d1,SCALE(%a6) # SCALE is 2^(M) in extended |
| mov.l &0x80000000,SCALE+4(%a6) |
| clr.l SCALE+8(%a6) |
| |
| fmul.x %fp1,%fp3 # fp3 IS S*(A2+S*A4) |
| |
| fadd.s &0x3F000000,%fp2 # fp2 IS A1+S*(A3+S*A5) |
| fmul.x %fp0,%fp3 # fp3 IS R*S*(A2+S*A4) |
| |
| fmul.x %fp1,%fp2 # fp2 IS S*(A1+S*(A3+S*A5)) |
| fadd.x %fp3,%fp0 # fp0 IS R+R*S*(A2+S*A4), |
| |
| fmov.x (%a1)+,%fp1 # fp1 is lead. pt. of 2^(J/64) |
| fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1 |
| |
| #--Step 5 |
| #--final reconstruction process |
| #--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) |
| |
| fmul.x %fp1,%fp0 # 2^(J/64)*(Exp(R)-1) |
| fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} |
| fadd.s (%a1),%fp0 # accurate 2^(J/64) |
| |
| fadd.x %fp1,%fp0 # 2^(J/64) + 2^(J/64)*... |
| mov.l ADJFLAG(%a6),%d1 |
| |
| #--Step 6 |
| tst.l %d1 |
| beq.b NORMAL |
| ADJUST: |
| fmul.x ADJSCALE(%a6),%fp0 |
| NORMAL: |
| fmov.l %d0,%fpcr # restore user FPCR |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.x SCALE(%a6),%fp0 # multiply 2^(M) |
| bra t_catch |
| |
| EXPSM: |
| #--Step 7 |
| fmovm.x (%a0),&0x80 # load X |
| fmov.l %d0,%fpcr |
| fadd.s &0x3F800000,%fp0 # 1+X in user mode |
| bra t_pinx2 |
| |
| EEXPBIG: |
| #--Step 8 |
| cmp.l %d1,&0x400CB27C # 16480 log2 |
| bgt.b EXP2BIG |
| #--Steps 8.2 -- 8.6 |
| fmov.x (%a0),%fp0 # load input from (a0) |
| |
| fmov.x %fp0,%fp1 |
| fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X |
| fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} |
| mov.l &1,ADJFLAG(%a6) |
| fmov.l %fp0,%d1 # N = int( X * 64/log2 ) |
| lea EEXPTBL(%pc),%a1 |
| fmov.l %d1,%fp0 # convert to floating-format |
| mov.l %d1,L_SCR1(%a6) # save N temporarily |
| and.l &0x3F,%d1 # D0 is J = N mod 64 |
| lsl.l &4,%d1 |
| add.l %d1,%a1 # address of 2^(J/64) |
| mov.l L_SCR1(%a6),%d1 |
| asr.l &6,%d1 # D0 is K |
| mov.l %d1,L_SCR1(%a6) # save K temporarily |
| asr.l &1,%d1 # D0 is M1 |
| sub.l %d1,L_SCR1(%a6) # a1 is M |
| add.w &0x3FFF,%d1 # biased expo. of 2^(M1) |
| mov.w %d1,ADJSCALE(%a6) # ADJSCALE := 2^(M1) |
| mov.l &0x80000000,ADJSCALE+4(%a6) |
| clr.l ADJSCALE+8(%a6) |
| mov.l L_SCR1(%a6),%d1 # D0 is M |
| add.w &0x3FFF,%d1 # biased expo. of 2^(M) |
| bra.w EXPCONT1 # go back to Step 3 |
| |
| EXP2BIG: |
| #--Step 9 |
| tst.b (%a0) # is X positive or negative? |
| bmi t_unfl2 |
| bra t_ovfl2 |
| |
| global setoxd |
| setoxd: |
| #--entry point for EXP(X), X is denormalized |
| mov.l (%a0),-(%sp) |
| andi.l &0x80000000,(%sp) |
| ori.l &0x00800000,(%sp) # sign(X)*2^(-126) |
| |
| fmov.s &0x3F800000,%fp0 |
| |
| fmov.l %d0,%fpcr |
| fadd.s (%sp)+,%fp0 |
| bra t_pinx2 |
| |
| global setoxm1 |
| setoxm1: |
| #--entry point for EXPM1(X), here X is finite, non-zero, non-NaN |
| |
| #--Step 1. |
| #--Step 1.1 |
| mov.l (%a0),%d1 # load part of input X |
| and.l &0x7FFF0000,%d1 # biased expo. of X |
| cmp.l %d1,&0x3FFD0000 # 1/4 |
| bge.b EM1CON1 # |X| >= 1/4 |
| bra EM1SM |
| |
| EM1CON1: |
| #--Step 1.3 |
| #--The case |X| >= 1/4 |
| mov.w 4(%a0),%d1 # expo. and partial sig. of |X| |
| cmp.l %d1,&0x4004C215 # 70log2 rounded up to 16 bits |
| ble.b EM1MAIN # 1/4 <= |X| <= 70log2 |
| bra EM1BIG |
| |
| EM1MAIN: |
| #--Step 2. |
| #--This is the case: 1/4 <= |X| <= 70 log2. |
| fmov.x (%a0),%fp0 # load input from (a0) |
| |
| fmov.x %fp0,%fp1 |
| fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X |
| fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} |
| fmov.l %fp0,%d1 # N = int( X * 64/log2 ) |
| lea EEXPTBL(%pc),%a1 |
| fmov.l %d1,%fp0 # convert to floating-format |
| |
| mov.l %d1,L_SCR1(%a6) # save N temporarily |
| and.l &0x3F,%d1 # D0 is J = N mod 64 |
| lsl.l &4,%d1 |
| add.l %d1,%a1 # address of 2^(J/64) |
| mov.l L_SCR1(%a6),%d1 |
| asr.l &6,%d1 # D0 is M |
| mov.l %d1,L_SCR1(%a6) # save a copy of M |
| |
| #--Step 3. |
| #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, |
| #--a0 points to 2^(J/64), D0 and a1 both contain M |
| fmov.x %fp0,%fp2 |
| fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) |
| fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 |
| fadd.x %fp1,%fp0 # X + N*L1 |
| fadd.x %fp2,%fp0 # fp0 is R, reduced arg. |
| add.w &0x3FFF,%d1 # D0 is biased expo. of 2^M |
| |
| #--Step 4. |
| #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL |
| #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) |
| #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R |
| #--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # fp1 IS S = R*R |
| |
| fmov.s &0x3950097B,%fp2 # fp2 IS a6 |
| |
| fmul.x %fp1,%fp2 # fp2 IS S*A6 |
| fmov.x %fp1,%fp3 |
| fmul.s &0x3AB60B6A,%fp3 # fp3 IS S*A5 |
| |
| fadd.d EM1A4(%pc),%fp2 # fp2 IS A4+S*A6 |
| fadd.d EM1A3(%pc),%fp3 # fp3 IS A3+S*A5 |
| mov.w %d1,SC(%a6) # SC is 2^(M) in extended |
| mov.l &0x80000000,SC+4(%a6) |
| clr.l SC+8(%a6) |
| |
| fmul.x %fp1,%fp2 # fp2 IS S*(A4+S*A6) |
| mov.l L_SCR1(%a6),%d1 # D0 is M |
| neg.w %d1 # D0 is -M |
| fmul.x %fp1,%fp3 # fp3 IS S*(A3+S*A5) |
| add.w &0x3FFF,%d1 # biased expo. of 2^(-M) |
| fadd.d EM1A2(%pc),%fp2 # fp2 IS A2+S*(A4+S*A6) |
| fadd.s &0x3F000000,%fp3 # fp3 IS A1+S*(A3+S*A5) |
| |
| fmul.x %fp1,%fp2 # fp2 IS S*(A2+S*(A4+S*A6)) |
| or.w &0x8000,%d1 # signed/expo. of -2^(-M) |
| mov.w %d1,ONEBYSC(%a6) # OnebySc is -2^(-M) |
| mov.l &0x80000000,ONEBYSC+4(%a6) |
| clr.l ONEBYSC+8(%a6) |
| fmul.x %fp3,%fp1 # fp1 IS S*(A1+S*(A3+S*A5)) |
| |
| fmul.x %fp0,%fp2 # fp2 IS R*S*(A2+S*(A4+S*A6)) |
| fadd.x %fp1,%fp0 # fp0 IS R+S*(A1+S*(A3+S*A5)) |
| |
| fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1 |
| |
| fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} |
| |
| #--Step 5 |
| #--Compute 2^(J/64)*p |
| |
| fmul.x (%a1),%fp0 # 2^(J/64)*(Exp(R)-1) |
| |
| #--Step 6 |
| #--Step 6.1 |
| mov.l L_SCR1(%a6),%d1 # retrieve M |
| cmp.l %d1,&63 |
| ble.b MLE63 |
| #--Step 6.2 M >= 64 |
| fmov.s 12(%a1),%fp1 # fp1 is t |
| fadd.x ONEBYSC(%a6),%fp1 # fp1 is t+OnebySc |
| fadd.x %fp1,%fp0 # p+(t+OnebySc), fp1 released |
| fadd.x (%a1),%fp0 # T+(p+(t+OnebySc)) |
| bra EM1SCALE |
| MLE63: |
| #--Step 6.3 M <= 63 |
| cmp.l %d1,&-3 |
| bge.b MGEN3 |
| MLTN3: |
| #--Step 6.4 M <= -4 |
| fadd.s 12(%a1),%fp0 # p+t |
| fadd.x (%a1),%fp0 # T+(p+t) |
| fadd.x ONEBYSC(%a6),%fp0 # OnebySc + (T+(p+t)) |
| bra EM1SCALE |
| MGEN3: |
| #--Step 6.5 -3 <= M <= 63 |
| fmov.x (%a1)+,%fp1 # fp1 is T |
| fadd.s (%a1),%fp0 # fp0 is p+t |
| fadd.x ONEBYSC(%a6),%fp1 # fp1 is T+OnebySc |
| fadd.x %fp1,%fp0 # (T+OnebySc)+(p+t) |
| |
| EM1SCALE: |
| #--Step 6.6 |
| fmov.l %d0,%fpcr |
| fmul.x SC(%a6),%fp0 |
| bra t_inx2 |
| |
| EM1SM: |
| #--Step 7 |X| < 1/4. |
| cmp.l %d1,&0x3FBE0000 # 2^(-65) |
| bge.b EM1POLY |
| |
| EM1TINY: |
| #--Step 8 |X| < 2^(-65) |
| cmp.l %d1,&0x00330000 # 2^(-16312) |
| blt.b EM12TINY |
| #--Step 8.2 |
| mov.l &0x80010000,SC(%a6) # SC is -2^(-16382) |
| mov.l &0x80000000,SC+4(%a6) |
| clr.l SC+8(%a6) |
| fmov.x (%a0),%fp0 |
| fmov.l %d0,%fpcr |
| mov.b &FADD_OP,%d1 # last inst is ADD |
| fadd.x SC(%a6),%fp0 |
| bra t_catch |
| |
| EM12TINY: |
| #--Step 8.3 |
| fmov.x (%a0),%fp0 |
| fmul.d TWO140(%pc),%fp0 |
| mov.l &0x80010000,SC(%a6) |
| mov.l &0x80000000,SC+4(%a6) |
| clr.l SC+8(%a6) |
| fadd.x SC(%a6),%fp0 |
| fmov.l %d0,%fpcr |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.d TWON140(%pc),%fp0 |
| bra t_catch |
| |
| EM1POLY: |
| #--Step 9 exp(X)-1 by a simple polynomial |
| fmov.x (%a0),%fp0 # fp0 is X |
| fmul.x %fp0,%fp0 # fp0 is S := X*X |
| fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} |
| fmov.s &0x2F30CAA8,%fp1 # fp1 is B12 |
| fmul.x %fp0,%fp1 # fp1 is S*B12 |
| fmov.s &0x310F8290,%fp2 # fp2 is B11 |
| fadd.s &0x32D73220,%fp1 # fp1 is B10+S*B12 |
| |
| fmul.x %fp0,%fp2 # fp2 is S*B11 |
| fmul.x %fp0,%fp1 # fp1 is S*(B10 + ... |
| |
| fadd.s &0x3493F281,%fp2 # fp2 is B9+S*... |
| fadd.d EM1B8(%pc),%fp1 # fp1 is B8+S*... |
| |
| fmul.x %fp0,%fp2 # fp2 is S*(B9+... |
| fmul.x %fp0,%fp1 # fp1 is S*(B8+... |
| |
| fadd.d EM1B7(%pc),%fp2 # fp2 is B7+S*... |
| fadd.d EM1B6(%pc),%fp1 # fp1 is B6+S*... |
| |
| fmul.x %fp0,%fp2 # fp2 is S*(B7+... |
| fmul.x %fp0,%fp1 # fp1 is S*(B6+... |
| |
| fadd.d EM1B5(%pc),%fp2 # fp2 is B5+S*... |
| fadd.d EM1B4(%pc),%fp1 # fp1 is B4+S*... |
| |
| fmul.x %fp0,%fp2 # fp2 is S*(B5+... |
| fmul.x %fp0,%fp1 # fp1 is S*(B4+... |
| |
| fadd.d EM1B3(%pc),%fp2 # fp2 is B3+S*... |
| fadd.x EM1B2(%pc),%fp1 # fp1 is B2+S*... |
| |
| fmul.x %fp0,%fp2 # fp2 is S*(B3+... |
| fmul.x %fp0,%fp1 # fp1 is S*(B2+... |
| |
| fmul.x %fp0,%fp2 # fp2 is S*S*(B3+...) |
| fmul.x (%a0),%fp1 # fp1 is X*S*(B2... |
| |
| fmul.s &0x3F000000,%fp0 # fp0 is S*B1 |
| fadd.x %fp2,%fp1 # fp1 is Q |
| |
| fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} |
| |
| fadd.x %fp1,%fp0 # fp0 is S*B1+Q |
| |
| fmov.l %d0,%fpcr |
| fadd.x (%a0),%fp0 |
| bra t_inx2 |
| |
| EM1BIG: |
| #--Step 10 |X| > 70 log2 |
| mov.l (%a0),%d1 |
| cmp.l %d1,&0 |
| bgt.w EXPC1 |
| #--Step 10.2 |
| fmov.s &0xBF800000,%fp0 # fp0 is -1 |
| fmov.l %d0,%fpcr |
| fadd.s &0x00800000,%fp0 # -1 + 2^(-126) |
| bra t_minx2 |
| |
| global setoxm1d |
| setoxm1d: |
| #--entry point for EXPM1(X), here X is denormalized |
| #--Step 0. |
| bra t_extdnrm |
| |
| ######################################################################### |
| # sgetexp(): returns the exponent portion of the input argument. # |
| # The exponent bias is removed and the exponent value is # |
| # returned as an extended precision number in fp0. # |
| # sgetexpd(): handles denormalized numbers. # |
| # # |
| # sgetman(): extracts the mantissa of the input argument. The # |
| # mantissa is converted to an extended precision number w/ # |
| # an exponent of $3fff and is returned in fp0. The range of # |
| # the result is [1.0 - 2.0). # |
| # sgetmand(): handles denormalized numbers. # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = exponent(X) or mantissa(X) # |
| # # |
| ######################################################################### |
| |
| global sgetexp |
| sgetexp: |
| mov.w SRC_EX(%a0),%d0 # get the exponent |
| bclr &0xf,%d0 # clear the sign bit |
| subi.w &0x3fff,%d0 # subtract off the bias |
| fmov.w %d0,%fp0 # return exp in fp0 |
| blt.b sgetexpn # it's negative |
| rts |
| |
| sgetexpn: |
| mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| rts |
| |
| global sgetexpd |
| sgetexpd: |
| bsr.l norm # normalize |
| neg.w %d0 # new exp = -(shft amt) |
| subi.w &0x3fff,%d0 # subtract off the bias |
| fmov.w %d0,%fp0 # return exp in fp0 |
| mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| rts |
| |
| global sgetman |
| sgetman: |
| mov.w SRC_EX(%a0),%d0 # get the exp |
| ori.w &0x7fff,%d0 # clear old exp |
| bclr &0xe,%d0 # make it the new exp +-3fff |
| |
| # here, we build the result in a tmp location so as not to disturb the input |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc |
| mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent |
| fmov.x FP_SCR0(%a6),%fp0 # put new value back in fp0 |
| bmi.b sgetmann # it's negative |
| rts |
| |
| sgetmann: |
| mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| rts |
| |
| # |
| # For denormalized numbers, shift the mantissa until the j-bit = 1, |
| # then load the exponent with +/1 $3fff. |
| # |
| global sgetmand |
| sgetmand: |
| bsr.l norm # normalize exponent |
| bra.b sgetman |
| |
| ######################################################################### |
| # scosh(): computes the hyperbolic cosine of a normalized input # |
| # scoshd(): computes the hyperbolic cosine of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = cosh(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 3 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # COSH # |
| # 1. If |X| > 16380 log2, go to 3. # |
| # # |
| # 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae # |
| # y = |X|, z = exp(Y), and # |
| # cosh(X) = (1/2)*( z + 1/z ). # |
| # Exit. # |
| # # |
| # 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. # |
| # # |
| # 4. (16380 log2 < |X| <= 16480 log2) # |
| # cosh(X) = sign(X) * exp(|X|)/2. # |
| # However, invoking exp(|X|) may cause premature # |
| # overflow. Thus, we calculate sinh(X) as follows: # |
| # Y := |X| # |
| # Fact := 2**(16380) # |
| # Y' := Y - 16381 log2 # |
| # cosh(X) := Fact * exp(Y'). # |
| # Exit. # |
| # # |
| # 5. (|X| > 16480 log2) sinh(X) must overflow. Return # |
| # Huge*Huge to generate overflow and an infinity with # |
| # the appropriate sign. Huge is the largest finite number # |
| # in extended format. Exit. # |
| # # |
| ######################################################################### |
| |
| TWO16380: |
| long 0x7FFB0000,0x80000000,0x00000000,0x00000000 |
| |
| global scosh |
| scosh: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| and.l &0x7FFFFFFF,%d1 |
| cmp.l %d1,&0x400CB167 |
| bgt.b COSHBIG |
| |
| #--THIS IS THE USUAL CASE, |X| < 16380 LOG2 |
| #--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) ) |
| |
| fabs.x %fp0 # |X| |
| |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| fmovm.x &0x01,-(%sp) # save |X| to stack |
| lea (%sp),%a0 # pass ptr to |X| |
| bsr setox # FP0 IS EXP(|X|) |
| add.l &0xc,%sp # erase |X| from stack |
| fmul.s &0x3F000000,%fp0 # (1/2)EXP(|X|) |
| mov.l (%sp)+,%d0 |
| |
| fmov.s &0x3E800000,%fp1 # (1/4) |
| fdiv.x %fp0,%fp1 # 1/(2 EXP(|X|)) |
| |
| fmov.l %d0,%fpcr |
| mov.b &FADD_OP,%d1 # last inst is ADD |
| fadd.x %fp1,%fp0 |
| bra t_catch |
| |
| COSHBIG: |
| cmp.l %d1,&0x400CB2B3 |
| bgt.b COSHHUGE |
| |
| fabs.x %fp0 |
| fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) |
| fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE |
| |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| fmovm.x &0x01,-(%sp) # save fp0 to stack |
| lea (%sp),%a0 # pass ptr to fp0 |
| bsr setox |
| add.l &0xc,%sp # clear fp0 from stack |
| mov.l (%sp)+,%d0 |
| |
| fmov.l %d0,%fpcr |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.x TWO16380(%pc),%fp0 |
| bra t_catch |
| |
| COSHHUGE: |
| bra t_ovfl2 |
| |
| global scoshd |
| #--COSH(X) = 1 FOR DENORMALIZED X |
| scoshd: |
| fmov.s &0x3F800000,%fp0 |
| |
| fmov.l %d0,%fpcr |
| fadd.s &0x00800000,%fp0 |
| bra t_pinx2 |
| |
| ######################################################################### |
| # ssinh(): computes the hyperbolic sine of a normalized input # |
| # ssinhd(): computes the hyperbolic sine of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = sinh(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 3 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # SINH # |
| # 1. If |X| > 16380 log2, go to 3. # |
| # # |
| # 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula # |
| # y = |X|, sgn = sign(X), and z = expm1(Y), # |
| # sinh(X) = sgn*(1/2)*( z + z/(1+z) ). # |
| # Exit. # |
| # # |
| # 3. If |X| > 16480 log2, go to 5. # |
| # # |
| # 4. (16380 log2 < |X| <= 16480 log2) # |
| # sinh(X) = sign(X) * exp(|X|)/2. # |
| # However, invoking exp(|X|) may cause premature overflow. # |
| # Thus, we calculate sinh(X) as follows: # |
| # Y := |X| # |
| # sgn := sign(X) # |
| # sgnFact := sgn * 2**(16380) # |
| # Y' := Y - 16381 log2 # |
| # sinh(X) := sgnFact * exp(Y'). # |
| # Exit. # |
| # # |
| # 5. (|X| > 16480 log2) sinh(X) must overflow. Return # |
| # sign(X)*Huge*Huge to generate overflow and an infinity with # |
| # the appropriate sign. Huge is the largest finite number in # |
| # extended format. Exit. # |
| # # |
| ######################################################################### |
| |
| global ssinh |
| ssinh: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| mov.l %d1,%a1 # save (compacted) operand |
| and.l &0x7FFFFFFF,%d1 |
| cmp.l %d1,&0x400CB167 |
| bgt.b SINHBIG |
| |
| #--THIS IS THE USUAL CASE, |X| < 16380 LOG2 |
| #--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) ) |
| |
| fabs.x %fp0 # Y = |X| |
| |
| movm.l &0x8040,-(%sp) # {a1/d0} |
| fmovm.x &0x01,-(%sp) # save Y on stack |
| lea (%sp),%a0 # pass ptr to Y |
| clr.l %d0 |
| bsr setoxm1 # FP0 IS Z = EXPM1(Y) |
| add.l &0xc,%sp # clear Y from stack |
| fmov.l &0,%fpcr |
| movm.l (%sp)+,&0x0201 # {a1/d0} |
| |
| fmov.x %fp0,%fp1 |
| fadd.s &0x3F800000,%fp1 # 1+Z |
| fmov.x %fp0,-(%sp) |
| fdiv.x %fp1,%fp0 # Z/(1+Z) |
| mov.l %a1,%d1 |
| and.l &0x80000000,%d1 |
| or.l &0x3F000000,%d1 |
| fadd.x (%sp)+,%fp0 |
| mov.l %d1,-(%sp) |
| |
| fmov.l %d0,%fpcr |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.s (%sp)+,%fp0 # last fp inst - possible exceptions set |
| bra t_catch |
| |
| SINHBIG: |
| cmp.l %d1,&0x400CB2B3 |
| bgt t_ovfl |
| fabs.x %fp0 |
| fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) |
| mov.l &0,-(%sp) |
| mov.l &0x80000000,-(%sp) |
| mov.l %a1,%d1 |
| and.l &0x80000000,%d1 |
| or.l &0x7FFB0000,%d1 |
| mov.l %d1,-(%sp) # EXTENDED FMT |
| fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE |
| |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| fmovm.x &0x01,-(%sp) # save fp0 on stack |
| lea (%sp),%a0 # pass ptr to fp0 |
| bsr setox |
| add.l &0xc,%sp # clear fp0 from stack |
| |
| mov.l (%sp)+,%d0 |
| fmov.l %d0,%fpcr |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.x (%sp)+,%fp0 # possible exception |
| bra t_catch |
| |
| global ssinhd |
| #--SINH(X) = X FOR DENORMALIZED X |
| ssinhd: |
| bra t_extdnrm |
| |
| ######################################################################### |
| # stanh(): computes the hyperbolic tangent of a normalized input # |
| # stanhd(): computes the hyperbolic tangent of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = tanh(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 3 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # TANH # |
| # 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. # |
| # # |
| # 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by # |
| # sgn := sign(X), y := 2|X|, z := expm1(Y), and # |
| # tanh(X) = sgn*( z/(2+z) ). # |
| # Exit. # |
| # # |
| # 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, # |
| # go to 7. # |
| # # |
| # 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. # |
| # # |
| # 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by # |
| # sgn := sign(X), y := 2|X|, z := exp(Y), # |
| # tanh(X) = sgn - [ sgn*2/(1+z) ]. # |
| # Exit. # |
| # # |
| # 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we # |
| # calculate Tanh(X) by # |
| # sgn := sign(X), Tiny := 2**(-126), # |
| # tanh(X) := sgn - sgn*Tiny. # |
| # Exit. # |
| # # |
| # 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. # |
| # # |
| ######################################################################### |
| |
| set X,FP_SCR0 |
| set XFRAC,X+4 |
| |
| set SGN,L_SCR3 |
| |
| set V,FP_SCR0 |
| |
| global stanh |
| stanh: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| |
| fmov.x %fp0,X(%a6) |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| mov.l %d1,X(%a6) |
| and.l &0x7FFFFFFF,%d1 |
| cmp.l %d1, &0x3fd78000 # is |X| < 2^(-40)? |
| blt.w TANHBORS # yes |
| cmp.l %d1, &0x3fffddce # is |X| > (5/2)LOG2? |
| bgt.w TANHBORS # yes |
| |
| #--THIS IS THE USUAL CASE |
| #--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). |
| |
| mov.l X(%a6),%d1 |
| mov.l %d1,SGN(%a6) |
| and.l &0x7FFF0000,%d1 |
| add.l &0x00010000,%d1 # EXPONENT OF 2|X| |
| mov.l %d1,X(%a6) |
| and.l &0x80000000,SGN(%a6) |
| fmov.x X(%a6),%fp0 # FP0 IS Y = 2|X| |
| |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| fmovm.x &0x1,-(%sp) # save Y on stack |
| lea (%sp),%a0 # pass ptr to Y |
| bsr setoxm1 # FP0 IS Z = EXPM1(Y) |
| add.l &0xc,%sp # clear Y from stack |
| mov.l (%sp)+,%d0 |
| |
| fmov.x %fp0,%fp1 |
| fadd.s &0x40000000,%fp1 # Z+2 |
| mov.l SGN(%a6),%d1 |
| fmov.x %fp1,V(%a6) |
| eor.l %d1,V(%a6) |
| |
| fmov.l %d0,%fpcr # restore users round prec,mode |
| fdiv.x V(%a6),%fp0 |
| bra t_inx2 |
| |
| TANHBORS: |
| cmp.l %d1,&0x3FFF8000 |
| blt.w TANHSM |
| |
| cmp.l %d1,&0x40048AA1 |
| bgt.w TANHHUGE |
| |
| #-- (5/2) LOG2 < |X| < 50 LOG2, |
| #--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X), |
| #--TANH(X) = SGN - SGN*2/[EXP(Y)+1]. |
| |
| mov.l X(%a6),%d1 |
| mov.l %d1,SGN(%a6) |
| and.l &0x7FFF0000,%d1 |
| add.l &0x00010000,%d1 # EXPO OF 2|X| |
| mov.l %d1,X(%a6) # Y = 2|X| |
| and.l &0x80000000,SGN(%a6) |
| mov.l SGN(%a6),%d1 |
| fmov.x X(%a6),%fp0 # Y = 2|X| |
| |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| fmovm.x &0x01,-(%sp) # save Y on stack |
| lea (%sp),%a0 # pass ptr to Y |
| bsr setox # FP0 IS EXP(Y) |
| add.l &0xc,%sp # clear Y from stack |
| mov.l (%sp)+,%d0 |
| mov.l SGN(%a6),%d1 |
| fadd.s &0x3F800000,%fp0 # EXP(Y)+1 |
| |
| eor.l &0xC0000000,%d1 # -SIGN(X)*2 |
| fmov.s %d1,%fp1 # -SIGN(X)*2 IN SGL FMT |
| fdiv.x %fp0,%fp1 # -SIGN(X)2 / [EXP(Y)+1 ] |
| |
| mov.l SGN(%a6),%d1 |
| or.l &0x3F800000,%d1 # SGN |
| fmov.s %d1,%fp0 # SGN IN SGL FMT |
| |
| fmov.l %d0,%fpcr # restore users round prec,mode |
| mov.b &FADD_OP,%d1 # last inst is ADD |
| fadd.x %fp1,%fp0 |
| bra t_inx2 |
| |
| TANHSM: |
| fmov.l %d0,%fpcr # restore users round prec,mode |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x X(%a6),%fp0 # last inst - possible exception set |
| bra t_catch |
| |
| #---RETURN SGN(X) - SGN(X)EPS |
| TANHHUGE: |
| mov.l X(%a6),%d1 |
| and.l &0x80000000,%d1 |
| or.l &0x3F800000,%d1 |
| fmov.s %d1,%fp0 |
| and.l &0x80000000,%d1 |
| eor.l &0x80800000,%d1 # -SIGN(X)*EPS |
| |
| fmov.l %d0,%fpcr # restore users round prec,mode |
| fadd.s %d1,%fp0 |
| bra t_inx2 |
| |
| global stanhd |
| #--TANH(X) = X FOR DENORMALIZED X |
| stanhd: |
| bra t_extdnrm |
| |
| ######################################################################### |
| # slogn(): computes the natural logarithm of a normalized input # |
| # slognd(): computes the natural logarithm of a denormalized input # |
| # slognp1(): computes the log(1+X) of a normalized input # |
| # slognp1d(): computes the log(1+X) of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = log(X) or log(1+X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 2 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # LOGN: # |
| # Step 1. If |X-1| < 1/16, approximate log(X) by an odd # |
| # polynomial in u, where u = 2(X-1)/(X+1). Otherwise, # |
| # move on to Step 2. # |
| # # |
| # Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first # |
| # seven significant bits of Y plus 2**(-7), i.e. # |
| # F = 1.xxxxxx1 in base 2 where the six "x" match those # |
| # of Y. Note that |Y-F| <= 2**(-7). # |
| # # |
| # Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a # |
| # polynomial in u, log(1+u) = poly. # |
| # # |
| # Step 4. Reconstruct # |
| # log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) # |
| # by k*log(2) + (log(F) + poly). The values of log(F) are # |
| # calculated beforehand and stored in the program. # |
| # # |
| # lognp1: # |
| # Step 1: If |X| < 1/16, approximate log(1+X) by an odd # |
| # polynomial in u where u = 2X/(2+X). Otherwise, move on # |
| # to Step 2. # |
| # # |
| # Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done # |
| # in Step 2 of the algorithm for LOGN and compute # |
| # log(1+X) as k*log(2) + log(F) + poly where poly # |
| # approximates log(1+u), u = (Y-F)/F. # |
| # # |
| # Implementation Notes: # |
| # Note 1. There are 64 different possible values for F, thus 64 # |
| # log(F)'s need to be tabulated. Moreover, the values of # |
| # 1/F are also tabulated so that the division in (Y-F)/F # |
| # can be performed by a multiplication. # |
| # # |
| # Note 2. In Step 2 of lognp1, in order to preserved accuracy, # |
| # the value Y-F has to be calculated carefully when # |
| # 1/2 <= X < 3/2. # |
| # # |
| # Note 3. To fully exploit the pipeline, polynomials are usually # |
| # separated into two parts evaluated independently before # |
| # being added up. # |
| # # |
| ######################################################################### |
| LOGOF2: |
| long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 |
| |
| one: |
| long 0x3F800000 |
| zero: |
| long 0x00000000 |
| infty: |
| long 0x7F800000 |
| negone: |
| long 0xBF800000 |
| |
| LOGA6: |
| long 0x3FC2499A,0xB5E4040B |
| LOGA5: |
| long 0xBFC555B5,0x848CB7DB |
| |
| LOGA4: |
| long 0x3FC99999,0x987D8730 |
| LOGA3: |
| long 0xBFCFFFFF,0xFF6F7E97 |
| |
| LOGA2: |
| long 0x3FD55555,0x555555A4 |
| LOGA1: |
| long 0xBFE00000,0x00000008 |
| |
| LOGB5: |
| long 0x3F175496,0xADD7DAD6 |
| LOGB4: |
| long 0x3F3C71C2,0xFE80C7E0 |
| |
| LOGB3: |
| long 0x3F624924,0x928BCCFF |
| LOGB2: |
| long 0x3F899999,0x999995EC |
| |
| LOGB1: |
| long 0x3FB55555,0x55555555 |
| TWO: |
| long 0x40000000,0x00000000 |
| |
| LTHOLD: |
| long 0x3f990000,0x80000000,0x00000000,0x00000000 |
| |
| LOGTBL: |
| long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000 |
| long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000 |
| long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000 |
| long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000 |
| long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000 |
| long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000 |
| long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000 |
| long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000 |
| long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000 |
| long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000 |
| long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000 |
| long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000 |
| long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000 |
| long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000 |
| long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000 |
| long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000 |
| long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000 |
| long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000 |
| long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000 |
| long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000 |
| long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000 |
| long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000 |
| long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000 |
| long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000 |
| long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000 |
| long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000 |
| long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000 |
| long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000 |
| long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000 |
| long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000 |
| long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000 |
| long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000 |
| long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000 |
| long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000 |
| long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000 |
| long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000 |
| long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000 |
| long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000 |
| long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000 |
| long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000 |
| long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000 |
| long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000 |
| long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000 |
| long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000 |
| long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000 |
| long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000 |
| long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000 |
| long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000 |
| long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000 |
| long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000 |
| long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000 |
| long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000 |
| long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000 |
| long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000 |
| long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000 |
| long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000 |
| long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000 |
| long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000 |
| long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000 |
| long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000 |
| long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000 |
| long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000 |
| long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000 |
| long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000 |
| long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000 |
| long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000 |
| long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000 |
| long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000 |
| long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000 |
| long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000 |
| long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000 |
| long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000 |
| long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000 |
| long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000 |
| long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000 |
| long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000 |
| long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000 |
| long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000 |
| long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000 |
| long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000 |
| long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000 |
| long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000 |
| long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000 |
| long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000 |
| long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000 |
| long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000 |
| long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000 |
| long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000 |
| long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000 |
| long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000 |
| long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000 |
| long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000 |
| long 0x3FFE0000,0x94458094,0x45809446,0x00000000 |
| long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000 |
| long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000 |
| long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000 |
| long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000 |
| long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000 |
| long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000 |
| long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000 |
| long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000 |
| long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000 |
| long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000 |
| long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000 |
| long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000 |
| long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000 |
| long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000 |
| long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000 |
| long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000 |
| long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000 |
| long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000 |
| long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000 |
| long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000 |
| long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000 |
| long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000 |
| long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000 |
| long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000 |
| long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000 |
| long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000 |
| long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000 |
| long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000 |
| long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000 |
| long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000 |
| long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000 |
| long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000 |
| long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000 |
| long 0x3FFE0000,0x80808080,0x80808081,0x00000000 |
| long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000 |
| |
| set ADJK,L_SCR1 |
| |
| set X,FP_SCR0 |
| set XDCARE,X+2 |
| set XFRAC,X+4 |
| |
| set F,FP_SCR1 |
| set FFRAC,F+4 |
| |
| set KLOG2,FP_SCR0 |
| |
| set SAVEU,FP_SCR0 |
| |
| global slogn |
| #--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S |
| slogn: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| mov.l &0x00000000,ADJK(%a6) |
| |
| LOGBGN: |
| #--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS |
| #--A FINITE, NON-ZERO, NORMALIZED NUMBER. |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| |
| mov.l (%a0),X(%a6) |
| mov.l 4(%a0),X+4(%a6) |
| mov.l 8(%a0),X+8(%a6) |
| |
| cmp.l %d1,&0 # CHECK IF X IS NEGATIVE |
| blt.w LOGNEG # LOG OF NEGATIVE ARGUMENT IS INVALID |
| # X IS POSITIVE, CHECK IF X IS NEAR 1 |
| cmp.l %d1,&0x3ffef07d # IS X < 15/16? |
| blt.b LOGMAIN # YES |
| cmp.l %d1,&0x3fff8841 # IS X > 17/16? |
| ble.w LOGNEAR1 # NO |
| |
| LOGMAIN: |
| #--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 |
| |
| #--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. |
| #--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. |
| #--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) |
| #-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). |
| #--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING |
| #--LOG(1+U) CAN BE VERY EFFICIENT. |
| #--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO |
| #--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. |
| |
| #--GET K, Y, F, AND ADDRESS OF 1/F. |
| asr.l &8,%d1 |
| asr.l &8,%d1 # SHIFTED 16 BITS, BIASED EXPO. OF X |
| sub.l &0x3FFF,%d1 # THIS IS K |
| add.l ADJK(%a6),%d1 # ADJUST K, ORIGINAL INPUT MAY BE DENORM. |
| lea LOGTBL(%pc),%a0 # BASE ADDRESS OF 1/F AND LOG(F) |
| fmov.l %d1,%fp1 # CONVERT K TO FLOATING-POINT FORMAT |
| |
| #--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F |
| mov.l &0x3FFF0000,X(%a6) # X IS NOW Y, I.E. 2^(-K)*X |
| mov.l XFRAC(%a6),FFRAC(%a6) |
| and.l &0xFE000000,FFRAC(%a6) # FIRST 7 BITS OF Y |
| or.l &0x01000000,FFRAC(%a6) # GET F: ATTACH A 1 AT THE EIGHTH BIT |
| mov.l FFRAC(%a6),%d1 # READY TO GET ADDRESS OF 1/F |
| and.l &0x7E000000,%d1 |
| asr.l &8,%d1 |
| asr.l &8,%d1 |
| asr.l &4,%d1 # SHIFTED 20, D0 IS THE DISPLACEMENT |
| add.l %d1,%a0 # A0 IS THE ADDRESS FOR 1/F |
| |
| fmov.x X(%a6),%fp0 |
| mov.l &0x3fff0000,F(%a6) |
| clr.l F+8(%a6) |
| fsub.x F(%a6),%fp0 # Y-F |
| fmovm.x &0xc,-(%sp) # SAVE FP2-3 WHILE FP0 IS NOT READY |
| #--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K |
| #--REGISTERS SAVED: FPCR, FP1, FP2 |
| |
| LP1CONT1: |
| #--AN RE-ENTRY POINT FOR LOGNP1 |
| fmul.x (%a0),%fp0 # FP0 IS U = (Y-F)/F |
| fmul.x LOGOF2(%pc),%fp1 # GET K*LOG2 WHILE FP0 IS NOT READY |
| fmov.x %fp0,%fp2 |
| fmul.x %fp2,%fp2 # FP2 IS V=U*U |
| fmov.x %fp1,KLOG2(%a6) # PUT K*LOG2 IN MEMEORY, FREE FP1 |
| |
| #--LOG(1+U) IS APPROXIMATED BY |
| #--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS |
| #--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))] |
| |
| fmov.x %fp2,%fp3 |
| fmov.x %fp2,%fp1 |
| |
| fmul.d LOGA6(%pc),%fp1 # V*A6 |
| fmul.d LOGA5(%pc),%fp2 # V*A5 |
| |
| fadd.d LOGA4(%pc),%fp1 # A4+V*A6 |
| fadd.d LOGA3(%pc),%fp2 # A3+V*A5 |
| |
| fmul.x %fp3,%fp1 # V*(A4+V*A6) |
| fmul.x %fp3,%fp2 # V*(A3+V*A5) |
| |
| fadd.d LOGA2(%pc),%fp1 # A2+V*(A4+V*A6) |
| fadd.d LOGA1(%pc),%fp2 # A1+V*(A3+V*A5) |
| |
| fmul.x %fp3,%fp1 # V*(A2+V*(A4+V*A6)) |
| add.l &16,%a0 # ADDRESS OF LOG(F) |
| fmul.x %fp3,%fp2 # V*(A1+V*(A3+V*A5)) |
| |
| fmul.x %fp0,%fp1 # U*V*(A2+V*(A4+V*A6)) |
| fadd.x %fp2,%fp0 # U+V*(A1+V*(A3+V*A5)) |
| |
| fadd.x (%a0),%fp1 # LOG(F)+U*V*(A2+V*(A4+V*A6)) |
| fmovm.x (%sp)+,&0x30 # RESTORE FP2-3 |
| fadd.x %fp1,%fp0 # FP0 IS LOG(F) + LOG(1+U) |
| |
| fmov.l %d0,%fpcr |
| fadd.x KLOG2(%a6),%fp0 # FINAL ADD |
| bra t_inx2 |
| |
| |
| LOGNEAR1: |
| |
| # if the input is exactly equal to one, then exit through ld_pzero. |
| # if these 2 lines weren't here, the correct answer would be returned |
| # but the INEX2 bit would be set. |
| fcmp.b %fp0,&0x1 # is it equal to one? |
| fbeq.l ld_pzero # yes |
| |
| #--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. |
| fmov.x %fp0,%fp1 |
| fsub.s one(%pc),%fp1 # FP1 IS X-1 |
| fadd.s one(%pc),%fp0 # FP0 IS X+1 |
| fadd.x %fp1,%fp1 # FP1 IS 2(X-1) |
| #--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL |
| #--IN U, U = 2(X-1)/(X+1) = FP1/FP0 |
| |
| LP1CONT2: |
| #--THIS IS AN RE-ENTRY POINT FOR LOGNP1 |
| fdiv.x %fp0,%fp1 # FP1 IS U |
| fmovm.x &0xc,-(%sp) # SAVE FP2-3 |
| #--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 |
| #--LET V=U*U, W=V*V, CALCULATE |
| #--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY |
| #--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] ) |
| fmov.x %fp1,%fp0 |
| fmul.x %fp0,%fp0 # FP0 IS V |
| fmov.x %fp1,SAVEU(%a6) # STORE U IN MEMORY, FREE FP1 |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # FP1 IS W |
| |
| fmov.d LOGB5(%pc),%fp3 |
| fmov.d LOGB4(%pc),%fp2 |
| |
| fmul.x %fp1,%fp3 # W*B5 |
| fmul.x %fp1,%fp2 # W*B4 |
| |
| fadd.d LOGB3(%pc),%fp3 # B3+W*B5 |
| fadd.d LOGB2(%pc),%fp2 # B2+W*B4 |
| |
| fmul.x %fp3,%fp1 # W*(B3+W*B5), FP3 RELEASED |
| |
| fmul.x %fp0,%fp2 # V*(B2+W*B4) |
| |
| fadd.d LOGB1(%pc),%fp1 # B1+W*(B3+W*B5) |
| fmul.x SAVEU(%a6),%fp0 # FP0 IS U*V |
| |
| fadd.x %fp2,%fp1 # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED |
| fmovm.x (%sp)+,&0x30 # FP2-3 RESTORED |
| |
| fmul.x %fp1,%fp0 # U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) |
| |
| fmov.l %d0,%fpcr |
| fadd.x SAVEU(%a6),%fp0 |
| bra t_inx2 |
| |
| #--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID |
| LOGNEG: |
| bra t_operr |
| |
| global slognd |
| slognd: |
| #--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT |
| |
| mov.l &-100,ADJK(%a6) # INPUT = 2^(ADJK) * FP0 |
| |
| #----normalize the input value by left shifting k bits (k to be determined |
| #----below), adjusting exponent and storing -k to ADJK |
| #----the value TWOTO100 is no longer needed. |
| #----Note that this code assumes the denormalized input is NON-ZERO. |
| |
| movm.l &0x3f00,-(%sp) # save some registers {d2-d7} |
| mov.l (%a0),%d3 # D3 is exponent of smallest norm. # |
| mov.l 4(%a0),%d4 |
| mov.l 8(%a0),%d5 # (D4,D5) is (Hi_X,Lo_X) |
| clr.l %d2 # D2 used for holding K |
| |
| tst.l %d4 |
| bne.b Hi_not0 |
| |
| Hi_0: |
| mov.l %d5,%d4 |
| clr.l %d5 |
| mov.l &32,%d2 |
| clr.l %d6 |
| bfffo %d4{&0:&32},%d6 |
| lsl.l %d6,%d4 |
| add.l %d6,%d2 # (D3,D4,D5) is normalized |
| |
| mov.l %d3,X(%a6) |
| mov.l %d4,XFRAC(%a6) |
| mov.l %d5,XFRAC+4(%a6) |
| neg.l %d2 |
| mov.l %d2,ADJK(%a6) |
| fmov.x X(%a6),%fp0 |
| movm.l (%sp)+,&0xfc # restore registers {d2-d7} |
| lea X(%a6),%a0 |
| bra.w LOGBGN # begin regular log(X) |
| |
| Hi_not0: |
| clr.l %d6 |
| bfffo %d4{&0:&32},%d6 # find first 1 |
| mov.l %d6,%d2 # get k |
| lsl.l %d6,%d4 |
| mov.l %d5,%d7 # a copy of D5 |
| lsl.l %d6,%d5 |
| neg.l %d6 |
| add.l &32,%d6 |
| lsr.l %d6,%d7 |
| or.l %d7,%d4 # (D3,D4,D5) normalized |
| |
| mov.l %d3,X(%a6) |
| mov.l %d4,XFRAC(%a6) |
| mov.l %d5,XFRAC+4(%a6) |
| neg.l %d2 |
| mov.l %d2,ADJK(%a6) |
| fmov.x X(%a6),%fp0 |
| movm.l (%sp)+,&0xfc # restore registers {d2-d7} |
| lea X(%a6),%a0 |
| bra.w LOGBGN # begin regular log(X) |
| |
| global slognp1 |
| #--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S |
| slognp1: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| fabs.x %fp0 # test magnitude |
| fcmp.x %fp0,LTHOLD(%pc) # compare with min threshold |
| fbgt.w LP1REAL # if greater, continue |
| fmov.l %d0,%fpcr |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x (%a0),%fp0 # return signed argument |
| bra t_catch |
| |
| LP1REAL: |
| fmov.x (%a0),%fp0 # LOAD INPUT |
| mov.l &0x00000000,ADJK(%a6) |
| fmov.x %fp0,%fp1 # FP1 IS INPUT Z |
| fadd.s one(%pc),%fp0 # X := ROUND(1+Z) |
| fmov.x %fp0,X(%a6) |
| mov.w XFRAC(%a6),XDCARE(%a6) |
| mov.l X(%a6),%d1 |
| cmp.l %d1,&0 |
| ble.w LP1NEG0 # LOG OF ZERO OR -VE |
| cmp.l %d1,&0x3ffe8000 # IS BOUNDS [1/2,3/2]? |
| blt.w LOGMAIN |
| cmp.l %d1,&0x3fffc000 |
| bgt.w LOGMAIN |
| #--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, |
| #--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, |
| #--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). |
| |
| LP1NEAR1: |
| #--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) |
| cmp.l %d1,&0x3ffef07d |
| blt.w LP1CARE |
| cmp.l %d1,&0x3fff8841 |
| bgt.w LP1CARE |
| |
| LP1ONE16: |
| #--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) |
| #--WHERE U = 2Z/(2+Z) = 2Z/(1+X). |
| fadd.x %fp1,%fp1 # FP1 IS 2Z |
| fadd.s one(%pc),%fp0 # FP0 IS 1+X |
| #--U = FP1/FP0 |
| bra.w LP1CONT2 |
| |
| LP1CARE: |
| #--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE |
| #--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST |
| #--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], |
| #--THERE ARE ONLY TWO CASES. |
| #--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z |
| #--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z |
| #--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF |
| #--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. |
| |
| mov.l XFRAC(%a6),FFRAC(%a6) |
| and.l &0xFE000000,FFRAC(%a6) |
| or.l &0x01000000,FFRAC(%a6) # F OBTAINED |
| cmp.l %d1,&0x3FFF8000 # SEE IF 1+Z > 1 |
| bge.b KISZERO |
| |
| KISNEG1: |
| fmov.s TWO(%pc),%fp0 |
| mov.l &0x3fff0000,F(%a6) |
| clr.l F+8(%a6) |
| fsub.x F(%a6),%fp0 # 2-F |
| mov.l FFRAC(%a6),%d1 |
| and.l &0x7E000000,%d1 |
| asr.l &8,%d1 |
| asr.l &8,%d1 |
| asr.l &4,%d1 # D0 CONTAINS DISPLACEMENT FOR 1/F |
| fadd.x %fp1,%fp1 # GET 2Z |
| fmovm.x &0xc,-(%sp) # SAVE FP2 {%fp2/%fp3} |
| fadd.x %fp1,%fp0 # FP0 IS Y-F = (2-F)+2Z |
| lea LOGTBL(%pc),%a0 # A0 IS ADDRESS OF 1/F |
| add.l %d1,%a0 |
| fmov.s negone(%pc),%fp1 # FP1 IS K = -1 |
| bra.w LP1CONT1 |
| |
| KISZERO: |
| fmov.s one(%pc),%fp0 |
| mov.l &0x3fff0000,F(%a6) |
| clr.l F+8(%a6) |
| fsub.x F(%a6),%fp0 # 1-F |
| mov.l FFRAC(%a6),%d1 |
| and.l &0x7E000000,%d1 |
| asr.l &8,%d1 |
| asr.l &8,%d1 |
| asr.l &4,%d1 |
| fadd.x %fp1,%fp0 # FP0 IS Y-F |
| fmovm.x &0xc,-(%sp) # FP2 SAVED {%fp2/%fp3} |
| lea LOGTBL(%pc),%a0 |
| add.l %d1,%a0 # A0 IS ADDRESS OF 1/F |
| fmov.s zero(%pc),%fp1 # FP1 IS K = 0 |
| bra.w LP1CONT1 |
| |
| LP1NEG0: |
| #--FPCR SAVED. D0 IS X IN COMPACT FORM. |
| cmp.l %d1,&0 |
| blt.b LP1NEG |
| LP1ZERO: |
| fmov.s negone(%pc),%fp0 |
| |
| fmov.l %d0,%fpcr |
| bra t_dz |
| |
| LP1NEG: |
| fmov.s zero(%pc),%fp0 |
| |
| fmov.l %d0,%fpcr |
| bra t_operr |
| |
| global slognp1d |
| #--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT |
| # Simply return the denorm |
| slognp1d: |
| bra t_extdnrm |
| |
| ######################################################################### |
| # satanh(): computes the inverse hyperbolic tangent of a norm input # |
| # satanhd(): computes the inverse hyperbolic tangent of a denorm input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = arctanh(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 3 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # ATANH # |
| # 1. If |X| >= 1, go to 3. # |
| # # |
| # 2. (|X| < 1) Calculate atanh(X) by # |
| # sgn := sign(X) # |
| # y := |X| # |
| # z := 2y/(1-y) # |
| # atanh(X) := sgn * (1/2) * logp1(z) # |
| # Exit. # |
| # # |
| # 3. If |X| > 1, go to 5. # |
| # # |
| # 4. (|X| = 1) Generate infinity with an appropriate sign and # |
| # divide-by-zero by # |
| # sgn := sign(X) # |
| # atan(X) := sgn / (+0). # |
| # Exit. # |
| # # |
| # 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # |
| # Exit. # |
| # # |
| ######################################################################### |
| |
| global satanh |
| satanh: |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| and.l &0x7FFFFFFF,%d1 |
| cmp.l %d1,&0x3FFF8000 |
| bge.b ATANHBIG |
| |
| #--THIS IS THE USUAL CASE, |X| < 1 |
| #--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z). |
| |
| fabs.x (%a0),%fp0 # Y = |X| |
| fmov.x %fp0,%fp1 |
| fneg.x %fp1 # -Y |
| fadd.x %fp0,%fp0 # 2Y |
| fadd.s &0x3F800000,%fp1 # 1-Y |
| fdiv.x %fp1,%fp0 # 2Y/(1-Y) |
| mov.l (%a0),%d1 |
| and.l &0x80000000,%d1 |
| or.l &0x3F000000,%d1 # SIGN(X)*HALF |
| mov.l %d1,-(%sp) |
| |
| mov.l %d0,-(%sp) # save rnd prec,mode |
| clr.l %d0 # pass ext prec,RN |
| fmovm.x &0x01,-(%sp) # save Z on stack |
| lea (%sp),%a0 # pass ptr to Z |
| bsr slognp1 # LOG1P(Z) |
| add.l &0xc,%sp # clear Z from stack |
| |
| mov.l (%sp)+,%d0 # fetch old prec,mode |
| fmov.l %d0,%fpcr # load it |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.s (%sp)+,%fp0 |
| bra t_catch |
| |
| ATANHBIG: |
| fabs.x (%a0),%fp0 # |X| |
| fcmp.s %fp0,&0x3F800000 |
| fbgt t_operr |
| bra t_dz |
| |
| global satanhd |
| #--ATANH(X) = X FOR DENORMALIZED X |
| satanhd: |
| bra t_extdnrm |
| |
| ######################################################################### |
| # slog10(): computes the base-10 logarithm of a normalized input # |
| # slog10d(): computes the base-10 logarithm of a denormalized input # |
| # slog2(): computes the base-2 logarithm of a normalized input # |
| # slog2d(): computes the base-2 logarithm of a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = log_10(X) or log_2(X) # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 1.7 ulps in 64 significant bit, # |
| # i.e. within 0.5003 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # slog10d: # |
| # # |
| # Step 0. If X < 0, create a NaN and raise the invalid operation # |
| # flag. Otherwise, save FPCR in D1; set FpCR to default. # |
| # Notes: Default means round-to-nearest mode, no floating-point # |
| # traps, and precision control = double extended. # |
| # # |
| # Step 1. Call slognd to obtain Y = log(X), the natural log of X. # |
| # Notes: Even if X is denormalized, log(X) is always normalized. # |
| # # |
| # Step 2. Compute log_10(X) = log(X) * (1/log(10)). # |
| # 2.1 Restore the user FPCR # |
| # 2.2 Return ans := Y * INV_L10. # |
| # # |
| # slog10: # |
| # # |
| # Step 0. If X < 0, create a NaN and raise the invalid operation # |
| # flag. Otherwise, save FPCR in D1; set FpCR to default. # |
| # Notes: Default means round-to-nearest mode, no floating-point # |
| # traps, and precision control = double extended. # |
| # # |
| # Step 1. Call sLogN to obtain Y = log(X), the natural log of X. # |
| # # |
| # Step 2. Compute log_10(X) = log(X) * (1/log(10)). # |
| # 2.1 Restore the user FPCR # |
| # 2.2 Return ans := Y * INV_L10. # |
| # # |
| # sLog2d: # |
| # # |
| # Step 0. If X < 0, create a NaN and raise the invalid operation # |
| # flag. Otherwise, save FPCR in D1; set FpCR to default. # |
| # Notes: Default means round-to-nearest mode, no floating-point # |
| # traps, and precision control = double extended. # |
| # # |
| # Step 1. Call slognd to obtain Y = log(X), the natural log of X. # |
| # Notes: Even if X is denormalized, log(X) is always normalized. # |
| # # |
| # Step 2. Compute log_10(X) = log(X) * (1/log(2)). # |
| # 2.1 Restore the user FPCR # |
| # 2.2 Return ans := Y * INV_L2. # |
| # # |
| # sLog2: # |
| # # |
| # Step 0. If X < 0, create a NaN and raise the invalid operation # |
| # flag. Otherwise, save FPCR in D1; set FpCR to default. # |
| # Notes: Default means round-to-nearest mode, no floating-point # |
| # traps, and precision control = double extended. # |
| # # |
| # Step 1. If X is not an integer power of two, i.e., X != 2^k, # |
| # go to Step 3. # |
| # # |
| # Step 2. Return k. # |
| # 2.1 Get integer k, X = 2^k. # |
| # 2.2 Restore the user FPCR. # |
| # 2.3 Return ans := convert-to-double-extended(k). # |
| # # |
| # Step 3. Call sLogN to obtain Y = log(X), the natural log of X. # |
| # # |
| # Step 4. Compute log_2(X) = log(X) * (1/log(2)). # |
| # 4.1 Restore the user FPCR # |
| # 4.2 Return ans := Y * INV_L2. # |
| # # |
| ######################################################################### |
| |
| INV_L10: |
| long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000 |
| |
| INV_L2: |
| long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000 |
| |
| global slog10 |
| #--entry point for Log10(X), X is normalized |
| slog10: |
| fmov.b &0x1,%fp0 |
| fcmp.x %fp0,(%a0) # if operand == 1, |
| fbeq.l ld_pzero # return an EXACT zero |
| |
| mov.l (%a0),%d1 |
| blt.w invalid |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| bsr slogn # log(X), X normal. |
| fmov.l (%sp)+,%fpcr |
| fmul.x INV_L10(%pc),%fp0 |
| bra t_inx2 |
| |
| global slog10d |
| #--entry point for Log10(X), X is denormalized |
| slog10d: |
| mov.l (%a0),%d1 |
| blt.w invalid |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| bsr slognd # log(X), X denorm. |
| fmov.l (%sp)+,%fpcr |
| fmul.x INV_L10(%pc),%fp0 |
| bra t_minx2 |
| |
| global slog2 |
| #--entry point for Log2(X), X is normalized |
| slog2: |
| mov.l (%a0),%d1 |
| blt.w invalid |
| |
| mov.l 8(%a0),%d1 |
| bne.b continue # X is not 2^k |
| |
| mov.l 4(%a0),%d1 |
| and.l &0x7FFFFFFF,%d1 |
| bne.b continue |
| |
| #--X = 2^k. |
| mov.w (%a0),%d1 |
| and.l &0x00007FFF,%d1 |
| sub.l &0x3FFF,%d1 |
| beq.l ld_pzero |
| fmov.l %d0,%fpcr |
| fmov.l %d1,%fp0 |
| bra t_inx2 |
| |
| continue: |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| bsr slogn # log(X), X normal. |
| fmov.l (%sp)+,%fpcr |
| fmul.x INV_L2(%pc),%fp0 |
| bra t_inx2 |
| |
| invalid: |
| bra t_operr |
| |
| global slog2d |
| #--entry point for Log2(X), X is denormalized |
| slog2d: |
| mov.l (%a0),%d1 |
| blt.w invalid |
| mov.l %d0,-(%sp) |
| clr.l %d0 |
| bsr slognd # log(X), X denorm. |
| fmov.l (%sp)+,%fpcr |
| fmul.x INV_L2(%pc),%fp0 |
| bra t_minx2 |
| |
| ######################################################################### |
| # stwotox(): computes 2**X for a normalized input # |
| # stwotoxd(): computes 2**X for a denormalized input # |
| # stentox(): computes 10**X for a normalized input # |
| # stentoxd(): computes 10**X for a denormalized input # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input # |
| # d0 = round precision,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = 2**X or 10**X # |
| # # |
| # ACCURACY and MONOTONICITY ******************************************* # |
| # The returned result is within 2 ulps in 64 significant bit, # |
| # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| # rounded to double precision. The result is provably monotonic # |
| # in double precision. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # twotox # |
| # 1. If |X| > 16480, go to ExpBig. # |
| # # |
| # 2. If |X| < 2**(-70), go to ExpSm. # |
| # # |
| # 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore # |
| # decompose N as # |
| # N = 64(M + M') + j, j = 0,1,2,...,63. # |
| # # |
| # 4. Overwrite r := r * log2. Then # |
| # 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # |
| # Go to expr to compute that expression. # |
| # # |
| # tentox # |
| # 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. # |
| # # |
| # 2. If |X| < 2**(-70), go to ExpSm. # |
| # # |
| # 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set # |
| # N := round-to-int(y). Decompose N as # |
| # N = 64(M + M') + j, j = 0,1,2,...,63. # |
| # # |
| # 4. Define r as # |
| # r := ((X - N*L1)-N*L2) * L10 # |
| # where L1, L2 are the leading and trailing parts of # |
| # log_10(2)/64 and L10 is the natural log of 10. Then # |
| # 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # |
| # Go to expr to compute that expression. # |
| # # |
| # expr # |
| # 1. Fetch 2**(j/64) from table as Fact1 and Fact2. # |
| # # |
| # 2. Overwrite Fact1 and Fact2 by # |
| # Fact1 := 2**(M) * Fact1 # |
| # Fact2 := 2**(M) * Fact2 # |
| # Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). # |
| # # |
| # 3. Calculate P where 1 + P approximates exp(r): # |
| # P = r + r*r*(A1+r*(A2+...+r*A5)). # |
| # # |
| # 4. Let AdjFact := 2**(M'). Return # |
| # AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). # |
| # Exit. # |
| # # |
| # ExpBig # |
| # 1. Generate overflow by Huge * Huge if X > 0; otherwise, # |
| # generate underflow by Tiny * Tiny. # |
| # # |
| # ExpSm # |
| # 1. Return 1 + X. # |
| # # |
| ######################################################################### |
| |
| L2TEN64: |
| long 0x406A934F,0x0979A371 # 64LOG10/LOG2 |
| L10TWO1: |
| long 0x3F734413,0x509F8000 # LOG2/64LOG10 |
| |
| L10TWO2: |
| long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000 |
| |
| LOG10: long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000 |
| |
| LOG2: long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 |
| |
| EXPA5: long 0x3F56C16D,0x6F7BD0B2 |
| EXPA4: long 0x3F811112,0x302C712C |
| EXPA3: long 0x3FA55555,0x55554CC1 |
| EXPA2: long 0x3FC55555,0x55554A54 |
| EXPA1: long 0x3FE00000,0x00000000,0x00000000,0x00000000 |
| |
| TEXPTBL: |
| long 0x3FFF0000,0x80000000,0x00000000,0x3F738000 |
| long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA |
| long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9 |
| long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9 |
| long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA |
| long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C |
| long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1 |
| long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA |
| long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373 |
| long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670 |
| long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700 |
| long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0 |
| long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D |
| long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319 |
| long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B |
| long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5 |
| long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A |
| long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B |
| long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF |
| long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA |
| long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD |
| long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E |
| long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B |
| long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB |
| long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB |
| long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274 |
| long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C |
| long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00 |
| long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301 |
| long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367 |
| long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F |
| long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C |
| long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB |
| long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB |
| long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C |
| long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA |
| long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD |
| long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51 |
| long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A |
| long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2 |
| long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB |
| long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17 |
| long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C |
| long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8 |
| long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53 |
| long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE |
| long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124 |
| long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243 |
| long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A |
| long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61 |
| long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610 |
| long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1 |
| long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12 |
| long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE |
| long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4 |
| long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F |
| long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A |
| long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A |
| long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC |
| long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F |
| long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A |
| long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795 |
| long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B |
| long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581 |
| |
| set INT,L_SCR1 |
| |
| set X,FP_SCR0 |
| set XDCARE,X+2 |
| set XFRAC,X+4 |
| |
| set ADJFACT,FP_SCR0 |
| |
| set FACT1,FP_SCR0 |
| set FACT1HI,FACT1+4 |
| set FACT1LOW,FACT1+8 |
| |
| set FACT2,FP_SCR1 |
| set FACT2HI,FACT2+4 |
| set FACT2LOW,FACT2+8 |
| |
| global stwotox |
| #--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S |
| stwotox: |
| fmovm.x (%a0),&0x80 # LOAD INPUT |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| fmov.x %fp0,X(%a6) |
| and.l &0x7FFFFFFF,%d1 |
| |
| cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? |
| bge.b TWOOK1 |
| bra.w EXPBORS |
| |
| TWOOK1: |
| cmp.l %d1,&0x400D80C0 # |X| > 16480? |
| ble.b TWOMAIN |
| bra.w EXPBORS |
| |
| TWOMAIN: |
| #--USUAL CASE, 2^(-70) <= |X| <= 16480 |
| |
| fmov.x %fp0,%fp1 |
| fmul.s &0x42800000,%fp1 # 64 * X |
| fmov.l %fp1,INT(%a6) # N = ROUND-TO-INT(64 X) |
| mov.l %d2,-(%sp) |
| lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) |
| fmov.l INT(%a6),%fp1 # N --> FLOATING FMT |
| mov.l INT(%a6),%d1 |
| mov.l %d1,%d2 |
| and.l &0x3F,%d1 # D0 IS J |
| asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) |
| add.l %d1,%a1 # ADDRESS FOR 2^(J/64) |
| asr.l &6,%d2 # d2 IS L, N = 64L + J |
| mov.l %d2,%d1 |
| asr.l &1,%d1 # D0 IS M |
| sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J |
| add.l &0x3FFF,%d2 |
| |
| #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), |
| #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. |
| #--ADJFACT = 2^(M'). |
| #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. |
| |
| fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| |
| fmul.s &0x3C800000,%fp1 # (1/64)*N |
| mov.l (%a1)+,FACT1(%a6) |
| mov.l (%a1)+,FACT1HI(%a6) |
| mov.l (%a1)+,FACT1LOW(%a6) |
| mov.w (%a1)+,FACT2(%a6) |
| |
| fsub.x %fp1,%fp0 # X - (1/64)*INT(64 X) |
| |
| mov.w (%a1)+,FACT2HI(%a6) |
| clr.w FACT2HI+2(%a6) |
| clr.l FACT2LOW(%a6) |
| add.w %d1,FACT1(%a6) |
| fmul.x LOG2(%pc),%fp0 # FP0 IS R |
| add.w %d1,FACT2(%a6) |
| |
| bra.w expr |
| |
| EXPBORS: |
| #--FPCR, D0 SAVED |
| cmp.l %d1,&0x3FFF8000 |
| bgt.b TEXPBIG |
| |
| #--|X| IS SMALL, RETURN 1 + X |
| |
| fmov.l %d0,%fpcr # restore users round prec,mode |
| fadd.s &0x3F800000,%fp0 # RETURN 1 + X |
| bra t_pinx2 |
| |
| TEXPBIG: |
| #--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW |
| #--REGISTERS SAVE SO FAR ARE FPCR AND D0 |
| mov.l X(%a6),%d1 |
| cmp.l %d1,&0 |
| blt.b EXPNEG |
| |
| bra t_ovfl2 # t_ovfl expects positive value |
| |
| EXPNEG: |
| bra t_unfl2 # t_unfl expects positive value |
| |
| global stwotoxd |
| stwotoxd: |
| #--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT |
| |
| fmov.l %d0,%fpcr # set user's rounding mode/precision |
| fmov.s &0x3F800000,%fp0 # RETURN 1 + X |
| mov.l (%a0),%d1 |
| or.l &0x00800001,%d1 |
| fadd.s %d1,%fp0 |
| bra t_pinx2 |
| |
| global stentox |
| #--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S |
| stentox: |
| fmovm.x (%a0),&0x80 # LOAD INPUT |
| |
| mov.l (%a0),%d1 |
| mov.w 4(%a0),%d1 |
| fmov.x %fp0,X(%a6) |
| and.l &0x7FFFFFFF,%d1 |
| |
| cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? |
| bge.b TENOK1 |
| bra.w EXPBORS |
| |
| TENOK1: |
| cmp.l %d1,&0x400B9B07 # |X| <= 16480*log2/log10 ? |
| ble.b TENMAIN |
| bra.w EXPBORS |
| |
| TENMAIN: |
| #--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10 |
| |
| fmov.x %fp0,%fp1 |
| fmul.d L2TEN64(%pc),%fp1 # X*64*LOG10/LOG2 |
| fmov.l %fp1,INT(%a6) # N=INT(X*64*LOG10/LOG2) |
| mov.l %d2,-(%sp) |
| lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) |
| fmov.l INT(%a6),%fp1 # N --> FLOATING FMT |
| mov.l INT(%a6),%d1 |
| mov.l %d1,%d2 |
| and.l &0x3F,%d1 # D0 IS J |
| asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) |
| add.l %d1,%a1 # ADDRESS FOR 2^(J/64) |
| asr.l &6,%d2 # d2 IS L, N = 64L + J |
| mov.l %d2,%d1 |
| asr.l &1,%d1 # D0 IS M |
| sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J |
| add.l &0x3FFF,%d2 |
| |
| #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), |
| #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. |
| #--ADJFACT = 2^(M'). |
| #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. |
| fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| |
| fmov.x %fp1,%fp2 |
| |
| fmul.d L10TWO1(%pc),%fp1 # N*(LOG2/64LOG10)_LEAD |
| mov.l (%a1)+,FACT1(%a6) |
| |
| fmul.x L10TWO2(%pc),%fp2 # N*(LOG2/64LOG10)_TRAIL |
| |
| mov.l (%a1)+,FACT1HI(%a6) |
| mov.l (%a1)+,FACT1LOW(%a6) |
| fsub.x %fp1,%fp0 # X - N L_LEAD |
| mov.w (%a1)+,FACT2(%a6) |
| |
| fsub.x %fp2,%fp0 # X - N L_TRAIL |
| |
| mov.w (%a1)+,FACT2HI(%a6) |
| clr.w FACT2HI+2(%a6) |
| clr.l FACT2LOW(%a6) |
| |
| fmul.x LOG10(%pc),%fp0 # FP0 IS R |
| add.w %d1,FACT1(%a6) |
| add.w %d1,FACT2(%a6) |
| |
| expr: |
| #--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN. |
| #--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64). |
| #--FP0 IS R. THE FOLLOWING CODE COMPUTES |
| #-- 2**(M'+M) * 2**(J/64) * EXP(R) |
| |
| fmov.x %fp0,%fp1 |
| fmul.x %fp1,%fp1 # FP1 IS S = R*R |
| |
| fmov.d EXPA5(%pc),%fp2 # FP2 IS A5 |
| fmov.d EXPA4(%pc),%fp3 # FP3 IS A4 |
| |
| fmul.x %fp1,%fp2 # FP2 IS S*A5 |
| fmul.x %fp1,%fp3 # FP3 IS S*A4 |
| |
| fadd.d EXPA3(%pc),%fp2 # FP2 IS A3+S*A5 |
| fadd.d EXPA2(%pc),%fp3 # FP3 IS A2+S*A4 |
| |
| fmul.x %fp1,%fp2 # FP2 IS S*(A3+S*A5) |
| fmul.x %fp1,%fp3 # FP3 IS S*(A2+S*A4) |
| |
| fadd.d EXPA1(%pc),%fp2 # FP2 IS A1+S*(A3+S*A5) |
| fmul.x %fp0,%fp3 # FP3 IS R*S*(A2+S*A4) |
| |
| fmul.x %fp1,%fp2 # FP2 IS S*(A1+S*(A3+S*A5)) |
| fadd.x %fp3,%fp0 # FP0 IS R+R*S*(A2+S*A4) |
| fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1 |
| |
| fmovm.x (%sp)+,&0x30 # restore fp2/fp3 |
| |
| #--FINAL RECONSTRUCTION PROCESS |
| #--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0) |
| |
| fmul.x FACT1(%a6),%fp0 |
| fadd.x FACT2(%a6),%fp0 |
| fadd.x FACT1(%a6),%fp0 |
| |
| fmov.l %d0,%fpcr # restore users round prec,mode |
| mov.w %d2,ADJFACT(%a6) # INSERT EXPONENT |
| mov.l (%sp)+,%d2 |
| mov.l &0x80000000,ADJFACT+4(%a6) |
| clr.l ADJFACT+8(%a6) |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.x ADJFACT(%a6),%fp0 # FINAL ADJUSTMENT |
| bra t_catch |
| |
| global stentoxd |
| stentoxd: |
| #--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT |
| |
| fmov.l %d0,%fpcr # set user's rounding mode/precision |
| fmov.s &0x3F800000,%fp0 # RETURN 1 + X |
| mov.l (%a0),%d1 |
| or.l &0x00800001,%d1 |
| fadd.s %d1,%fp0 |
| bra t_pinx2 |
| |
| ######################################################################### |
| # smovcr(): returns the ROM constant at the offset specified in d1 # |
| # rounded to the mode and precision specified in d0. # |
| # # |
| # INPUT *************************************************************** # |
| # d0 = rnd prec,mode # |
| # d1 = ROM offset # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = the ROM constant rounded to the user's rounding mode,prec # |
| # # |
| ######################################################################### |
| |
| global smovcr |
| smovcr: |
| mov.l %d1,-(%sp) # save rom offset for a sec |
| |
| lsr.b &0x4,%d0 # shift ctrl bits to lo |
| mov.l %d0,%d1 # make a copy |
| andi.w &0x3,%d1 # extract rnd mode |
| andi.w &0xc,%d0 # extract rnd prec |
| swap %d0 # put rnd prec in hi |
| mov.w %d1,%d0 # put rnd mode in lo |
| |
| mov.l (%sp)+,%d1 # get rom offset |
| |
| # |
| # check range of offset |
| # |
| tst.b %d1 # if zero, offset is to pi |
| beq.b pi_tbl # it is pi |
| cmpi.b %d1,&0x0a # check range $01 - $0a |
| ble.b z_val # if in this range, return zero |
| cmpi.b %d1,&0x0e # check range $0b - $0e |
| ble.b sm_tbl # valid constants in this range |
| cmpi.b %d1,&0x2f # check range $10 - $2f |
| ble.b z_val # if in this range, return zero |
| cmpi.b %d1,&0x3f # check range $30 - $3f |
| ble.b bg_tbl # valid constants in this range |
| |
| z_val: |
| bra.l ld_pzero # return a zero |
| |
| # |
| # the answer is PI rounded to the proper precision. |
| # |
| # fetch a pointer to the answer table relating to the proper rounding |
| # precision. |
| # |
| pi_tbl: |
| tst.b %d0 # is rmode RN? |
| bne.b pi_not_rn # no |
| pi_rn: |
| lea.l PIRN(%pc),%a0 # yes; load PI RN table addr |
| bra.w set_finx |
| pi_not_rn: |
| cmpi.b %d0,&rp_mode # is rmode RP? |
| beq.b pi_rp # yes |
| pi_rzrm: |
| lea.l PIRZRM(%pc),%a0 # no; load PI RZ,RM table addr |
| bra.b set_finx |
| pi_rp: |
| lea.l PIRP(%pc),%a0 # load PI RP table addr |
| bra.b set_finx |
| |
| # |
| # the answer is one of: |
| # $0B log10(2) (inexact) |
| # $0C e (inexact) |
| # $0D log2(e) (inexact) |
| # $0E log10(e) (exact) |
| # |
| # fetch a pointer to the answer table relating to the proper rounding |
| # precision. |
| # |
| sm_tbl: |
| subi.b &0xb,%d1 # make offset in 0-4 range |
| tst.b %d0 # is rmode RN? |
| bne.b sm_not_rn # no |
| sm_rn: |
| lea.l SMALRN(%pc),%a0 # yes; load RN table addr |
| sm_tbl_cont: |
| cmpi.b %d1,&0x2 # is result log10(e)? |
| ble.b set_finx # no; answer is inexact |
| bra.b no_finx # yes; answer is exact |
| sm_not_rn: |
| cmpi.b %d0,&rp_mode # is rmode RP? |
| beq.b sm_rp # yes |
| sm_rzrm: |
| lea.l SMALRZRM(%pc),%a0 # no; load RZ,RM table addr |
| bra.b sm_tbl_cont |
| sm_rp: |
| lea.l SMALRP(%pc),%a0 # load RP table addr |
| bra.b sm_tbl_cont |
| |
| # |
| # the answer is one of: |
| # $30 ln(2) (inexact) |
| # $31 ln(10) (inexact) |
| # $32 10^0 (exact) |
| # $33 10^1 (exact) |
| # $34 10^2 (exact) |
| # $35 10^4 (exact) |
| # $36 10^8 (exact) |
| # $37 10^16 (exact) |
| # $38 10^32 (inexact) |
| # $39 10^64 (inexact) |
| # $3A 10^128 (inexact) |
| # $3B 10^256 (inexact) |
| # $3C 10^512 (inexact) |
| # $3D 10^1024 (inexact) |
| # $3E 10^2048 (inexact) |
| # $3F 10^4096 (inexact) |
| # |
| # fetch a pointer to the answer table relating to the proper rounding |
| # precision. |
| # |
| bg_tbl: |
| subi.b &0x30,%d1 # make offset in 0-f range |
| tst.b %d0 # is rmode RN? |
| bne.b bg_not_rn # no |
| bg_rn: |
| lea.l BIGRN(%pc),%a0 # yes; load RN table addr |
| bg_tbl_cont: |
| cmpi.b %d1,&0x1 # is offset <= $31? |
| ble.b set_finx # yes; answer is inexact |
| cmpi.b %d1,&0x7 # is $32 <= offset <= $37? |
| ble.b no_finx # yes; answer is exact |
| bra.b set_finx # no; answer is inexact |
| bg_not_rn: |
| cmpi.b %d0,&rp_mode # is rmode RP? |
| beq.b bg_rp # yes |
| bg_rzrm: |
| lea.l BIGRZRM(%pc),%a0 # no; load RZ,RM table addr |
| bra.b bg_tbl_cont |
| bg_rp: |
| lea.l BIGRP(%pc),%a0 # load RP table addr |
| bra.b bg_tbl_cont |
| |
| # answer is inexact, so set INEX2 and AINEX in the user's FPSR. |
| set_finx: |
| ori.l &inx2a_mask,USER_FPSR(%a6) # set INEX2/AINEX |
| no_finx: |
| mulu.w &0xc,%d1 # offset points into tables |
| swap %d0 # put rnd prec in lo word |
| tst.b %d0 # is precision extended? |
| |
| bne.b not_ext # if xprec, do not call round |
| |
| # Precision is extended |
| fmovm.x (%a0,%d1.w),&0x80 # return result in fp0 |
| rts |
| |
| # Precision is single or double |
| not_ext: |
| swap %d0 # rnd prec in upper word |
| |
| # call round() to round the answer to the proper precision. |
| # exponents out of range for single or double DO NOT cause underflow |
| # or overflow. |
| mov.w 0x0(%a0,%d1.w),FP_SCR1_EX(%a6) # load first word |
| mov.l 0x4(%a0,%d1.w),FP_SCR1_HI(%a6) # load second word |
| mov.l 0x8(%a0,%d1.w),FP_SCR1_LO(%a6) # load third word |
| mov.l %d0,%d1 |
| clr.l %d0 # clear g,r,s |
| lea FP_SCR1(%a6),%a0 # pass ptr to answer |
| clr.w LOCAL_SGN(%a0) # sign always positive |
| bsr.l _round # round the mantissa |
| |
| fmovm.x (%a0),&0x80 # return rounded result in fp0 |
| rts |
| |
| align 0x4 |
| |
| PIRN: long 0x40000000,0xc90fdaa2,0x2168c235 # pi |
| PIRZRM: long 0x40000000,0xc90fdaa2,0x2168c234 # pi |
| PIRP: long 0x40000000,0xc90fdaa2,0x2168c235 # pi |
| |
| SMALRN: long 0x3ffd0000,0x9a209a84,0xfbcff798 # log10(2) |
| long 0x40000000,0xadf85458,0xa2bb4a9a # e |
| long 0x3fff0000,0xb8aa3b29,0x5c17f0bc # log2(e) |
| long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e) |
| long 0x00000000,0x00000000,0x00000000 # 0.0 |
| |
| SMALRZRM: |
| long 0x3ffd0000,0x9a209a84,0xfbcff798 # log10(2) |
| long 0x40000000,0xadf85458,0xa2bb4a9a # e |
| long 0x3fff0000,0xb8aa3b29,0x5c17f0bb # log2(e) |
| long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e) |
| long 0x00000000,0x00000000,0x00000000 # 0.0 |
| |
| SMALRP: long 0x3ffd0000,0x9a209a84,0xfbcff799 # log10(2) |
| long 0x40000000,0xadf85458,0xa2bb4a9b # e |
| long 0x3fff0000,0xb8aa3b29,0x5c17f0bc # log2(e) |
| long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e) |
| long 0x00000000,0x00000000,0x00000000 # 0.0 |
| |
| BIGRN: long 0x3ffe0000,0xb17217f7,0xd1cf79ac # ln(2) |
| long 0x40000000,0x935d8ddd,0xaaa8ac17 # ln(10) |
| |
| long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0 |
| long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 |
| long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 |
| long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 |
| long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 |
| long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 |
| long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 |
| long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 |
| long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 |
| long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 |
| long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 |
| long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 |
| long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 |
| long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 |
| |
| BIGRZRM: |
| long 0x3ffe0000,0xb17217f7,0xd1cf79ab # ln(2) |
| long 0x40000000,0x935d8ddd,0xaaa8ac16 # ln(10) |
| |
| long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0 |
| long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 |
| long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 |
| long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 |
| long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 |
| long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 |
| long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32 |
| long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 |
| long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128 |
| long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256 |
| long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512 |
| long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 |
| long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048 |
| long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096 |
| |
| BIGRP: |
| long 0x3ffe0000,0xb17217f7,0xd1cf79ac # ln(2) |
| long 0x40000000,0x935d8ddd,0xaaa8ac17 # ln(10) |
| |
| long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0 |
| long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 |
| long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 |
| long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 |
| long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 |
| long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 |
| long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 |
| long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64 |
| long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 |
| long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 |
| long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 |
| long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024 |
| long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 |
| long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 |
| |
| ######################################################################### |
| # sscale(): computes the destination operand scaled by the source # |
| # operand. If the absoulute value of the source operand is # |
| # >= 2^14, an overflow or underflow is returned. # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to double-extended source operand X # |
| # a1 = pointer to double-extended destination operand Y # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = scale(X,Y) # |
| # # |
| ######################################################################### |
| |
| set SIGN, L_SCR1 |
| |
| global sscale |
| sscale: |
| mov.l %d0,-(%sp) # store off ctrl bits for now |
| |
| mov.w DST_EX(%a1),%d1 # get dst exponent |
| smi.b SIGN(%a6) # use SIGN to hold dst sign |
| andi.l &0x00007fff,%d1 # strip sign from dst exp |
| |
| mov.w SRC_EX(%a0),%d0 # check src bounds |
| andi.w &0x7fff,%d0 # clr src sign bit |
| cmpi.w %d0,&0x3fff # is src ~ ZERO? |
| blt.w src_small # yes |
| cmpi.w %d0,&0x400c # no; is src too big? |
| bgt.w src_out # yes |
| |
| # |
| # Source is within 2^14 range. |
| # |
| src_ok: |
| fintrz.x SRC(%a0),%fp0 # calc int of src |
| fmov.l %fp0,%d0 # int src to d0 |
| # don't want any accrued bits from the fintrz showing up later since |
| # we may need to read the fpsr for the last fp op in t_catch2(). |
| fmov.l &0x0,%fpsr |
| |
| tst.b DST_HI(%a1) # is dst denormalized? |
| bmi.b sok_norm |
| |
| # the dst is a DENORM. normalize the DENORM and add the adjustment to |
| # the src value. then, jump to the norm part of the routine. |
| sok_dnrm: |
| mov.l %d0,-(%sp) # save src for now |
| |
| mov.w DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy |
| mov.l DST_HI(%a1),FP_SCR0_HI(%a6) |
| mov.l DST_LO(%a1),FP_SCR0_LO(%a6) |
| |
| lea FP_SCR0(%a6),%a0 # pass ptr to DENORM |
| bsr.l norm # normalize the DENORM |
| neg.l %d0 |
| add.l (%sp)+,%d0 # add adjustment to src |
| |
| fmovm.x FP_SCR0(%a6),&0x80 # load normalized DENORM |
| |
| cmpi.w %d0,&-0x3fff # is the shft amt really low? |
| bge.b sok_norm2 # thank goodness no |
| |
| # the multiply factor that we're trying to create should be a denorm |
| # for the multiply to work. Therefore, we're going to actually do a |
| # multiply with a denorm which will cause an unimplemented data type |
| # exception to be put into the machine which will be caught and corrected |
| # later. we don't do this with the DENORMs above because this method |
| # is slower. but, don't fret, I don't see it being used much either. |
| fmov.l (%sp)+,%fpcr # restore user fpcr |
| mov.l &0x80000000,%d1 # load normalized mantissa |
| subi.l &-0x3fff,%d0 # how many should we shift? |
| neg.l %d0 # make it positive |
| cmpi.b %d0,&0x20 # is it > 32? |
| bge.b sok_dnrm_32 # yes |
| lsr.l %d0,%d1 # no; bit stays in upper lw |
| clr.l -(%sp) # insert zero low mantissa |
| mov.l %d1,-(%sp) # insert new high mantissa |
| clr.l -(%sp) # make zero exponent |
| bra.b sok_norm_cont |
| sok_dnrm_32: |
| subi.b &0x20,%d0 # get shift count |
| lsr.l %d0,%d1 # make low mantissa longword |
| mov.l %d1,-(%sp) # insert new low mantissa |
| clr.l -(%sp) # insert zero high mantissa |
| clr.l -(%sp) # make zero exponent |
| bra.b sok_norm_cont |
| |
| # the src will force the dst to a DENORM value or worse. so, let's |
| # create an fp multiply that will create the result. |
| sok_norm: |
| fmovm.x DST(%a1),&0x80 # load fp0 with normalized src |
| sok_norm2: |
| fmov.l (%sp)+,%fpcr # restore user fpcr |
| |
| addi.w &0x3fff,%d0 # turn src amt into exp value |
| swap %d0 # put exponent in high word |
| clr.l -(%sp) # insert new exponent |
| mov.l &0x80000000,-(%sp) # insert new high mantissa |
| mov.l %d0,-(%sp) # insert new lo mantissa |
| |
| sok_norm_cont: |
| fmov.l %fpcr,%d0 # d0 needs fpcr for t_catch2 |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.x (%sp)+,%fp0 # do the multiply |
| bra t_catch2 # catch any exceptions |
| |
| # |
| # Source is outside of 2^14 range. Test the sign and branch |
| # to the appropriate exception handler. |
| # |
| src_out: |
| mov.l (%sp)+,%d0 # restore ctrl bits |
| exg %a0,%a1 # swap src,dst ptrs |
| tst.b SRC_EX(%a1) # is src negative? |
| bmi t_unfl # yes; underflow |
| bra t_ovfl_sc # no; overflow |
| |
| # |
| # The source input is below 1, so we check for denormalized numbers |
| # and set unfl. |
| # |
| src_small: |
| tst.b DST_HI(%a1) # is dst denormalized? |
| bpl.b ssmall_done # yes |
| |
| mov.l (%sp)+,%d0 |
| fmov.l %d0,%fpcr # no; load control bits |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x DST(%a1),%fp0 # simply return dest |
| bra t_catch2 |
| ssmall_done: |
| mov.l (%sp)+,%d0 # load control bits into d1 |
| mov.l %a1,%a0 # pass ptr to dst |
| bra t_resdnrm |
| |
| ######################################################################### |
| # smod(): computes the fp MOD of the input values X,Y. # |
| # srem(): computes the fp (IEEE) REM of the input values X,Y. # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision input X # |
| # a1 = pointer to extended precision input Y # |
| # d0 = round precision,mode # |
| # # |
| # The input operands X and Y can be either normalized or # |
| # denormalized. # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = FREM(X,Y) or FMOD(X,Y) # |
| # # |
| # ALGORITHM *********************************************************** # |
| # # |
| # Step 1. Save and strip signs of X and Y: signX := sign(X), # |
| # signY := sign(Y), X := |X|, Y := |Y|, # |
| # signQ := signX EOR signY. Record whether MOD or REM # |
| # is requested. # |
| # # |
| # Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. # |
| # If (L < 0) then # |
| # R := X, go to Step 4. # |
| # else # |
| # R := 2^(-L)X, j := L. # |
| # endif # |
| # # |
| # Step 3. Perform MOD(X,Y) # |
| # 3.1 If R = Y, go to Step 9. # |
| # 3.2 If R > Y, then { R := R - Y, Q := Q + 1} # |
| # 3.3 If j = 0, go to Step 4. # |
| # 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to # |
| # Step 3.1. # |
| # # |
| # Step 4. At this point, R = X - QY = MOD(X,Y). Set # |
| # Last_Subtract := false (used in Step 7 below). If # |
| # MOD is requested, go to Step 6. # |
| # # |
| # Step 5. R = MOD(X,Y), but REM(X,Y) is requested. # |
| # 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to # |
| # Step 6. # |
| # 5.2 If R > Y/2, then { set Last_Subtract := true, # |
| # Q := Q + 1, Y := signY*Y }. Go to Step 6. # |
| # 5.3 This is the tricky case of R = Y/2. If Q is odd, # |
| # then { Q := Q + 1, signX := -signX }. # |
| # # |
| # Step 6. R := signX*R. # |
| # # |
| # Step 7. If Last_Subtract = true, R := R - Y. # |
| # # |
| # Step 8. Return signQ, last 7 bits of Q, and R as required. # |
| # # |
| # Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, # |
| # X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), # |
| # R := 0. Return signQ, last 7 bits of Q, and R. # |
| # # |
| ######################################################################### |
| |
| set Mod_Flag,L_SCR3 |
| set Sc_Flag,L_SCR3+1 |
| |
| set SignY,L_SCR2 |
| set SignX,L_SCR2+2 |
| set SignQ,L_SCR3+2 |
| |
| set Y,FP_SCR0 |
| set Y_Hi,Y+4 |
| set Y_Lo,Y+8 |
| |
| set R,FP_SCR1 |
| set R_Hi,R+4 |
| set R_Lo,R+8 |
| |
| Scale: |
| long 0x00010000,0x80000000,0x00000000,0x00000000 |
| |
| global smod |
| smod: |
| clr.b FPSR_QBYTE(%a6) |
| mov.l %d0,-(%sp) # save ctrl bits |
| clr.b Mod_Flag(%a6) |
| bra.b Mod_Rem |
| |
| global srem |
| srem: |
| clr.b FPSR_QBYTE(%a6) |
| mov.l %d0,-(%sp) # save ctrl bits |
| mov.b &0x1,Mod_Flag(%a6) |
| |
| Mod_Rem: |
| #..Save sign of X and Y |
| movm.l &0x3f00,-(%sp) # save data registers |
| mov.w SRC_EX(%a0),%d3 |
| mov.w %d3,SignY(%a6) |
| and.l &0x00007FFF,%d3 # Y := |Y| |
| |
| # |
| mov.l SRC_HI(%a0),%d4 |
| mov.l SRC_LO(%a0),%d5 # (D3,D4,D5) is |Y| |
| |
| tst.l %d3 |
| bne.b Y_Normal |
| |
| mov.l &0x00003FFE,%d3 # $3FFD + 1 |
| tst.l %d4 |
| bne.b HiY_not0 |
| |
| HiY_0: |
| mov.l %d5,%d4 |
| clr.l %d5 |
| sub.l &32,%d3 |
| clr.l %d6 |
| bfffo %d4{&0:&32},%d6 |
| lsl.l %d6,%d4 |
| sub.l %d6,%d3 # (D3,D4,D5) is normalized |
| # ...with bias $7FFD |
| bra.b Chk_X |
| |
| HiY_not0: |
| clr.l %d6 |
| bfffo %d4{&0:&32},%d6 |
| sub.l %d6,%d3 |
| lsl.l %d6,%d4 |
| mov.l %d5,%d7 # a copy of D5 |
| lsl.l %d6,%d5 |
| neg.l %d6 |
| add.l &32,%d6 |
| lsr.l %d6,%d7 |
| or.l %d7,%d4 # (D3,D4,D5) normalized |
| # ...with bias $7FFD |
| bra.b Chk_X |
| |
| Y_Normal: |
| add.l &0x00003FFE,%d3 # (D3,D4,D5) normalized |
| # ...with bias $7FFD |
| |
| Chk_X: |
| mov.w DST_EX(%a1),%d0 |
| mov.w %d0,SignX(%a6) |
| mov.w SignY(%a6),%d1 |
| eor.l %d0,%d1 |
| and.l &0x00008000,%d1 |
| mov.w %d1,SignQ(%a6) # sign(Q) obtained |
| and.l &0x00007FFF,%d0 |
| mov.l DST_HI(%a1),%d1 |
| mov.l DST_LO(%a1),%d2 # (D0,D1,D2) is |X| |
| tst.l %d0 |
| bne.b X_Normal |
| mov.l &0x00003FFE,%d0 |
| tst.l %d1 |
| bne.b HiX_not0 |
| |
| HiX_0: |
| mov.l %d2,%d1 |
| clr.l %d2 |
| sub.l &32,%d0 |
| clr.l %d6 |
| bfffo %d1{&0:&32},%d6 |
| lsl.l %d6,%d1 |
| sub.l %d6,%d0 # (D0,D1,D2) is normalized |
| # ...with bias $7FFD |
| bra.b Init |
| |
| HiX_not0: |
| clr.l %d6 |
| bfffo %d1{&0:&32},%d6 |
| sub.l %d6,%d0 |
| lsl.l %d6,%d1 |
| mov.l %d2,%d7 # a copy of D2 |
| lsl.l %d6,%d2 |
| neg.l %d6 |
| add.l &32,%d6 |
| lsr.l %d6,%d7 |
| or.l %d7,%d1 # (D0,D1,D2) normalized |
| # ...with bias $7FFD |
| bra.b Init |
| |
| X_Normal: |
| add.l &0x00003FFE,%d0 # (D0,D1,D2) normalized |
| # ...with bias $7FFD |
| |
| Init: |
| # |
| mov.l %d3,L_SCR1(%a6) # save biased exp(Y) |
| mov.l %d0,-(%sp) # save biased exp(X) |
| sub.l %d3,%d0 # L := expo(X)-expo(Y) |
| |
| clr.l %d6 # D6 := carry <- 0 |
| clr.l %d3 # D3 is Q |
| mov.l &0,%a1 # A1 is k; j+k=L, Q=0 |
| |
| #..(Carry,D1,D2) is R |
| tst.l %d0 |
| bge.b Mod_Loop_pre |
| |
| #..expo(X) < expo(Y). Thus X = mod(X,Y) |
| # |
| mov.l (%sp)+,%d0 # restore d0 |
| bra.w Get_Mod |
| |
| Mod_Loop_pre: |
| addq.l &0x4,%sp # erase exp(X) |
| #..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L |
| Mod_Loop: |
| tst.l %d6 # test carry bit |
| bgt.b R_GT_Y |
| |
| #..At this point carry = 0, R = (D1,D2), Y = (D4,D5) |
| cmp.l %d1,%d4 # compare hi(R) and hi(Y) |
| bne.b R_NE_Y |
| cmp.l %d2,%d5 # compare lo(R) and lo(Y) |
| bne.b R_NE_Y |
| |
| #..At this point, R = Y |
| bra.w Rem_is_0 |
| |
| R_NE_Y: |
| #..use the borrow of the previous compare |
| bcs.b R_LT_Y # borrow is set iff R < Y |
| |
| R_GT_Y: |
| #..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0 |
| #..and Y < (D1,D2) < 2Y. Either way, perform R - Y |
| sub.l %d5,%d2 # lo(R) - lo(Y) |
| subx.l %d4,%d1 # hi(R) - hi(Y) |
| clr.l %d6 # clear carry |
| addq.l &1,%d3 # Q := Q + 1 |
| |
| R_LT_Y: |
| #..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0. |
| tst.l %d0 # see if j = 0. |
| beq.b PostLoop |
| |
| add.l %d3,%d3 # Q := 2Q |
| add.l %d2,%d2 # lo(R) = 2lo(R) |
| roxl.l &1,%d1 # hi(R) = 2hi(R) + carry |
| scs %d6 # set Carry if 2(R) overflows |
| addq.l &1,%a1 # k := k+1 |
| subq.l &1,%d0 # j := j - 1 |
| #..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y. |
| |
| bra.b Mod_Loop |
| |
| PostLoop: |
| #..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y. |
| |
| #..normalize R. |
| mov.l L_SCR1(%a6),%d0 # new biased expo of R |
| tst.l %d1 |
| bne.b HiR_not0 |
| |
| HiR_0: |
| mov.l %d2,%d1 |
| clr.l %d2 |
| sub.l &32,%d0 |
| clr.l %d6 |
| bfffo %d1{&0:&32},%d6 |
| lsl.l %d6,%d1 |
| sub.l %d6,%d0 # (D0,D1,D2) is normalized |
| # ...with bias $7FFD |
| bra.b Get_Mod |
| |
| HiR_not0: |
| clr.l %d6 |
| bfffo %d1{&0:&32},%d6 |
| bmi.b Get_Mod # already normalized |
| sub.l %d6,%d0 |
| lsl.l %d6,%d1 |
| mov.l %d2,%d7 # a copy of D2 |
| lsl.l %d6,%d2 |
| neg.l %d6 |
| add.l &32,%d6 |
| lsr.l %d6,%d7 |
| or.l %d7,%d1 # (D0,D1,D2) normalized |
| |
| # |
| Get_Mod: |
| cmp.l %d0,&0x000041FE |
| bge.b No_Scale |
| Do_Scale: |
| mov.w %d0,R(%a6) |
| mov.l %d1,R_Hi(%a6) |
| mov.l %d2,R_Lo(%a6) |
| mov.l L_SCR1(%a6),%d6 |
| mov.w %d6,Y(%a6) |
| mov.l %d4,Y_Hi(%a6) |
| mov.l %d5,Y_Lo(%a6) |
| fmov.x R(%a6),%fp0 # no exception |
| mov.b &1,Sc_Flag(%a6) |
| bra.b ModOrRem |
| No_Scale: |
| mov.l %d1,R_Hi(%a6) |
| mov.l %d2,R_Lo(%a6) |
| sub.l &0x3FFE,%d0 |
| mov.w %d0,R(%a6) |
| mov.l L_SCR1(%a6),%d6 |
| sub.l &0x3FFE,%d6 |
| mov.l %d6,L_SCR1(%a6) |
| fmov.x R(%a6),%fp0 |
| mov.w %d6,Y(%a6) |
| mov.l %d4,Y_Hi(%a6) |
| mov.l %d5,Y_Lo(%a6) |
| clr.b Sc_Flag(%a6) |
| |
| # |
| ModOrRem: |
| tst.b Mod_Flag(%a6) |
| beq.b Fix_Sign |
| |
| mov.l L_SCR1(%a6),%d6 # new biased expo(Y) |
| subq.l &1,%d6 # biased expo(Y/2) |
| cmp.l %d0,%d6 |
| blt.b Fix_Sign |
| bgt.b Last_Sub |
| |
| cmp.l %d1,%d4 |
| bne.b Not_EQ |
| cmp.l %d2,%d5 |
| bne.b Not_EQ |
| bra.w Tie_Case |
| |
| Not_EQ: |
| bcs.b Fix_Sign |
| |
| Last_Sub: |
| # |
| fsub.x Y(%a6),%fp0 # no exceptions |
| addq.l &1,%d3 # Q := Q + 1 |
| |
| # |
| Fix_Sign: |
| #..Get sign of X |
| mov.w SignX(%a6),%d6 |
| bge.b Get_Q |
| fneg.x %fp0 |
| |
| #..Get Q |
| # |
| Get_Q: |
| clr.l %d6 |
| mov.w SignQ(%a6),%d6 # D6 is sign(Q) |
| mov.l &8,%d7 |
| lsr.l %d7,%d6 |
| and.l &0x0000007F,%d3 # 7 bits of Q |
| or.l %d6,%d3 # sign and bits of Q |
| # swap %d3 |
| # fmov.l %fpsr,%d6 |
| # and.l &0xFF00FFFF,%d6 |
| # or.l %d3,%d6 |
| # fmov.l %d6,%fpsr # put Q in fpsr |
| mov.b %d3,FPSR_QBYTE(%a6) # put Q in fpsr |
| |
| # |
| Restore: |
| movm.l (%sp)+,&0xfc # {%d2-%d7} |
| mov.l (%sp)+,%d0 |
| fmov.l %d0,%fpcr |
| tst.b Sc_Flag(%a6) |
| beq.b Finish |
| mov.b &FMUL_OP,%d1 # last inst is MUL |
| fmul.x Scale(%pc),%fp0 # may cause underflow |
| bra t_catch2 |
| # the '040 package did this apparently to see if the dst operand for the |
| # preceding fmul was a denorm. but, it better not have been since the |
| # algorithm just got done playing with fp0 and expected no exceptions |
| # as a result. trust me... |
| # bra t_avoid_unsupp # check for denorm as a |
| # ;result of the scaling |
| |
| Finish: |
| mov.b &FMOV_OP,%d1 # last inst is MOVE |
| fmov.x %fp0,%fp0 # capture exceptions & round |
| bra t_catch2 |
| |
| Rem_is_0: |
| #..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1) |
| addq.l &1,%d3 |
| cmp.l %d0,&8 # D0 is j |
| bge.b Q_Big |
| |
| lsl.l %d0,%d3 |
| bra.b Set_R_0 |
| |
| Q_Big: |
| clr.l %d3 |
| |
| Set_R_0: |
| fmov.s &0x00000000,%fp0 |
| clr.b Sc_Flag(%a6) |
| bra.w Fix_Sign |
| |
| Tie_Case: |
| #..Check parity of Q |
| mov.l %d3,%d6 |
| and.l &0x00000001,%d6 |
| tst.l %d6 |
| beq.w Fix_Sign # Q is even |
| |
| #..Q is odd, Q := Q + 1, signX := -signX |
| addq.l &1,%d3 |
| mov.w SignX(%a6),%d6 |
| eor.l &0x00008000,%d6 |
| mov.w %d6,SignX(%a6) |
| bra.w Fix_Sign |
| |
| qnan: long 0x7fff0000, 0xffffffff, 0xffffffff |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # t_dz(): Handle DZ exception during transcendental emulation. # |
| # Sets N bit according to sign of source operand. # |
| # t_dz2(): Handle DZ exception during transcendental emulation. # |
| # Sets N bit always. # |
| # # |
| # XREF **************************************************************** # |
| # None # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to source operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = default result # |
| # # |
| # ALGORITHM *********************************************************** # |
| # - Store properly signed INF into fp0. # |
| # - Set FPSR exception status dz bit, ccode inf bit, and # |
| # accrued dz bit. # |
| # # |
| ######################################################################### |
| |
| global t_dz |
| t_dz: |
| tst.b SRC_EX(%a0) # no; is src negative? |
| bmi.b t_dz2 # yes |
| |
| dz_pinf: |
| fmov.s &0x7f800000,%fp0 # return +INF in fp0 |
| ori.l &dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ |
| rts |
| |
| global t_dz2 |
| t_dz2: |
| fmov.s &0xff800000,%fp0 # return -INF in fp0 |
| ori.l &dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ |
| rts |
| |
| ################################################################# |
| # OPERR exception: # |
| # - set FPSR exception status operr bit, condition code # |
| # nan bit; Store default NAN into fp0 # |
| ################################################################# |
| global t_operr |
| t_operr: |
| ori.l &opnan_mask,USER_FPSR(%a6) # set NaN/OPERR/AIOP |
| fmovm.x qnan(%pc),&0x80 # return default NAN in fp0 |
| rts |
| |
| ################################################################# |
| # Extended DENORM: # |
| # - For all functions that have a denormalized input and # |
| # that f(x)=x, this is the entry point. # |
| # - we only return the EXOP here if either underflow or # |
| # inexact is enabled. # |
| ################################################################# |
| |
| # Entry point for scale w/ extended denorm. The function does |
| # NOT set INEX2/AUNFL/AINEX. |
| global t_resdnrm |
| t_resdnrm: |
| ori.l &unfl_mask,USER_FPSR(%a6) # set UNFL |
| bra.b xdnrm_con |
| |
| global t_extdnrm |
| t_extdnrm: |
| ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX |
| |
| xdnrm_con: |
| mov.l %a0,%a1 # make copy of src ptr |
| mov.l %d0,%d1 # make copy of rnd prec,mode |
| andi.b &0xc0,%d1 # extended precision? |
| bne.b xdnrm_sd # no |
| |
| # result precision is extended. |
| tst.b LOCAL_EX(%a0) # is denorm negative? |
| bpl.b xdnrm_exit # no |
| |
| bset &neg_bit,FPSR_CC(%a6) # yes; set 'N' ccode bit |
| bra.b xdnrm_exit |
| |
| # result precision is single or double |
| xdnrm_sd: |
| mov.l %a1,-(%sp) |
| tst.b LOCAL_EX(%a0) # is denorm pos or neg? |
| smi.b %d1 # set d0 accordingly |
| bsr.l unf_sub |
| mov.l (%sp)+,%a1 |
| xdnrm_exit: |
| fmovm.x (%a0),&0x80 # return default result in fp0 |
| |
| mov.b FPCR_ENABLE(%a6),%d0 |
| andi.b &0x0a,%d0 # is UNFL or INEX enabled? |
| bne.b xdnrm_ena # yes |
| rts |
| |
| ################ |
| # unfl enabled # |
| ################ |
| # we have a DENORM that needs to be converted into an EXOP. |
| # so, normalize the mantissa, add 0x6000 to the new exponent, |
| # and return the result in fp1. |
| xdnrm_ena: |
| mov.w LOCAL_EX(%a1),FP_SCR0_EX(%a6) |
| mov.l LOCAL_HI(%a1),FP_SCR0_HI(%a6) |
| mov.l LOCAL_LO(%a1),FP_SCR0_LO(%a6) |
| |
| lea FP_SCR0(%a6),%a0 |
| bsr.l norm # normalize mantissa |
| addi.l &0x6000,%d0 # add extra bias |
| andi.w &0x8000,FP_SCR0_EX(%a6) # keep old sign |
| or.w %d0,FP_SCR0_EX(%a6) # insert new exponent |
| |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| rts |
| |
| ################################################################# |
| # UNFL exception: # |
| # - This routine is for cases where even an EXOP isn't # |
| # large enough to hold the range of this result. # |
| # In such a case, the EXOP equals zero. # |
| # - Return the default result to the proper precision # |
| # with the sign of this result being the same as that # |
| # of the src operand. # |
| # - t_unfl2() is provided to force the result sign to # |
| # positive which is the desired result for fetox(). # |
| ################################################################# |
| global t_unfl |
| t_unfl: |
| ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX |
| |
| tst.b (%a0) # is result pos or neg? |
| smi.b %d1 # set d1 accordingly |
| bsr.l unf_sub # calc default unfl result |
| fmovm.x (%a0),&0x80 # return default result in fp0 |
| |
| fmov.s &0x00000000,%fp1 # return EXOP in fp1 |
| rts |
| |
| # t_unfl2 ALWAYS tells unf_sub to create a positive result |
| global t_unfl2 |
| t_unfl2: |
| ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX |
| |
| sf.b %d1 # set d0 to represent positive |
| bsr.l unf_sub # calc default unfl result |
| fmovm.x (%a0),&0x80 # return default result in fp0 |
| |
| fmov.s &0x0000000,%fp1 # return EXOP in fp1 |
| rts |
| |
| ################################################################# |
| # OVFL exception: # |
| # - This routine is for cases where even an EXOP isn't # |
| # large enough to hold the range of this result. # |
| # - Return the default result to the proper precision # |
| # with the sign of this result being the same as that # |
| # of the src operand. # |
| # - t_ovfl2() is provided to force the result sign to # |
| # positive which is the desired result for fcosh(). # |
| # - t_ovfl_sc() is provided for scale() which only sets # |
| # the inexact bits if the number is inexact for the # |
| # precision indicated. # |
| ################################################################# |
| |
| global t_ovfl_sc |
| t_ovfl_sc: |
| ori.l &ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX |
| |
| mov.b %d0,%d1 # fetch rnd mode/prec |
| andi.b &0xc0,%d1 # extract rnd prec |
| beq.b ovfl_work # prec is extended |
| |
| tst.b LOCAL_HI(%a0) # is dst a DENORM? |
| bmi.b ovfl_sc_norm # no |
| |
| # dst op is a DENORM. we have to normalize the mantissa to see if the |
| # result would be inexact for the given precision. make a copy of the |
| # dst so we don't screw up the version passed to us. |
| mov.w LOCAL_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l LOCAL_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l LOCAL_LO(%a0),FP_SCR0_LO(%a6) |
| lea FP_SCR0(%a6),%a0 # pass ptr to FP_SCR0 |
| movm.l &0xc080,-(%sp) # save d0-d1/a0 |
| bsr.l norm # normalize mantissa |
| movm.l (%sp)+,&0x0103 # restore d0-d1/a0 |
| |
| ovfl_sc_norm: |
| cmpi.b %d1,&0x40 # is prec dbl? |
| bne.b ovfl_sc_dbl # no; sgl |
| ovfl_sc_sgl: |
| tst.l LOCAL_LO(%a0) # is lo lw of sgl set? |
| bne.b ovfl_sc_inx # yes |
| tst.b 3+LOCAL_HI(%a0) # is lo byte of hi lw set? |
| bne.b ovfl_sc_inx # yes |
| bra.b ovfl_work # don't set INEX2 |
| ovfl_sc_dbl: |
| mov.l LOCAL_LO(%a0),%d1 # are any of lo 11 bits of |
| andi.l &0x7ff,%d1 # dbl mantissa set? |
| beq.b ovfl_work # no; don't set INEX2 |
| ovfl_sc_inx: |
| ori.l &inex2_mask,USER_FPSR(%a6) # set INEX2 |
| bra.b ovfl_work # continue |
| |
| global t_ovfl |
| t_ovfl: |
| ori.l &ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX |
| |
| ovfl_work: |
| tst.b LOCAL_EX(%a0) # what is the sign? |
| smi.b %d1 # set d1 accordingly |
| bsr.l ovf_res # calc default ovfl result |
| mov.b %d0,FPSR_CC(%a6) # insert new ccodes |
| fmovm.x (%a0),&0x80 # return default result in fp0 |
| |
| fmov.s &0x00000000,%fp1 # return EXOP in fp1 |
| rts |
| |
| # t_ovfl2 ALWAYS tells ovf_res to create a positive result |
| global t_ovfl2 |
| t_ovfl2: |
| ori.l &ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX |
| |
| sf.b %d1 # clear sign flag for positive |
| bsr.l ovf_res # calc default ovfl result |
| mov.b %d0,FPSR_CC(%a6) # insert new ccodes |
| fmovm.x (%a0),&0x80 # return default result in fp0 |
| |
| fmov.s &0x00000000,%fp1 # return EXOP in fp1 |
| rts |
| |
| ################################################################# |
| # t_catch(): # |
| # - the last operation of a transcendental emulation # |
| # routine may have caused an underflow or overflow. # |
| # we find out if this occurred by doing an fsave and # |
| # checking the exception bit. if one did occur, then we # |
| # jump to fgen_except() which creates the default # |
| # result and EXOP for us. # |
| ################################################################# |
| global t_catch |
| t_catch: |
| |
| fsave -(%sp) |
| tst.b 0x2(%sp) |
| bmi.b catch |
| add.l &0xc,%sp |
| |
| ################################################################# |
| # INEX2 exception: # |
| # - The inex2 and ainex bits are set. # |
| ################################################################# |
| global t_inx2 |
| t_inx2: |
| fblt.w t_minx2 |
| fbeq.w inx2_zero |
| |
| global t_pinx2 |
| t_pinx2: |
| ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX |
| rts |
| |
| global t_minx2 |
| t_minx2: |
| ori.l &inx2a_mask+neg_mask,USER_FPSR(%a6) # set N/INEX2/AINEX |
| rts |
| |
| inx2_zero: |
| mov.b &z_bmask,FPSR_CC(%a6) |
| ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX |
| rts |
| |
| # an underflow or overflow exception occurred. |
| # we must set INEX/AINEX since the fmul/fdiv/fmov emulation may not! |
| catch: |
| ori.w &inx2a_mask,FPSR_EXCEPT(%a6) |
| catch2: |
| bsr.l fgen_except |
| add.l &0xc,%sp |
| rts |
| |
| global t_catch2 |
| t_catch2: |
| |
| fsave -(%sp) |
| |
| tst.b 0x2(%sp) |
| bmi.b catch2 |
| add.l &0xc,%sp |
| |
| fmov.l %fpsr,%d0 |
| or.l %d0,USER_FPSR(%a6) |
| |
| rts |
| |
| ######################################################################### |
| |
| ######################################################################### |
| # unf_res(): underflow default result calculation for transcendentals # |
| # # |
| # INPUT: # |
| # d0 : rnd mode,precision # |
| # d1.b : sign bit of result ('11111111 = (-) ; '00000000 = (+)) # |
| # OUTPUT: # |
| # a0 : points to result (in instruction memory) # |
| ######################################################################### |
| unf_sub: |
| ori.l &unfinx_mask,USER_FPSR(%a6) |
| |
| andi.w &0x10,%d1 # keep sign bit in 4th spot |
| |
| lsr.b &0x4,%d0 # shift rnd prec,mode to lo bits |
| andi.b &0xf,%d0 # strip hi rnd mode bit |
| or.b %d1,%d0 # concat {sgn,mode,prec} |
| |
| mov.l %d0,%d1 # make a copy |
| lsl.b &0x1,%d1 # mult index 2 by 2 |
| |
| mov.b (tbl_unf_cc.b,%pc,%d0.w*1),FPSR_CC(%a6) # insert ccode bits |
| lea (tbl_unf_result.b,%pc,%d1.w*8),%a0 # grab result ptr |
| rts |
| |
| tbl_unf_cc: |
| byte 0x4, 0x4, 0x4, 0x0 |
| byte 0x4, 0x4, 0x4, 0x0 |
| byte 0x4, 0x4, 0x4, 0x0 |
| byte 0x0, 0x0, 0x0, 0x0 |
| byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 |
| byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 |
| byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 |
| |
| tbl_unf_result: |
| long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext |
| long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext |
| long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext |
| long 0x00000000, 0x00000000, 0x00000001, 0x0 # MIN; ext |
| |
| long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl |
| long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl |
| long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl |
| long 0x3f810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl |
| |
| long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl |
| long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZER0;dbl |
| long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl |
| long 0x3c010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl |
| |
| long 0x0,0x0,0x0,0x0 |
| long 0x0,0x0,0x0,0x0 |
| long 0x0,0x0,0x0,0x0 |
| long 0x0,0x0,0x0,0x0 |
| |
| long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext |
| long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext |
| long 0x80000000, 0x00000000, 0x00000001, 0x0 # MIN; ext |
| long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext |
| |
| long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl |
| long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl |
| long 0xbf810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl |
| long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl |
| |
| long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl |
| long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl |
| long 0xbc010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl |
| long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl |
| |
| ############################################################ |
| |
| ######################################################################### |
| # src_zero(): Return signed zero according to sign of src operand. # |
| ######################################################################### |
| global src_zero |
| src_zero: |
| tst.b SRC_EX(%a0) # get sign of src operand |
| bmi.b ld_mzero # if neg, load neg zero |
| |
| # |
| # ld_pzero(): return a positive zero. |
| # |
| global ld_pzero |
| ld_pzero: |
| fmov.s &0x00000000,%fp0 # load +0 |
| mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit |
| rts |
| |
| # ld_mzero(): return a negative zero. |
| global ld_mzero |
| ld_mzero: |
| fmov.s &0x80000000,%fp0 # load -0 |
| mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits |
| rts |
| |
| ######################################################################### |
| # dst_zero(): Return signed zero according to sign of dst operand. # |
| ######################################################################### |
| global dst_zero |
| dst_zero: |
| tst.b DST_EX(%a1) # get sign of dst operand |
| bmi.b ld_mzero # if neg, load neg zero |
| bra.b ld_pzero # load positive zero |
| |
| ######################################################################### |
| # src_inf(): Return signed inf according to sign of src operand. # |
| ######################################################################### |
| global src_inf |
| src_inf: |
| tst.b SRC_EX(%a0) # get sign of src operand |
| bmi.b ld_minf # if negative branch |
| |
| # |
| # ld_pinf(): return a positive infinity. |
| # |
| global ld_pinf |
| ld_pinf: |
| fmov.s &0x7f800000,%fp0 # load +INF |
| mov.b &inf_bmask,FPSR_CC(%a6) # set 'INF' ccode bit |
| rts |
| |
| # |
| # ld_minf():return a negative infinity. |
| # |
| global ld_minf |
| ld_minf: |
| fmov.s &0xff800000,%fp0 # load -INF |
| mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits |
| rts |
| |
| ######################################################################### |
| # dst_inf(): Return signed inf according to sign of dst operand. # |
| ######################################################################### |
| global dst_inf |
| dst_inf: |
| tst.b DST_EX(%a1) # get sign of dst operand |
| bmi.b ld_minf # if negative branch |
| bra.b ld_pinf |
| |
| global szr_inf |
| ################################################################# |
| # szr_inf(): Return +ZERO for a negative src operand or # |
| # +INF for a positive src operand. # |
| # Routine used for fetox, ftwotox, and ftentox. # |
| ################################################################# |
| szr_inf: |
| tst.b SRC_EX(%a0) # check sign of source |
| bmi.b ld_pzero |
| bra.b ld_pinf |
| |
| ######################################################################### |
| # sopr_inf(): Return +INF for a positive src operand or # |
| # jump to operand error routine for a negative src operand. # |
| # Routine used for flogn, flognp1, flog10, and flog2. # |
| ######################################################################### |
| global sopr_inf |
| sopr_inf: |
| tst.b SRC_EX(%a0) # check sign of source |
| bmi.w t_operr |
| bra.b ld_pinf |
| |
| ################################################################# |
| # setoxm1i(): Return minus one for a negative src operand or # |
| # positive infinity for a positive src operand. # |
| # Routine used for fetoxm1. # |
| ################################################################# |
| global setoxm1i |
| setoxm1i: |
| tst.b SRC_EX(%a0) # check sign of source |
| bmi.b ld_mone |
| bra.b ld_pinf |
| |
| ######################################################################### |
| # src_one(): Return signed one according to sign of src operand. # |
| ######################################################################### |
| global src_one |
| src_one: |
| tst.b SRC_EX(%a0) # check sign of source |
| bmi.b ld_mone |
| |
| # |
| # ld_pone(): return positive one. |
| # |
| global ld_pone |
| ld_pone: |
| fmov.s &0x3f800000,%fp0 # load +1 |
| clr.b FPSR_CC(%a6) |
| rts |
| |
| # |
| # ld_mone(): return negative one. |
| # |
| global ld_mone |
| ld_mone: |
| fmov.s &0xbf800000,%fp0 # load -1 |
| mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| rts |
| |
| ppiby2: long 0x3fff0000, 0xc90fdaa2, 0x2168c235 |
| mpiby2: long 0xbfff0000, 0xc90fdaa2, 0x2168c235 |
| |
| ################################################################# |
| # spi_2(): Return signed PI/2 according to sign of src operand. # |
| ################################################################# |
| global spi_2 |
| spi_2: |
| tst.b SRC_EX(%a0) # check sign of source |
| bmi.b ld_mpi2 |
| |
| # |
| # ld_ppi2(): return positive PI/2. |
| # |
| global ld_ppi2 |
| ld_ppi2: |
| fmov.l %d0,%fpcr |
| fmov.x ppiby2(%pc),%fp0 # load +pi/2 |
| bra.w t_pinx2 # set INEX2 |
| |
| # |
| # ld_mpi2(): return negative PI/2. |
| # |
| global ld_mpi2 |
| ld_mpi2: |
| fmov.l %d0,%fpcr |
| fmov.x mpiby2(%pc),%fp0 # load -pi/2 |
| bra.w t_minx2 # set INEX2 |
| |
| #################################################### |
| # The following routines give support for fsincos. # |
| #################################################### |
| |
| # |
| # ssincosz(): When the src operand is ZERO, store a one in the |
| # cosine register and return a ZERO in fp0 w/ the same sign |
| # as the src operand. |
| # |
| global ssincosz |
| ssincosz: |
| fmov.s &0x3f800000,%fp1 |
| tst.b SRC_EX(%a0) # test sign |
| bpl.b sincoszp |
| fmov.s &0x80000000,%fp0 # return sin result in fp0 |
| mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) |
| bra.b sto_cos # store cosine result |
| sincoszp: |
| fmov.s &0x00000000,%fp0 # return sin result in fp0 |
| mov.b &z_bmask,FPSR_CC(%a6) |
| bra.b sto_cos # store cosine result |
| |
| # |
| # ssincosi(): When the src operand is INF, store a QNAN in the cosine |
| # register and jump to the operand error routine for negative |
| # src operands. |
| # |
| global ssincosi |
| ssincosi: |
| fmov.x qnan(%pc),%fp1 # load NAN |
| bsr.l sto_cos # store cosine result |
| bra.w t_operr |
| |
| # |
| # ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine |
| # register and branch to the src QNAN routine. |
| # |
| global ssincosqnan |
| ssincosqnan: |
| fmov.x LOCAL_EX(%a0),%fp1 |
| bsr.l sto_cos |
| bra.w src_qnan |
| |
| # |
| # ssincossnan(): When the src operand is an SNAN, store the SNAN w/ the SNAN bit set |
| # in the cosine register and branch to the src SNAN routine. |
| # |
| global ssincossnan |
| ssincossnan: |
| fmov.x LOCAL_EX(%a0),%fp1 |
| bsr.l sto_cos |
| bra.w src_snan |
| |
| ######################################################################## |
| |
| ######################################################################### |
| # sto_cos(): store fp1 to the fpreg designated by the CMDREG dst field. # |
| # fp1 holds the result of the cosine portion of ssincos(). # |
| # the value in fp1 will not take any exceptions when moved. # |
| # INPUT: # |
| # fp1 : fp value to store # |
| # MODIFIED: # |
| # d0 # |
| ######################################################################### |
| global sto_cos |
| sto_cos: |
| mov.b 1+EXC_CMDREG(%a6),%d0 |
| andi.w &0x7,%d0 |
| mov.w (tbl_sto_cos.b,%pc,%d0.w*2),%d0 |
| jmp (tbl_sto_cos.b,%pc,%d0.w*1) |
| |
| tbl_sto_cos: |
| short sto_cos_0 - tbl_sto_cos |
| short sto_cos_1 - tbl_sto_cos |
| short sto_cos_2 - tbl_sto_cos |
| short sto_cos_3 - tbl_sto_cos |
| short sto_cos_4 - tbl_sto_cos |
| short sto_cos_5 - tbl_sto_cos |
| short sto_cos_6 - tbl_sto_cos |
| short sto_cos_7 - tbl_sto_cos |
| |
| sto_cos_0: |
| fmovm.x &0x40,EXC_FP0(%a6) |
| rts |
| sto_cos_1: |
| fmovm.x &0x40,EXC_FP1(%a6) |
| rts |
| sto_cos_2: |
| fmov.x %fp1,%fp2 |
| rts |
| sto_cos_3: |
| fmov.x %fp1,%fp3 |
| rts |
| sto_cos_4: |
| fmov.x %fp1,%fp4 |
| rts |
| sto_cos_5: |
| fmov.x %fp1,%fp5 |
| rts |
| sto_cos_6: |
| fmov.x %fp1,%fp6 |
| rts |
| sto_cos_7: |
| fmov.x %fp1,%fp7 |
| rts |
| |
| ################################################################## |
| global smod_sdnrm |
| global smod_snorm |
| smod_sdnrm: |
| smod_snorm: |
| mov.b DTAG(%a6),%d1 |
| beq.l smod |
| cmpi.b %d1,&ZERO |
| beq.w smod_zro |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l smod |
| cmpi.b %d1,&SNAN |
| beq.l dst_snan |
| bra.l dst_qnan |
| |
| global smod_szero |
| smod_szero: |
| mov.b DTAG(%a6),%d1 |
| beq.l t_operr |
| cmpi.b %d1,&ZERO |
| beq.l t_operr |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l t_operr |
| cmpi.b %d1,&QNAN |
| beq.l dst_qnan |
| bra.l dst_snan |
| |
| global smod_sinf |
| smod_sinf: |
| mov.b DTAG(%a6),%d1 |
| beq.l smod_fpn |
| cmpi.b %d1,&ZERO |
| beq.l smod_zro |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l smod_fpn |
| cmpi.b %d1,&QNAN |
| beq.l dst_qnan |
| bra.l dst_snan |
| |
| smod_zro: |
| srem_zro: |
| mov.b SRC_EX(%a0),%d1 # get src sign |
| mov.b DST_EX(%a1),%d0 # get dst sign |
| eor.b %d0,%d1 # get qbyte sign |
| andi.b &0x80,%d1 |
| mov.b %d1,FPSR_QBYTE(%a6) |
| tst.b %d0 |
| bpl.w ld_pzero |
| bra.w ld_mzero |
| |
| smod_fpn: |
| srem_fpn: |
| clr.b FPSR_QBYTE(%a6) |
| mov.l %d0,-(%sp) |
| mov.b SRC_EX(%a0),%d1 # get src sign |
| mov.b DST_EX(%a1),%d0 # get dst sign |
| eor.b %d0,%d1 # get qbyte sign |
| andi.b &0x80,%d1 |
| mov.b %d1,FPSR_QBYTE(%a6) |
| cmpi.b DTAG(%a6),&DENORM |
| bne.b smod_nrm |
| lea DST(%a1),%a0 |
| mov.l (%sp)+,%d0 |
| bra t_resdnrm |
| smod_nrm: |
| fmov.l (%sp)+,%fpcr |
| fmov.x DST(%a1),%fp0 |
| tst.b DST_EX(%a1) |
| bmi.b smod_nrm_neg |
| rts |
| |
| smod_nrm_neg: |
| mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode |
| rts |
| |
| ######################################################################### |
| global srem_snorm |
| global srem_sdnrm |
| srem_sdnrm: |
| srem_snorm: |
| mov.b DTAG(%a6),%d1 |
| beq.l srem |
| cmpi.b %d1,&ZERO |
| beq.w srem_zro |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l srem |
| cmpi.b %d1,&QNAN |
| beq.l dst_qnan |
| bra.l dst_snan |
| |
| global srem_szero |
| srem_szero: |
| mov.b DTAG(%a6),%d1 |
| beq.l t_operr |
| cmpi.b %d1,&ZERO |
| beq.l t_operr |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l t_operr |
| cmpi.b %d1,&QNAN |
| beq.l dst_qnan |
| bra.l dst_snan |
| |
| global srem_sinf |
| srem_sinf: |
| mov.b DTAG(%a6),%d1 |
| beq.w srem_fpn |
| cmpi.b %d1,&ZERO |
| beq.w srem_zro |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l srem_fpn |
| cmpi.b %d1,&QNAN |
| beq.l dst_qnan |
| bra.l dst_snan |
| |
| ######################################################################### |
| global sscale_snorm |
| global sscale_sdnrm |
| sscale_snorm: |
| sscale_sdnrm: |
| mov.b DTAG(%a6),%d1 |
| beq.l sscale |
| cmpi.b %d1,&ZERO |
| beq.l dst_zero |
| cmpi.b %d1,&INF |
| beq.l dst_inf |
| cmpi.b %d1,&DENORM |
| beq.l sscale |
| cmpi.b %d1,&QNAN |
| beq.l dst_qnan |
| bra.l dst_snan |
| |
| global sscale_szero |
| sscale_szero: |
| mov.b DTAG(%a6),%d1 |
| beq.l sscale |
| cmpi.b %d1,&ZERO |
| beq.l dst_zero |
| cmpi.b %d1,&INF |
| beq.l dst_inf |
| cmpi.b %d1,&DENORM |
| beq.l sscale |
| cmpi.b %d1,&QNAN |
| beq.l dst_qnan |
| bra.l dst_snan |
| |
| global sscale_sinf |
| sscale_sinf: |
| mov.b DTAG(%a6),%d1 |
| beq.l t_operr |
| cmpi.b %d1,&QNAN |
| beq.l dst_qnan |
| cmpi.b %d1,&SNAN |
| beq.l dst_snan |
| bra.l t_operr |
| |
| ######################################################################## |
| |
| # |
| # sop_sqnan(): The src op for frem/fmod/fscale was a QNAN. |
| # |
| global sop_sqnan |
| sop_sqnan: |
| mov.b DTAG(%a6),%d1 |
| cmpi.b %d1,&QNAN |
| beq.b dst_qnan |
| cmpi.b %d1,&SNAN |
| beq.b dst_snan |
| bra.b src_qnan |
| |
| # |
| # sop_ssnan(): The src op for frem/fmod/fscale was an SNAN. |
| # |
| global sop_ssnan |
| sop_ssnan: |
| mov.b DTAG(%a6),%d1 |
| cmpi.b %d1,&QNAN |
| beq.b dst_qnan_src_snan |
| cmpi.b %d1,&SNAN |
| beq.b dst_snan |
| bra.b src_snan |
| |
| dst_qnan_src_snan: |
| ori.l &snaniop_mask,USER_FPSR(%a6) # set NAN/SNAN/AIOP |
| bra.b dst_qnan |
| |
| # |
| # dst_qnan(): Return the dst SNAN w/ the SNAN bit set. |
| # |
| global dst_snan |
| dst_snan: |
| fmov.x DST(%a1),%fp0 # the fmove sets the SNAN bit |
| fmov.l %fpsr,%d0 # catch resulting status |
| or.l %d0,USER_FPSR(%a6) # store status |
| rts |
| |
| # |
| # dst_qnan(): Return the dst QNAN. |
| # |
| global dst_qnan |
| dst_qnan: |
| fmov.x DST(%a1),%fp0 # return the non-signalling nan |
| tst.b DST_EX(%a1) # set ccodes according to QNAN sign |
| bmi.b dst_qnan_m |
| dst_qnan_p: |
| mov.b &nan_bmask,FPSR_CC(%a6) |
| rts |
| dst_qnan_m: |
| mov.b &neg_bmask+nan_bmask,FPSR_CC(%a6) |
| rts |
| |
| # |
| # src_snan(): Return the src SNAN w/ the SNAN bit set. |
| # |
| global src_snan |
| src_snan: |
| fmov.x SRC(%a0),%fp0 # the fmove sets the SNAN bit |
| fmov.l %fpsr,%d0 # catch resulting status |
| or.l %d0,USER_FPSR(%a6) # store status |
| rts |
| |
| # |
| # src_qnan(): Return the src QNAN. |
| # |
| global src_qnan |
| src_qnan: |
| fmov.x SRC(%a0),%fp0 # return the non-signalling nan |
| tst.b SRC_EX(%a0) # set ccodes according to QNAN sign |
| bmi.b dst_qnan_m |
| src_qnan_p: |
| mov.b &nan_bmask,FPSR_CC(%a6) |
| rts |
| src_qnan_m: |
| mov.b &neg_bmask+nan_bmask,FPSR_CC(%a6) |
| rts |
| |
| # |
| # fkern2.s: |
| # These entry points are used by the exception handler |
| # routines where an instruction is selected by an index into |
| # a large jump table corresponding to a given instruction which |
| # has been decoded. Flow continues here where we now decode |
| # further according to the source operand type. |
| # |
| |
| global fsinh |
| fsinh: |
| mov.b STAG(%a6),%d1 |
| beq.l ssinh |
| cmpi.b %d1,&ZERO |
| beq.l src_zero |
| cmpi.b %d1,&INF |
| beq.l src_inf |
| cmpi.b %d1,&DENORM |
| beq.l ssinhd |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global flognp1 |
| flognp1: |
| mov.b STAG(%a6),%d1 |
| beq.l slognp1 |
| cmpi.b %d1,&ZERO |
| beq.l src_zero |
| cmpi.b %d1,&INF |
| beq.l sopr_inf |
| cmpi.b %d1,&DENORM |
| beq.l slognp1d |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global fetoxm1 |
| fetoxm1: |
| mov.b STAG(%a6),%d1 |
| beq.l setoxm1 |
| cmpi.b %d1,&ZERO |
| beq.l src_zero |
| cmpi.b %d1,&INF |
| beq.l setoxm1i |
| cmpi.b %d1,&DENORM |
| beq.l setoxm1d |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global ftanh |
| ftanh: |
| mov.b STAG(%a6),%d1 |
| beq.l stanh |
| cmpi.b %d1,&ZERO |
| beq.l src_zero |
| cmpi.b %d1,&INF |
| beq.l src_one |
| cmpi.b %d1,&DENORM |
| beq.l stanhd |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global fatan |
| fatan: |
| mov.b STAG(%a6),%d1 |
| beq.l satan |
| cmpi.b %d1,&ZERO |
| beq.l src_zero |
| cmpi.b %d1,&INF |
| beq.l spi_2 |
| cmpi.b %d1,&DENORM |
| beq.l satand |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global fasin |
| fasin: |
| mov.b STAG(%a6),%d1 |
| beq.l sasin |
| cmpi.b %d1,&ZERO |
| beq.l src_zero |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l sasind |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global fatanh |
| fatanh: |
| mov.b STAG(%a6),%d1 |
| beq.l satanh |
| cmpi.b %d1,&ZERO |
| beq.l src_zero |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l satanhd |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global fsine |
| fsine: |
| mov.b STAG(%a6),%d1 |
| beq.l ssin |
| cmpi.b %d1,&ZERO |
| beq.l src_zero |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l ssind |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global ftan |
| ftan: |
| mov.b STAG(%a6),%d1 |
| beq.l stan |
| cmpi.b %d1,&ZERO |
| beq.l src_zero |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l stand |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global fetox |
| fetox: |
| mov.b STAG(%a6),%d1 |
| beq.l setox |
| cmpi.b %d1,&ZERO |
| beq.l ld_pone |
| cmpi.b %d1,&INF |
| beq.l szr_inf |
| cmpi.b %d1,&DENORM |
| beq.l setoxd |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global ftwotox |
| ftwotox: |
| mov.b STAG(%a6),%d1 |
| beq.l stwotox |
| cmpi.b %d1,&ZERO |
| beq.l ld_pone |
| cmpi.b %d1,&INF |
| beq.l szr_inf |
| cmpi.b %d1,&DENORM |
| beq.l stwotoxd |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global ftentox |
| ftentox: |
| mov.b STAG(%a6),%d1 |
| beq.l stentox |
| cmpi.b %d1,&ZERO |
| beq.l ld_pone |
| cmpi.b %d1,&INF |
| beq.l szr_inf |
| cmpi.b %d1,&DENORM |
| beq.l stentoxd |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global flogn |
| flogn: |
| mov.b STAG(%a6),%d1 |
| beq.l slogn |
| cmpi.b %d1,&ZERO |
| beq.l t_dz2 |
| cmpi.b %d1,&INF |
| beq.l sopr_inf |
| cmpi.b %d1,&DENORM |
| beq.l slognd |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global flog10 |
| flog10: |
| mov.b STAG(%a6),%d1 |
| beq.l slog10 |
| cmpi.b %d1,&ZERO |
| beq.l t_dz2 |
| cmpi.b %d1,&INF |
| beq.l sopr_inf |
| cmpi.b %d1,&DENORM |
| beq.l slog10d |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global flog2 |
| flog2: |
| mov.b STAG(%a6),%d1 |
| beq.l slog2 |
| cmpi.b %d1,&ZERO |
| beq.l t_dz2 |
| cmpi.b %d1,&INF |
| beq.l sopr_inf |
| cmpi.b %d1,&DENORM |
| beq.l slog2d |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global fcosh |
| fcosh: |
| mov.b STAG(%a6),%d1 |
| beq.l scosh |
| cmpi.b %d1,&ZERO |
| beq.l ld_pone |
| cmpi.b %d1,&INF |
| beq.l ld_pinf |
| cmpi.b %d1,&DENORM |
| beq.l scoshd |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global facos |
| facos: |
| mov.b STAG(%a6),%d1 |
| beq.l sacos |
| cmpi.b %d1,&ZERO |
| beq.l ld_ppi2 |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l sacosd |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global fcos |
| fcos: |
| mov.b STAG(%a6),%d1 |
| beq.l scos |
| cmpi.b %d1,&ZERO |
| beq.l ld_pone |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l scosd |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global fgetexp |
| fgetexp: |
| mov.b STAG(%a6),%d1 |
| beq.l sgetexp |
| cmpi.b %d1,&ZERO |
| beq.l src_zero |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l sgetexpd |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global fgetman |
| fgetman: |
| mov.b STAG(%a6),%d1 |
| beq.l sgetman |
| cmpi.b %d1,&ZERO |
| beq.l src_zero |
| cmpi.b %d1,&INF |
| beq.l t_operr |
| cmpi.b %d1,&DENORM |
| beq.l sgetmand |
| cmpi.b %d1,&QNAN |
| beq.l src_qnan |
| bra.l src_snan |
| |
| global fsincos |
| fsincos: |
| mov.b STAG(%a6),%d1 |
| beq.l ssincos |
| cmpi.b %d1,&ZERO |
| beq.l ssincosz |
| cmpi.b %d1,&INF |
| beq.l ssincosi |
| cmpi.b %d1,&DENORM |
| beq.l ssincosd |
| cmpi.b %d1,&QNAN |
| beq.l ssincosqnan |
| bra.l ssincossnan |
| |
| global fmod |
| fmod: |
| mov.b STAG(%a6),%d1 |
| beq.l smod_snorm |
| cmpi.b %d1,&ZERO |
| beq.l smod_szero |
| cmpi.b %d1,&INF |
| beq.l smod_sinf |
| cmpi.b %d1,&DENORM |
| beq.l smod_sdnrm |
| cmpi.b %d1,&QNAN |
| beq.l sop_sqnan |
| bra.l sop_ssnan |
| |
| global frem |
| frem: |
| mov.b STAG(%a6),%d1 |
| beq.l srem_snorm |
| cmpi.b %d1,&ZERO |
| beq.l srem_szero |
| cmpi.b %d1,&INF |
| beq.l srem_sinf |
| cmpi.b %d1,&DENORM |
| beq.l srem_sdnrm |
| cmpi.b %d1,&QNAN |
| beq.l sop_sqnan |
| bra.l sop_ssnan |
| |
| global fscale |
| fscale: |
| mov.b STAG(%a6),%d1 |
| beq.l sscale_snorm |
| cmpi.b %d1,&ZERO |
| beq.l sscale_szero |
| cmpi.b %d1,&INF |
| beq.l sscale_sinf |
| cmpi.b %d1,&DENORM |
| beq.l sscale_sdnrm |
| cmpi.b %d1,&QNAN |
| beq.l sop_sqnan |
| bra.l sop_ssnan |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # fgen_except(): catch an exception during transcendental # |
| # emulation # |
| # # |
| # XREF **************************************************************** # |
| # fmul() - emulate a multiply instruction # |
| # fadd() - emulate an add instruction # |
| # fin() - emulate an fmove instruction # |
| # # |
| # INPUT *************************************************************** # |
| # fp0 = destination operand # |
| # d0 = type of instruction that took exception # |
| # fsave frame = source operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = result # |
| # fp1 = EXOP # |
| # # |
| # ALGORITHM *********************************************************** # |
| # An exception occurred on the last instruction of the # |
| # transcendental emulation. hopefully, this won't be happening much # |
| # because it will be VERY slow. # |
| # The only exceptions capable of passing through here are # |
| # Overflow, Underflow, and Unsupported Data Type. # |
| # # |
| ######################################################################### |
| |
| global fgen_except |
| fgen_except: |
| cmpi.b 0x3(%sp),&0x7 # is exception UNSUPP? |
| beq.b fge_unsupp # yes |
| |
| mov.b &NORM,STAG(%a6) |
| |
| fge_cont: |
| mov.b &NORM,DTAG(%a6) |
| |
| # ok, I have a problem with putting the dst op at FP_DST. the emulation |
| # routines aren't supposed to alter the operands but we've just squashed |
| # FP_DST here... |
| |
| # 8/17/93 - this turns out to be more of a "cleanliness" standpoint |
| # then a potential bug. to begin with, only the dyadic functions |
| # frem,fmod, and fscale would get the dst trashed here. But, for |
| # the 060SP, the FP_DST is never used again anyways. |
| fmovm.x &0x80,FP_DST(%a6) # dst op is in fp0 |
| |
| lea 0x4(%sp),%a0 # pass: ptr to src op |
| lea FP_DST(%a6),%a1 # pass: ptr to dst op |
| |
| cmpi.b %d1,&FMOV_OP |
| beq.b fge_fin # it was an "fmov" |
| cmpi.b %d1,&FADD_OP |
| beq.b fge_fadd # it was an "fadd" |
| fge_fmul: |
| bsr.l fmul |
| rts |
| fge_fadd: |
| bsr.l fadd |
| rts |
| fge_fin: |
| bsr.l fin |
| rts |
| |
| fge_unsupp: |
| mov.b &DENORM,STAG(%a6) |
| bra.b fge_cont |
| |
| # |
| # This table holds the offsets of the emulation routines for each individual |
| # math operation relative to the address of this table. Included are |
| # routines like fadd/fmul/fabs as well as the transcendentals. |
| # The location within the table is determined by the extension bits of the |
| # operation longword. |
| # |
| |
| swbeg &109 |
| tbl_unsupp: |
| long fin - tbl_unsupp # 00: fmove |
| long fint - tbl_unsupp # 01: fint |
| long fsinh - tbl_unsupp # 02: fsinh |
| long fintrz - tbl_unsupp # 03: fintrz |
| long fsqrt - tbl_unsupp # 04: fsqrt |
| long tbl_unsupp - tbl_unsupp |
| long flognp1 - tbl_unsupp # 06: flognp1 |
| long tbl_unsupp - tbl_unsupp |
| long fetoxm1 - tbl_unsupp # 08: fetoxm1 |
| long ftanh - tbl_unsupp # 09: ftanh |
| long fatan - tbl_unsupp # 0a: fatan |
| long tbl_unsupp - tbl_unsupp |
| long fasin - tbl_unsupp # 0c: fasin |
| long fatanh - tbl_unsupp # 0d: fatanh |
| long fsine - tbl_unsupp # 0e: fsin |
| long ftan - tbl_unsupp # 0f: ftan |
| long fetox - tbl_unsupp # 10: fetox |
| long ftwotox - tbl_unsupp # 11: ftwotox |
| long ftentox - tbl_unsupp # 12: ftentox |
| long tbl_unsupp - tbl_unsupp |
| long flogn - tbl_unsupp # 14: flogn |
| long flog10 - tbl_unsupp # 15: flog10 |
| long flog2 - tbl_unsupp # 16: flog2 |
| long tbl_unsupp - tbl_unsupp |
| long fabs - tbl_unsupp # 18: fabs |
| long fcosh - tbl_unsupp # 19: fcosh |
| long fneg - tbl_unsupp # 1a: fneg |
| long tbl_unsupp - tbl_unsupp |
| long facos - tbl_unsupp # 1c: facos |
| long fcos - tbl_unsupp # 1d: fcos |
| long fgetexp - tbl_unsupp # 1e: fgetexp |
| long fgetman - tbl_unsupp # 1f: fgetman |
| long fdiv - tbl_unsupp # 20: fdiv |
| long fmod - tbl_unsupp # 21: fmod |
| long fadd - tbl_unsupp # 22: fadd |
| long fmul - tbl_unsupp # 23: fmul |
| long fsgldiv - tbl_unsupp # 24: fsgldiv |
| long frem - tbl_unsupp # 25: frem |
| long fscale - tbl_unsupp # 26: fscale |
| long fsglmul - tbl_unsupp # 27: fsglmul |
| long fsub - tbl_unsupp # 28: fsub |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long fsincos - tbl_unsupp # 30: fsincos |
| long fsincos - tbl_unsupp # 31: fsincos |
| long fsincos - tbl_unsupp # 32: fsincos |
| long fsincos - tbl_unsupp # 33: fsincos |
| long fsincos - tbl_unsupp # 34: fsincos |
| long fsincos - tbl_unsupp # 35: fsincos |
| long fsincos - tbl_unsupp # 36: fsincos |
| long fsincos - tbl_unsupp # 37: fsincos |
| long fcmp - tbl_unsupp # 38: fcmp |
| long tbl_unsupp - tbl_unsupp |
| long ftst - tbl_unsupp # 3a: ftst |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long fsin - tbl_unsupp # 40: fsmove |
| long fssqrt - tbl_unsupp # 41: fssqrt |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long fdin - tbl_unsupp # 44: fdmove |
| long fdsqrt - tbl_unsupp # 45: fdsqrt |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long fsabs - tbl_unsupp # 58: fsabs |
| long tbl_unsupp - tbl_unsupp |
| long fsneg - tbl_unsupp # 5a: fsneg |
| long tbl_unsupp - tbl_unsupp |
| long fdabs - tbl_unsupp # 5c: fdabs |
| long tbl_unsupp - tbl_unsupp |
| long fdneg - tbl_unsupp # 5e: fdneg |
| long tbl_unsupp - tbl_unsupp |
| long fsdiv - tbl_unsupp # 60: fsdiv |
| long tbl_unsupp - tbl_unsupp |
| long fsadd - tbl_unsupp # 62: fsadd |
| long fsmul - tbl_unsupp # 63: fsmul |
| long fddiv - tbl_unsupp # 64: fddiv |
| long tbl_unsupp - tbl_unsupp |
| long fdadd - tbl_unsupp # 66: fdadd |
| long fdmul - tbl_unsupp # 67: fdmul |
| long fssub - tbl_unsupp # 68: fssub |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long tbl_unsupp - tbl_unsupp |
| long fdsub - tbl_unsupp # 6c: fdsub |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # fmul(): emulates the fmul instruction # |
| # fsmul(): emulates the fsmul instruction # |
| # fdmul(): emulates the fdmul instruction # |
| # # |
| # XREF **************************************************************** # |
| # scale_to_zero_src() - scale src exponent to zero # |
| # scale_to_zero_dst() - scale dst exponent to zero # |
| # unf_res() - return default underflow result # |
| # ovf_res() - return default overflow result # |
| # res_qnan() - return QNAN result # |
| # res_snan() - return SNAN result # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # a1 = pointer to extended precision destination operand # |
| # d0 rnd prec,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = result # |
| # fp1 = EXOP (if exception occurred) # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Handle NANs, infinities, and zeroes as special cases. Divide # |
| # norms/denorms into ext/sgl/dbl precision. # |
| # For norms/denorms, scale the exponents such that a multiply # |
| # instruction won't cause an exception. Use the regular fmul to # |
| # compute a result. Check if the regular operands would have taken # |
| # an exception. If so, return the default overflow/underflow result # |
| # and return the EXOP if exceptions are enabled. Else, scale the # |
| # result operand to the proper exponent. # |
| # # |
| ######################################################################### |
| |
| align 0x10 |
| tbl_fmul_ovfl: |
| long 0x3fff - 0x7ffe # ext_max |
| long 0x3fff - 0x407e # sgl_max |
| long 0x3fff - 0x43fe # dbl_max |
| tbl_fmul_unfl: |
| long 0x3fff + 0x0001 # ext_unfl |
| long 0x3fff - 0x3f80 # sgl_unfl |
| long 0x3fff - 0x3c00 # dbl_unfl |
| |
| global fsmul |
| fsmul: |
| andi.b &0x30,%d0 # clear rnd prec |
| ori.b &s_mode*0x10,%d0 # insert sgl prec |
| bra.b fmul |
| |
| global fdmul |
| fdmul: |
| andi.b &0x30,%d0 |
| ori.b &d_mode*0x10,%d0 # insert dbl prec |
| |
| global fmul |
| fmul: |
| mov.l %d0,L_SCR3(%a6) # store rnd info |
| |
| clr.w %d1 |
| mov.b DTAG(%a6),%d1 |
| lsl.b &0x3,%d1 |
| or.b STAG(%a6),%d1 # combine src tags |
| bne.w fmul_not_norm # optimize on non-norm input |
| |
| fmul_norm: |
| mov.w DST_EX(%a1),FP_SCR1_EX(%a6) |
| mov.l DST_HI(%a1),FP_SCR1_HI(%a6) |
| mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| |
| bsr.l scale_to_zero_src # scale src exponent |
| mov.l %d0,-(%sp) # save scale factor 1 |
| |
| bsr.l scale_to_zero_dst # scale dst exponent |
| |
| add.l %d0,(%sp) # SCALE_FACTOR = scale1 + scale2 |
| |
| mov.w 2+L_SCR3(%a6),%d1 # fetch precision |
| lsr.b &0x6,%d1 # shift to lo bits |
| mov.l (%sp)+,%d0 # load S.F. |
| cmp.l %d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl? |
| beq.w fmul_may_ovfl # result may rnd to overflow |
| blt.w fmul_ovfl # result will overflow |
| |
| cmp.l %d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl? |
| beq.w fmul_may_unfl # result may rnd to no unfl |
| bgt.w fmul_unfl # result will underflow |
| |
| # |
| # NORMAL: |
| # - the result of the multiply operation will neither overflow nor underflow. |
| # - do the multiply to the proper precision and rounding mode. |
| # - scale the result exponent using the scale factor. if both operands were |
| # normalized then we really don't need to go through this scaling. but for now, |
| # this will do. |
| # |
| fmul_normal: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst operand |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fmul.x FP_SCR0(%a6),%fp0 # execute multiply |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fmul_normal_exit: |
| fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| mov.l %d2,-(%sp) # save d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # add scale factor |
| or.w %d2,%d1 # concat old sign,new exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| rts |
| |
| # |
| # OVERFLOW: |
| # - the result of the multiply operation is an overflow. |
| # - do the multiply to the proper precision and rounding mode in order to |
| # set the inexact bits. |
| # - calculate the default result and return it in fp0. |
| # - if overflow or inexact is enabled, we need a multiply result rounded to |
| # extended precision. if the original operation was extended, then we have this |
| # result. if the original operation was single or double, we have to do another |
| # multiply using extended precision and the correct rounding mode. the result |
| # of this operation then has its exponent scaled by -0x6000 to create the |
| # exceptional operand. |
| # |
| fmul_ovfl: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst operand |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fmul.x FP_SCR0(%a6),%fp0 # execute multiply |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| # save setting this until now because this is where fmul_may_ovfl may jump in |
| fmul_ovfl_tst: |
| or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| bne.b fmul_ovfl_ena # yes |
| |
| # calculate the default result |
| fmul_ovfl_dis: |
| btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| sne %d1 # set sign param accordingly |
| mov.l L_SCR3(%a6),%d0 # pass rnd prec,mode |
| bsr.l ovf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| fmovm.x (%a0),&0x80 # return default result in fp0 |
| rts |
| |
| # |
| # OVFL is enabled; Create EXOP: |
| # - if precision is extended, then we have the EXOP. simply bias the exponent |
| # with an extra -0x6000. if the precision is single or double, we need to |
| # calculate a result rounded to extended precision. |
| # |
| fmul_ovfl_ena: |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0xc0,%d1 # test the rnd prec |
| bne.b fmul_ovfl_ena_sd # it's sgl or dbl |
| |
| fmul_ovfl_ena_cont: |
| fmovm.x &0x80,FP_SCR0(%a6) # move result to stack |
| |
| mov.l %d2,-(%sp) # save d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| mov.w %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| sub.l %d0,%d1 # add scale factor |
| subi.l &0x6000,%d1 # subtract bias |
| andi.w &0x7fff,%d1 # clear sign bit |
| andi.w &0x8000,%d2 # keep old sign |
| or.w %d2,%d1 # concat old sign,new exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| bra.b fmul_ovfl_dis |
| |
| fmul_ovfl_ena_sd: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst operand |
| |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0x30,%d1 # keep rnd mode only |
| fmov.l %d1,%fpcr # set FPCR |
| |
| fmul.x FP_SCR0(%a6),%fp0 # execute multiply |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| bra.b fmul_ovfl_ena_cont |
| |
| # |
| # may OVERFLOW: |
| # - the result of the multiply operation MAY overflow. |
| # - do the multiply to the proper precision and rounding mode in order to |
| # set the inexact bits. |
| # - calculate the default result and return it in fp0. |
| # |
| fmul_may_ovfl: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fmul.x FP_SCR0(%a6),%fp0 # execute multiply |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fabs.x %fp0,%fp1 # make a copy of result |
| fcmp.b %fp1,&0x2 # is |result| >= 2.b? |
| fbge.w fmul_ovfl_tst # yes; overflow has occurred |
| |
| # no, it didn't overflow; we have correct result |
| bra.w fmul_normal_exit |
| |
| # |
| # UNDERFLOW: |
| # - the result of the multiply operation is an underflow. |
| # - do the multiply to the proper precision and rounding mode in order to |
| # set the inexact bits. |
| # - calculate the default result and return it in fp0. |
| # - if overflow or inexact is enabled, we need a multiply result rounded to |
| # extended precision. if the original operation was extended, then we have this |
| # result. if the original operation was single or double, we have to do another |
| # multiply using extended precision and the correct rounding mode. the result |
| # of this operation then has its exponent scaled by -0x6000 to create the |
| # exceptional operand. |
| # |
| fmul_unfl: |
| bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| |
| # for fun, let's use only extended precision, round to zero. then, let |
| # the unf_res() routine figure out all the rest. |
| # will we get the correct answer. |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst operand |
| |
| fmov.l &rz_mode*0x10,%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fmul.x FP_SCR0(%a6),%fp0 # execute multiply |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| bne.b fmul_unfl_ena # yes |
| |
| fmul_unfl_dis: |
| fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| |
| lea FP_SCR0(%a6),%a0 # pass: result addr |
| mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| bsr.l unf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # unf_res2 may have set 'Z' |
| fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| rts |
| |
| # |
| # UNFL is enabled. |
| # |
| fmul_unfl_ena: |
| fmovm.x FP_SCR1(%a6),&0x40 # load dst op |
| |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0xc0,%d1 # is precision extended? |
| bne.b fmul_unfl_ena_sd # no, sgl or dbl |
| |
| # if the rnd mode is anything but RZ, then we have to re-do the above |
| # multiplication because we used RZ for all. |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fmul_unfl_ena_cont: |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fmul.x FP_SCR0(%a6),%fp1 # execute multiply |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| fmovm.x &0x40,FP_SCR0(%a6) # save result to stack |
| mov.l %d2,-(%sp) # save d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # add scale factor |
| addi.l &0x6000,%d1 # add bias |
| andi.w &0x7fff,%d1 |
| or.w %d2,%d1 # concat old sign,new exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| bra.w fmul_unfl_dis |
| |
| fmul_unfl_ena_sd: |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0x30,%d1 # use only rnd mode |
| fmov.l %d1,%fpcr # set FPCR |
| |
| bra.b fmul_unfl_ena_cont |
| |
| # MAY UNDERFLOW: |
| # -use the correct rounding mode and precision. this code favors operations |
| # that do not underflow. |
| fmul_may_unfl: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst operand |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fmul.x FP_SCR0(%a6),%fp0 # execute multiply |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fabs.x %fp0,%fp1 # make a copy of result |
| fcmp.b %fp1,&0x2 # is |result| > 2.b? |
| fbgt.w fmul_normal_exit # no; no underflow occurred |
| fblt.w fmul_unfl # yes; underflow occurred |
| |
| # |
| # we still don't know if underflow occurred. result is ~ equal to 2. but, |
| # we don't know if the result was an underflow that rounded up to a 2 or |
| # a normalized number that rounded down to a 2. so, redo the entire operation |
| # using RZ as the rounding mode to see what the pre-rounded result is. |
| # this case should be relatively rare. |
| # |
| fmovm.x FP_SCR1(%a6),&0x40 # load dst operand |
| |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0xc0,%d1 # keep rnd prec |
| ori.b &rz_mode*0x10,%d1 # insert RZ |
| |
| fmov.l %d1,%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fmul.x FP_SCR0(%a6),%fp1 # execute multiply |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| fabs.x %fp1 # make absolute value |
| fcmp.b %fp1,&0x2 # is |result| < 2.b? |
| fbge.w fmul_normal_exit # no; no underflow occurred |
| bra.w fmul_unfl # yes, underflow occurred |
| |
| ################################################################################ |
| |
| # |
| # Multiply: inputs are not both normalized; what are they? |
| # |
| fmul_not_norm: |
| mov.w (tbl_fmul_op.b,%pc,%d1.w*2),%d1 |
| jmp (tbl_fmul_op.b,%pc,%d1.w) |
| |
| swbeg &48 |
| tbl_fmul_op: |
| short fmul_norm - tbl_fmul_op # NORM x NORM |
| short fmul_zero - tbl_fmul_op # NORM x ZERO |
| short fmul_inf_src - tbl_fmul_op # NORM x INF |
| short fmul_res_qnan - tbl_fmul_op # NORM x QNAN |
| short fmul_norm - tbl_fmul_op # NORM x DENORM |
| short fmul_res_snan - tbl_fmul_op # NORM x SNAN |
| short tbl_fmul_op - tbl_fmul_op # |
| short tbl_fmul_op - tbl_fmul_op # |
| |
| short fmul_zero - tbl_fmul_op # ZERO x NORM |
| short fmul_zero - tbl_fmul_op # ZERO x ZERO |
| short fmul_res_operr - tbl_fmul_op # ZERO x INF |
| short fmul_res_qnan - tbl_fmul_op # ZERO x QNAN |
| short fmul_zero - tbl_fmul_op # ZERO x DENORM |
| short fmul_res_snan - tbl_fmul_op # ZERO x SNAN |
| short tbl_fmul_op - tbl_fmul_op # |
| short tbl_fmul_op - tbl_fmul_op # |
| |
| short fmul_inf_dst - tbl_fmul_op # INF x NORM |
| short fmul_res_operr - tbl_fmul_op # INF x ZERO |
| short fmul_inf_dst - tbl_fmul_op # INF x INF |
| short fmul_res_qnan - tbl_fmul_op # INF x QNAN |
| short fmul_inf_dst - tbl_fmul_op # INF x DENORM |
| short fmul_res_snan - tbl_fmul_op # INF x SNAN |
| short tbl_fmul_op - tbl_fmul_op # |
| short tbl_fmul_op - tbl_fmul_op # |
| |
| short fmul_res_qnan - tbl_fmul_op # QNAN x NORM |
| short fmul_res_qnan - tbl_fmul_op # QNAN x ZERO |
| short fmul_res_qnan - tbl_fmul_op # QNAN x INF |
| short fmul_res_qnan - tbl_fmul_op # QNAN x QNAN |
| short fmul_res_qnan - tbl_fmul_op # QNAN x DENORM |
| short fmul_res_snan - tbl_fmul_op # QNAN x SNAN |
| short tbl_fmul_op - tbl_fmul_op # |
| short tbl_fmul_op - tbl_fmul_op # |
| |
| short fmul_norm - tbl_fmul_op # NORM x NORM |
| short fmul_zero - tbl_fmul_op # NORM x ZERO |
| short fmul_inf_src - tbl_fmul_op # NORM x INF |
| short fmul_res_qnan - tbl_fmul_op # NORM x QNAN |
| short fmul_norm - tbl_fmul_op # NORM x DENORM |
| short fmul_res_snan - tbl_fmul_op # NORM x SNAN |
| short tbl_fmul_op - tbl_fmul_op # |
| short tbl_fmul_op - tbl_fmul_op # |
| |
| short fmul_res_snan - tbl_fmul_op # SNAN x NORM |
| short fmul_res_snan - tbl_fmul_op # SNAN x ZERO |
| short fmul_res_snan - tbl_fmul_op # SNAN x INF |
| short fmul_res_snan - tbl_fmul_op # SNAN x QNAN |
| short fmul_res_snan - tbl_fmul_op # SNAN x DENORM |
| short fmul_res_snan - tbl_fmul_op # SNAN x SNAN |
| short tbl_fmul_op - tbl_fmul_op # |
| short tbl_fmul_op - tbl_fmul_op # |
| |
| fmul_res_operr: |
| bra.l res_operr |
| fmul_res_snan: |
| bra.l res_snan |
| fmul_res_qnan: |
| bra.l res_qnan |
| |
| # |
| # Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm) |
| # |
| global fmul_zero # global for fsglmul |
| fmul_zero: |
| mov.b SRC_EX(%a0),%d0 # exclusive or the signs |
| mov.b DST_EX(%a1),%d1 |
| eor.b %d0,%d1 |
| bpl.b fmul_zero_p # result ZERO is pos. |
| fmul_zero_n: |
| fmov.s &0x80000000,%fp0 # load -ZERO |
| mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N |
| rts |
| fmul_zero_p: |
| fmov.s &0x00000000,%fp0 # load +ZERO |
| mov.b &z_bmask,FPSR_CC(%a6) # set Z |
| rts |
| |
| # |
| # Multiply: (inf x inf) || (inf x norm) || (inf x denorm) |
| # |
| # Note: The j-bit for an infinity is a don't-care. However, to be |
| # strictly compatible w/ the 68881/882, we make sure to return an |
| # INF w/ the j-bit set if the input INF j-bit was set. Destination |
| # INFs take priority. |
| # |
| global fmul_inf_dst # global for fsglmul |
| fmul_inf_dst: |
| fmovm.x DST(%a1),&0x80 # return INF result in fp0 |
| mov.b SRC_EX(%a0),%d0 # exclusive or the signs |
| mov.b DST_EX(%a1),%d1 |
| eor.b %d0,%d1 |
| bpl.b fmul_inf_dst_p # result INF is pos. |
| fmul_inf_dst_n: |
| fabs.x %fp0 # clear result sign |
| fneg.x %fp0 # set result sign |
| mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N |
| rts |
| fmul_inf_dst_p: |
| fabs.x %fp0 # clear result sign |
| mov.b &inf_bmask,FPSR_CC(%a6) # set INF |
| rts |
| |
| global fmul_inf_src # global for fsglmul |
| fmul_inf_src: |
| fmovm.x SRC(%a0),&0x80 # return INF result in fp0 |
| mov.b SRC_EX(%a0),%d0 # exclusive or the signs |
| mov.b DST_EX(%a1),%d1 |
| eor.b %d0,%d1 |
| bpl.b fmul_inf_dst_p # result INF is pos. |
| bra.b fmul_inf_dst_n |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # fin(): emulates the fmove instruction # |
| # fsin(): emulates the fsmove instruction # |
| # fdin(): emulates the fdmove instruction # |
| # # |
| # XREF **************************************************************** # |
| # norm() - normalize mantissa for EXOP on denorm # |
| # scale_to_zero_src() - scale src exponent to zero # |
| # ovf_res() - return default overflow result # |
| # unf_res() - return default underflow result # |
| # res_qnan_1op() - return QNAN result # |
| # res_snan_1op() - return SNAN result # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # d0 = round prec/mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = result # |
| # fp1 = EXOP (if exception occurred) # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Handle NANs, infinities, and zeroes as special cases. Divide # |
| # norms into extended, single, and double precision. # |
| # Norms can be emulated w/ a regular fmove instruction. For # |
| # sgl/dbl, must scale exponent and perform an "fmove". Check to see # |
| # if the result would have overflowed/underflowed. If so, use unf_res() # |
| # or ovf_res() to return the default result. Also return EXOP if # |
| # exception is enabled. If no exception, return the default result. # |
| # Unnorms don't pass through here. # |
| # # |
| ######################################################################### |
| |
| global fsin |
| fsin: |
| andi.b &0x30,%d0 # clear rnd prec |
| ori.b &s_mode*0x10,%d0 # insert sgl precision |
| bra.b fin |
| |
| global fdin |
| fdin: |
| andi.b &0x30,%d0 # clear rnd prec |
| ori.b &d_mode*0x10,%d0 # insert dbl precision |
| |
| global fin |
| fin: |
| mov.l %d0,L_SCR3(%a6) # store rnd info |
| |
| mov.b STAG(%a6),%d1 # fetch src optype tag |
| bne.w fin_not_norm # optimize on non-norm input |
| |
| # |
| # FP MOVE IN: NORMs and DENORMs ONLY! |
| # |
| fin_norm: |
| andi.b &0xc0,%d0 # is precision extended? |
| bne.w fin_not_ext # no, so go handle dbl or sgl |
| |
| # |
| # precision selected is extended. so...we cannot get an underflow |
| # or overflow because of rounding to the correct precision. so... |
| # skip the scaling and unscaling... |
| # |
| tst.b SRC_EX(%a0) # is the operand negative? |
| bpl.b fin_norm_done # no |
| bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit |
| fin_norm_done: |
| fmovm.x SRC(%a0),&0x80 # return result in fp0 |
| rts |
| |
| # |
| # for an extended precision DENORM, the UNFL exception bit is set |
| # the accrued bit is NOT set in this instance(no inexactness!) |
| # |
| fin_denorm: |
| andi.b &0xc0,%d0 # is precision extended? |
| bne.w fin_not_ext # no, so go handle dbl or sgl |
| |
| bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| tst.b SRC_EX(%a0) # is the operand negative? |
| bpl.b fin_denorm_done # no |
| bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit |
| fin_denorm_done: |
| fmovm.x SRC(%a0),&0x80 # return result in fp0 |
| btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? |
| bne.b fin_denorm_unfl_ena # yes |
| rts |
| |
| # |
| # the input is an extended DENORM and underflow is enabled in the FPCR. |
| # normalize the mantissa and add the bias of 0x6000 to the resulting negative |
| # exponent and insert back into the operand. |
| # |
| fin_denorm_unfl_ena: |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| lea FP_SCR0(%a6),%a0 # pass: ptr to operand |
| bsr.l norm # normalize result |
| neg.w %d0 # new exponent = -(shft val) |
| addi.w &0x6000,%d0 # add new bias to exponent |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp |
| andi.w &0x8000,%d1 # keep old sign |
| andi.w &0x7fff,%d0 # clear sign position |
| or.w %d1,%d0 # concat new exo,old sign |
| mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| rts |
| |
| # |
| # operand is to be rounded to single or double precision |
| # |
| fin_not_ext: |
| cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec |
| bne.b fin_dbl |
| |
| # |
| # operand is to be rounded to single precision |
| # |
| fin_sgl: |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| bsr.l scale_to_zero_src # calculate scale factor |
| |
| cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? |
| bge.w fin_sd_unfl # yes; go handle underflow |
| cmpi.l %d0,&0x3fff-0x407e # will move in overflow? |
| beq.w fin_sd_may_ovfl # maybe; go check |
| blt.w fin_sd_ovfl # yes; go handle overflow |
| |
| # |
| # operand will NOT overflow or underflow when moved into the fp reg file |
| # |
| fin_sd_normal: |
| fmov.l &0x0,%fpsr # clear FPSR |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fmov.x FP_SCR0(%a6),%fp0 # perform move |
| |
| fmov.l %fpsr,%d1 # save FPSR |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fin_sd_normal_exit: |
| mov.l %d2,-(%sp) # save d2 |
| fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} |
| mov.w %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| sub.l %d0,%d1 # add scale factor |
| andi.w &0x8000,%d2 # keep old sign |
| or.w %d1,%d2 # concat old sign,new exponent |
| mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| rts |
| |
| # |
| # operand is to be rounded to double precision |
| # |
| fin_dbl: |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| bsr.l scale_to_zero_src # calculate scale factor |
| |
| cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? |
| bge.w fin_sd_unfl # yes; go handle underflow |
| cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? |
| beq.w fin_sd_may_ovfl # maybe; go check |
| blt.w fin_sd_ovfl # yes; go handle overflow |
| bra.w fin_sd_normal # no; ho handle normalized op |
| |
| # |
| # operand WILL underflow when moved in to the fp register file |
| # |
| fin_sd_unfl: |
| bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| |
| tst.b FP_SCR0_EX(%a6) # is operand negative? |
| bpl.b fin_sd_unfl_tst |
| bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit |
| |
| # if underflow or inexact is enabled, then go calculate the EXOP first. |
| fin_sd_unfl_tst: |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| bne.b fin_sd_unfl_ena # yes |
| |
| fin_sd_unfl_dis: |
| lea FP_SCR0(%a6),%a0 # pass: result addr |
| mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| bsr.l unf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' |
| fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| rts |
| |
| # |
| # operand will underflow AND underflow or inexact is enabled. |
| # Therefore, we must return the result rounded to extended precision. |
| # |
| fin_sd_unfl_ena: |
| mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) |
| mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) |
| mov.w FP_SCR0_EX(%a6),%d1 # load current exponent |
| |
| mov.l %d2,-(%sp) # save d2 |
| mov.w %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| sub.l %d0,%d1 # subtract scale factor |
| andi.w &0x8000,%d2 # extract old sign |
| addi.l &0x6000,%d1 # add new bias |
| andi.w &0x7fff,%d1 |
| or.w %d1,%d2 # concat old sign,new exp |
| mov.w %d2,FP_SCR1_EX(%a6) # insert new exponent |
| fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 |
| mov.l (%sp)+,%d2 # restore d2 |
| bra.b fin_sd_unfl_dis |
| |
| # |
| # operand WILL overflow. |
| # |
| fin_sd_ovfl: |
| fmov.l &0x0,%fpsr # clear FPSR |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fmov.x FP_SCR0(%a6),%fp0 # perform move |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| fmov.l %fpsr,%d1 # save FPSR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fin_sd_ovfl_tst: |
| or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| bne.b fin_sd_ovfl_ena # yes |
| |
| # |
| # OVFL is not enabled; therefore, we must create the default result by |
| # calling ovf_res(). |
| # |
| fin_sd_ovfl_dis: |
| btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| sne %d1 # set sign param accordingly |
| mov.l L_SCR3(%a6),%d0 # pass: prec,mode |
| bsr.l ovf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| fmovm.x (%a0),&0x80 # return default result in fp0 |
| rts |
| |
| # |
| # OVFL is enabled. |
| # the INEX2 bit has already been updated by the round to the correct precision. |
| # now, round to extended(and don't alter the FPSR). |
| # |
| fin_sd_ovfl_ena: |
| mov.l %d2,-(%sp) # save d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # add scale factor |
| sub.l &0x6000,%d1 # subtract bias |
| andi.w &0x7fff,%d1 |
| or.w %d2,%d1 |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| bra.b fin_sd_ovfl_dis |
| |
| # |
| # the move in MAY overflow. so... |
| # |
| fin_sd_may_ovfl: |
| fmov.l &0x0,%fpsr # clear FPSR |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fmov.x FP_SCR0(%a6),%fp0 # perform the move |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fabs.x %fp0,%fp1 # make a copy of result |
| fcmp.b %fp1,&0x2 # is |result| >= 2.b? |
| fbge.w fin_sd_ovfl_tst # yes; overflow has occurred |
| |
| # no, it didn't overflow; we have correct result |
| bra.w fin_sd_normal_exit |
| |
| ########################################################################## |
| |
| # |
| # operand is not a NORM: check its optype and branch accordingly |
| # |
| fin_not_norm: |
| cmpi.b %d1,&DENORM # weed out DENORM |
| beq.w fin_denorm |
| cmpi.b %d1,&SNAN # weed out SNANs |
| beq.l res_snan_1op |
| cmpi.b %d1,&QNAN # weed out QNANs |
| beq.l res_qnan_1op |
| |
| # |
| # do the fmove in; at this point, only possible ops are ZERO and INF. |
| # use fmov to determine ccodes. |
| # prec:mode should be zero at this point but it won't affect answer anyways. |
| # |
| fmov.x SRC(%a0),%fp0 # do fmove in |
| fmov.l %fpsr,%d0 # no exceptions possible |
| rol.l &0x8,%d0 # put ccodes in lo byte |
| mov.b %d0,FPSR_CC(%a6) # insert correct ccodes |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # fdiv(): emulates the fdiv instruction # |
| # fsdiv(): emulates the fsdiv instruction # |
| # fddiv(): emulates the fddiv instruction # |
| # # |
| # XREF **************************************************************** # |
| # scale_to_zero_src() - scale src exponent to zero # |
| # scale_to_zero_dst() - scale dst exponent to zero # |
| # unf_res() - return default underflow result # |
| # ovf_res() - return default overflow result # |
| # res_qnan() - return QNAN result # |
| # res_snan() - return SNAN result # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # a1 = pointer to extended precision destination operand # |
| # d0 rnd prec,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = result # |
| # fp1 = EXOP (if exception occurred) # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Handle NANs, infinities, and zeroes as special cases. Divide # |
| # norms/denorms into ext/sgl/dbl precision. # |
| # For norms/denorms, scale the exponents such that a divide # |
| # instruction won't cause an exception. Use the regular fdiv to # |
| # compute a result. Check if the regular operands would have taken # |
| # an exception. If so, return the default overflow/underflow result # |
| # and return the EXOP if exceptions are enabled. Else, scale the # |
| # result operand to the proper exponent. # |
| # # |
| ######################################################################### |
| |
| align 0x10 |
| tbl_fdiv_unfl: |
| long 0x3fff - 0x0000 # ext_unfl |
| long 0x3fff - 0x3f81 # sgl_unfl |
| long 0x3fff - 0x3c01 # dbl_unfl |
| |
| tbl_fdiv_ovfl: |
| long 0x3fff - 0x7ffe # ext overflow exponent |
| long 0x3fff - 0x407e # sgl overflow exponent |
| long 0x3fff - 0x43fe # dbl overflow exponent |
| |
| global fsdiv |
| fsdiv: |
| andi.b &0x30,%d0 # clear rnd prec |
| ori.b &s_mode*0x10,%d0 # insert sgl prec |
| bra.b fdiv |
| |
| global fddiv |
| fddiv: |
| andi.b &0x30,%d0 # clear rnd prec |
| ori.b &d_mode*0x10,%d0 # insert dbl prec |
| |
| global fdiv |
| fdiv: |
| mov.l %d0,L_SCR3(%a6) # store rnd info |
| |
| clr.w %d1 |
| mov.b DTAG(%a6),%d1 |
| lsl.b &0x3,%d1 |
| or.b STAG(%a6),%d1 # combine src tags |
| |
| bne.w fdiv_not_norm # optimize on non-norm input |
| |
| # |
| # DIVIDE: NORMs and DENORMs ONLY! |
| # |
| fdiv_norm: |
| mov.w DST_EX(%a1),FP_SCR1_EX(%a6) |
| mov.l DST_HI(%a1),FP_SCR1_HI(%a6) |
| mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| |
| bsr.l scale_to_zero_src # scale src exponent |
| mov.l %d0,-(%sp) # save scale factor 1 |
| |
| bsr.l scale_to_zero_dst # scale dst exponent |
| |
| neg.l (%sp) # SCALE FACTOR = scale1 - scale2 |
| add.l %d0,(%sp) |
| |
| mov.w 2+L_SCR3(%a6),%d1 # fetch precision |
| lsr.b &0x6,%d1 # shift to lo bits |
| mov.l (%sp)+,%d0 # load S.F. |
| cmp.l %d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow? |
| ble.w fdiv_may_ovfl # result will overflow |
| |
| cmp.l %d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow? |
| beq.w fdiv_may_unfl # maybe |
| bgt.w fdiv_unfl # yes; go handle underflow |
| |
| fdiv_normal: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l L_SCR3(%a6),%fpcr # save FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fdiv.x FP_SCR0(%a6),%fp0 # perform divide |
| |
| fmov.l %fpsr,%d1 # save FPSR |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fdiv_normal_exit: |
| fmovm.x &0x80,FP_SCR0(%a6) # store result on stack |
| mov.l %d2,-(%sp) # store d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # add scale factor |
| or.w %d2,%d1 # concat old sign,new exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| rts |
| |
| tbl_fdiv_ovfl2: |
| long 0x7fff |
| long 0x407f |
| long 0x43ff |
| |
| fdiv_no_ovfl: |
| mov.l (%sp)+,%d0 # restore scale factor |
| bra.b fdiv_normal_exit |
| |
| fdiv_may_ovfl: |
| mov.l %d0,-(%sp) # save scale factor |
| |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # set FPSR |
| |
| fdiv.x FP_SCR0(%a6),%fp0 # execute divide |
| |
| fmov.l %fpsr,%d0 |
| fmov.l &0x0,%fpcr |
| |
| or.l %d0,USER_FPSR(%a6) # save INEX,N |
| |
| fmovm.x &0x01,-(%sp) # save result to stack |
| mov.w (%sp),%d0 # fetch new exponent |
| add.l &0xc,%sp # clear result from stack |
| andi.l &0x7fff,%d0 # strip sign |
| sub.l (%sp),%d0 # add scale factor |
| cmp.l %d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4) |
| blt.b fdiv_no_ovfl |
| mov.l (%sp)+,%d0 |
| |
| fdiv_ovfl_tst: |
| or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| bne.b fdiv_ovfl_ena # yes |
| |
| fdiv_ovfl_dis: |
| btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| sne %d1 # set sign param accordingly |
| mov.l L_SCR3(%a6),%d0 # pass prec:rnd |
| bsr.l ovf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # set INF if applicable |
| fmovm.x (%a0),&0x80 # return default result in fp0 |
| rts |
| |
| fdiv_ovfl_ena: |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0xc0,%d1 # is precision extended? |
| bne.b fdiv_ovfl_ena_sd # no, do sgl or dbl |
| |
| fdiv_ovfl_ena_cont: |
| fmovm.x &0x80,FP_SCR0(%a6) # move result to stack |
| |
| mov.l %d2,-(%sp) # save d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| mov.w %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| sub.l %d0,%d1 # add scale factor |
| subi.l &0x6000,%d1 # subtract bias |
| andi.w &0x7fff,%d1 # clear sign bit |
| andi.w &0x8000,%d2 # keep old sign |
| or.w %d2,%d1 # concat old sign,new exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| bra.b fdiv_ovfl_dis |
| |
| fdiv_ovfl_ena_sd: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst operand |
| |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0x30,%d1 # keep rnd mode |
| fmov.l %d1,%fpcr # set FPCR |
| |
| fdiv.x FP_SCR0(%a6),%fp0 # execute divide |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| bra.b fdiv_ovfl_ena_cont |
| |
| fdiv_unfl: |
| bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l &rz_mode*0x10,%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fdiv.x FP_SCR0(%a6),%fp0 # execute divide |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| bne.b fdiv_unfl_ena # yes |
| |
| fdiv_unfl_dis: |
| fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| |
| lea FP_SCR0(%a6),%a0 # pass: result addr |
| mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| bsr.l unf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # 'Z' may have been set |
| fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| rts |
| |
| # |
| # UNFL is enabled. |
| # |
| fdiv_unfl_ena: |
| fmovm.x FP_SCR1(%a6),&0x40 # load dst op |
| |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0xc0,%d1 # is precision extended? |
| bne.b fdiv_unfl_ena_sd # no, sgl or dbl |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fdiv_unfl_ena_cont: |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fdiv.x FP_SCR0(%a6),%fp1 # execute divide |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| fmovm.x &0x40,FP_SCR0(%a6) # save result to stack |
| mov.l %d2,-(%sp) # save d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # add scale factoer |
| addi.l &0x6000,%d1 # add bias |
| andi.w &0x7fff,%d1 |
| or.w %d2,%d1 # concat old sign,new exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exp |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| bra.w fdiv_unfl_dis |
| |
| fdiv_unfl_ena_sd: |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0x30,%d1 # use only rnd mode |
| fmov.l %d1,%fpcr # set FPCR |
| |
| bra.b fdiv_unfl_ena_cont |
| |
| # |
| # the divide operation MAY underflow: |
| # |
| fdiv_may_unfl: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fdiv.x FP_SCR0(%a6),%fp0 # execute divide |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fabs.x %fp0,%fp1 # make a copy of result |
| fcmp.b %fp1,&0x1 # is |result| > 1.b? |
| fbgt.w fdiv_normal_exit # no; no underflow occurred |
| fblt.w fdiv_unfl # yes; underflow occurred |
| |
| # |
| # we still don't know if underflow occurred. result is ~ equal to 1. but, |
| # we don't know if the result was an underflow that rounded up to a 1 |
| # or a normalized number that rounded down to a 1. so, redo the entire |
| # operation using RZ as the rounding mode to see what the pre-rounded |
| # result is. this case should be relatively rare. |
| # |
| fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 |
| |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0xc0,%d1 # keep rnd prec |
| ori.b &rz_mode*0x10,%d1 # insert RZ |
| |
| fmov.l %d1,%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fdiv.x FP_SCR0(%a6),%fp1 # execute divide |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| fabs.x %fp1 # make absolute value |
| fcmp.b %fp1,&0x1 # is |result| < 1.b? |
| fbge.w fdiv_normal_exit # no; no underflow occurred |
| bra.w fdiv_unfl # yes; underflow occurred |
| |
| ############################################################################ |
| |
| # |
| # Divide: inputs are not both normalized; what are they? |
| # |
| fdiv_not_norm: |
| mov.w (tbl_fdiv_op.b,%pc,%d1.w*2),%d1 |
| jmp (tbl_fdiv_op.b,%pc,%d1.w*1) |
| |
| swbeg &48 |
| tbl_fdiv_op: |
| short fdiv_norm - tbl_fdiv_op # NORM / NORM |
| short fdiv_inf_load - tbl_fdiv_op # NORM / ZERO |
| short fdiv_zero_load - tbl_fdiv_op # NORM / INF |
| short fdiv_res_qnan - tbl_fdiv_op # NORM / QNAN |
| short fdiv_norm - tbl_fdiv_op # NORM / DENORM |
| short fdiv_res_snan - tbl_fdiv_op # NORM / SNAN |
| short tbl_fdiv_op - tbl_fdiv_op # |
| short tbl_fdiv_op - tbl_fdiv_op # |
| |
| short fdiv_zero_load - tbl_fdiv_op # ZERO / NORM |
| short fdiv_res_operr - tbl_fdiv_op # ZERO / ZERO |
| short fdiv_zero_load - tbl_fdiv_op # ZERO / INF |
| short fdiv_res_qnan - tbl_fdiv_op # ZERO / QNAN |
| short fdiv_zero_load - tbl_fdiv_op # ZERO / DENORM |
| short fdiv_res_snan - tbl_fdiv_op # ZERO / SNAN |
| short tbl_fdiv_op - tbl_fdiv_op # |
| short tbl_fdiv_op - tbl_fdiv_op # |
| |
| short fdiv_inf_dst - tbl_fdiv_op # INF / NORM |
| short fdiv_inf_dst - tbl_fdiv_op # INF / ZERO |
| short fdiv_res_operr - tbl_fdiv_op # INF / INF |
| short fdiv_res_qnan - tbl_fdiv_op # INF / QNAN |
| short fdiv_inf_dst - tbl_fdiv_op # INF / DENORM |
| short fdiv_res_snan - tbl_fdiv_op # INF / SNAN |
| short tbl_fdiv_op - tbl_fdiv_op # |
| short tbl_fdiv_op - tbl_fdiv_op # |
| |
| short fdiv_res_qnan - tbl_fdiv_op # QNAN / NORM |
| short fdiv_res_qnan - tbl_fdiv_op # QNAN / ZERO |
| short fdiv_res_qnan - tbl_fdiv_op # QNAN / INF |
| short fdiv_res_qnan - tbl_fdiv_op # QNAN / QNAN |
| short fdiv_res_qnan - tbl_fdiv_op # QNAN / DENORM |
| short fdiv_res_snan - tbl_fdiv_op # QNAN / SNAN |
| short tbl_fdiv_op - tbl_fdiv_op # |
| short tbl_fdiv_op - tbl_fdiv_op # |
| |
| short fdiv_norm - tbl_fdiv_op # DENORM / NORM |
| short fdiv_inf_load - tbl_fdiv_op # DENORM / ZERO |
| short fdiv_zero_load - tbl_fdiv_op # DENORM / INF |
| short fdiv_res_qnan - tbl_fdiv_op # DENORM / QNAN |
| short fdiv_norm - tbl_fdiv_op # DENORM / DENORM |
| short fdiv_res_snan - tbl_fdiv_op # DENORM / SNAN |
| short tbl_fdiv_op - tbl_fdiv_op # |
| short tbl_fdiv_op - tbl_fdiv_op # |
| |
| short fdiv_res_snan - tbl_fdiv_op # SNAN / NORM |
| short fdiv_res_snan - tbl_fdiv_op # SNAN / ZERO |
| short fdiv_res_snan - tbl_fdiv_op # SNAN / INF |
| short fdiv_res_snan - tbl_fdiv_op # SNAN / QNAN |
| short fdiv_res_snan - tbl_fdiv_op # SNAN / DENORM |
| short fdiv_res_snan - tbl_fdiv_op # SNAN / SNAN |
| short tbl_fdiv_op - tbl_fdiv_op # |
| short tbl_fdiv_op - tbl_fdiv_op # |
| |
| fdiv_res_qnan: |
| bra.l res_qnan |
| fdiv_res_snan: |
| bra.l res_snan |
| fdiv_res_operr: |
| bra.l res_operr |
| |
| global fdiv_zero_load # global for fsgldiv |
| fdiv_zero_load: |
| mov.b SRC_EX(%a0),%d0 # result sign is exclusive |
| mov.b DST_EX(%a1),%d1 # or of input signs. |
| eor.b %d0,%d1 |
| bpl.b fdiv_zero_load_p # result is positive |
| fmov.s &0x80000000,%fp0 # load a -ZERO |
| mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N |
| rts |
| fdiv_zero_load_p: |
| fmov.s &0x00000000,%fp0 # load a +ZERO |
| mov.b &z_bmask,FPSR_CC(%a6) # set Z |
| rts |
| |
| # |
| # The destination was In Range and the source was a ZERO. The result, |
| # Therefore, is an INF w/ the proper sign. |
| # So, determine the sign and return a new INF (w/ the j-bit cleared). |
| # |
| global fdiv_inf_load # global for fsgldiv |
| fdiv_inf_load: |
| ori.w &dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ |
| mov.b SRC_EX(%a0),%d0 # load both signs |
| mov.b DST_EX(%a1),%d1 |
| eor.b %d0,%d1 |
| bpl.b fdiv_inf_load_p # result is positive |
| fmov.s &0xff800000,%fp0 # make result -INF |
| mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N |
| rts |
| fdiv_inf_load_p: |
| fmov.s &0x7f800000,%fp0 # make result +INF |
| mov.b &inf_bmask,FPSR_CC(%a6) # set INF |
| rts |
| |
| # |
| # The destination was an INF w/ an In Range or ZERO source, the result is |
| # an INF w/ the proper sign. |
| # The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the |
| # dst INF is set, then then j-bit of the result INF is also set). |
| # |
| global fdiv_inf_dst # global for fsgldiv |
| fdiv_inf_dst: |
| mov.b DST_EX(%a1),%d0 # load both signs |
| mov.b SRC_EX(%a0),%d1 |
| eor.b %d0,%d1 |
| bpl.b fdiv_inf_dst_p # result is positive |
| |
| fmovm.x DST(%a1),&0x80 # return result in fp0 |
| fabs.x %fp0 # clear sign bit |
| fneg.x %fp0 # set sign bit |
| mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG |
| rts |
| |
| fdiv_inf_dst_p: |
| fmovm.x DST(%a1),&0x80 # return result in fp0 |
| fabs.x %fp0 # return positive INF |
| mov.b &inf_bmask,FPSR_CC(%a6) # set INF |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # fneg(): emulates the fneg instruction # |
| # fsneg(): emulates the fsneg instruction # |
| # fdneg(): emulates the fdneg instruction # |
| # # |
| # XREF **************************************************************** # |
| # norm() - normalize a denorm to provide EXOP # |
| # scale_to_zero_src() - scale sgl/dbl source exponent # |
| # ovf_res() - return default overflow result # |
| # unf_res() - return default underflow result # |
| # res_qnan_1op() - return QNAN result # |
| # res_snan_1op() - return SNAN result # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # d0 = rnd prec,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = result # |
| # fp1 = EXOP (if exception occurred) # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Handle NANs, zeroes, and infinities as special cases. Separate # |
| # norms/denorms into ext/sgl/dbl precisions. Extended precision can be # |
| # emulated by simply setting sign bit. Sgl/dbl operands must be scaled # |
| # and an actual fneg performed to see if overflow/underflow would have # |
| # occurred. If so, return default underflow/overflow result. Else, # |
| # scale the result exponent and return result. FPSR gets set based on # |
| # the result value. # |
| # # |
| ######################################################################### |
| |
| global fsneg |
| fsneg: |
| andi.b &0x30,%d0 # clear rnd prec |
| ori.b &s_mode*0x10,%d0 # insert sgl precision |
| bra.b fneg |
| |
| global fdneg |
| fdneg: |
| andi.b &0x30,%d0 # clear rnd prec |
| ori.b &d_mode*0x10,%d0 # insert dbl prec |
| |
| global fneg |
| fneg: |
| mov.l %d0,L_SCR3(%a6) # store rnd info |
| mov.b STAG(%a6),%d1 |
| bne.w fneg_not_norm # optimize on non-norm input |
| |
| # |
| # NEGATE SIGN : norms and denorms ONLY! |
| # |
| fneg_norm: |
| andi.b &0xc0,%d0 # is precision extended? |
| bne.w fneg_not_ext # no; go handle sgl or dbl |
| |
| # |
| # precision selected is extended. so...we can not get an underflow |
| # or overflow because of rounding to the correct precision. so... |
| # skip the scaling and unscaling... |
| # |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| mov.w SRC_EX(%a0),%d0 |
| eori.w &0x8000,%d0 # negate sign |
| bpl.b fneg_norm_load # sign is positive |
| mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| fneg_norm_load: |
| mov.w %d0,FP_SCR0_EX(%a6) |
| fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| rts |
| |
| # |
| # for an extended precision DENORM, the UNFL exception bit is set |
| # the accrued bit is NOT set in this instance(no inexactness!) |
| # |
| fneg_denorm: |
| andi.b &0xc0,%d0 # is precision extended? |
| bne.b fneg_not_ext # no; go handle sgl or dbl |
| |
| bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| mov.w SRC_EX(%a0),%d0 |
| eori.w &0x8000,%d0 # negate sign |
| bpl.b fneg_denorm_done # no |
| mov.b &neg_bmask,FPSR_CC(%a6) # yes, set 'N' ccode bit |
| fneg_denorm_done: |
| mov.w %d0,FP_SCR0_EX(%a6) |
| fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| |
| btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? |
| bne.b fneg_ext_unfl_ena # yes |
| rts |
| |
| # |
| # the input is an extended DENORM and underflow is enabled in the FPCR. |
| # normalize the mantissa and add the bias of 0x6000 to the resulting negative |
| # exponent and insert back into the operand. |
| # |
| fneg_ext_unfl_ena: |
| lea FP_SCR0(%a6),%a0 # pass: ptr to operand |
| bsr.l norm # normalize result |
| neg.w %d0 # new exponent = -(shft val) |
| addi.w &0x6000,%d0 # add new bias to exponent |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp |
| andi.w &0x8000,%d1 # keep old sign |
| andi.w &0x7fff,%d0 # clear sign position |
| or.w %d1,%d0 # concat old sign, new exponent |
| mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| rts |
| |
| # |
| # operand is either single or double |
| # |
| fneg_not_ext: |
| cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec |
| bne.b fneg_dbl |
| |
| # |
| # operand is to be rounded to single precision |
| # |
| fneg_sgl: |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| bsr.l scale_to_zero_src # calculate scale factor |
| |
| cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? |
| bge.w fneg_sd_unfl # yes; go handle underflow |
| cmpi.l %d0,&0x3fff-0x407e # will move in overflow? |
| beq.w fneg_sd_may_ovfl # maybe; go check |
| blt.w fneg_sd_ovfl # yes; go handle overflow |
| |
| # |
| # operand will NOT overflow or underflow when moved in to the fp reg file |
| # |
| fneg_sd_normal: |
| fmov.l &0x0,%fpsr # clear FPSR |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fneg.x FP_SCR0(%a6),%fp0 # perform negation |
| |
| fmov.l %fpsr,%d1 # save FPSR |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fneg_sd_normal_exit: |
| mov.l %d2,-(%sp) # save d2 |
| fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp |
| mov.w %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| sub.l %d0,%d1 # add scale factor |
| andi.w &0x8000,%d2 # keep old sign |
| or.w %d1,%d2 # concat old sign,new exp |
| mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| rts |
| |
| # |
| # operand is to be rounded to double precision |
| # |
| fneg_dbl: |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| bsr.l scale_to_zero_src # calculate scale factor |
| |
| cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? |
| bge.b fneg_sd_unfl # yes; go handle underflow |
| cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? |
| beq.w fneg_sd_may_ovfl # maybe; go check |
| blt.w fneg_sd_ovfl # yes; go handle overflow |
| bra.w fneg_sd_normal # no; ho handle normalized op |
| |
| # |
| # operand WILL underflow when moved in to the fp register file |
| # |
| fneg_sd_unfl: |
| bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| |
| eori.b &0x80,FP_SCR0_EX(%a6) # negate sign |
| bpl.b fneg_sd_unfl_tst |
| bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit |
| |
| # if underflow or inexact is enabled, go calculate EXOP first. |
| fneg_sd_unfl_tst: |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| bne.b fneg_sd_unfl_ena # yes |
| |
| fneg_sd_unfl_dis: |
| lea FP_SCR0(%a6),%a0 # pass: result addr |
| mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| bsr.l unf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' |
| fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| rts |
| |
| # |
| # operand will underflow AND underflow is enabled. |
| # Therefore, we must return the result rounded to extended precision. |
| # |
| fneg_sd_unfl_ena: |
| mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) |
| mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) |
| mov.w FP_SCR0_EX(%a6),%d1 # load current exponent |
| |
| mov.l %d2,-(%sp) # save d2 |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # subtract scale factor |
| addi.l &0x6000,%d1 # add new bias |
| andi.w &0x7fff,%d1 |
| or.w %d2,%d1 # concat new sign,new exp |
| mov.w %d1,FP_SCR1_EX(%a6) # insert new exp |
| fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 |
| mov.l (%sp)+,%d2 # restore d2 |
| bra.b fneg_sd_unfl_dis |
| |
| # |
| # operand WILL overflow. |
| # |
| fneg_sd_ovfl: |
| fmov.l &0x0,%fpsr # clear FPSR |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fneg.x FP_SCR0(%a6),%fp0 # perform negation |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| fmov.l %fpsr,%d1 # save FPSR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fneg_sd_ovfl_tst: |
| or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| bne.b fneg_sd_ovfl_ena # yes |
| |
| # |
| # OVFL is not enabled; therefore, we must create the default result by |
| # calling ovf_res(). |
| # |
| fneg_sd_ovfl_dis: |
| btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| sne %d1 # set sign param accordingly |
| mov.l L_SCR3(%a6),%d0 # pass: prec,mode |
| bsr.l ovf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| fmovm.x (%a0),&0x80 # return default result in fp0 |
| rts |
| |
| # |
| # OVFL is enabled. |
| # the INEX2 bit has already been updated by the round to the correct precision. |
| # now, round to extended(and don't alter the FPSR). |
| # |
| fneg_sd_ovfl_ena: |
| mov.l %d2,-(%sp) # save d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # add scale factor |
| subi.l &0x6000,%d1 # subtract bias |
| andi.w &0x7fff,%d1 |
| or.w %d2,%d1 # concat sign,exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| mov.l (%sp)+,%d2 # restore d2 |
| bra.b fneg_sd_ovfl_dis |
| |
| # |
| # the move in MAY underflow. so... |
| # |
| fneg_sd_may_ovfl: |
| fmov.l &0x0,%fpsr # clear FPSR |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fneg.x FP_SCR0(%a6),%fp0 # perform negation |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fabs.x %fp0,%fp1 # make a copy of result |
| fcmp.b %fp1,&0x2 # is |result| >= 2.b? |
| fbge.w fneg_sd_ovfl_tst # yes; overflow has occurred |
| |
| # no, it didn't overflow; we have correct result |
| bra.w fneg_sd_normal_exit |
| |
| ########################################################################## |
| |
| # |
| # input is not normalized; what is it? |
| # |
| fneg_not_norm: |
| cmpi.b %d1,&DENORM # weed out DENORM |
| beq.w fneg_denorm |
| cmpi.b %d1,&SNAN # weed out SNAN |
| beq.l res_snan_1op |
| cmpi.b %d1,&QNAN # weed out QNAN |
| beq.l res_qnan_1op |
| |
| # |
| # do the fneg; at this point, only possible ops are ZERO and INF. |
| # use fneg to determine ccodes. |
| # prec:mode should be zero at this point but it won't affect answer anyways. |
| # |
| fneg.x SRC_EX(%a0),%fp0 # do fneg |
| fmov.l %fpsr,%d0 |
| rol.l &0x8,%d0 # put ccodes in lo byte |
| mov.b %d0,FPSR_CC(%a6) # insert correct ccodes |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # ftst(): emulates the ftest instruction # |
| # # |
| # XREF **************************************************************** # |
| # res{s,q}nan_1op() - set NAN result for monadic instruction # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # none # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Check the source operand tag (STAG) and set the FPCR according # |
| # to the operand type and sign. # |
| # # |
| ######################################################################### |
| |
| global ftst |
| ftst: |
| mov.b STAG(%a6),%d1 |
| bne.b ftst_not_norm # optimize on non-norm input |
| |
| # |
| # Norm: |
| # |
| ftst_norm: |
| tst.b SRC_EX(%a0) # is operand negative? |
| bmi.b ftst_norm_m # yes |
| rts |
| ftst_norm_m: |
| mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| rts |
| |
| # |
| # input is not normalized; what is it? |
| # |
| ftst_not_norm: |
| cmpi.b %d1,&ZERO # weed out ZERO |
| beq.b ftst_zero |
| cmpi.b %d1,&INF # weed out INF |
| beq.b ftst_inf |
| cmpi.b %d1,&SNAN # weed out SNAN |
| beq.l res_snan_1op |
| cmpi.b %d1,&QNAN # weed out QNAN |
| beq.l res_qnan_1op |
| |
| # |
| # Denorm: |
| # |
| ftst_denorm: |
| tst.b SRC_EX(%a0) # is operand negative? |
| bmi.b ftst_denorm_m # yes |
| rts |
| ftst_denorm_m: |
| mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| rts |
| |
| # |
| # Infinity: |
| # |
| ftst_inf: |
| tst.b SRC_EX(%a0) # is operand negative? |
| bmi.b ftst_inf_m # yes |
| ftst_inf_p: |
| mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit |
| rts |
| ftst_inf_m: |
| mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits |
| rts |
| |
| # |
| # Zero: |
| # |
| ftst_zero: |
| tst.b SRC_EX(%a0) # is operand negative? |
| bmi.b ftst_zero_m # yes |
| ftst_zero_p: |
| mov.b &z_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| rts |
| ftst_zero_m: |
| mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # fint(): emulates the fint instruction # |
| # # |
| # XREF **************************************************************** # |
| # res_{s,q}nan_1op() - set NAN result for monadic operation # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # d0 = round precision/mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = result # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Separate according to operand type. Unnorms don't pass through # |
| # here. For norms, load the rounding mode/prec, execute a "fint", then # |
| # store the resulting FPSR bits. # |
| # For denorms, force the j-bit to a one and do the same as for # |
| # norms. Denorms are so low that the answer will either be a zero or a # |
| # one. # |
| # For zeroes/infs/NANs, return the same while setting the FPSR # |
| # as appropriate. # |
| # # |
| ######################################################################### |
| |
| global fint |
| fint: |
| mov.b STAG(%a6),%d1 |
| bne.b fint_not_norm # optimize on non-norm input |
| |
| # |
| # Norm: |
| # |
| fint_norm: |
| andi.b &0x30,%d0 # set prec = ext |
| |
| fmov.l %d0,%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fint.x SRC(%a0),%fp0 # execute fint |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| fmov.l %fpsr,%d0 # save FPSR |
| or.l %d0,USER_FPSR(%a6) # set exception bits |
| |
| rts |
| |
| # |
| # input is not normalized; what is it? |
| # |
| fint_not_norm: |
| cmpi.b %d1,&ZERO # weed out ZERO |
| beq.b fint_zero |
| cmpi.b %d1,&INF # weed out INF |
| beq.b fint_inf |
| cmpi.b %d1,&DENORM # weed out DENORM |
| beq.b fint_denorm |
| cmpi.b %d1,&SNAN # weed out SNAN |
| beq.l res_snan_1op |
| bra.l res_qnan_1op # weed out QNAN |
| |
| # |
| # Denorm: |
| # |
| # for DENORMs, the result will be either (+/-)ZERO or (+/-)1. |
| # also, the INEX2 and AINEX exception bits will be set. |
| # so, we could either set these manually or force the DENORM |
| # to a very small NORM and ship it to the NORM routine. |
| # I do the latter. |
| # |
| fint_denorm: |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp |
| mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM |
| lea FP_SCR0(%a6),%a0 |
| bra.b fint_norm |
| |
| # |
| # Zero: |
| # |
| fint_zero: |
| tst.b SRC_EX(%a0) # is ZERO negative? |
| bmi.b fint_zero_m # yes |
| fint_zero_p: |
| fmov.s &0x00000000,%fp0 # return +ZERO in fp0 |
| mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit |
| rts |
| fint_zero_m: |
| fmov.s &0x80000000,%fp0 # return -ZERO in fp0 |
| mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits |
| rts |
| |
| # |
| # Infinity: |
| # |
| fint_inf: |
| fmovm.x SRC(%a0),&0x80 # return result in fp0 |
| tst.b SRC_EX(%a0) # is INF negative? |
| bmi.b fint_inf_m # yes |
| fint_inf_p: |
| mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit |
| rts |
| fint_inf_m: |
| mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # fintrz(): emulates the fintrz instruction # |
| # # |
| # XREF **************************************************************** # |
| # res_{s,q}nan_1op() - set NAN result for monadic operation # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # d0 = round precision/mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = result # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Separate according to operand type. Unnorms don't pass through # |
| # here. For norms, load the rounding mode/prec, execute a "fintrz", # |
| # then store the resulting FPSR bits. # |
| # For denorms, force the j-bit to a one and do the same as for # |
| # norms. Denorms are so low that the answer will either be a zero or a # |
| # one. # |
| # For zeroes/infs/NANs, return the same while setting the FPSR # |
| # as appropriate. # |
| # # |
| ######################################################################### |
| |
| global fintrz |
| fintrz: |
| mov.b STAG(%a6),%d1 |
| bne.b fintrz_not_norm # optimize on non-norm input |
| |
| # |
| # Norm: |
| # |
| fintrz_norm: |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fintrz.x SRC(%a0),%fp0 # execute fintrz |
| |
| fmov.l %fpsr,%d0 # save FPSR |
| or.l %d0,USER_FPSR(%a6) # set exception bits |
| |
| rts |
| |
| # |
| # input is not normalized; what is it? |
| # |
| fintrz_not_norm: |
| cmpi.b %d1,&ZERO # weed out ZERO |
| beq.b fintrz_zero |
| cmpi.b %d1,&INF # weed out INF |
| beq.b fintrz_inf |
| cmpi.b %d1,&DENORM # weed out DENORM |
| beq.b fintrz_denorm |
| cmpi.b %d1,&SNAN # weed out SNAN |
| beq.l res_snan_1op |
| bra.l res_qnan_1op # weed out QNAN |
| |
| # |
| # Denorm: |
| # |
| # for DENORMs, the result will be (+/-)ZERO. |
| # also, the INEX2 and AINEX exception bits will be set. |
| # so, we could either set these manually or force the DENORM |
| # to a very small NORM and ship it to the NORM routine. |
| # I do the latter. |
| # |
| fintrz_denorm: |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp |
| mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM |
| lea FP_SCR0(%a6),%a0 |
| bra.b fintrz_norm |
| |
| # |
| # Zero: |
| # |
| fintrz_zero: |
| tst.b SRC_EX(%a0) # is ZERO negative? |
| bmi.b fintrz_zero_m # yes |
| fintrz_zero_p: |
| fmov.s &0x00000000,%fp0 # return +ZERO in fp0 |
| mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit |
| rts |
| fintrz_zero_m: |
| fmov.s &0x80000000,%fp0 # return -ZERO in fp0 |
| mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits |
| rts |
| |
| # |
| # Infinity: |
| # |
| fintrz_inf: |
| fmovm.x SRC(%a0),&0x80 # return result in fp0 |
| tst.b SRC_EX(%a0) # is INF negative? |
| bmi.b fintrz_inf_m # yes |
| fintrz_inf_p: |
| mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit |
| rts |
| fintrz_inf_m: |
| mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # fabs(): emulates the fabs instruction # |
| # fsabs(): emulates the fsabs instruction # |
| # fdabs(): emulates the fdabs instruction # |
| # # |
| # XREF **************************************************************** # |
| # norm() - normalize denorm mantissa to provide EXOP # |
| # scale_to_zero_src() - make exponent. = 0; get scale factor # |
| # unf_res() - calculate underflow result # |
| # ovf_res() - calculate overflow result # |
| # res_{s,q}nan_1op() - set NAN result for monadic operation # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # d0 = rnd precision/mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = result # |
| # fp1 = EXOP (if exception occurred) # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Handle NANs, infinities, and zeroes as special cases. Divide # |
| # norms into extended, single, and double precision. # |
| # Simply clear sign for extended precision norm. Ext prec denorm # |
| # gets an EXOP created for it since it's an underflow. # |
| # Double and single precision can overflow and underflow. First, # |
| # scale the operand such that the exponent is zero. Perform an "fabs" # |
| # using the correct rnd mode/prec. Check to see if the original # |
| # exponent would take an exception. If so, use unf_res() or ovf_res() # |
| # to calculate the default result. Also, create the EXOP for the # |
| # exceptional case. If no exception should occur, insert the correct # |
| # result exponent and return. # |
| # Unnorms don't pass through here. # |
| # # |
| ######################################################################### |
| |
| global fsabs |
| fsabs: |
| andi.b &0x30,%d0 # clear rnd prec |
| ori.b &s_mode*0x10,%d0 # insert sgl precision |
| bra.b fabs |
| |
| global fdabs |
| fdabs: |
| andi.b &0x30,%d0 # clear rnd prec |
| ori.b &d_mode*0x10,%d0 # insert dbl precision |
| |
| global fabs |
| fabs: |
| mov.l %d0,L_SCR3(%a6) # store rnd info |
| mov.b STAG(%a6),%d1 |
| bne.w fabs_not_norm # optimize on non-norm input |
| |
| # |
| # ABSOLUTE VALUE: norms and denorms ONLY! |
| # |
| fabs_norm: |
| andi.b &0xc0,%d0 # is precision extended? |
| bne.b fabs_not_ext # no; go handle sgl or dbl |
| |
| # |
| # precision selected is extended. so...we can not get an underflow |
| # or overflow because of rounding to the correct precision. so... |
| # skip the scaling and unscaling... |
| # |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| mov.w SRC_EX(%a0),%d1 |
| bclr &15,%d1 # force absolute value |
| mov.w %d1,FP_SCR0_EX(%a6) # insert exponent |
| fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| rts |
| |
| # |
| # for an extended precision DENORM, the UNFL exception bit is set |
| # the accrued bit is NOT set in this instance(no inexactness!) |
| # |
| fabs_denorm: |
| andi.b &0xc0,%d0 # is precision extended? |
| bne.b fabs_not_ext # no |
| |
| bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| mov.w SRC_EX(%a0),%d0 |
| bclr &15,%d0 # clear sign |
| mov.w %d0,FP_SCR0_EX(%a6) # insert exponent |
| |
| fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| |
| btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? |
| bne.b fabs_ext_unfl_ena |
| rts |
| |
| # |
| # the input is an extended DENORM and underflow is enabled in the FPCR. |
| # normalize the mantissa and add the bias of 0x6000 to the resulting negative |
| # exponent and insert back into the operand. |
| # |
| fabs_ext_unfl_ena: |
| lea FP_SCR0(%a6),%a0 # pass: ptr to operand |
| bsr.l norm # normalize result |
| neg.w %d0 # new exponent = -(shft val) |
| addi.w &0x6000,%d0 # add new bias to exponent |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp |
| andi.w &0x8000,%d1 # keep old sign |
| andi.w &0x7fff,%d0 # clear sign position |
| or.w %d1,%d0 # concat old sign, new exponent |
| mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| rts |
| |
| # |
| # operand is either single or double |
| # |
| fabs_not_ext: |
| cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec |
| bne.b fabs_dbl |
| |
| # |
| # operand is to be rounded to single precision |
| # |
| fabs_sgl: |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| bsr.l scale_to_zero_src # calculate scale factor |
| |
| cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? |
| bge.w fabs_sd_unfl # yes; go handle underflow |
| cmpi.l %d0,&0x3fff-0x407e # will move in overflow? |
| beq.w fabs_sd_may_ovfl # maybe; go check |
| blt.w fabs_sd_ovfl # yes; go handle overflow |
| |
| # |
| # operand will NOT overflow or underflow when moved in to the fp reg file |
| # |
| fabs_sd_normal: |
| fmov.l &0x0,%fpsr # clear FPSR |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fabs.x FP_SCR0(%a6),%fp0 # perform absolute |
| |
| fmov.l %fpsr,%d1 # save FPSR |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fabs_sd_normal_exit: |
| mov.l %d2,-(%sp) # save d2 |
| fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| sub.l %d0,%d1 # add scale factor |
| andi.w &0x8000,%d2 # keep old sign |
| or.w %d1,%d2 # concat old sign,new exp |
| mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| rts |
| |
| # |
| # operand is to be rounded to double precision |
| # |
| fabs_dbl: |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| bsr.l scale_to_zero_src # calculate scale factor |
| |
| cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? |
| bge.b fabs_sd_unfl # yes; go handle underflow |
| cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? |
| beq.w fabs_sd_may_ovfl # maybe; go check |
| blt.w fabs_sd_ovfl # yes; go handle overflow |
| bra.w fabs_sd_normal # no; ho handle normalized op |
| |
| # |
| # operand WILL underflow when moved in to the fp register file |
| # |
| fabs_sd_unfl: |
| bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| |
| bclr &0x7,FP_SCR0_EX(%a6) # force absolute value |
| |
| # if underflow or inexact is enabled, go calculate EXOP first. |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| bne.b fabs_sd_unfl_ena # yes |
| |
| fabs_sd_unfl_dis: |
| lea FP_SCR0(%a6),%a0 # pass: result addr |
| mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| bsr.l unf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode |
| fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| rts |
| |
| # |
| # operand will underflow AND underflow is enabled. |
| # Therefore, we must return the result rounded to extended precision. |
| # |
| fabs_sd_unfl_ena: |
| mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) |
| mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) |
| mov.w FP_SCR0_EX(%a6),%d1 # load current exponent |
| |
| mov.l %d2,-(%sp) # save d2 |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # subtract scale factor |
| addi.l &0x6000,%d1 # add new bias |
| andi.w &0x7fff,%d1 |
| or.w %d2,%d1 # concat new sign,new exp |
| mov.w %d1,FP_SCR1_EX(%a6) # insert new exp |
| fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 |
| mov.l (%sp)+,%d2 # restore d2 |
| bra.b fabs_sd_unfl_dis |
| |
| # |
| # operand WILL overflow. |
| # |
| fabs_sd_ovfl: |
| fmov.l &0x0,%fpsr # clear FPSR |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fabs.x FP_SCR0(%a6),%fp0 # perform absolute |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| fmov.l %fpsr,%d1 # save FPSR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fabs_sd_ovfl_tst: |
| or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| bne.b fabs_sd_ovfl_ena # yes |
| |
| # |
| # OVFL is not enabled; therefore, we must create the default result by |
| # calling ovf_res(). |
| # |
| fabs_sd_ovfl_dis: |
| btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| sne %d1 # set sign param accordingly |
| mov.l L_SCR3(%a6),%d0 # pass: prec,mode |
| bsr.l ovf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| fmovm.x (%a0),&0x80 # return default result in fp0 |
| rts |
| |
| # |
| # OVFL is enabled. |
| # the INEX2 bit has already been updated by the round to the correct precision. |
| # now, round to extended(and don't alter the FPSR). |
| # |
| fabs_sd_ovfl_ena: |
| mov.l %d2,-(%sp) # save d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # add scale factor |
| subi.l &0x6000,%d1 # subtract bias |
| andi.w &0x7fff,%d1 |
| or.w %d2,%d1 # concat sign,exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| mov.l (%sp)+,%d2 # restore d2 |
| bra.b fabs_sd_ovfl_dis |
| |
| # |
| # the move in MAY underflow. so... |
| # |
| fabs_sd_may_ovfl: |
| fmov.l &0x0,%fpsr # clear FPSR |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fabs.x FP_SCR0(%a6),%fp0 # perform absolute |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fabs.x %fp0,%fp1 # make a copy of result |
| fcmp.b %fp1,&0x2 # is |result| >= 2.b? |
| fbge.w fabs_sd_ovfl_tst # yes; overflow has occurred |
| |
| # no, it didn't overflow; we have correct result |
| bra.w fabs_sd_normal_exit |
| |
| ########################################################################## |
| |
| # |
| # input is not normalized; what is it? |
| # |
| fabs_not_norm: |
| cmpi.b %d1,&DENORM # weed out DENORM |
| beq.w fabs_denorm |
| cmpi.b %d1,&SNAN # weed out SNAN |
| beq.l res_snan_1op |
| cmpi.b %d1,&QNAN # weed out QNAN |
| beq.l res_qnan_1op |
| |
| fabs.x SRC(%a0),%fp0 # force absolute value |
| |
| cmpi.b %d1,&INF # weed out INF |
| beq.b fabs_inf |
| fabs_zero: |
| mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit |
| rts |
| fabs_inf: |
| mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # fcmp(): fp compare op routine # |
| # # |
| # XREF **************************************************************** # |
| # res_qnan() - return QNAN result # |
| # res_snan() - return SNAN result # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # a1 = pointer to extended precision destination operand # |
| # d0 = round prec/mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # None # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Handle NANs and denorms as special cases. For everything else, # |
| # just use the actual fcmp instruction to produce the correct condition # |
| # codes. # |
| # # |
| ######################################################################### |
| |
| global fcmp |
| fcmp: |
| clr.w %d1 |
| mov.b DTAG(%a6),%d1 |
| lsl.b &0x3,%d1 |
| or.b STAG(%a6),%d1 |
| bne.b fcmp_not_norm # optimize on non-norm input |
| |
| # |
| # COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs |
| # |
| fcmp_norm: |
| fmovm.x DST(%a1),&0x80 # load dst op |
| |
| fcmp.x %fp0,SRC(%a0) # do compare |
| |
| fmov.l %fpsr,%d0 # save FPSR |
| rol.l &0x8,%d0 # extract ccode bits |
| mov.b %d0,FPSR_CC(%a6) # set ccode bits(no exc bits are set) |
| |
| rts |
| |
| # |
| # fcmp: inputs are not both normalized; what are they? |
| # |
| fcmp_not_norm: |
| mov.w (tbl_fcmp_op.b,%pc,%d1.w*2),%d1 |
| jmp (tbl_fcmp_op.b,%pc,%d1.w*1) |
| |
| swbeg &48 |
| tbl_fcmp_op: |
| short fcmp_norm - tbl_fcmp_op # NORM - NORM |
| short fcmp_norm - tbl_fcmp_op # NORM - ZERO |
| short fcmp_norm - tbl_fcmp_op # NORM - INF |
| short fcmp_res_qnan - tbl_fcmp_op # NORM - QNAN |
| short fcmp_nrm_dnrm - tbl_fcmp_op # NORM - DENORM |
| short fcmp_res_snan - tbl_fcmp_op # NORM - SNAN |
| short tbl_fcmp_op - tbl_fcmp_op # |
| short tbl_fcmp_op - tbl_fcmp_op # |
| |
| short fcmp_norm - tbl_fcmp_op # ZERO - NORM |
| short fcmp_norm - tbl_fcmp_op # ZERO - ZERO |
| short fcmp_norm - tbl_fcmp_op # ZERO - INF |
| short fcmp_res_qnan - tbl_fcmp_op # ZERO - QNAN |
| short fcmp_dnrm_s - tbl_fcmp_op # ZERO - DENORM |
| short fcmp_res_snan - tbl_fcmp_op # ZERO - SNAN |
| short tbl_fcmp_op - tbl_fcmp_op # |
| short tbl_fcmp_op - tbl_fcmp_op # |
| |
| short fcmp_norm - tbl_fcmp_op # INF - NORM |
| short fcmp_norm - tbl_fcmp_op # INF - ZERO |
| short fcmp_norm - tbl_fcmp_op # INF - INF |
| short fcmp_res_qnan - tbl_fcmp_op # INF - QNAN |
| short fcmp_dnrm_s - tbl_fcmp_op # INF - DENORM |
| short fcmp_res_snan - tbl_fcmp_op # INF - SNAN |
| short tbl_fcmp_op - tbl_fcmp_op # |
| short tbl_fcmp_op - tbl_fcmp_op # |
| |
| short fcmp_res_qnan - tbl_fcmp_op # QNAN - NORM |
| short fcmp_res_qnan - tbl_fcmp_op # QNAN - ZERO |
| short fcmp_res_qnan - tbl_fcmp_op # QNAN - INF |
| short fcmp_res_qnan - tbl_fcmp_op # QNAN - QNAN |
| short fcmp_res_qnan - tbl_fcmp_op # QNAN - DENORM |
| short fcmp_res_snan - tbl_fcmp_op # QNAN - SNAN |
| short tbl_fcmp_op - tbl_fcmp_op # |
| short tbl_fcmp_op - tbl_fcmp_op # |
| |
| short fcmp_dnrm_nrm - tbl_fcmp_op # DENORM - NORM |
| short fcmp_dnrm_d - tbl_fcmp_op # DENORM - ZERO |
| short fcmp_dnrm_d - tbl_fcmp_op # DENORM - INF |
| short fcmp_res_qnan - tbl_fcmp_op # DENORM - QNAN |
| short fcmp_dnrm_sd - tbl_fcmp_op # DENORM - DENORM |
| short fcmp_res_snan - tbl_fcmp_op # DENORM - SNAN |
| short tbl_fcmp_op - tbl_fcmp_op # |
| short tbl_fcmp_op - tbl_fcmp_op # |
| |
| short fcmp_res_snan - tbl_fcmp_op # SNAN - NORM |
| short fcmp_res_snan - tbl_fcmp_op # SNAN - ZERO |
| short fcmp_res_snan - tbl_fcmp_op # SNAN - INF |
| short fcmp_res_snan - tbl_fcmp_op # SNAN - QNAN |
| short fcmp_res_snan - tbl_fcmp_op # SNAN - DENORM |
| short fcmp_res_snan - tbl_fcmp_op # SNAN - SNAN |
| short tbl_fcmp_op - tbl_fcmp_op # |
| short tbl_fcmp_op - tbl_fcmp_op # |
| |
| # unlike all other functions for QNAN and SNAN, fcmp does NOT set the |
| # 'N' bit for a negative QNAN or SNAN input so we must squelch it here. |
| fcmp_res_qnan: |
| bsr.l res_qnan |
| andi.b &0xf7,FPSR_CC(%a6) |
| rts |
| fcmp_res_snan: |
| bsr.l res_snan |
| andi.b &0xf7,FPSR_CC(%a6) |
| rts |
| |
| # |
| # DENORMs are a little more difficult. |
| # If you have a 2 DENORMs, then you can just force the j-bit to a one |
| # and use the fcmp_norm routine. |
| # If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one |
| # and use the fcmp_norm routine. |
| # If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also. |
| # But with a DENORM and a NORM of the same sign, the neg bit is set if the |
| # (1) signs are (+) and the DENORM is the dst or |
| # (2) signs are (-) and the DENORM is the src |
| # |
| |
| fcmp_dnrm_s: |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),%d0 |
| bset &31,%d0 # DENORM src; make into small norm |
| mov.l %d0,FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| lea FP_SCR0(%a6),%a0 |
| bra.w fcmp_norm |
| |
| fcmp_dnrm_d: |
| mov.l DST_EX(%a1),FP_SCR0_EX(%a6) |
| mov.l DST_HI(%a1),%d0 |
| bset &31,%d0 # DENORM src; make into small norm |
| mov.l %d0,FP_SCR0_HI(%a6) |
| mov.l DST_LO(%a1),FP_SCR0_LO(%a6) |
| lea FP_SCR0(%a6),%a1 |
| bra.w fcmp_norm |
| |
| fcmp_dnrm_sd: |
| mov.w DST_EX(%a1),FP_SCR1_EX(%a6) |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l DST_HI(%a1),%d0 |
| bset &31,%d0 # DENORM dst; make into small norm |
| mov.l %d0,FP_SCR1_HI(%a6) |
| mov.l SRC_HI(%a0),%d0 |
| bset &31,%d0 # DENORM dst; make into small norm |
| mov.l %d0,FP_SCR0_HI(%a6) |
| mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| lea FP_SCR1(%a6),%a1 |
| lea FP_SCR0(%a6),%a0 |
| bra.w fcmp_norm |
| |
| fcmp_nrm_dnrm: |
| mov.b SRC_EX(%a0),%d0 # determine if like signs |
| mov.b DST_EX(%a1),%d1 |
| eor.b %d0,%d1 |
| bmi.w fcmp_dnrm_s |
| |
| # signs are the same, so must determine the answer ourselves. |
| tst.b %d0 # is src op negative? |
| bmi.b fcmp_nrm_dnrm_m # yes |
| rts |
| fcmp_nrm_dnrm_m: |
| mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit |
| rts |
| |
| fcmp_dnrm_nrm: |
| mov.b SRC_EX(%a0),%d0 # determine if like signs |
| mov.b DST_EX(%a1),%d1 |
| eor.b %d0,%d1 |
| bmi.w fcmp_dnrm_d |
| |
| # signs are the same, so must determine the answer ourselves. |
| tst.b %d0 # is src op negative? |
| bpl.b fcmp_dnrm_nrm_m # no |
| rts |
| fcmp_dnrm_nrm_m: |
| mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # fsglmul(): emulates the fsglmul instruction # |
| # # |
| # XREF **************************************************************** # |
| # scale_to_zero_src() - scale src exponent to zero # |
| # scale_to_zero_dst() - scale dst exponent to zero # |
| # unf_res4() - return default underflow result for sglop # |
| # ovf_res() - return default overflow result # |
| # res_qnan() - return QNAN result # |
| # res_snan() - return SNAN result # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # a1 = pointer to extended precision destination operand # |
| # d0 rnd prec,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = result # |
| # fp1 = EXOP (if exception occurred) # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Handle NANs, infinities, and zeroes as special cases. Divide # |
| # norms/denorms into ext/sgl/dbl precision. # |
| # For norms/denorms, scale the exponents such that a multiply # |
| # instruction won't cause an exception. Use the regular fsglmul to # |
| # compute a result. Check if the regular operands would have taken # |
| # an exception. If so, return the default overflow/underflow result # |
| # and return the EXOP if exceptions are enabled. Else, scale the # |
| # result operand to the proper exponent. # |
| # # |
| ######################################################################### |
| |
| global fsglmul |
| fsglmul: |
| mov.l %d0,L_SCR3(%a6) # store rnd info |
| |
| clr.w %d1 |
| mov.b DTAG(%a6),%d1 |
| lsl.b &0x3,%d1 |
| or.b STAG(%a6),%d1 |
| |
| bne.w fsglmul_not_norm # optimize on non-norm input |
| |
| fsglmul_norm: |
| mov.w DST_EX(%a1),FP_SCR1_EX(%a6) |
| mov.l DST_HI(%a1),FP_SCR1_HI(%a6) |
| mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| |
| bsr.l scale_to_zero_src # scale exponent |
| mov.l %d0,-(%sp) # save scale factor 1 |
| |
| bsr.l scale_to_zero_dst # scale dst exponent |
| |
| add.l (%sp)+,%d0 # SCALE_FACTOR = scale1 + scale2 |
| |
| cmpi.l %d0,&0x3fff-0x7ffe # would result ovfl? |
| beq.w fsglmul_may_ovfl # result may rnd to overflow |
| blt.w fsglmul_ovfl # result will overflow |
| |
| cmpi.l %d0,&0x3fff+0x0001 # would result unfl? |
| beq.w fsglmul_may_unfl # result may rnd to no unfl |
| bgt.w fsglmul_unfl # result will underflow |
| |
| fsglmul_normal: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fsglmul_normal_exit: |
| fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| mov.l %d2,-(%sp) # save d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # add scale factor |
| or.w %d2,%d1 # concat old sign,new exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| rts |
| |
| fsglmul_ovfl: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fsglmul_ovfl_tst: |
| |
| # save setting this until now because this is where fsglmul_may_ovfl may jump in |
| or.l &ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| bne.b fsglmul_ovfl_ena # yes |
| |
| fsglmul_ovfl_dis: |
| btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| sne %d1 # set sign param accordingly |
| mov.l L_SCR3(%a6),%d0 # pass prec:rnd |
| andi.b &0x30,%d0 # force prec = ext |
| bsr.l ovf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| fmovm.x (%a0),&0x80 # return default result in fp0 |
| rts |
| |
| fsglmul_ovfl_ena: |
| fmovm.x &0x80,FP_SCR0(%a6) # move result to stack |
| |
| mov.l %d2,-(%sp) # save d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| sub.l %d0,%d1 # add scale factor |
| subi.l &0x6000,%d1 # subtract bias |
| andi.w &0x7fff,%d1 |
| andi.w &0x8000,%d2 # keep old sign |
| or.w %d2,%d1 # concat old sign,new exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| bra.b fsglmul_ovfl_dis |
| |
| fsglmul_may_ovfl: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fabs.x %fp0,%fp1 # make a copy of result |
| fcmp.b %fp1,&0x2 # is |result| >= 2.b? |
| fbge.w fsglmul_ovfl_tst # yes; overflow has occurred |
| |
| # no, it didn't overflow; we have correct result |
| bra.w fsglmul_normal_exit |
| |
| fsglmul_unfl: |
| bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l &rz_mode*0x10,%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| bne.b fsglmul_unfl_ena # yes |
| |
| fsglmul_unfl_dis: |
| fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| |
| lea FP_SCR0(%a6),%a0 # pass: result addr |
| mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| bsr.l unf_res4 # calculate default result |
| or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set |
| fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| rts |
| |
| # |
| # UNFL is enabled. |
| # |
| fsglmul_unfl_ena: |
| fmovm.x FP_SCR1(%a6),&0x40 # load dst op |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| fmovm.x &0x40,FP_SCR0(%a6) # save result to stack |
| mov.l %d2,-(%sp) # save d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # add scale factor |
| addi.l &0x6000,%d1 # add bias |
| andi.w &0x7fff,%d1 |
| or.w %d2,%d1 # concat old sign,new exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| bra.w fsglmul_unfl_dis |
| |
| fsglmul_may_unfl: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fabs.x %fp0,%fp1 # make a copy of result |
| fcmp.b %fp1,&0x2 # is |result| > 2.b? |
| fbgt.w fsglmul_normal_exit # no; no underflow occurred |
| fblt.w fsglmul_unfl # yes; underflow occurred |
| |
| # |
| # we still don't know if underflow occurred. result is ~ equal to 2. but, |
| # we don't know if the result was an underflow that rounded up to a 2 or |
| # a normalized number that rounded down to a 2. so, redo the entire operation |
| # using RZ as the rounding mode to see what the pre-rounded result is. |
| # this case should be relatively rare. |
| # |
| fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 |
| |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0xc0,%d1 # keep rnd prec |
| ori.b &rz_mode*0x10,%d1 # insert RZ |
| |
| fmov.l %d1,%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| fabs.x %fp1 # make absolute value |
| fcmp.b %fp1,&0x2 # is |result| < 2.b? |
| fbge.w fsglmul_normal_exit # no; no underflow occurred |
| bra.w fsglmul_unfl # yes, underflow occurred |
| |
| ############################################################################## |
| |
| # |
| # Single Precision Multiply: inputs are not both normalized; what are they? |
| # |
| fsglmul_not_norm: |
| mov.w (tbl_fsglmul_op.b,%pc,%d1.w*2),%d1 |
| jmp (tbl_fsglmul_op.b,%pc,%d1.w*1) |
| |
| swbeg &48 |
| tbl_fsglmul_op: |
| short fsglmul_norm - tbl_fsglmul_op # NORM x NORM |
| short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO |
| short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF |
| short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN |
| short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM |
| short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN |
| short tbl_fsglmul_op - tbl_fsglmul_op # |
| short tbl_fsglmul_op - tbl_fsglmul_op # |
| |
| short fsglmul_zero - tbl_fsglmul_op # ZERO x NORM |
| short fsglmul_zero - tbl_fsglmul_op # ZERO x ZERO |
| short fsglmul_res_operr - tbl_fsglmul_op # ZERO x INF |
| short fsglmul_res_qnan - tbl_fsglmul_op # ZERO x QNAN |
| short fsglmul_zero - tbl_fsglmul_op # ZERO x DENORM |
| short fsglmul_res_snan - tbl_fsglmul_op # ZERO x SNAN |
| short tbl_fsglmul_op - tbl_fsglmul_op # |
| short tbl_fsglmul_op - tbl_fsglmul_op # |
| |
| short fsglmul_inf_dst - tbl_fsglmul_op # INF x NORM |
| short fsglmul_res_operr - tbl_fsglmul_op # INF x ZERO |
| short fsglmul_inf_dst - tbl_fsglmul_op # INF x INF |
| short fsglmul_res_qnan - tbl_fsglmul_op # INF x QNAN |
| short fsglmul_inf_dst - tbl_fsglmul_op # INF x DENORM |
| short fsglmul_res_snan - tbl_fsglmul_op # INF x SNAN |
| short tbl_fsglmul_op - tbl_fsglmul_op # |
| short tbl_fsglmul_op - tbl_fsglmul_op # |
| |
| short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x NORM |
| short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x ZERO |
| short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x INF |
| short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x QNAN |
| short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x DENORM |
| short fsglmul_res_snan - tbl_fsglmul_op # QNAN x SNAN |
| short tbl_fsglmul_op - tbl_fsglmul_op # |
| short tbl_fsglmul_op - tbl_fsglmul_op # |
| |
| short fsglmul_norm - tbl_fsglmul_op # NORM x NORM |
| short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO |
| short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF |
| short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN |
| short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM |
| short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN |
| short tbl_fsglmul_op - tbl_fsglmul_op # |
| short tbl_fsglmul_op - tbl_fsglmul_op # |
| |
| short fsglmul_res_snan - tbl_fsglmul_op # SNAN x NORM |
| short fsglmul_res_snan - tbl_fsglmul_op # SNAN x ZERO |
| short fsglmul_res_snan - tbl_fsglmul_op # SNAN x INF |
| short fsglmul_res_snan - tbl_fsglmul_op # SNAN x QNAN |
| short fsglmul_res_snan - tbl_fsglmul_op # SNAN x DENORM |
| short fsglmul_res_snan - tbl_fsglmul_op # SNAN x SNAN |
| short tbl_fsglmul_op - tbl_fsglmul_op # |
| short tbl_fsglmul_op - tbl_fsglmul_op # |
| |
| fsglmul_res_operr: |
| bra.l res_operr |
| fsglmul_res_snan: |
| bra.l res_snan |
| fsglmul_res_qnan: |
| bra.l res_qnan |
| fsglmul_zero: |
| bra.l fmul_zero |
| fsglmul_inf_src: |
| bra.l fmul_inf_src |
| fsglmul_inf_dst: |
| bra.l fmul_inf_dst |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # fsgldiv(): emulates the fsgldiv instruction # |
| # # |
| # XREF **************************************************************** # |
| # scale_to_zero_src() - scale src exponent to zero # |
| # scale_to_zero_dst() - scale dst exponent to zero # |
| # unf_res4() - return default underflow result for sglop # |
| # ovf_res() - return default overflow result # |
| # res_qnan() - return QNAN result # |
| # res_snan() - return SNAN result # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # a1 = pointer to extended precision destination operand # |
| # d0 rnd prec,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = result # |
| # fp1 = EXOP (if exception occurred) # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Handle NANs, infinities, and zeroes as special cases. Divide # |
| # norms/denorms into ext/sgl/dbl precision. # |
| # For norms/denorms, scale the exponents such that a divide # |
| # instruction won't cause an exception. Use the regular fsgldiv to # |
| # compute a result. Check if the regular operands would have taken # |
| # an exception. If so, return the default overflow/underflow result # |
| # and return the EXOP if exceptions are enabled. Else, scale the # |
| # result operand to the proper exponent. # |
| # # |
| ######################################################################### |
| |
| global fsgldiv |
| fsgldiv: |
| mov.l %d0,L_SCR3(%a6) # store rnd info |
| |
| clr.w %d1 |
| mov.b DTAG(%a6),%d1 |
| lsl.b &0x3,%d1 |
| or.b STAG(%a6),%d1 # combine src tags |
| |
| bne.w fsgldiv_not_norm # optimize on non-norm input |
| |
| # |
| # DIVIDE: NORMs and DENORMs ONLY! |
| # |
| fsgldiv_norm: |
| mov.w DST_EX(%a1),FP_SCR1_EX(%a6) |
| mov.l DST_HI(%a1),FP_SCR1_HI(%a6) |
| mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| |
| bsr.l scale_to_zero_src # calculate scale factor 1 |
| mov.l %d0,-(%sp) # save scale factor 1 |
| |
| bsr.l scale_to_zero_dst # calculate scale factor 2 |
| |
| neg.l (%sp) # S.F. = scale1 - scale2 |
| add.l %d0,(%sp) |
| |
| mov.w 2+L_SCR3(%a6),%d1 # fetch precision,mode |
| lsr.b &0x6,%d1 |
| mov.l (%sp)+,%d0 |
| cmpi.l %d0,&0x3fff-0x7ffe |
| ble.w fsgldiv_may_ovfl |
| |
| cmpi.l %d0,&0x3fff-0x0000 # will result underflow? |
| beq.w fsgldiv_may_unfl # maybe |
| bgt.w fsgldiv_unfl # yes; go handle underflow |
| |
| fsgldiv_normal: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l L_SCR3(%a6),%fpcr # save FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsgldiv.x FP_SCR0(%a6),%fp0 # perform sgl divide |
| |
| fmov.l %fpsr,%d1 # save FPSR |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fsgldiv_normal_exit: |
| fmovm.x &0x80,FP_SCR0(%a6) # store result on stack |
| mov.l %d2,-(%sp) # save d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # add scale factor |
| or.w %d2,%d1 # concat old sign,new exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| rts |
| |
| fsgldiv_may_ovfl: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # set FPSR |
| |
| fsgldiv.x FP_SCR0(%a6),%fp0 # execute divide |
| |
| fmov.l %fpsr,%d1 |
| fmov.l &0x0,%fpcr |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX,N |
| |
| fmovm.x &0x01,-(%sp) # save result to stack |
| mov.w (%sp),%d1 # fetch new exponent |
| add.l &0xc,%sp # clear result |
| andi.l &0x7fff,%d1 # strip sign |
| sub.l %d0,%d1 # add scale factor |
| cmp.l %d1,&0x7fff # did divide overflow? |
| blt.b fsgldiv_normal_exit |
| |
| fsgldiv_ovfl_tst: |
| or.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| bne.b fsgldiv_ovfl_ena # yes |
| |
| fsgldiv_ovfl_dis: |
| btst &neg_bit,FPSR_CC(%a6) # is result negative |
| sne %d1 # set sign param accordingly |
| mov.l L_SCR3(%a6),%d0 # pass prec:rnd |
| andi.b &0x30,%d0 # kill precision |
| bsr.l ovf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # set INF if applicable |
| fmovm.x (%a0),&0x80 # return default result in fp0 |
| rts |
| |
| fsgldiv_ovfl_ena: |
| fmovm.x &0x80,FP_SCR0(%a6) # move result to stack |
| |
| mov.l %d2,-(%sp) # save d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # add scale factor |
| subi.l &0x6000,%d1 # subtract new bias |
| andi.w &0x7fff,%d1 # clear ms bit |
| or.w %d2,%d1 # concat old sign,new exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| bra.b fsgldiv_ovfl_dis |
| |
| fsgldiv_unfl: |
| bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l &rz_mode*0x10,%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| bne.b fsgldiv_unfl_ena # yes |
| |
| fsgldiv_unfl_dis: |
| fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| |
| lea FP_SCR0(%a6),%a0 # pass: result addr |
| mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| bsr.l unf_res4 # calculate default result |
| or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set |
| fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| rts |
| |
| # |
| # UNFL is enabled. |
| # |
| fsgldiv_unfl_ena: |
| fmovm.x FP_SCR1(%a6),&0x40 # load dst op |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| fmovm.x &0x40,FP_SCR0(%a6) # save result to stack |
| mov.l %d2,-(%sp) # save d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # add scale factor |
| addi.l &0x6000,%d1 # add bias |
| andi.w &0x7fff,%d1 # clear top bit |
| or.w %d2,%d1 # concat old sign, new exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| bra.b fsgldiv_unfl_dis |
| |
| # |
| # the divide operation MAY underflow: |
| # |
| fsgldiv_may_unfl: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fabs.x %fp0,%fp1 # make a copy of result |
| fcmp.b %fp1,&0x1 # is |result| > 1.b? |
| fbgt.w fsgldiv_normal_exit # no; no underflow occurred |
| fblt.w fsgldiv_unfl # yes; underflow occurred |
| |
| # |
| # we still don't know if underflow occurred. result is ~ equal to 1. but, |
| # we don't know if the result was an underflow that rounded up to a 1 |
| # or a normalized number that rounded down to a 1. so, redo the entire |
| # operation using RZ as the rounding mode to see what the pre-rounded |
| # result is. this case should be relatively rare. |
| # |
| fmovm.x FP_SCR1(%a6),&0x40 # load dst op into %fp1 |
| |
| clr.l %d1 # clear scratch register |
| ori.b &rz_mode*0x10,%d1 # force RZ rnd mode |
| |
| fmov.l %d1,%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| fabs.x %fp1 # make absolute value |
| fcmp.b %fp1,&0x1 # is |result| < 1.b? |
| fbge.w fsgldiv_normal_exit # no; no underflow occurred |
| bra.w fsgldiv_unfl # yes; underflow occurred |
| |
| ############################################################################ |
| |
| # |
| # Divide: inputs are not both normalized; what are they? |
| # |
| fsgldiv_not_norm: |
| mov.w (tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1 |
| jmp (tbl_fsgldiv_op.b,%pc,%d1.w*1) |
| |
| swbeg &48 |
| tbl_fsgldiv_op: |
| short fsgldiv_norm - tbl_fsgldiv_op # NORM / NORM |
| short fsgldiv_inf_load - tbl_fsgldiv_op # NORM / ZERO |
| short fsgldiv_zero_load - tbl_fsgldiv_op # NORM / INF |
| short fsgldiv_res_qnan - tbl_fsgldiv_op # NORM / QNAN |
| short fsgldiv_norm - tbl_fsgldiv_op # NORM / DENORM |
| short fsgldiv_res_snan - tbl_fsgldiv_op # NORM / SNAN |
| short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| |
| short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / NORM |
| short fsgldiv_res_operr - tbl_fsgldiv_op # ZERO / ZERO |
| short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / INF |
| short fsgldiv_res_qnan - tbl_fsgldiv_op # ZERO / QNAN |
| short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / DENORM |
| short fsgldiv_res_snan - tbl_fsgldiv_op # ZERO / SNAN |
| short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| |
| short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / NORM |
| short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / ZERO |
| short fsgldiv_res_operr - tbl_fsgldiv_op # INF / INF |
| short fsgldiv_res_qnan - tbl_fsgldiv_op # INF / QNAN |
| short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / DENORM |
| short fsgldiv_res_snan - tbl_fsgldiv_op # INF / SNAN |
| short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| |
| short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / NORM |
| short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / ZERO |
| short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / INF |
| short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / QNAN |
| short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / DENORM |
| short fsgldiv_res_snan - tbl_fsgldiv_op # QNAN / SNAN |
| short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| |
| short fsgldiv_norm - tbl_fsgldiv_op # DENORM / NORM |
| short fsgldiv_inf_load - tbl_fsgldiv_op # DENORM / ZERO |
| short fsgldiv_zero_load - tbl_fsgldiv_op # DENORM / INF |
| short fsgldiv_res_qnan - tbl_fsgldiv_op # DENORM / QNAN |
| short fsgldiv_norm - tbl_fsgldiv_op # DENORM / DENORM |
| short fsgldiv_res_snan - tbl_fsgldiv_op # DENORM / SNAN |
| short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| |
| short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / NORM |
| short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / ZERO |
| short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / INF |
| short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / QNAN |
| short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / DENORM |
| short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / SNAN |
| short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| |
| fsgldiv_res_qnan: |
| bra.l res_qnan |
| fsgldiv_res_snan: |
| bra.l res_snan |
| fsgldiv_res_operr: |
| bra.l res_operr |
| fsgldiv_inf_load: |
| bra.l fdiv_inf_load |
| fsgldiv_zero_load: |
| bra.l fdiv_zero_load |
| fsgldiv_inf_dst: |
| bra.l fdiv_inf_dst |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # fadd(): emulates the fadd instruction # |
| # fsadd(): emulates the fadd instruction # |
| # fdadd(): emulates the fdadd instruction # |
| # # |
| # XREF **************************************************************** # |
| # addsub_scaler2() - scale the operands so they won't take exc # |
| # ovf_res() - return default overflow result # |
| # unf_res() - return default underflow result # |
| # res_qnan() - set QNAN result # |
| # res_snan() - set SNAN result # |
| # res_operr() - set OPERR result # |
| # scale_to_zero_src() - set src operand exponent equal to zero # |
| # scale_to_zero_dst() - set dst operand exponent equal to zero # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # a1 = pointer to extended precision destination operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = result # |
| # fp1 = EXOP (if exception occurred) # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Handle NANs, infinities, and zeroes as special cases. Divide # |
| # norms into extended, single, and double precision. # |
| # Do addition after scaling exponents such that exception won't # |
| # occur. Then, check result exponent to see if exception would have # |
| # occurred. If so, return default result and maybe EXOP. Else, insert # |
| # the correct result exponent and return. Set FPSR bits as appropriate. # |
| # # |
| ######################################################################### |
| |
| global fsadd |
| fsadd: |
| andi.b &0x30,%d0 # clear rnd prec |
| ori.b &s_mode*0x10,%d0 # insert sgl prec |
| bra.b fadd |
| |
| global fdadd |
| fdadd: |
| andi.b &0x30,%d0 # clear rnd prec |
| ori.b &d_mode*0x10,%d0 # insert dbl prec |
| |
| global fadd |
| fadd: |
| mov.l %d0,L_SCR3(%a6) # store rnd info |
| |
| clr.w %d1 |
| mov.b DTAG(%a6),%d1 |
| lsl.b &0x3,%d1 |
| or.b STAG(%a6),%d1 # combine src tags |
| |
| bne.w fadd_not_norm # optimize on non-norm input |
| |
| # |
| # ADD: norms and denorms |
| # |
| fadd_norm: |
| bsr.l addsub_scaler2 # scale exponents |
| |
| fadd_zero_entry: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l &0x0,%fpsr # clear FPSR |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fadd.x FP_SCR0(%a6),%fp0 # execute add |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| fmov.l %fpsr,%d1 # fetch INEX2,N,Z |
| |
| or.l %d1,USER_FPSR(%a6) # save exc and ccode bits |
| |
| fbeq.w fadd_zero_exit # if result is zero, end now |
| |
| mov.l %d2,-(%sp) # save d2 |
| |
| fmovm.x &0x01,-(%sp) # save result to stack |
| |
| mov.w 2+L_SCR3(%a6),%d1 |
| lsr.b &0x6,%d1 |
| |
| mov.w (%sp),%d2 # fetch new sign, exp |
| andi.l &0x7fff,%d2 # strip sign |
| sub.l %d0,%d2 # add scale factor |
| |
| cmp.l %d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow? |
| bge.b fadd_ovfl # yes |
| |
| cmp.l %d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow? |
| blt.w fadd_unfl # yes |
| beq.w fadd_may_unfl # maybe; go find out |
| |
| fadd_normal: |
| mov.w (%sp),%d1 |
| andi.w &0x8000,%d1 # keep sign |
| or.w %d2,%d1 # concat sign,new exp |
| mov.w %d1,(%sp) # insert new exponent |
| |
| fmovm.x (%sp)+,&0x80 # return result in fp0 |
| |
| mov.l (%sp)+,%d2 # restore d2 |
| rts |
| |
| fadd_zero_exit: |
| # fmov.s &0x00000000,%fp0 # return zero in fp0 |
| rts |
| |
| tbl_fadd_ovfl: |
| long 0x7fff # ext ovfl |
| long 0x407f # sgl ovfl |
| long 0x43ff # dbl ovfl |
| |
| tbl_fadd_unfl: |
| long 0x0000 # ext unfl |
| long 0x3f81 # sgl unfl |
| long 0x3c01 # dbl unfl |
| |
| fadd_ovfl: |
| or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| bne.b fadd_ovfl_ena # yes |
| |
| add.l &0xc,%sp |
| fadd_ovfl_dis: |
| btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| sne %d1 # set sign param accordingly |
| mov.l L_SCR3(%a6),%d0 # pass prec:rnd |
| bsr.l ovf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| fmovm.x (%a0),&0x80 # return default result in fp0 |
| mov.l (%sp)+,%d2 # restore d2 |
| rts |
| |
| fadd_ovfl_ena: |
| mov.b L_SCR3(%a6),%d1 |
| andi.b &0xc0,%d1 # is precision extended? |
| bne.b fadd_ovfl_ena_sd # no; prec = sgl or dbl |
| |
| fadd_ovfl_ena_cont: |
| mov.w (%sp),%d1 |
| andi.w &0x8000,%d1 # keep sign |
| subi.l &0x6000,%d2 # add extra bias |
| andi.w &0x7fff,%d2 |
| or.w %d2,%d1 # concat sign,new exp |
| mov.w %d1,(%sp) # insert new exponent |
| |
| fmovm.x (%sp)+,&0x40 # return EXOP in fp1 |
| bra.b fadd_ovfl_dis |
| |
| fadd_ovfl_ena_sd: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0x30,%d1 # keep rnd mode |
| fmov.l %d1,%fpcr # set FPCR |
| |
| fadd.x FP_SCR0(%a6),%fp0 # execute add |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| add.l &0xc,%sp |
| fmovm.x &0x01,-(%sp) |
| bra.b fadd_ovfl_ena_cont |
| |
| fadd_unfl: |
| bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| |
| add.l &0xc,%sp |
| |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l &rz_mode*0x10,%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fadd.x FP_SCR0(%a6),%fp0 # execute add |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| fmov.l %fpsr,%d1 # save status |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX,N |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| bne.b fadd_unfl_ena # yes |
| |
| fadd_unfl_dis: |
| fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| |
| lea FP_SCR0(%a6),%a0 # pass: result addr |
| mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| bsr.l unf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set |
| fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| mov.l (%sp)+,%d2 # restore d2 |
| rts |
| |
| fadd_unfl_ena: |
| fmovm.x FP_SCR1(%a6),&0x40 # load dst op |
| |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0xc0,%d1 # is precision extended? |
| bne.b fadd_unfl_ena_sd # no; sgl or dbl |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fadd_unfl_ena_cont: |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fadd.x FP_SCR0(%a6),%fp1 # execute multiply |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| fmovm.x &0x40,FP_SCR0(%a6) # save result to stack |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # add scale factor |
| addi.l &0x6000,%d1 # add new bias |
| andi.w &0x7fff,%d1 # clear top bit |
| or.w %d2,%d1 # concat sign,new exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| bra.w fadd_unfl_dis |
| |
| fadd_unfl_ena_sd: |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0x30,%d1 # use only rnd mode |
| fmov.l %d1,%fpcr # set FPCR |
| |
| bra.b fadd_unfl_ena_cont |
| |
| # |
| # result is equal to the smallest normalized number in the selected precision |
| # if the precision is extended, this result could not have come from an |
| # underflow that rounded up. |
| # |
| fadd_may_unfl: |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0xc0,%d1 |
| beq.w fadd_normal # yes; no underflow occurred |
| |
| mov.l 0x4(%sp),%d1 # extract hi(man) |
| cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? |
| bne.w fadd_normal # no; no underflow occurred |
| |
| tst.l 0x8(%sp) # is lo(man) = 0x0? |
| bne.w fadd_normal # no; no underflow occurred |
| |
| btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? |
| beq.w fadd_normal # no; no underflow occurred |
| |
| # |
| # ok, so now the result has a exponent equal to the smallest normalized |
| # exponent for the selected precision. also, the mantissa is equal to |
| # 0x8000000000000000 and this mantissa is the result of rounding non-zero |
| # g,r,s. |
| # now, we must determine whether the pre-rounded result was an underflow |
| # rounded "up" or a normalized number rounded "down". |
| # so, we do this be re-executing the add using RZ as the rounding mode and |
| # seeing if the new result is smaller or equal to the current result. |
| # |
| fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 |
| |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0xc0,%d1 # keep rnd prec |
| ori.b &rz_mode*0x10,%d1 # insert rnd mode |
| fmov.l %d1,%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fadd.x FP_SCR0(%a6),%fp1 # execute add |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| fabs.x %fp0 # compare absolute values |
| fabs.x %fp1 |
| fcmp.x %fp0,%fp1 # is first result > second? |
| |
| fbgt.w fadd_unfl # yes; it's an underflow |
| bra.w fadd_normal # no; it's not an underflow |
| |
| ########################################################################## |
| |
| # |
| # Add: inputs are not both normalized; what are they? |
| # |
| fadd_not_norm: |
| mov.w (tbl_fadd_op.b,%pc,%d1.w*2),%d1 |
| jmp (tbl_fadd_op.b,%pc,%d1.w*1) |
| |
| swbeg &48 |
| tbl_fadd_op: |
| short fadd_norm - tbl_fadd_op # NORM + NORM |
| short fadd_zero_src - tbl_fadd_op # NORM + ZERO |
| short fadd_inf_src - tbl_fadd_op # NORM + INF |
| short fadd_res_qnan - tbl_fadd_op # NORM + QNAN |
| short fadd_norm - tbl_fadd_op # NORM + DENORM |
| short fadd_res_snan - tbl_fadd_op # NORM + SNAN |
| short tbl_fadd_op - tbl_fadd_op # |
| short tbl_fadd_op - tbl_fadd_op # |
| |
| short fadd_zero_dst - tbl_fadd_op # ZERO + NORM |
| short fadd_zero_2 - tbl_fadd_op # ZERO + ZERO |
| short fadd_inf_src - tbl_fadd_op # ZERO + INF |
| short fadd_res_qnan - tbl_fadd_op # NORM + QNAN |
| short fadd_zero_dst - tbl_fadd_op # ZERO + DENORM |
| short fadd_res_snan - tbl_fadd_op # NORM + SNAN |
| short tbl_fadd_op - tbl_fadd_op # |
| short tbl_fadd_op - tbl_fadd_op # |
| |
| short fadd_inf_dst - tbl_fadd_op # INF + NORM |
| short fadd_inf_dst - tbl_fadd_op # INF + ZERO |
| short fadd_inf_2 - tbl_fadd_op # INF + INF |
| short fadd_res_qnan - tbl_fadd_op # NORM + QNAN |
| short fadd_inf_dst - tbl_fadd_op # INF + DENORM |
| short fadd_res_snan - tbl_fadd_op # NORM + SNAN |
| short tbl_fadd_op - tbl_fadd_op # |
| short tbl_fadd_op - tbl_fadd_op # |
| |
| short fadd_res_qnan - tbl_fadd_op # QNAN + NORM |
| short fadd_res_qnan - tbl_fadd_op # QNAN + ZERO |
| short fadd_res_qnan - tbl_fadd_op # QNAN + INF |
| short fadd_res_qnan - tbl_fadd_op # QNAN + QNAN |
| short fadd_res_qnan - tbl_fadd_op # QNAN + DENORM |
| short fadd_res_snan - tbl_fadd_op # QNAN + SNAN |
| short tbl_fadd_op - tbl_fadd_op # |
| short tbl_fadd_op - tbl_fadd_op # |
| |
| short fadd_norm - tbl_fadd_op # DENORM + NORM |
| short fadd_zero_src - tbl_fadd_op # DENORM + ZERO |
| short fadd_inf_src - tbl_fadd_op # DENORM + INF |
| short fadd_res_qnan - tbl_fadd_op # NORM + QNAN |
| short fadd_norm - tbl_fadd_op # DENORM + DENORM |
| short fadd_res_snan - tbl_fadd_op # NORM + SNAN |
| short tbl_fadd_op - tbl_fadd_op # |
| short tbl_fadd_op - tbl_fadd_op # |
| |
| short fadd_res_snan - tbl_fadd_op # SNAN + NORM |
| short fadd_res_snan - tbl_fadd_op # SNAN + ZERO |
| short fadd_res_snan - tbl_fadd_op # SNAN + INF |
| short fadd_res_snan - tbl_fadd_op # SNAN + QNAN |
| short fadd_res_snan - tbl_fadd_op # SNAN + DENORM |
| short fadd_res_snan - tbl_fadd_op # SNAN + SNAN |
| short tbl_fadd_op - tbl_fadd_op # |
| short tbl_fadd_op - tbl_fadd_op # |
| |
| fadd_res_qnan: |
| bra.l res_qnan |
| fadd_res_snan: |
| bra.l res_snan |
| |
| # |
| # both operands are ZEROes |
| # |
| fadd_zero_2: |
| mov.b SRC_EX(%a0),%d0 # are the signs opposite |
| mov.b DST_EX(%a1),%d1 |
| eor.b %d0,%d1 |
| bmi.w fadd_zero_2_chk_rm # weed out (-ZERO)+(+ZERO) |
| |
| # the signs are the same. so determine whether they are positive or negative |
| # and return the appropriately signed zero. |
| tst.b %d0 # are ZEROes positive or negative? |
| bmi.b fadd_zero_rm # negative |
| fmov.s &0x00000000,%fp0 # return +ZERO |
| mov.b &z_bmask,FPSR_CC(%a6) # set Z |
| rts |
| |
| # |
| # the ZEROes have opposite signs: |
| # - Therefore, we return +ZERO if the rounding modes are RN,RZ, or RP. |
| # - -ZERO is returned in the case of RM. |
| # |
| fadd_zero_2_chk_rm: |
| mov.b 3+L_SCR3(%a6),%d1 |
| andi.b &0x30,%d1 # extract rnd mode |
| cmpi.b %d1,&rm_mode*0x10 # is rnd mode == RM? |
| beq.b fadd_zero_rm # yes |
| fmov.s &0x00000000,%fp0 # return +ZERO |
| mov.b &z_bmask,FPSR_CC(%a6) # set Z |
| rts |
| |
| fadd_zero_rm: |
| fmov.s &0x80000000,%fp0 # return -ZERO |
| mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z |
| rts |
| |
| # |
| # one operand is a ZERO and the other is a DENORM or NORM. scale |
| # the DENORM or NORM and jump to the regular fadd routine. |
| # |
| fadd_zero_dst: |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| bsr.l scale_to_zero_src # scale the operand |
| clr.w FP_SCR1_EX(%a6) |
| clr.l FP_SCR1_HI(%a6) |
| clr.l FP_SCR1_LO(%a6) |
| bra.w fadd_zero_entry # go execute fadd |
| |
| fadd_zero_src: |
| mov.w DST_EX(%a1),FP_SCR1_EX(%a6) |
| mov.l DST_HI(%a1),FP_SCR1_HI(%a6) |
| mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| bsr.l scale_to_zero_dst # scale the operand |
| clr.w FP_SCR0_EX(%a6) |
| clr.l FP_SCR0_HI(%a6) |
| clr.l FP_SCR0_LO(%a6) |
| bra.w fadd_zero_entry # go execute fadd |
| |
| # |
| # both operands are INFs. an OPERR will result if the INFs have |
| # different signs. else, an INF of the same sign is returned |
| # |
| fadd_inf_2: |
| mov.b SRC_EX(%a0),%d0 # exclusive or the signs |
| mov.b DST_EX(%a1),%d1 |
| eor.b %d1,%d0 |
| bmi.l res_operr # weed out (-INF)+(+INF) |
| |
| # ok, so it's not an OPERR. but, we do have to remember to return the |
| # src INF since that's where the 881/882 gets the j-bit from... |
| |
| # |
| # operands are INF and one of {ZERO, INF, DENORM, NORM} |
| # |
| fadd_inf_src: |
| fmovm.x SRC(%a0),&0x80 # return src INF |
| tst.b SRC_EX(%a0) # is INF positive? |
| bpl.b fadd_inf_done # yes; we're done |
| mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG |
| rts |
| |
| # |
| # operands are INF and one of {ZERO, INF, DENORM, NORM} |
| # |
| fadd_inf_dst: |
| fmovm.x DST(%a1),&0x80 # return dst INF |
| tst.b DST_EX(%a1) # is INF positive? |
| bpl.b fadd_inf_done # yes; we're done |
| mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG |
| rts |
| |
| fadd_inf_done: |
| mov.b &inf_bmask,FPSR_CC(%a6) # set INF |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # fsub(): emulates the fsub instruction # |
| # fssub(): emulates the fssub instruction # |
| # fdsub(): emulates the fdsub instruction # |
| # # |
| # XREF **************************************************************** # |
| # addsub_scaler2() - scale the operands so they won't take exc # |
| # ovf_res() - return default overflow result # |
| # unf_res() - return default underflow result # |
| # res_qnan() - set QNAN result # |
| # res_snan() - set SNAN result # |
| # res_operr() - set OPERR result # |
| # scale_to_zero_src() - set src operand exponent equal to zero # |
| # scale_to_zero_dst() - set dst operand exponent equal to zero # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # a1 = pointer to extended precision destination operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = result # |
| # fp1 = EXOP (if exception occurred) # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Handle NANs, infinities, and zeroes as special cases. Divide # |
| # norms into extended, single, and double precision. # |
| # Do subtraction after scaling exponents such that exception won't# |
| # occur. Then, check result exponent to see if exception would have # |
| # occurred. If so, return default result and maybe EXOP. Else, insert # |
| # the correct result exponent and return. Set FPSR bits as appropriate. # |
| # # |
| ######################################################################### |
| |
| global fssub |
| fssub: |
| andi.b &0x30,%d0 # clear rnd prec |
| ori.b &s_mode*0x10,%d0 # insert sgl prec |
| bra.b fsub |
| |
| global fdsub |
| fdsub: |
| andi.b &0x30,%d0 # clear rnd prec |
| ori.b &d_mode*0x10,%d0 # insert dbl prec |
| |
| global fsub |
| fsub: |
| mov.l %d0,L_SCR3(%a6) # store rnd info |
| |
| clr.w %d1 |
| mov.b DTAG(%a6),%d1 |
| lsl.b &0x3,%d1 |
| or.b STAG(%a6),%d1 # combine src tags |
| |
| bne.w fsub_not_norm # optimize on non-norm input |
| |
| # |
| # SUB: norms and denorms |
| # |
| fsub_norm: |
| bsr.l addsub_scaler2 # scale exponents |
| |
| fsub_zero_entry: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l &0x0,%fpsr # clear FPSR |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fsub.x FP_SCR0(%a6),%fp0 # execute subtract |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| fmov.l %fpsr,%d1 # fetch INEX2, N, Z |
| |
| or.l %d1,USER_FPSR(%a6) # save exc and ccode bits |
| |
| fbeq.w fsub_zero_exit # if result zero, end now |
| |
| mov.l %d2,-(%sp) # save d2 |
| |
| fmovm.x &0x01,-(%sp) # save result to stack |
| |
| mov.w 2+L_SCR3(%a6),%d1 |
| lsr.b &0x6,%d1 |
| |
| mov.w (%sp),%d2 # fetch new exponent |
| andi.l &0x7fff,%d2 # strip sign |
| sub.l %d0,%d2 # add scale factor |
| |
| cmp.l %d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow? |
| bge.b fsub_ovfl # yes |
| |
| cmp.l %d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow? |
| blt.w fsub_unfl # yes |
| beq.w fsub_may_unfl # maybe; go find out |
| |
| fsub_normal: |
| mov.w (%sp),%d1 |
| andi.w &0x8000,%d1 # keep sign |
| or.w %d2,%d1 # insert new exponent |
| mov.w %d1,(%sp) # insert new exponent |
| |
| fmovm.x (%sp)+,&0x80 # return result in fp0 |
| |
| mov.l (%sp)+,%d2 # restore d2 |
| rts |
| |
| fsub_zero_exit: |
| # fmov.s &0x00000000,%fp0 # return zero in fp0 |
| rts |
| |
| tbl_fsub_ovfl: |
| long 0x7fff # ext ovfl |
| long 0x407f # sgl ovfl |
| long 0x43ff # dbl ovfl |
| |
| tbl_fsub_unfl: |
| long 0x0000 # ext unfl |
| long 0x3f81 # sgl unfl |
| long 0x3c01 # dbl unfl |
| |
| fsub_ovfl: |
| or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| bne.b fsub_ovfl_ena # yes |
| |
| add.l &0xc,%sp |
| fsub_ovfl_dis: |
| btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| sne %d1 # set sign param accordingly |
| mov.l L_SCR3(%a6),%d0 # pass prec:rnd |
| bsr.l ovf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| fmovm.x (%a0),&0x80 # return default result in fp0 |
| mov.l (%sp)+,%d2 # restore d2 |
| rts |
| |
| fsub_ovfl_ena: |
| mov.b L_SCR3(%a6),%d1 |
| andi.b &0xc0,%d1 # is precision extended? |
| bne.b fsub_ovfl_ena_sd # no |
| |
| fsub_ovfl_ena_cont: |
| mov.w (%sp),%d1 # fetch {sgn,exp} |
| andi.w &0x8000,%d1 # keep sign |
| subi.l &0x6000,%d2 # subtract new bias |
| andi.w &0x7fff,%d2 # clear top bit |
| or.w %d2,%d1 # concat sign,exp |
| mov.w %d1,(%sp) # insert new exponent |
| |
| fmovm.x (%sp)+,&0x40 # return EXOP in fp1 |
| bra.b fsub_ovfl_dis |
| |
| fsub_ovfl_ena_sd: |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0x30,%d1 # clear rnd prec |
| fmov.l %d1,%fpcr # set FPCR |
| |
| fsub.x FP_SCR0(%a6),%fp0 # execute subtract |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| add.l &0xc,%sp |
| fmovm.x &0x01,-(%sp) |
| bra.b fsub_ovfl_ena_cont |
| |
| fsub_unfl: |
| bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| |
| add.l &0xc,%sp |
| |
| fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| |
| fmov.l &rz_mode*0x10,%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsub.x FP_SCR0(%a6),%fp0 # execute subtract |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| fmov.l %fpsr,%d1 # save status |
| |
| or.l %d1,USER_FPSR(%a6) |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| bne.b fsub_unfl_ena # yes |
| |
| fsub_unfl_dis: |
| fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| |
| lea FP_SCR0(%a6),%a0 # pass: result addr |
| mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| bsr.l unf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # 'Z' may have been set |
| fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| mov.l (%sp)+,%d2 # restore d2 |
| rts |
| |
| fsub_unfl_ena: |
| fmovm.x FP_SCR1(%a6),&0x40 |
| |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0xc0,%d1 # is precision extended? |
| bne.b fsub_unfl_ena_sd # no |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fsub_unfl_ena_cont: |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsub.x FP_SCR0(%a6),%fp1 # execute subtract |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| fmovm.x &0x40,FP_SCR0(%a6) # store result to stack |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # add scale factor |
| addi.l &0x6000,%d1 # subtract new bias |
| andi.w &0x7fff,%d1 # clear top bit |
| or.w %d2,%d1 # concat sgn,exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| bra.w fsub_unfl_dis |
| |
| fsub_unfl_ena_sd: |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0x30,%d1 # clear rnd prec |
| fmov.l %d1,%fpcr # set FPCR |
| |
| bra.b fsub_unfl_ena_cont |
| |
| # |
| # result is equal to the smallest normalized number in the selected precision |
| # if the precision is extended, this result could not have come from an |
| # underflow that rounded up. |
| # |
| fsub_may_unfl: |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0xc0,%d1 # fetch rnd prec |
| beq.w fsub_normal # yes; no underflow occurred |
| |
| mov.l 0x4(%sp),%d1 |
| cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? |
| bne.w fsub_normal # no; no underflow occurred |
| |
| tst.l 0x8(%sp) # is lo(man) = 0x0? |
| bne.w fsub_normal # no; no underflow occurred |
| |
| btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? |
| beq.w fsub_normal # no; no underflow occurred |
| |
| # |
| # ok, so now the result has a exponent equal to the smallest normalized |
| # exponent for the selected precision. also, the mantissa is equal to |
| # 0x8000000000000000 and this mantissa is the result of rounding non-zero |
| # g,r,s. |
| # now, we must determine whether the pre-rounded result was an underflow |
| # rounded "up" or a normalized number rounded "down". |
| # so, we do this be re-executing the add using RZ as the rounding mode and |
| # seeing if the new result is smaller or equal to the current result. |
| # |
| fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 |
| |
| mov.l L_SCR3(%a6),%d1 |
| andi.b &0xc0,%d1 # keep rnd prec |
| ori.b &rz_mode*0x10,%d1 # insert rnd mode |
| fmov.l %d1,%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsub.x FP_SCR0(%a6),%fp1 # execute subtract |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| fabs.x %fp0 # compare absolute values |
| fabs.x %fp1 |
| fcmp.x %fp0,%fp1 # is first result > second? |
| |
| fbgt.w fsub_unfl # yes; it's an underflow |
| bra.w fsub_normal # no; it's not an underflow |
| |
| ########################################################################## |
| |
| # |
| # Sub: inputs are not both normalized; what are they? |
| # |
| fsub_not_norm: |
| mov.w (tbl_fsub_op.b,%pc,%d1.w*2),%d1 |
| jmp (tbl_fsub_op.b,%pc,%d1.w*1) |
| |
| swbeg &48 |
| tbl_fsub_op: |
| short fsub_norm - tbl_fsub_op # NORM - NORM |
| short fsub_zero_src - tbl_fsub_op # NORM - ZERO |
| short fsub_inf_src - tbl_fsub_op # NORM - INF |
| short fsub_res_qnan - tbl_fsub_op # NORM - QNAN |
| short fsub_norm - tbl_fsub_op # NORM - DENORM |
| short fsub_res_snan - tbl_fsub_op # NORM - SNAN |
| short tbl_fsub_op - tbl_fsub_op # |
| short tbl_fsub_op - tbl_fsub_op # |
| |
| short fsub_zero_dst - tbl_fsub_op # ZERO - NORM |
| short fsub_zero_2 - tbl_fsub_op # ZERO - ZERO |
| short fsub_inf_src - tbl_fsub_op # ZERO - INF |
| short fsub_res_qnan - tbl_fsub_op # NORM - QNAN |
| short fsub_zero_dst - tbl_fsub_op # ZERO - DENORM |
| short fsub_res_snan - tbl_fsub_op # NORM - SNAN |
| short tbl_fsub_op - tbl_fsub_op # |
| short tbl_fsub_op - tbl_fsub_op # |
| |
| short fsub_inf_dst - tbl_fsub_op # INF - NORM |
| short fsub_inf_dst - tbl_fsub_op # INF - ZERO |
| short fsub_inf_2 - tbl_fsub_op # INF - INF |
| short fsub_res_qnan - tbl_fsub_op # NORM - QNAN |
| short fsub_inf_dst - tbl_fsub_op # INF - DENORM |
| short fsub_res_snan - tbl_fsub_op # NORM - SNAN |
| short tbl_fsub_op - tbl_fsub_op # |
| short tbl_fsub_op - tbl_fsub_op # |
| |
| short fsub_res_qnan - tbl_fsub_op # QNAN - NORM |
| short fsub_res_qnan - tbl_fsub_op # QNAN - ZERO |
| short fsub_res_qnan - tbl_fsub_op # QNAN - INF |
| short fsub_res_qnan - tbl_fsub_op # QNAN - QNAN |
| short fsub_res_qnan - tbl_fsub_op # QNAN - DENORM |
| short fsub_res_snan - tbl_fsub_op # QNAN - SNAN |
| short tbl_fsub_op - tbl_fsub_op # |
| short tbl_fsub_op - tbl_fsub_op # |
| |
| short fsub_norm - tbl_fsub_op # DENORM - NORM |
| short fsub_zero_src - tbl_fsub_op # DENORM - ZERO |
| short fsub_inf_src - tbl_fsub_op # DENORM - INF |
| short fsub_res_qnan - tbl_fsub_op # NORM - QNAN |
| short fsub_norm - tbl_fsub_op # DENORM - DENORM |
| short fsub_res_snan - tbl_fsub_op # NORM - SNAN |
| short tbl_fsub_op - tbl_fsub_op # |
| short tbl_fsub_op - tbl_fsub_op # |
| |
| short fsub_res_snan - tbl_fsub_op # SNAN - NORM |
| short fsub_res_snan - tbl_fsub_op # SNAN - ZERO |
| short fsub_res_snan - tbl_fsub_op # SNAN - INF |
| short fsub_res_snan - tbl_fsub_op # SNAN - QNAN |
| short fsub_res_snan - tbl_fsub_op # SNAN - DENORM |
| short fsub_res_snan - tbl_fsub_op # SNAN - SNAN |
| short tbl_fsub_op - tbl_fsub_op # |
| short tbl_fsub_op - tbl_fsub_op # |
| |
| fsub_res_qnan: |
| bra.l res_qnan |
| fsub_res_snan: |
| bra.l res_snan |
| |
| # |
| # both operands are ZEROes |
| # |
| fsub_zero_2: |
| mov.b SRC_EX(%a0),%d0 |
| mov.b DST_EX(%a1),%d1 |
| eor.b %d1,%d0 |
| bpl.b fsub_zero_2_chk_rm |
| |
| # the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO |
| tst.b %d0 # is dst negative? |
| bmi.b fsub_zero_2_rm # yes |
| fmov.s &0x00000000,%fp0 # no; return +ZERO |
| mov.b &z_bmask,FPSR_CC(%a6) # set Z |
| rts |
| |
| # |
| # the ZEROes have the same signs: |
| # - Therefore, we return +ZERO if the rounding mode is RN,RZ, or RP |
| # - -ZERO is returned in the case of RM. |
| # |
| fsub_zero_2_chk_rm: |
| mov.b 3+L_SCR3(%a6),%d1 |
| andi.b &0x30,%d1 # extract rnd mode |
| cmpi.b %d1,&rm_mode*0x10 # is rnd mode = RM? |
| beq.b fsub_zero_2_rm # yes |
| fmov.s &0x00000000,%fp0 # no; return +ZERO |
| mov.b &z_bmask,FPSR_CC(%a6) # set Z |
| rts |
| |
| fsub_zero_2_rm: |
| fmov.s &0x80000000,%fp0 # return -ZERO |
| mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/NEG |
| rts |
| |
| # |
| # one operand is a ZERO and the other is a DENORM or a NORM. |
| # scale the DENORM or NORM and jump to the regular fsub routine. |
| # |
| fsub_zero_dst: |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| bsr.l scale_to_zero_src # scale the operand |
| clr.w FP_SCR1_EX(%a6) |
| clr.l FP_SCR1_HI(%a6) |
| clr.l FP_SCR1_LO(%a6) |
| bra.w fsub_zero_entry # go execute fsub |
| |
| fsub_zero_src: |
| mov.w DST_EX(%a1),FP_SCR1_EX(%a6) |
| mov.l DST_HI(%a1),FP_SCR1_HI(%a6) |
| mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| bsr.l scale_to_zero_dst # scale the operand |
| clr.w FP_SCR0_EX(%a6) |
| clr.l FP_SCR0_HI(%a6) |
| clr.l FP_SCR0_LO(%a6) |
| bra.w fsub_zero_entry # go execute fsub |
| |
| # |
| # both operands are INFs. an OPERR will result if the INFs have the |
| # same signs. else, |
| # |
| fsub_inf_2: |
| mov.b SRC_EX(%a0),%d0 # exclusive or the signs |
| mov.b DST_EX(%a1),%d1 |
| eor.b %d1,%d0 |
| bpl.l res_operr # weed out (-INF)+(+INF) |
| |
| # ok, so it's not an OPERR. but we do have to remember to return |
| # the src INF since that's where the 881/882 gets the j-bit. |
| |
| fsub_inf_src: |
| fmovm.x SRC(%a0),&0x80 # return src INF |
| fneg.x %fp0 # invert sign |
| fbge.w fsub_inf_done # sign is now positive |
| mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG |
| rts |
| |
| fsub_inf_dst: |
| fmovm.x DST(%a1),&0x80 # return dst INF |
| tst.b DST_EX(%a1) # is INF negative? |
| bpl.b fsub_inf_done # no |
| mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG |
| rts |
| |
| fsub_inf_done: |
| mov.b &inf_bmask,FPSR_CC(%a6) # set INF |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # fsqrt(): emulates the fsqrt instruction # |
| # fssqrt(): emulates the fssqrt instruction # |
| # fdsqrt(): emulates the fdsqrt instruction # |
| # # |
| # XREF **************************************************************** # |
| # scale_sqrt() - scale the source operand # |
| # unf_res() - return default underflow result # |
| # ovf_res() - return default overflow result # |
| # res_qnan_1op() - return QNAN result # |
| # res_snan_1op() - return SNAN result # |
| # # |
| # INPUT *************************************************************** # |
| # a0 = pointer to extended precision source operand # |
| # d0 rnd prec,mode # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = result # |
| # fp1 = EXOP (if exception occurred) # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Handle NANs, infinities, and zeroes as special cases. Divide # |
| # norms/denorms into ext/sgl/dbl precision. # |
| # For norms/denorms, scale the exponents such that a sqrt # |
| # instruction won't cause an exception. Use the regular fsqrt to # |
| # compute a result. Check if the regular operands would have taken # |
| # an exception. If so, return the default overflow/underflow result # |
| # and return the EXOP if exceptions are enabled. Else, scale the # |
| # result operand to the proper exponent. # |
| # # |
| ######################################################################### |
| |
| global fssqrt |
| fssqrt: |
| andi.b &0x30,%d0 # clear rnd prec |
| ori.b &s_mode*0x10,%d0 # insert sgl precision |
| bra.b fsqrt |
| |
| global fdsqrt |
| fdsqrt: |
| andi.b &0x30,%d0 # clear rnd prec |
| ori.b &d_mode*0x10,%d0 # insert dbl precision |
| |
| global fsqrt |
| fsqrt: |
| mov.l %d0,L_SCR3(%a6) # store rnd info |
| clr.w %d1 |
| mov.b STAG(%a6),%d1 |
| bne.w fsqrt_not_norm # optimize on non-norm input |
| |
| # |
| # SQUARE ROOT: norms and denorms ONLY! |
| # |
| fsqrt_norm: |
| tst.b SRC_EX(%a0) # is operand negative? |
| bmi.l res_operr # yes |
| |
| andi.b &0xc0,%d0 # is precision extended? |
| bne.b fsqrt_not_ext # no; go handle sgl or dbl |
| |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsqrt.x (%a0),%fp0 # execute square root |
| |
| fmov.l %fpsr,%d1 |
| or.l %d1,USER_FPSR(%a6) # set N,INEX |
| |
| rts |
| |
| fsqrt_denorm: |
| tst.b SRC_EX(%a0) # is operand negative? |
| bmi.l res_operr # yes |
| |
| andi.b &0xc0,%d0 # is precision extended? |
| bne.b fsqrt_not_ext # no; go handle sgl or dbl |
| |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| |
| bsr.l scale_sqrt # calculate scale factor |
| |
| bra.w fsqrt_sd_normal |
| |
| # |
| # operand is either single or double |
| # |
| fsqrt_not_ext: |
| cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec |
| bne.w fsqrt_dbl |
| |
| # |
| # operand is to be rounded to single precision |
| # |
| fsqrt_sgl: |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| |
| bsr.l scale_sqrt # calculate scale factor |
| |
| cmpi.l %d0,&0x3fff-0x3f81 # will move in underflow? |
| beq.w fsqrt_sd_may_unfl |
| bgt.w fsqrt_sd_unfl # yes; go handle underflow |
| cmpi.l %d0,&0x3fff-0x407f # will move in overflow? |
| beq.w fsqrt_sd_may_ovfl # maybe; go check |
| blt.w fsqrt_sd_ovfl # yes; go handle overflow |
| |
| # |
| # operand will NOT overflow or underflow when moved in to the fp reg file |
| # |
| fsqrt_sd_normal: |
| fmov.l &0x0,%fpsr # clear FPSR |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute |
| |
| fmov.l %fpsr,%d1 # save FPSR |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fsqrt_sd_normal_exit: |
| mov.l %d2,-(%sp) # save d2 |
| fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| sub.l %d0,%d1 # add scale factor |
| andi.w &0x8000,%d2 # keep old sign |
| or.w %d1,%d2 # concat old sign,new exp |
| mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent |
| mov.l (%sp)+,%d2 # restore d2 |
| fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| rts |
| |
| # |
| # operand is to be rounded to double precision |
| # |
| fsqrt_dbl: |
| mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| |
| bsr.l scale_sqrt # calculate scale factor |
| |
| cmpi.l %d0,&0x3fff-0x3c01 # will move in underflow? |
| beq.w fsqrt_sd_may_unfl |
| bgt.b fsqrt_sd_unfl # yes; go handle underflow |
| cmpi.l %d0,&0x3fff-0x43ff # will move in overflow? |
| beq.w fsqrt_sd_may_ovfl # maybe; go check |
| blt.w fsqrt_sd_ovfl # yes; go handle overflow |
| bra.w fsqrt_sd_normal # no; ho handle normalized op |
| |
| # we're on the line here and the distinguising characteristic is whether |
| # the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number |
| # elsewise fall through to underflow. |
| fsqrt_sd_may_unfl: |
| btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? |
| bne.w fsqrt_sd_normal # yes, so no underflow |
| |
| # |
| # operand WILL underflow when moved in to the fp register file |
| # |
| fsqrt_sd_unfl: |
| bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| |
| fmov.l &rz_mode*0x10,%fpcr # set FPCR |
| fmov.l &0x0,%fpsr # clear FPSR |
| |
| fsqrt.x FP_SCR0(%a6),%fp0 # execute square root |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| # if underflow or inexact is enabled, go calculate EXOP first. |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| bne.b fsqrt_sd_unfl_ena # yes |
| |
| fsqrt_sd_unfl_dis: |
| fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| |
| lea FP_SCR0(%a6),%a0 # pass: result addr |
| mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| bsr.l unf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode |
| fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| rts |
| |
| # |
| # operand will underflow AND underflow is enabled. |
| # Therefore, we must return the result rounded to extended precision. |
| # |
| fsqrt_sd_unfl_ena: |
| mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) |
| mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) |
| mov.w FP_SCR0_EX(%a6),%d1 # load current exponent |
| |
| mov.l %d2,-(%sp) # save d2 |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # subtract scale factor |
| addi.l &0x6000,%d1 # add new bias |
| andi.w &0x7fff,%d1 |
| or.w %d2,%d1 # concat new sign,new exp |
| mov.w %d1,FP_SCR1_EX(%a6) # insert new exp |
| fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 |
| mov.l (%sp)+,%d2 # restore d2 |
| bra.b fsqrt_sd_unfl_dis |
| |
| # |
| # operand WILL overflow. |
| # |
| fsqrt_sd_ovfl: |
| fmov.l &0x0,%fpsr # clear FPSR |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fsqrt.x FP_SCR0(%a6),%fp0 # perform square root |
| |
| fmov.l &0x0,%fpcr # clear FPCR |
| fmov.l %fpsr,%d1 # save FPSR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fsqrt_sd_ovfl_tst: |
| or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| |
| mov.b FPCR_ENABLE(%a6),%d1 |
| andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| bne.b fsqrt_sd_ovfl_ena # yes |
| |
| # |
| # OVFL is not enabled; therefore, we must create the default result by |
| # calling ovf_res(). |
| # |
| fsqrt_sd_ovfl_dis: |
| btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| sne %d1 # set sign param accordingly |
| mov.l L_SCR3(%a6),%d0 # pass: prec,mode |
| bsr.l ovf_res # calculate default result |
| or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| fmovm.x (%a0),&0x80 # return default result in fp0 |
| rts |
| |
| # |
| # OVFL is enabled. |
| # the INEX2 bit has already been updated by the round to the correct precision. |
| # now, round to extended(and don't alter the FPSR). |
| # |
| fsqrt_sd_ovfl_ena: |
| mov.l %d2,-(%sp) # save d2 |
| mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| mov.l %d1,%d2 # make a copy |
| andi.l &0x7fff,%d1 # strip sign |
| andi.w &0x8000,%d2 # keep old sign |
| sub.l %d0,%d1 # add scale factor |
| subi.l &0x6000,%d1 # subtract bias |
| andi.w &0x7fff,%d1 |
| or.w %d2,%d1 # concat sign,exp |
| mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| mov.l (%sp)+,%d2 # restore d2 |
| bra.b fsqrt_sd_ovfl_dis |
| |
| # |
| # the move in MAY underflow. so... |
| # |
| fsqrt_sd_may_ovfl: |
| btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? |
| bne.w fsqrt_sd_ovfl # yes, so overflow |
| |
| fmov.l &0x0,%fpsr # clear FPSR |
| fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| |
| fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute |
| |
| fmov.l %fpsr,%d1 # save status |
| fmov.l &0x0,%fpcr # clear FPCR |
| |
| or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| |
| fmov.x %fp0,%fp1 # make a copy of result |
| fcmp.b %fp1,&0x1 # is |result| >= 1.b? |
| fbge.w fsqrt_sd_ovfl_tst # yes; overflow has occurred |
| |
| # no, it didn't overflow; we have correct result |
| bra.w fsqrt_sd_normal_exit |
| |
| ########################################################################## |
| |
| # |
| # input is not normalized; what is it? |
| # |
| fsqrt_not_norm: |
| cmpi.b %d1,&DENORM # weed out DENORM |
| beq.w fsqrt_denorm |
| cmpi.b %d1,&ZERO # weed out ZERO |
| beq.b fsqrt_zero |
| cmpi.b %d1,&INF # weed out INF |
| beq.b fsqrt_inf |
| cmpi.b %d1,&SNAN # weed out SNAN |
| beq.l res_snan_1op |
| bra.l res_qnan_1op |
| |
| # |
| # fsqrt(+0) = +0 |
| # fsqrt(-0) = -0 |
| # fsqrt(+INF) = +INF |
| # fsqrt(-INF) = OPERR |
| # |
| fsqrt_zero: |
| tst.b SRC_EX(%a0) # is ZERO positive or negative? |
| bmi.b fsqrt_zero_m # negative |
| fsqrt_zero_p: |
| fmov.s &0x00000000,%fp0 # return +ZERO |
| mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit |
| rts |
| fsqrt_zero_m: |
| fmov.s &0x80000000,%fp0 # return -ZERO |
| mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits |
| rts |
| |
| fsqrt_inf: |
| tst.b SRC_EX(%a0) # is INF positive or negative? |
| bmi.l res_operr # negative |
| fsqrt_inf_p: |
| fmovm.x SRC(%a0),&0x80 # return +INF in fp0 |
| mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit |
| rts |
| |
| ########################################################################## |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # addsub_scaler2(): scale inputs to fadd/fsub such that no # |
| # OVFL/UNFL exceptions will result # |
| # # |
| # XREF **************************************************************** # |
| # norm() - normalize mantissa after adjusting exponent # |
| # # |
| # INPUT *************************************************************** # |
| # FP_SRC(a6) = fp op1(src) # |
| # FP_DST(a6) = fp op2(dst) # |
| # # |
| # OUTPUT ************************************************************** # |
| # FP_SRC(a6) = fp op1 scaled(src) # |
| # FP_DST(a6) = fp op2 scaled(dst) # |
| # d0 = scale amount # |
| # # |
| # ALGORITHM *********************************************************** # |
| # If the DST exponent is > the SRC exponent, set the DST exponent # |
| # equal to 0x3fff and scale the SRC exponent by the value that the # |
| # DST exponent was scaled by. If the SRC exponent is greater or equal, # |
| # do the opposite. Return this scale factor in d0. # |
| # If the two exponents differ by > the number of mantissa bits # |
| # plus two, then set the smallest exponent to a very small value as a # |
| # quick shortcut. # |
| # # |
| ######################################################################### |
| |
| global addsub_scaler2 |
| addsub_scaler2: |
| mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| mov.l DST_HI(%a1),FP_SCR1_HI(%a6) |
| mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| mov.w SRC_EX(%a0),%d0 |
| mov.w DST_EX(%a1),%d1 |
| mov.w %d0,FP_SCR0_EX(%a6) |
| mov.w %d1,FP_SCR1_EX(%a6) |
| |
| andi.w &0x7fff,%d0 |
| andi.w &0x7fff,%d1 |
| mov.w %d0,L_SCR1(%a6) # store src exponent |
| mov.w %d1,2+L_SCR1(%a6) # store dst exponent |
| |
| cmp.w %d0, %d1 # is src exp >= dst exp? |
| bge.l src_exp_ge2 |
| |
| # dst exp is > src exp; scale dst to exp = 0x3fff |
| dst_exp_gt2: |
| bsr.l scale_to_zero_dst |
| mov.l %d0,-(%sp) # save scale factor |
| |
| cmpi.b STAG(%a6),&DENORM # is dst denormalized? |
| bne.b cmpexp12 |
| |
| lea FP_SCR0(%a6),%a0 |
| bsr.l norm # normalize the denorm; result is new exp |
| neg.w %d0 # new exp = -(shft val) |
| mov.w %d0,L_SCR1(%a6) # inset new exp |
| |
| cmpexp12: |
| mov.w 2+L_SCR1(%a6),%d0 |
| subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp |
| |
| cmp.w %d0,L_SCR1(%a6) # is difference >= len(mantissa)+2? |
| bge.b quick_scale12 |
| |
| mov.w L_SCR1(%a6),%d0 |
| add.w 0x2(%sp),%d0 # scale src exponent by scale factor |
| mov.w FP_SCR0_EX(%a6),%d1 |
| and.w &0x8000,%d1 |
| or.w %d1,%d0 # concat {sgn,new exp} |
| mov.w %d0,FP_SCR0_EX(%a6) # insert new dst exponent |
| |
| mov.l (%sp)+,%d0 # return SCALE factor |
| rts |
| |
| quick_scale12: |
| andi.w &0x8000,FP_SCR0_EX(%a6) # zero src exponent |
| bset &0x0,1+FP_SCR0_EX(%a6) # set exp = 1 |
| |
| mov.l (%sp)+,%d0 # return SCALE factor |
| rts |
| |
| # src exp is >= dst exp; scale src to exp = 0x3fff |
| src_exp_ge2: |
| bsr.l scale_to_zero_src |
| mov.l %d0,-(%sp) # save scale factor |
| |
| cmpi.b DTAG(%a6),&DENORM # is dst denormalized? |
| bne.b cmpexp22 |
| lea FP_SCR1(%a6),%a0 |
| bsr.l norm # normalize the denorm; result is new exp |
| neg.w %d0 # new exp = -(shft val) |
| mov.w %d0,2+L_SCR1(%a6) # inset new exp |
| |
| cmpexp22: |
| mov.w L_SCR1(%a6),%d0 |
| subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp |
| |
| cmp.w %d0,2+L_SCR1(%a6) # is difference >= len(mantissa)+2? |
| bge.b quick_scale22 |
| |
| mov.w 2+L_SCR1(%a6),%d0 |
| add.w 0x2(%sp),%d0 # scale dst exponent by scale factor |
| mov.w FP_SCR1_EX(%a6),%d1 |
| andi.w &0x8000,%d1 |
| or.w %d1,%d0 # concat {sgn,new exp} |
| mov.w %d0,FP_SCR1_EX(%a6) # insert new dst exponent |
| |
| mov.l (%sp)+,%d0 # return SCALE factor |
| rts |
| |
| quick_scale22: |
| andi.w &0x8000,FP_SCR1_EX(%a6) # zero dst exponent |
| bset &0x0,1+FP_SCR1_EX(%a6) # set exp = 1 |
| |
| mov.l (%sp)+,%d0 # return SCALE factor |
| rts |
| |
| ########################################################################## |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # scale_to_zero_src(): scale the exponent of extended precision # |
| # value at FP_SCR0(a6). # |
| # # |
| # XREF **************************************************************** # |
| # norm() - normalize the mantissa if the operand was a DENORM # |
| # # |
| # INPUT *************************************************************** # |
| # FP_SCR0(a6) = extended precision operand to be scaled # |
| # # |
| # OUTPUT ************************************************************** # |
| # FP_SCR0(a6) = scaled extended precision operand # |
| # d0 = scale value # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Set the exponent of the input operand to 0x3fff. Save the value # |
| # of the difference between the original and new exponent. Then, # |
| # normalize the operand if it was a DENORM. Add this normalization # |
| # value to the previous value. Return the result. # |
| # # |
| ######################################################################### |
| |
| global scale_to_zero_src |
| scale_to_zero_src: |
| mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} |
| mov.w %d1,%d0 # make a copy |
| |
| andi.l &0x7fff,%d1 # extract operand's exponent |
| |
| andi.w &0x8000,%d0 # extract operand's sgn |
| or.w &0x3fff,%d0 # insert new operand's exponent(=0) |
| |
| mov.w %d0,FP_SCR0_EX(%a6) # insert biased exponent |
| |
| cmpi.b STAG(%a6),&DENORM # is operand normalized? |
| beq.b stzs_denorm # normalize the DENORM |
| |
| stzs_norm: |
| mov.l &0x3fff,%d0 |
| sub.l %d1,%d0 # scale = BIAS + (-exp) |
| |
| rts |
| |
| stzs_denorm: |
| lea FP_SCR0(%a6),%a0 # pass ptr to src op |
| bsr.l norm # normalize denorm |
| neg.l %d0 # new exponent = -(shft val) |
| mov.l %d0,%d1 # prepare for op_norm call |
| bra.b stzs_norm # finish scaling |
| |
| ### |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # scale_sqrt(): scale the input operand exponent so a subsequent # |
| # fsqrt operation won't take an exception. # |
| # # |
| # XREF **************************************************************** # |
| # norm() - normalize the mantissa if the operand was a DENORM # |
| # # |
| # INPUT *************************************************************** # |
| # FP_SCR0(a6) = extended precision operand to be scaled # |
| # # |
| # OUTPUT ************************************************************** # |
| # FP_SCR0(a6) = scaled extended precision operand # |
| # d0 = scale value # |
| # # |
| # ALGORITHM *********************************************************** # |
| # If the input operand is a DENORM, normalize it. # |
| # If the exponent of the input operand is even, set the exponent # |
| # to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the # |
| # exponent of the input operand is off, set the exponent to ox3fff and # |
| # return a scale factor of "(exp-0x3fff)/2". # |
| # # |
| ######################################################################### |
| |
| global scale_sqrt |
| scale_sqrt: |
| cmpi.b STAG(%a6),&DENORM # is operand normalized? |
| beq.b ss_denorm # normalize the DENORM |
| |
| mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} |
| andi.l &0x7fff,%d1 # extract operand's exponent |
| |
| andi.w &0x8000,FP_SCR0_EX(%a6) # extract operand's sgn |
| |
| btst &0x0,%d1 # is exp even or odd? |
| beq.b ss_norm_even |
| |
| ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) |
| |
| mov.l &0x3fff,%d0 |
| sub.l %d1,%d0 # scale = BIAS + (-exp) |
| asr.l &0x1,%d0 # divide scale factor by 2 |
| rts |
| |
| ss_norm_even: |
| ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) |
| |
| mov.l &0x3ffe,%d0 |
| sub.l %d1,%d0 # scale = BIAS + (-exp) |
| asr.l &0x1,%d0 # divide scale factor by 2 |
| rts |
| |
| ss_denorm: |
| lea FP_SCR0(%a6),%a0 # pass ptr to src op |
| bsr.l norm # normalize denorm |
| |
| btst &0x0,%d0 # is exp even or odd? |
| beq.b ss_denorm_even |
| |
| ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) |
| |
| add.l &0x3fff,%d0 |
| asr.l &0x1,%d0 # divide scale factor by 2 |
| rts |
| |
| ss_denorm_even: |
| ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) |
| |
| add.l &0x3ffe,%d0 |
| asr.l &0x1,%d0 # divide scale factor by 2 |
| rts |
| |
| ### |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # scale_to_zero_dst(): scale the exponent of extended precision # |
| # value at FP_SCR1(a6). # |
| # # |
| # XREF **************************************************************** # |
| # norm() - normalize the mantissa if the operand was a DENORM # |
| # # |
| # INPUT *************************************************************** # |
| # FP_SCR1(a6) = extended precision operand to be scaled # |
| # # |
| # OUTPUT ************************************************************** # |
| # FP_SCR1(a6) = scaled extended precision operand # |
| # d0 = scale value # |
| # # |
| # ALGORITHM *********************************************************** # |
| # Set the exponent of the input operand to 0x3fff. Save the value # |
| # of the difference between the original and new exponent. Then, # |
| # normalize the operand if it was a DENORM. Add this normalization # |
| # value to the previous value. Return the result. # |
| # # |
| ######################################################################### |
| |
| global scale_to_zero_dst |
| scale_to_zero_dst: |
| mov.w FP_SCR1_EX(%a6),%d1 # extract operand's {sgn,exp} |
| mov.w %d1,%d0 # make a copy |
| |
| andi.l &0x7fff,%d1 # extract operand's exponent |
| |
| andi.w &0x8000,%d0 # extract operand's sgn |
| or.w &0x3fff,%d0 # insert new operand's exponent(=0) |
| |
| mov.w %d0,FP_SCR1_EX(%a6) # insert biased exponent |
| |
| cmpi.b DTAG(%a6),&DENORM # is operand normalized? |
| beq.b stzd_denorm # normalize the DENORM |
| |
| stzd_norm: |
| mov.l &0x3fff,%d0 |
| sub.l %d1,%d0 # scale = BIAS + (-exp) |
| rts |
| |
| stzd_denorm: |
| lea FP_SCR1(%a6),%a0 # pass ptr to dst op |
| bsr.l norm # normalize denorm |
| neg.l %d0 # new exponent = -(shft val) |
| mov.l %d0,%d1 # prepare for op_norm call |
| bra.b stzd_norm # finish scaling |
| |
| ########################################################################## |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # res_qnan(): return default result w/ QNAN operand for dyadic # |
| # res_snan(): return default result w/ SNAN operand for dyadic # |
| # res_qnan_1op(): return dflt result w/ QNAN operand for monadic # |
| # res_snan_1op(): return dflt result w/ SNAN operand for monadic # |
| # # |
| # XREF **************************************************************** # |
| # None # |
| # # |
| # INPUT *************************************************************** # |
| # FP_SRC(a6) = pointer to extended precision src operand # |
| # FP_DST(a6) = pointer to extended precision dst operand # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = default result # |
| # # |
| # ALGORITHM *********************************************************** # |
| # If either operand (but not both operands) of an operation is a # |
| # nonsignalling NAN, then that NAN is returned as the result. If both # |
| # operands are nonsignalling NANs, then the destination operand # |
| # nonsignalling NAN is returned as the result. # |
| # If either operand to an operation is a signalling NAN (SNAN), # |
| # then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap # |
| # enable bit is set in the FPCR, then the trap is taken and the # |
| # destination is not modified. If the SNAN trap enable bit is not set, # |
| # then the SNAN is converted to a nonsignalling NAN (by setting the # |
| # SNAN bit in the operand to one), and the operation continues as # |
| # described in the preceding paragraph, for nonsignalling NANs. # |
| # Make sure the appropriate FPSR bits are set before exiting. # |
| # # |
| ######################################################################### |
| |
| global res_qnan |
| global res_snan |
| res_qnan: |
| res_snan: |
| cmp.b DTAG(%a6), &SNAN # is the dst an SNAN? |
| beq.b dst_snan2 |
| cmp.b DTAG(%a6), &QNAN # is the dst a QNAN? |
| beq.b dst_qnan2 |
| src_nan: |
| cmp.b STAG(%a6), &QNAN |
| beq.b src_qnan2 |
| global res_snan_1op |
| res_snan_1op: |
| src_snan2: |
| bset &0x6, FP_SRC_HI(%a6) # set SNAN bit |
| or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) |
| lea FP_SRC(%a6), %a0 |
| bra.b nan_comp |
| global res_qnan_1op |
| res_qnan_1op: |
| src_qnan2: |
| or.l &nan_mask, USER_FPSR(%a6) |
| lea FP_SRC(%a6), %a0 |
| bra.b nan_comp |
| dst_snan2: |
| or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) |
| bset &0x6, FP_DST_HI(%a6) # set SNAN bit |
| lea FP_DST(%a6), %a0 |
| bra.b nan_comp |
| dst_qnan2: |
| lea FP_DST(%a6), %a0 |
| cmp.b STAG(%a6), &SNAN |
| bne nan_done |
| or.l &aiop_mask+snan_mask, USER_FPSR(%a6) |
| nan_done: |
| or.l &nan_mask, USER_FPSR(%a6) |
| nan_comp: |
| btst &0x7, FTEMP_EX(%a0) # is NAN neg? |
| beq.b nan_not_neg |
| or.l &neg_mask, USER_FPSR(%a6) |
| nan_not_neg: |
| fmovm.x (%a0), &0x80 |
| rts |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # res_operr(): return default result during operand error # |
| # # |
| # XREF **************************************************************** # |
| # None # |
| # # |
| # INPUT *************************************************************** # |
| # None # |
| # # |
| # OUTPUT ************************************************************** # |
| # fp0 = default operand error result # |
| # # |
| # ALGORITHM *********************************************************** # |
| # An nonsignalling NAN is returned as the default result when # |
| # an operand error occurs for the following cases: # |
| # # |
| # Multiply: (Infinity x Zero) # |
| # Divide : (Zero / Zero) || (Infinity / Infinity) # |
| # # |
| ######################################################################### |
| |
| global res_operr |
| res_operr: |
| or.l &nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6) |
| fmovm.x nan_return(%pc), &0x80 |
| rts |
| |
| nan_return: |
| long 0x7fff0000, 0xffffffff, 0xffffffff |
| |
| ######################################################################### |
| # fdbcc(): routine to emulate the fdbcc instruction # |
| # # |
| # XDEF **************************************************************** # |
| # _fdbcc() # |
| # # |
| # XREF **************************************************************** # |
| # fetch_dreg() - fetch Dn value # |
| # store_dreg_l() - store updated Dn value # |
| # # |
| # INPUT *************************************************************** # |
| # d0 = displacement # |
| # # |
| # OUTPUT ************************************************************** # |
| # none # |
| # # |
| # ALGORITHM *********************************************************** # |
| # This routine checks which conditional predicate is specified by # |
| # the stacked fdbcc instruction opcode and then branches to a routine # |
| # for that predicate. The corresponding fbcc instruction is then used # |
| # to see whether the condition (specified by the stacked FPSR) is true # |
| # or false. # |
| # If a BSUN exception should be indicated, the BSUN and ABSUN # |
| # bits are set in the stacked FPSR. If the BSUN exception is enabled, # |
| # the fbsun_flg is set in the SPCOND_FLG location on the stack. If an # |
| # enabled BSUN should not be flagged and the predicate is true, then # |
| # Dn is fetched and decremented by one. If Dn is not equal to -1, add # |
| # the displacement value to the stacked PC so that when an "rte" is # |
| # finally executed, the branch occurs. # |
| # # |
| ######################################################################### |
| global _fdbcc |
| _fdbcc: |
| mov.l %d0,L_SCR1(%a6) # save displacement |
| |
| mov.w EXC_CMDREG(%a6),%d0 # fetch predicate |
| |
| clr.l %d1 # clear scratch reg |
| mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes |
| ror.l &0x8,%d1 # rotate to top byte |
| fmov.l %d1,%fpsr # insert into FPSR |
| |
| mov.w (tbl_fdbcc.b,%pc,%d0.w*2),%d1 # load table |
| jmp (tbl_fdbcc.b,%pc,%d1.w) # jump to fdbcc routine |
| |
| tbl_fdbcc: |
| short fdbcc_f - tbl_fdbcc # 00 |
| short fdbcc_eq - tbl_fdbcc # 01 |
| short fdbcc_ogt - tbl_fdbcc # 02 |
| short fdbcc_oge - tbl_fdbcc # 03 |
| short fdbcc_olt - tbl_fdbcc # 04 |
| short fdbcc_ole - tbl_fdbcc # 05 |
| short fdbcc_ogl - tbl_fdbcc # 06 |
| short fdbcc_or - tbl_fdbcc # 07 |
| short fdbcc_un - tbl_fdbcc # 08 |
| short fdbcc_ueq - tbl_fdbcc # 09 |
| short fdbcc_ugt - tbl_fdbcc # 10 |
| short fdbcc_uge - tbl_fdbcc # 11 |
| short fdbcc_ult - tbl_fdbcc # 12 |
| short fdbcc_ule - tbl_fdbcc # 13 |
| short fdbcc_neq - tbl_fdbcc # 14 |
| short fdbcc_t - tbl_fdbcc # 15 |
| short fdbcc_sf - tbl_fdbcc # 16 |
| short fdbcc_seq - tbl_fdbcc # 17 |
| short fdbcc_gt - tbl_fdbcc # 18 |
| short fdbcc_ge - tbl_fdbcc # 19 |
| short fdbcc_lt - tbl_fdbcc # 20 |
| short fdbcc_le - tbl_fdbcc # 21 |
| short fdbcc_gl - tbl_fdbcc # 22 |
| short fdbcc_gle - tbl_fdbcc # 23 |
| short fdbcc_ngle - tbl_fdbcc # 24 |
| short fdbcc_ngl - tbl_fdbcc # 25 |
| short fdbcc_nle - tbl_fdbcc # 26 |
| short fdbcc_nlt - tbl_fdbcc # 27 |
| short fdbcc_nge - tbl_fdbcc # 28 |
| short fdbcc_ngt - tbl_fdbcc # 29 |
| short fdbcc_sneq - tbl_fdbcc # 30 |
| short fdbcc_st - tbl_fdbcc # 31 |
| |
| ######################################################################### |
| # # |
| # IEEE Nonaware tests # |
| # # |
| # For the IEEE nonaware tests, only the false branch changes the # |
| # counter. However, the true branch may set bsun so we check to see # |
| # if the NAN bit is set, in which case BSUN and AIOP will be set. # |
| # # |
| # The cases EQ and NE are shared by the Aware and Nonaware groups # |
| # and are incapable of setting the BSUN exception bit. # |
| # # |
| # Typically, only one of the two possible branch directions could # |
| # have the NAN bit set. # |
| # (This is assuming the mutual exclusiveness of FPSR cc bit groupings # |
| # is preserved.) # |
| # # |
| ######################################################################### |
| |
| # |
| # equal: |
| # |
| # Z |
| # |
| fdbcc_eq: |
| fbeq.w fdbcc_eq_yes # equal? |
| fdbcc_eq_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_eq_yes: |
| rts |
| |
| # |
| # not equal: |
| # _ |
| # Z |
| # |
| fdbcc_neq: |
| fbneq.w fdbcc_neq_yes # not equal? |
| fdbcc_neq_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_neq_yes: |
| rts |
| |
| # |
| # greater than: |
| # _______ |
| # NANvZvN |
| # |
| fdbcc_gt: |
| fbgt.w fdbcc_gt_yes # greater than? |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fdbcc_false # no;go handle counter |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_gt_yes: |
| rts # do nothing |
| |
| # |
| # not greater than: |
| # |
| # NANvZvN |
| # |
| fdbcc_ngt: |
| fbngt.w fdbcc_ngt_yes # not greater than? |
| fdbcc_ngt_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_ngt_yes: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.b fdbcc_ngt_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| fdbcc_ngt_done: |
| rts # no; do nothing |
| |
| # |
| # greater than or equal: |
| # _____ |
| # Zv(NANvN) |
| # |
| fdbcc_ge: |
| fbge.w fdbcc_ge_yes # greater than or equal? |
| fdbcc_ge_no: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fdbcc_false # no;go handle counter |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_ge_yes: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.b fdbcc_ge_yes_done # no;go do nothing |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| fdbcc_ge_yes_done: |
| rts # do nothing |
| |
| # |
| # not (greater than or equal): |
| # _ |
| # NANv(N^Z) |
| # |
| fdbcc_nge: |
| fbnge.w fdbcc_nge_yes # not (greater than or equal)? |
| fdbcc_nge_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_nge_yes: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.b fdbcc_nge_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| fdbcc_nge_done: |
| rts # no; do nothing |
| |
| # |
| # less than: |
| # _____ |
| # N^(NANvZ) |
| # |
| fdbcc_lt: |
| fblt.w fdbcc_lt_yes # less than? |
| fdbcc_lt_no: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fdbcc_false # no; go handle counter |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_lt_yes: |
| rts # do nothing |
| |
| # |
| # not less than: |
| # _ |
| # NANv(ZvN) |
| # |
| fdbcc_nlt: |
| fbnlt.w fdbcc_nlt_yes # not less than? |
| fdbcc_nlt_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_nlt_yes: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.b fdbcc_nlt_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| fdbcc_nlt_done: |
| rts # no; do nothing |
| |
| # |
| # less than or equal: |
| # ___ |
| # Zv(N^NAN) |
| # |
| fdbcc_le: |
| fble.w fdbcc_le_yes # less than or equal? |
| fdbcc_le_no: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fdbcc_false # no; go handle counter |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_le_yes: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.b fdbcc_le_yes_done # no; go do nothing |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| fdbcc_le_yes_done: |
| rts # do nothing |
| |
| # |
| # not (less than or equal): |
| # ___ |
| # NANv(NvZ) |
| # |
| fdbcc_nle: |
| fbnle.w fdbcc_nle_yes # not (less than or equal)? |
| fdbcc_nle_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_nle_yes: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fdbcc_nle_done # no; go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| fdbcc_nle_done: |
| rts # no; do nothing |
| |
| # |
| # greater or less than: |
| # _____ |
| # NANvZ |
| # |
| fdbcc_gl: |
| fbgl.w fdbcc_gl_yes # greater or less than? |
| fdbcc_gl_no: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fdbcc_false # no; handle counter |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_gl_yes: |
| rts # do nothing |
| |
| # |
| # not (greater or less than): |
| # |
| # NANvZ |
| # |
| fdbcc_ngl: |
| fbngl.w fdbcc_ngl_yes # not (greater or less than)? |
| fdbcc_ngl_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_ngl_yes: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.b fdbcc_ngl_done # no; go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| fdbcc_ngl_done: |
| rts # no; do nothing |
| |
| # |
| # greater, less, or equal: |
| # ___ |
| # NAN |
| # |
| fdbcc_gle: |
| fbgle.w fdbcc_gle_yes # greater, less, or equal? |
| fdbcc_gle_no: |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_gle_yes: |
| rts # do nothing |
| |
| # |
| # not (greater, less, or equal): |
| # |
| # NAN |
| # |
| fdbcc_ngle: |
| fbngle.w fdbcc_ngle_yes # not (greater, less, or equal)? |
| fdbcc_ngle_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_ngle_yes: |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| rts # no; do nothing |
| |
| ######################################################################### |
| # # |
| # Miscellaneous tests # |
| # # |
| # For the IEEE miscellaneous tests, all but fdbf and fdbt can set bsun. # |
| # # |
| ######################################################################### |
| |
| # |
| # false: |
| # |
| # False |
| # |
| fdbcc_f: # no bsun possible |
| bra.w fdbcc_false # go handle counter |
| |
| # |
| # true: |
| # |
| # True |
| # |
| fdbcc_t: # no bsun possible |
| rts # do nothing |
| |
| # |
| # signalling false: |
| # |
| # False |
| # |
| fdbcc_sf: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set? |
| beq.w fdbcc_false # no;go handle counter |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| bra.w fdbcc_false # go handle counter |
| |
| # |
| # signalling true: |
| # |
| # True |
| # |
| fdbcc_st: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set? |
| beq.b fdbcc_st_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| fdbcc_st_done: |
| rts |
| |
| # |
| # signalling equal: |
| # |
| # Z |
| # |
| fdbcc_seq: |
| fbseq.w fdbcc_seq_yes # signalling equal? |
| fdbcc_seq_no: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set? |
| beq.w fdbcc_false # no;go handle counter |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| bra.w fdbcc_false # go handle counter |
| fdbcc_seq_yes: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set? |
| beq.b fdbcc_seq_yes_done # no;go do nothing |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| fdbcc_seq_yes_done: |
| rts # yes; do nothing |
| |
| # |
| # signalling not equal: |
| # _ |
| # Z |
| # |
| fdbcc_sneq: |
| fbsneq.w fdbcc_sneq_yes # signalling not equal? |
| fdbcc_sneq_no: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set? |
| beq.w fdbcc_false # no;go handle counter |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| bra.w fdbcc_false # go handle counter |
| fdbcc_sneq_yes: |
| btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit |
| beq.w fdbcc_sneq_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? |
| bne.w fdbcc_bsun # yes; we have an exception |
| fdbcc_sneq_done: |
| rts |
| |
| ######################################################################### |
| # # |
| # IEEE Aware tests # |
| # # |
| # For the IEEE aware tests, action is only taken if the result is false.# |
| # Therefore, the opposite branch type is used to jump to the decrement # |
| # routine. # |
| # The BSUN exception will not be set for any of these tests. # |
| # # |
| ######################################################################### |
| |
| # |
| # ordered greater than: |
| # _______ |
| # NANvZvN |
| # |
| fdbcc_ogt: |
| fbogt.w fdbcc_ogt_yes # ordered greater than? |
| fdbcc_ogt_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_ogt_yes: |
| rts # yes; do nothing |
| |
| # |
| # unordered or less or equal: |
| # _______ |
| # NANvZvN |
| # |
| fdbcc_ule: |
| fbule.w fdbcc_ule_yes # unordered or less or equal? |
| fdbcc_ule_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_ule_yes: |
| rts # yes; do nothing |
| |
| # |
| # ordered greater than or equal: |
| # _____ |
| # Zv(NANvN) |
| # |
| fdbcc_oge: |
| fboge.w fdbcc_oge_yes # ordered greater than or equal? |
| fdbcc_oge_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_oge_yes: |
| rts # yes; do nothing |
| |
| # |
| # unordered or less than: |
| # _ |
| # NANv(N^Z) |
| # |
| fdbcc_ult: |
| fbult.w fdbcc_ult_yes # unordered or less than? |
| fdbcc_ult_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_ult_yes: |
| rts # yes; do nothing |
| |
| # |
| # ordered less than: |
| # _____ |
| # N^(NANvZ) |
| # |
| fdbcc_olt: |
| fbolt.w fdbcc_olt_yes # ordered less than? |
| fdbcc_olt_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_olt_yes: |
| rts # yes; do nothing |
| |
| # |
| # unordered or greater or equal: |
| # |
| # NANvZvN |
| # |
| fdbcc_uge: |
| fbuge.w fdbcc_uge_yes # unordered or greater than? |
| fdbcc_uge_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_uge_yes: |
| rts # yes; do nothing |
| |
| # |
| # ordered less than or equal: |
| # ___ |
| # Zv(N^NAN) |
| # |
| fdbcc_ole: |
| fbole.w fdbcc_ole_yes # ordered greater or less than? |
| fdbcc_ole_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_ole_yes: |
| rts # yes; do nothing |
| |
| # |
| # unordered or greater than: |
| # ___ |
| # NANv(NvZ) |
| # |
| fdbcc_ugt: |
| fbugt.w fdbcc_ugt_yes # unordered or greater than? |
| fdbcc_ugt_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_ugt_yes: |
| rts # yes; do nothing |
| |
| # |
| # ordered greater or less than: |
| # _____ |
| # NANvZ |
| # |
| fdbcc_ogl: |
| fbogl.w fdbcc_ogl_yes # ordered greater or less than? |
| fdbcc_ogl_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_ogl_yes: |
| rts # yes; do nothing |
| |
| # |
| # unordered or equal: |
| # |
| # NANvZ |
| # |
| fdbcc_ueq: |
| fbueq.w fdbcc_ueq_yes # unordered or equal? |
| fdbcc_ueq_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_ueq_yes: |
| rts # yes; do nothing |
| |
| # |
| # ordered: |
| # ___ |
| # NAN |
| # |
| fdbcc_or: |
| fbor.w fdbcc_or_yes # ordered? |
| fdbcc_or_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_or_yes: |
| rts # yes; do nothing |
| |
| # |
| # unordered: |
| # |
| # NAN |
| # |
| fdbcc_un: |
| fbun.w fdbcc_un_yes # unordered? |
| fdbcc_un_no: |
| bra.w fdbcc_false # no; go handle counter |
| fdbcc_un_yes: |
| rts # yes; do nothing |
| |
| ####################################################################### |
| |
| # |
| # the bsun exception bit was not set. |
| # |
| # (1) subtract 1 from the count register |
| # (2) if (cr == -1) then |
| # pc = pc of next instruction |
| # else |
| # pc += sign_ext(16-bit displacement) |
| # |
| fdbcc_false: |
| mov.b 1+EXC_OPWORD(%a6), %d1 # fetch lo opword |
| andi.w &0x7, %d1 # extract count register |
| |
| bsr.l fetch_dreg # fetch count value |
| # make sure that d0 isn't corrupted between calls... |
| |
| subq.w &0x1, %d0 # Dn - 1 -> Dn |
| |
| bsr.l store_dreg_l # store new count value |
| |
| cmpi.w %d0, &-0x1 # is (Dn == -1)? |
| bne.b fdbcc_false_cont # no; |
| rts |
| |
| fdbcc_false_cont: |
| mov.l L_SCR1(%a6),%d0 # fetch displacement |
| add.l USER_FPIAR(%a6),%d0 # add instruction PC |
| addq.l &0x4,%d0 # add instruction length |
| mov.l %d0,EXC_PC(%a6) # set new PC |
| rts |
| |
| # the emulation routine set bsun and BSUN was enabled. have to |
| # fix stack and jump to the bsun handler. |
| # let the caller of this routine shift the stack frame up to |
| # eliminate the effective address field. |
| fdbcc_bsun: |
| mov.b &fbsun_flg,SPCOND_FLG(%a6) |
| rts |
| |
| ######################################################################### |
| # ftrapcc(): routine to emulate the ftrapcc instruction # |
| # # |
| # XDEF **************************************************************** # |
| # _ftrapcc() # |
| # # |
| # XREF **************************************************************** # |
| # none # |
| # # |
| # INPUT *************************************************************** # |
| # none # |
| # # |
| # OUTPUT ************************************************************** # |
| # none # |
| # # |
| # ALGORITHM *********************************************************** # |
| # This routine checks which conditional predicate is specified by # |
| # the stacked ftrapcc instruction opcode and then branches to a routine # |
| # for that predicate. The corresponding fbcc instruction is then used # |
| # to see whether the condition (specified by the stacked FPSR) is true # |
| # or false. # |
| # If a BSUN exception should be indicated, the BSUN and ABSUN # |
| # bits are set in the stacked FPSR. If the BSUN exception is enabled, # |
| # the fbsun_flg is set in the SPCOND_FLG location on the stack. If an # |
| # enabled BSUN should not be flagged and the predicate is true, then # |
| # the ftrapcc_flg is set in the SPCOND_FLG location. These special # |
| # flags indicate to the calling routine to emulate the exceptional # |
| # condition. # |
| # # |
| ######################################################################### |
| |
| global _ftrapcc |
| _ftrapcc: |
| mov.w EXC_CMDREG(%a6),%d0 # fetch predicate |
| |
| clr.l %d1 # clear scratch reg |
| mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes |
| ror.l &0x8,%d1 # rotate to top byte |
| fmov.l %d1,%fpsr # insert into FPSR |
| |
| mov.w (tbl_ftrapcc.b,%pc,%d0.w*2), %d1 # load table |
| jmp (tbl_ftrapcc.b,%pc,%d1.w) # jump to ftrapcc routine |
| |
| tbl_ftrapcc: |
| short ftrapcc_f - tbl_ftrapcc # 00 |
| short ftrapcc_eq - tbl_ftrapcc # 01 |
| short ftrapcc_ogt - tbl_ftrapcc # 02 |
| short ftrapcc_oge - tbl_ftrapcc # 03 |
| short ftrapcc_olt - tbl_ftrapcc # 04 |
| short ftrapcc_ole - tbl_ftrapcc # 05 |
| short ftrapcc_ogl - tbl_ftrapcc # 06 |
| short ftrapcc_or - tbl_ftrapcc # 07 |
| short ftrapcc_un - tbl_ftrapcc # 08 |
| short ftrapcc_ueq - tbl_ftrapcc # 09 |
| short ftrapcc_ugt - tbl_ftrapcc # 10 |
| short ftrapcc_uge - tbl_ftrapcc # 11 |
| short ftrapcc_ult - tbl_ftrapcc # 12 |
| short ftrapcc_ule - tbl_ftrapcc # 13 |
| short ftrapcc_neq - tbl_ftrapcc # 14 |
| short ftrapcc_t - tbl_ftrapcc # 15 |
| short ftrapcc_sf - tbl_ftrapcc # 16 |
| short ftrapcc_seq - tbl_ftrapcc # 17 |
| short ftrapcc_gt - tbl_ftrapcc # 18 |
| short ftrapcc_ge - tbl_ftrapcc # 19 |
| short ftrapcc_lt - tbl_ftrapcc # 20 |
| short ftrapcc_le - tbl_ftrapcc # 21 |
| short ftrapcc_gl - tbl_ftrapcc # 22 |
| short ftrapcc_gle - tbl_ftrapcc # 23 |
| short ftrapcc_ngle - tbl_ftrapcc # 24 |
| short ftrapcc_ngl - tbl_ftrapcc # 25 |
| short ftrapcc_nle - tbl_ftrapcc # 26 |
| short ftrapcc_nlt - tbl_ftrapcc # 27 |
| short ftrapcc_nge - tbl_ftrapcc # 28 |
| short ftrapcc_ngt - tbl_ftrapcc # 29 |
| short ftrapcc_sneq - tbl_ftrapcc # 30 |
| short ftrapcc_st - tbl_ftrapcc # 31 |
| |
| ######################################################################### |
| # # |
| # IEEE Nonaware tests # |
| # # |
| # For the IEEE nonaware tests, we set the result based on the # |
| # floating point condition codes. In addition, we check to see # |
| # if the NAN bit is set, in which case BSUN and AIOP will be set. # |
| # # |
| # The cases EQ and NE are shared by the Aware and Nonaware groups # |
| # and are incapable of setting the BSUN exception bit. # |
| # # |
| # Typically, only one of the two possible branch directions could # |
| # have the NAN bit set. # |
| # # |
| ######################################################################### |
| |
| # |
| # equal: |
| # |
| # Z |
| # |
| ftrapcc_eq: |
| fbeq.w ftrapcc_trap # equal? |
| ftrapcc_eq_no: |
| rts # do nothing |
| |
| # |
| # not equal: |
| # _ |
| # Z |
| # |
| ftrapcc_neq: |
| fbneq.w ftrapcc_trap # not equal? |
| ftrapcc_neq_no: |
| rts # do nothing |
| |
| # |
| # greater than: |
| # _______ |
| # NANvZvN |
| # |
| ftrapcc_gt: |
| fbgt.w ftrapcc_trap # greater than? |
| ftrapcc_gt_no: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.b ftrapcc_gt_done # no |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| ftrapcc_gt_done: |
| rts # no; do nothing |
| |
| # |
| # not greater than: |
| # |
| # NANvZvN |
| # |
| ftrapcc_ngt: |
| fbngt.w ftrapcc_ngt_yes # not greater than? |
| ftrapcc_ngt_no: |
| rts # do nothing |
| ftrapcc_ngt_yes: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w ftrapcc_trap # no; go take trap |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| bra.w ftrapcc_trap # no; go take trap |
| |
| # |
| # greater than or equal: |
| # _____ |
| # Zv(NANvN) |
| # |
| ftrapcc_ge: |
| fbge.w ftrapcc_ge_yes # greater than or equal? |
| ftrapcc_ge_no: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.b ftrapcc_ge_done # no; go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| ftrapcc_ge_done: |
| rts # no; do nothing |
| ftrapcc_ge_yes: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w ftrapcc_trap # no; go take trap |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| bra.w ftrapcc_trap # no; go take trap |
| |
| # |
| # not (greater than or equal): |
| # _ |
| # NANv(N^Z) |
| # |
| ftrapcc_nge: |
| fbnge.w ftrapcc_nge_yes # not (greater than or equal)? |
| ftrapcc_nge_no: |
| rts # do nothing |
| ftrapcc_nge_yes: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w ftrapcc_trap # no; go take trap |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| bra.w ftrapcc_trap # no; go take trap |
| |
| # |
| # less than: |
| # _____ |
| # N^(NANvZ) |
| # |
| ftrapcc_lt: |
| fblt.w ftrapcc_trap # less than? |
| ftrapcc_lt_no: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.b ftrapcc_lt_done # no; go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| ftrapcc_lt_done: |
| rts # no; do nothing |
| |
| # |
| # not less than: |
| # _ |
| # NANv(ZvN) |
| # |
| ftrapcc_nlt: |
| fbnlt.w ftrapcc_nlt_yes # not less than? |
| ftrapcc_nlt_no: |
| rts # do nothing |
| ftrapcc_nlt_yes: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w ftrapcc_trap # no; go take trap |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| bra.w ftrapcc_trap # no; go take trap |
| |
| # |
| # less than or equal: |
| # ___ |
| # Zv(N^NAN) |
| # |
| ftrapcc_le: |
| fble.w ftrapcc_le_yes # less than or equal? |
| ftrapcc_le_no: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.b ftrapcc_le_done # no; go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| ftrapcc_le_done: |
| rts # no; do nothing |
| ftrapcc_le_yes: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w ftrapcc_trap # no; go take trap |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| bra.w ftrapcc_trap # no; go take trap |
| |
| # |
| # not (less than or equal): |
| # ___ |
| # NANv(NvZ) |
| # |
| ftrapcc_nle: |
| fbnle.w ftrapcc_nle_yes # not (less than or equal)? |
| ftrapcc_nle_no: |
| rts # do nothing |
| ftrapcc_nle_yes: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w ftrapcc_trap # no; go take trap |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| bra.w ftrapcc_trap # no; go take trap |
| |
| # |
| # greater or less than: |
| # _____ |
| # NANvZ |
| # |
| ftrapcc_gl: |
| fbgl.w ftrapcc_trap # greater or less than? |
| ftrapcc_gl_no: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.b ftrapcc_gl_done # no; go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| ftrapcc_gl_done: |
| rts # no; do nothing |
| |
| # |
| # not (greater or less than): |
| # |
| # NANvZ |
| # |
| ftrapcc_ngl: |
| fbngl.w ftrapcc_ngl_yes # not (greater or less than)? |
| ftrapcc_ngl_no: |
| rts # do nothing |
| ftrapcc_ngl_yes: |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w ftrapcc_trap # no; go take trap |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| bra.w ftrapcc_trap # no; go take trap |
| |
| # |
| # greater, less, or equal: |
| # ___ |
| # NAN |
| # |
| ftrapcc_gle: |
| fbgle.w ftrapcc_trap # greater, less, or equal? |
| ftrapcc_gle_no: |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| rts # no; do nothing |
| |
| # |
| # not (greater, less, or equal): |
| # |
| # NAN |
| # |
| ftrapcc_ngle: |
| fbngle.w ftrapcc_ngle_yes # not (greater, less, or equal)? |
| ftrapcc_ngle_no: |
| rts # do nothing |
| ftrapcc_ngle_yes: |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| bra.w ftrapcc_trap # no; go take trap |
| |
| ######################################################################### |
| # # |
| # Miscellaneous tests # |
| # # |
| # For the IEEE aware tests, we only have to set the result based on the # |
| # floating point condition codes. The BSUN exception will not be # |
| # set for any of these tests. # |
| # # |
| ######################################################################### |
| |
| # |
| # false: |
| # |
| # False |
| # |
| ftrapcc_f: |
| rts # do nothing |
| |
| # |
| # true: |
| # |
| # True |
| # |
| ftrapcc_t: |
| bra.w ftrapcc_trap # go take trap |
| |
| # |
| # signalling false: |
| # |
| # False |
| # |
| ftrapcc_sf: |
| btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit |
| beq.b ftrapcc_sf_done # no; go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| ftrapcc_sf_done: |
| rts # no; do nothing |
| |
| # |
| # signalling true: |
| # |
| # True |
| # |
| ftrapcc_st: |
| btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit |
| beq.w ftrapcc_trap # no; go take trap |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| bra.w ftrapcc_trap # no; go take trap |
| |
| # |
| # signalling equal: |
| # |
| # Z |
| # |
| ftrapcc_seq: |
| fbseq.w ftrapcc_seq_yes # signalling equal? |
| ftrapcc_seq_no: |
| btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit |
| beq.w ftrapcc_seq_done # no; go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| ftrapcc_seq_done: |
| rts # no; do nothing |
| ftrapcc_seq_yes: |
| btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit |
| beq.w ftrapcc_trap # no; go take trap |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| bra.w ftrapcc_trap # no; go take trap |
| |
| # |
| # signalling not equal: |
| # _ |
| # Z |
| # |
| ftrapcc_sneq: |
| fbsneq.w ftrapcc_sneq_yes # signalling equal? |
| ftrapcc_sneq_no: |
| btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit |
| beq.w ftrapcc_sneq_no_done # no; go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| ftrapcc_sneq_no_done: |
| rts # do nothing |
| ftrapcc_sneq_yes: |
| btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit |
| beq.w ftrapcc_trap # no; go take trap |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w ftrapcc_bsun # yes |
| bra.w ftrapcc_trap # no; go take trap |
| |
| ######################################################################### |
| # # |
| # IEEE Aware tests # |
| # # |
| # For the IEEE aware tests, we only have to set the result based on the # |
| # floating point condition codes. The BSUN exception will not be # |
| # set for any of these tests. # |
| # # |
| ######################################################################### |
| |
| # |
| # ordered greater than: |
| # _______ |
| # NANvZvN |
| # |
| ftrapcc_ogt: |
| fbogt.w ftrapcc_trap # ordered greater than? |
| ftrapcc_ogt_no: |
| rts # do nothing |
| |
| # |
| # unordered or less or equal: |
| # _______ |
| # NANvZvN |
| # |
| ftrapcc_ule: |
| fbule.w ftrapcc_trap # unordered or less or equal? |
| ftrapcc_ule_no: |
| rts # do nothing |
| |
| # |
| # ordered greater than or equal: |
| # _____ |
| # Zv(NANvN) |
| # |
| ftrapcc_oge: |
| fboge.w ftrapcc_trap # ordered greater than or equal? |
| ftrapcc_oge_no: |
| rts # do nothing |
| |
| # |
| # unordered or less than: |
| # _ |
| # NANv(N^Z) |
| # |
| ftrapcc_ult: |
| fbult.w ftrapcc_trap # unordered or less than? |
| ftrapcc_ult_no: |
| rts # do nothing |
| |
| # |
| # ordered less than: |
| # _____ |
| # N^(NANvZ) |
| # |
| ftrapcc_olt: |
| fbolt.w ftrapcc_trap # ordered less than? |
| ftrapcc_olt_no: |
| rts # do nothing |
| |
| # |
| # unordered or greater or equal: |
| # |
| # NANvZvN |
| # |
| ftrapcc_uge: |
| fbuge.w ftrapcc_trap # unordered or greater than? |
| ftrapcc_uge_no: |
| rts # do nothing |
| |
| # |
| # ordered less than or equal: |
| # ___ |
| # Zv(N^NAN) |
| # |
| ftrapcc_ole: |
| fbole.w ftrapcc_trap # ordered greater or less than? |
| ftrapcc_ole_no: |
| rts # do nothing |
| |
| # |
| # unordered or greater than: |
| # ___ |
| # NANv(NvZ) |
| # |
| ftrapcc_ugt: |
| fbugt.w ftrapcc_trap # unordered or greater than? |
| ftrapcc_ugt_no: |
| rts # do nothing |
| |
| # |
| # ordered greater or less than: |
| # _____ |
| # NANvZ |
| # |
| ftrapcc_ogl: |
| fbogl.w ftrapcc_trap # ordered greater or less than? |
| ftrapcc_ogl_no: |
| rts # do nothing |
| |
| # |
| # unordered or equal: |
| # |
| # NANvZ |
| # |
| ftrapcc_ueq: |
| fbueq.w ftrapcc_trap # unordered or equal? |
| ftrapcc_ueq_no: |
| rts # do nothing |
| |
| # |
| # ordered: |
| # ___ |
| # NAN |
| # |
| ftrapcc_or: |
| fbor.w ftrapcc_trap # ordered? |
| ftrapcc_or_no: |
| rts # do nothing |
| |
| # |
| # unordered: |
| # |
| # NAN |
| # |
| ftrapcc_un: |
| fbun.w ftrapcc_trap # unordered? |
| ftrapcc_un_no: |
| rts # do nothing |
| |
| ####################################################################### |
| |
| # the bsun exception bit was not set. |
| # we will need to jump to the ftrapcc vector. the stack frame |
| # is the same size as that of the fp unimp instruction. the |
| # only difference is that the <ea> field should hold the PC |
| # of the ftrapcc instruction and the vector offset field |
| # should denote the ftrapcc trap. |
| ftrapcc_trap: |
| mov.b &ftrapcc_flg,SPCOND_FLG(%a6) |
| rts |
| |
| # the emulation routine set bsun and BSUN was enabled. have to |
| # fix stack and jump to the bsun handler. |
| # let the caller of this routine shift the stack frame up to |
| # eliminate the effective address field. |
| ftrapcc_bsun: |
| mov.b &fbsun_flg,SPCOND_FLG(%a6) |
| rts |
| |
| ######################################################################### |
| # fscc(): routine to emulate the fscc instruction # |
| # # |
| # XDEF **************************************************************** # |
| # _fscc() # |
| # # |
| # XREF **************************************************************** # |
| # store_dreg_b() - store result to data register file # |
| # dec_areg() - decrement an areg for -(an) mode # |
| # inc_areg() - increment an areg for (an)+ mode # |
| # _dmem_write_byte() - store result to memory # |
| # # |
| # INPUT *************************************************************** # |
| # none # |
| # # |
| # OUTPUT ************************************************************** # |
| # none # |
| # # |
| # ALGORITHM *********************************************************** # |
| # This routine checks which conditional predicate is specified by # |
| # the stacked fscc instruction opcode and then branches to a routine # |
| # for that predicate. The corresponding fbcc instruction is then used # |
| # to see whether the condition (specified by the stacked FPSR) is true # |
| # or false. # |
| # If a BSUN exception should be indicated, the BSUN and ABSUN # |
| # bits are set in the stacked FPSR. If the BSUN exception is enabled, # |
| # the fbsun_flg is set in the SPCOND_FLG location on the stack. If an # |
| # enabled BSUN should not be flagged and the predicate is true, then # |
| # the result is stored to the data register file or memory # |
| # # |
| ######################################################################### |
| |
| global _fscc |
| _fscc: |
| mov.w EXC_CMDREG(%a6),%d0 # fetch predicate |
| |
| clr.l %d1 # clear scratch reg |
| mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes |
| ror.l &0x8,%d1 # rotate to top byte |
| fmov.l %d1,%fpsr # insert into FPSR |
| |
| mov.w (tbl_fscc.b,%pc,%d0.w*2),%d1 # load table |
| jmp (tbl_fscc.b,%pc,%d1.w) # jump to fscc routine |
| |
| tbl_fscc: |
| short fscc_f - tbl_fscc # 00 |
| short fscc_eq - tbl_fscc # 01 |
| short fscc_ogt - tbl_fscc # 02 |
| short fscc_oge - tbl_fscc # 03 |
| short fscc_olt - tbl_fscc # 04 |
| short fscc_ole - tbl_fscc # 05 |
| short fscc_ogl - tbl_fscc # 06 |
| short fscc_or - tbl_fscc # 07 |
| short fscc_un - tbl_fscc # 08 |
| short fscc_ueq - tbl_fscc # 09 |
| short fscc_ugt - tbl_fscc # 10 |
| short fscc_uge - tbl_fscc # 11 |
| short fscc_ult - tbl_fscc # 12 |
| short fscc_ule - tbl_fscc # 13 |
| short fscc_neq - tbl_fscc # 14 |
| short fscc_t - tbl_fscc # 15 |
| short fscc_sf - tbl_fscc # 16 |
| short fscc_seq - tbl_fscc # 17 |
| short fscc_gt - tbl_fscc # 18 |
| short fscc_ge - tbl_fscc # 19 |
| short fscc_lt - tbl_fscc # 20 |
| short fscc_le - tbl_fscc # 21 |
| short fscc_gl - tbl_fscc # 22 |
| short fscc_gle - tbl_fscc # 23 |
| short fscc_ngle - tbl_fscc # 24 |
| short fscc_ngl - tbl_fscc # 25 |
| short fscc_nle - tbl_fscc # 26 |
| short fscc_nlt - tbl_fscc # 27 |
| short fscc_nge - tbl_fscc # 28 |
| short fscc_ngt - tbl_fscc # 29 |
| short fscc_sneq - tbl_fscc # 30 |
| short fscc_st - tbl_fscc # 31 |
| |
| ######################################################################### |
| # # |
| # IEEE Nonaware tests # |
| # # |
| # For the IEEE nonaware tests, we set the result based on the # |
| # floating point condition codes. In addition, we check to see # |
| # if the NAN bit is set, in which case BSUN and AIOP will be set. # |
| # # |
| # The cases EQ and NE are shared by the Aware and Nonaware groups # |
| # and are incapable of setting the BSUN exception bit. # |
| # # |
| # Typically, only one of the two possible branch directions could # |
| # have the NAN bit set. # |
| # # |
| ######################################################################### |
| |
| # |
| # equal: |
| # |
| # Z |
| # |
| fscc_eq: |
| fbeq.w fscc_eq_yes # equal? |
| fscc_eq_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_eq_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # not equal: |
| # _ |
| # Z |
| # |
| fscc_neq: |
| fbneq.w fscc_neq_yes # not equal? |
| fscc_neq_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_neq_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # greater than: |
| # _______ |
| # NANvZvN |
| # |
| fscc_gt: |
| fbgt.w fscc_gt_yes # greater than? |
| fscc_gt_no: |
| clr.b %d0 # set false |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| fscc_gt_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # not greater than: |
| # |
| # NANvZvN |
| # |
| fscc_ngt: |
| fbngt.w fscc_ngt_yes # not greater than? |
| fscc_ngt_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_ngt_yes: |
| st %d0 # set true |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| |
| # |
| # greater than or equal: |
| # _____ |
| # Zv(NANvN) |
| # |
| fscc_ge: |
| fbge.w fscc_ge_yes # greater than or equal? |
| fscc_ge_no: |
| clr.b %d0 # set false |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| fscc_ge_yes: |
| st %d0 # set true |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| |
| # |
| # not (greater than or equal): |
| # _ |
| # NANv(N^Z) |
| # |
| fscc_nge: |
| fbnge.w fscc_nge_yes # not (greater than or equal)? |
| fscc_nge_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_nge_yes: |
| st %d0 # set true |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| |
| # |
| # less than: |
| # _____ |
| # N^(NANvZ) |
| # |
| fscc_lt: |
| fblt.w fscc_lt_yes # less than? |
| fscc_lt_no: |
| clr.b %d0 # set false |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| fscc_lt_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # not less than: |
| # _ |
| # NANv(ZvN) |
| # |
| fscc_nlt: |
| fbnlt.w fscc_nlt_yes # not less than? |
| fscc_nlt_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_nlt_yes: |
| st %d0 # set true |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| |
| # |
| # less than or equal: |
| # ___ |
| # Zv(N^NAN) |
| # |
| fscc_le: |
| fble.w fscc_le_yes # less than or equal? |
| fscc_le_no: |
| clr.b %d0 # set false |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| fscc_le_yes: |
| st %d0 # set true |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| |
| # |
| # not (less than or equal): |
| # ___ |
| # NANv(NvZ) |
| # |
| fscc_nle: |
| fbnle.w fscc_nle_yes # not (less than or equal)? |
| fscc_nle_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_nle_yes: |
| st %d0 # set true |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| |
| # |
| # greater or less than: |
| # _____ |
| # NANvZ |
| # |
| fscc_gl: |
| fbgl.w fscc_gl_yes # greater or less than? |
| fscc_gl_no: |
| clr.b %d0 # set false |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| fscc_gl_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # not (greater or less than): |
| # |
| # NANvZ |
| # |
| fscc_ngl: |
| fbngl.w fscc_ngl_yes # not (greater or less than)? |
| fscc_ngl_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_ngl_yes: |
| st %d0 # set true |
| btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| |
| # |
| # greater, less, or equal: |
| # ___ |
| # NAN |
| # |
| fscc_gle: |
| fbgle.w fscc_gle_yes # greater, less, or equal? |
| fscc_gle_no: |
| clr.b %d0 # set false |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| fscc_gle_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # not (greater, less, or equal): |
| # |
| # NAN |
| # |
| fscc_ngle: |
| fbngle.w fscc_ngle_yes # not (greater, less, or equal)? |
| fscc_ngle_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_ngle_yes: |
| st %d0 # set true |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| |
| ######################################################################### |
| # # |
| # Miscellaneous tests # |
| # # |
| # For the IEEE aware tests, we only have to set the result based on the # |
| # floating point condition codes. The BSUN exception will not be # |
| # set for any of these tests. # |
| # # |
| ######################################################################### |
| |
| # |
| # false: |
| # |
| # False |
| # |
| fscc_f: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| |
| # |
| # true: |
| # |
| # True |
| # |
| fscc_t: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # signalling false: |
| # |
| # False |
| # |
| fscc_sf: |
| clr.b %d0 # set false |
| btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| |
| # |
| # signalling true: |
| # |
| # True |
| # |
| fscc_st: |
| st %d0 # set false |
| btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| |
| # |
| # signalling equal: |
| # |
| # Z |
| # |
| fscc_seq: |
| fbseq.w fscc_seq_yes # signalling equal? |
| fscc_seq_no: |
| clr.b %d0 # set false |
| btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| fscc_seq_yes: |
| st %d0 # set true |
| btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| |
| # |
| # signalling not equal: |
| # _ |
| # Z |
| # |
| fscc_sneq: |
| fbsneq.w fscc_sneq_yes # signalling equal? |
| fscc_sneq_no: |
| clr.b %d0 # set false |
| btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| fscc_sneq_yes: |
| st %d0 # set true |
| btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit |
| beq.w fscc_done # no;go finish |
| ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit |
| bra.w fscc_chk_bsun # go finish |
| |
| ######################################################################### |
| # # |
| # IEEE Aware tests # |
| # # |
| # For the IEEE aware tests, we only have to set the result based on the # |
| # floating point condition codes. The BSUN exception will not be # |
| # set for any of these tests. # |
| # # |
| ######################################################################### |
| |
| # |
| # ordered greater than: |
| # _______ |
| # NANvZvN |
| # |
| fscc_ogt: |
| fbogt.w fscc_ogt_yes # ordered greater than? |
| fscc_ogt_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_ogt_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # unordered or less or equal: |
| # _______ |
| # NANvZvN |
| # |
| fscc_ule: |
| fbule.w fscc_ule_yes # unordered or less or equal? |
| fscc_ule_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_ule_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # ordered greater than or equal: |
| # _____ |
| # Zv(NANvN) |
| # |
| fscc_oge: |
| fboge.w fscc_oge_yes # ordered greater than or equal? |
| fscc_oge_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_oge_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # unordered or less than: |
| # _ |
| # NANv(N^Z) |
| # |
| fscc_ult: |
| fbult.w fscc_ult_yes # unordered or less than? |
| fscc_ult_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_ult_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # ordered less than: |
| # _____ |
| # N^(NANvZ) |
| # |
| fscc_olt: |
| fbolt.w fscc_olt_yes # ordered less than? |
| fscc_olt_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_olt_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # unordered or greater or equal: |
| # |
| # NANvZvN |
| # |
| fscc_uge: |
| fbuge.w fscc_uge_yes # unordered or greater than? |
| fscc_uge_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_uge_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # ordered less than or equal: |
| # ___ |
| # Zv(N^NAN) |
| # |
| fscc_ole: |
| fbole.w fscc_ole_yes # ordered greater or less than? |
| fscc_ole_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_ole_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # unordered or greater than: |
| # ___ |
| # NANv(NvZ) |
| # |
| fscc_ugt: |
| fbugt.w fscc_ugt_yes # unordered or greater than? |
| fscc_ugt_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_ugt_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # ordered greater or less than: |
| # _____ |
| # NANvZ |
| # |
| fscc_ogl: |
| fbogl.w fscc_ogl_yes # ordered greater or less than? |
| fscc_ogl_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_ogl_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # unordered or equal: |
| # |
| # NANvZ |
| # |
| fscc_ueq: |
| fbueq.w fscc_ueq_yes # unordered or equal? |
| fscc_ueq_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_ueq_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # ordered: |
| # ___ |
| # NAN |
| # |
| fscc_or: |
| fbor.w fscc_or_yes # ordered? |
| fscc_or_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_or_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| # |
| # unordered: |
| # |
| # NAN |
| # |
| fscc_un: |
| fbun.w fscc_un_yes # unordered? |
| fscc_un_no: |
| clr.b %d0 # set false |
| bra.w fscc_done # go finish |
| fscc_un_yes: |
| st %d0 # set true |
| bra.w fscc_done # go finish |
| |
| ####################################################################### |
| |
| # |
| # the bsun exception bit was set. now, check to see is BSUN |
| # is enabled. if so, don't store result and correct stack frame |
| # for a bsun exception. |
| # |
| fscc_chk_bsun: |
| btst &bsun_bit,FPCR_ENABLE(%a6) # was BSUN set? |
| bne.w fscc_bsun |
| |
| # |
| # the bsun exception bit was not set. |
| # the result has been selected. |
| # now, check to see if the result is to be stored in the data register |
| # file or in memory. |
| # |
| fscc_done: |
| mov.l %d0,%a0 # save result for a moment |
| |
| mov.b 1+EXC_OPWORD(%a6),%d1 # fetch lo opword |
| mov.l %d1,%d0 # make a copy |
| andi.b &0x38,%d1 # extract src mode |
| |
| bne.b fscc_mem_op # it's a memory operation |
| |
| mov.l %d0,%d1 |
| andi.w &0x7,%d1 # pass index in d1 |
| mov.l %a0,%d0 # pass result in d0 |
| bsr.l store_dreg_b # save result in regfile |
| rts |
| |
| # |
| # the stacked <ea> is correct with the exception of: |
| # -> Dn : <ea> is garbage |
| # |
| # if the addressing mode is post-increment or pre-decrement, |
| # then the address registers have not been updated. |
| # |
| fscc_mem_op: |
| cmpi.b %d1,&0x18 # is <ea> (An)+ ? |
| beq.b fscc_mem_inc # yes |
| cmpi.b %d1,&0x20 # is <ea> -(An) ? |
| beq.b fscc_mem_dec # yes |
| |
| mov.l %a0,%d0 # pass result in d0 |
| mov.l EXC_EA(%a6),%a0 # fetch <ea> |
| bsr.l _dmem_write_byte # write result byte |
| |
| tst.l %d1 # did dstore fail? |
| bne.w fscc_err # yes |
| |
| rts |
| |
| # addressing mode is post-increment. write the result byte. if the write |
| # fails then don't update the address register. if write passes then |
| # call inc_areg() to update the address register. |
| fscc_mem_inc: |
| mov.l %a0,%d0 # pass result in d0 |
| mov.l EXC_EA(%a6),%a0 # fetch <ea> |
| bsr.l _dmem_write_byte # write result byte |
| |
| tst.l %d1 # did dstore fail? |
| bne.w fscc_err # yes |
| |
| mov.b 0x1+EXC_OPWORD(%a6),%d1 # fetch opword |
| andi.w &0x7,%d1 # pass index in d1 |
| movq.l &0x1,%d0 # pass amt to inc by |
| bsr.l inc_areg # increment address register |
| |
| rts |
| |
| # addressing mode is pre-decrement. write the result byte. if the write |
| # fails then don't update the address register. if the write passes then |
| # call dec_areg() to update the address register. |
| fscc_mem_dec: |
| mov.l %a0,%d0 # pass result in d0 |
| mov.l EXC_EA(%a6),%a0 # fetch <ea> |
| bsr.l _dmem_write_byte # write result byte |
| |
| tst.l %d1 # did dstore fail? |
| bne.w fscc_err # yes |
| |
| mov.b 0x1+EXC_OPWORD(%a6),%d1 # fetch opword |
| andi.w &0x7,%d1 # pass index in d1 |
| movq.l &0x1,%d0 # pass amt to dec by |
| bsr.l dec_areg # decrement address register |
| |
| rts |
| |
| # the emulation routine set bsun and BSUN was enabled. have to |
| # fix stack and jump to the bsun handler. |
| # let the caller of this routine shift the stack frame up to |
| # eliminate the effective address field. |
| fscc_bsun: |
| mov.b &fbsun_flg,SPCOND_FLG(%a6) |
| rts |
| |
| # the byte write to memory has failed. pass the failing effective address |
| # and a FSLW to funimp_dacc(). |
| fscc_err: |
| mov.w &0x00a1,EXC_VOFF(%a6) |
| bra.l facc_finish |
| |
| ######################################################################### |
| # XDEF **************************************************************** # |
| # fmovm_dynamic(): emulate "fmovm" dynamic instruction # |
| # # |
| # XREF **************************************************************** # |
| # fetch_dreg() - fetch data register # |
| # {i,d,}mem_read() - fetch data from memory # |
| # _mem_write() - write data to memory # |
| # iea_iacc() - instruction memory access error occurred # |
| # iea_dacc() - data memory access error occurred # |
| # restore() - restore An index regs if access error occurred # |
| # # |
| # INPUT *************************************************************** # |
| # None # |
| # # |
| # OUTPUT ************************************************************** # |
| # If instr is "fmovm Dn,-(A7)" from supervisor mode, # |
| # d0 = size of dump # |
| # d1 = Dn # |
| # Else if instruction access error, # |
| # d0 = FSLW # |
| # Else if data access error, # |
| # d0 = FSLW # |
| # a0 = address of fault # |
| # Else # |
| # none. # |
| # # |
| # ALGORITHM *********************************************************** # |
| # The effective address must be calculated since this is entered # |
| # from an "Unimplemented Effective Address" exception handler. So, we # |
| # have our own fcalc_ea() routine here. If an access error is flagged # |
| # by a _{i,d,}mem_read() call, we must exit through the special # |
| # handler. # |
| # The data register is determined and its value loaded to get the # |
| # string of FP registers affected. This value is used as an index into # |
| # a lookup table such that we can determine the number of bytes # |
| # involved. # |
| # If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used # |
| # to read in all FP values. Again, _mem_read() may fail and require a # |
| # special exit. # |
| # If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used # |
| # to write all FP values. _mem_write() may also fail. # |
| # If the instruction is "fmovm.x DN,-(a7)" from supervisor mode, # |
| # then we return the size of the dump and the string to the caller # |
| # so that the move can occur outside of this routine. This special # |
| # case is required so that moves to the system stack are handled # |
| # correctly. # |
| # # |
| # DYNAMIC: # |
| # fmovm.x dn, <ea> # |
| # fmovm.x <ea>, dn # |
| # # |
| # <WORD 1> <WORD2> # |
| # 1111 0010 00 |<ea>| 11@& 1000 0$$$ 0000 # |
| # # |
| # & = (0): predecrement addressing mode # |
| # (1): postincrement or control addressing mode # |
| # @ = (0): move listed regs from memory to the FPU # |
| # (1): move listed regs from the FPU to memory # |
| # $$$ : index of data register holding reg select mask # |
| # # |
| # NOTES: # |
| # If the data register holds a zero, then the # |
| # instruction is a nop. # |
| # # |
| ######################################################################### |
| |
| global fmovm_dynamic |
| fmovm_dynamic: |
| |
| # extract the data register in which the bit string resides... |
|