blob: 5a6e4ac4fef42ab0fde90dc0367e943813d50a28 [file] [log] [blame]
/* QLogic qed NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and /or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/types.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include "qed.h"
#include "qed_hsi.h"
#include "qed_hw.h"
#include "qed_init_ops.h"
#include "qed_reg_addr.h"
#include "qed_sriov.h"
#define QED_INIT_MAX_POLL_COUNT 100
#define QED_INIT_POLL_PERIOD_US 500
static u32 pxp_global_win[] = {
0,
0,
0x1c02, /* win 2: addr=0x1c02000, size=4096 bytes */
0x1c80, /* win 3: addr=0x1c80000, size=4096 bytes */
0x1d00, /* win 4: addr=0x1d00000, size=4096 bytes */
0x1d01, /* win 5: addr=0x1d01000, size=4096 bytes */
0x1d02, /* win 6: addr=0x1d02000, size=4096 bytes */
0x1d80, /* win 7: addr=0x1d80000, size=4096 bytes */
0x1d81, /* win 8: addr=0x1d81000, size=4096 bytes */
0x1d82, /* win 9: addr=0x1d82000, size=4096 bytes */
0x1e00, /* win 10: addr=0x1e00000, size=4096 bytes */
0x1e01, /* win 11: addr=0x1e01000, size=4096 bytes */
0x1e80, /* win 12: addr=0x1e80000, size=4096 bytes */
0x1f00, /* win 13: addr=0x1f00000, size=4096 bytes */
0x1c08, /* win 14: addr=0x1c08000, size=4096 bytes */
0,
0,
0,
0,
};
void qed_init_iro_array(struct qed_dev *cdev)
{
cdev->iro_arr = iro_arr;
}
void qed_init_store_rt_reg(struct qed_hwfn *p_hwfn, u32 rt_offset, u32 val)
{
p_hwfn->rt_data.init_val[rt_offset] = val;
p_hwfn->rt_data.b_valid[rt_offset] = true;
}
void qed_init_store_rt_agg(struct qed_hwfn *p_hwfn,
u32 rt_offset, u32 *p_val, size_t size)
{
size_t i;
for (i = 0; i < size / sizeof(u32); i++) {
p_hwfn->rt_data.init_val[rt_offset + i] = p_val[i];
p_hwfn->rt_data.b_valid[rt_offset + i] = true;
}
}
static int qed_init_rt(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u32 addr, u16 rt_offset, u16 size, bool b_must_dmae)
{
u32 *p_init_val = &p_hwfn->rt_data.init_val[rt_offset];
bool *p_valid = &p_hwfn->rt_data.b_valid[rt_offset];
u16 i, j, segment;
int rc = 0;
/* Since not all RT entries are initialized, go over the RT and
* for each segment of initialized values use DMA.
*/
for (i = 0; i < size; i++) {
if (!p_valid[i])
continue;
/* In case there isn't any wide-bus configuration here,
* simply write the data instead of using dmae.
*/
if (!b_must_dmae) {
qed_wr(p_hwfn, p_ptt, addr + (i << 2), p_init_val[i]);
p_valid[i] = false;
continue;
}
/* Start of a new segment */
for (segment = 1; i + segment < size; segment++)
if (!p_valid[i + segment])
break;
rc = qed_dmae_host2grc(p_hwfn, p_ptt,
(uintptr_t)(p_init_val + i),
addr + (i << 2), segment, NULL);
if (rc)
return rc;
/* invalidate after writing */
for (j = i; j < i + segment; j++)
p_valid[j] = false;
/* Jump over the entire segment, including invalid entry */
i += segment;
}
return rc;
}
int qed_init_alloc(struct qed_hwfn *p_hwfn)
{
struct qed_rt_data *rt_data = &p_hwfn->rt_data;
if (IS_VF(p_hwfn->cdev))
return 0;
rt_data->b_valid = kcalloc(RUNTIME_ARRAY_SIZE, sizeof(bool),
GFP_KERNEL);
if (!rt_data->b_valid)
return -ENOMEM;
rt_data->init_val = kcalloc(RUNTIME_ARRAY_SIZE, sizeof(u32),
GFP_KERNEL);
if (!rt_data->init_val) {
kfree(rt_data->b_valid);
rt_data->b_valid = NULL;
return -ENOMEM;
}
return 0;
}
void qed_init_free(struct qed_hwfn *p_hwfn)
{
kfree(p_hwfn->rt_data.init_val);
p_hwfn->rt_data.init_val = NULL;
kfree(p_hwfn->rt_data.b_valid);
p_hwfn->rt_data.b_valid = NULL;
}
static int qed_init_array_dmae(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u32 addr,
u32 dmae_data_offset,
u32 size,
const u32 *buf,
bool b_must_dmae,
bool b_can_dmae)
{
int rc = 0;
/* Perform DMAE only for lengthy enough sections or for wide-bus */
if (!b_can_dmae || (!b_must_dmae && (size < 16))) {
const u32 *data = buf + dmae_data_offset;
u32 i;
for (i = 0; i < size; i++)
qed_wr(p_hwfn, p_ptt, addr + (i << 2), data[i]);
} else {
rc = qed_dmae_host2grc(p_hwfn, p_ptt,
(uintptr_t)(buf + dmae_data_offset),
addr, size, NULL);
}
return rc;
}
static int qed_init_fill_dmae(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u32 addr, u32 fill, u32 fill_count)
{
static u32 zero_buffer[DMAE_MAX_RW_SIZE];
struct qed_dmae_params params = {};
memset(zero_buffer, 0, sizeof(u32) * DMAE_MAX_RW_SIZE);
/* invoke the DMAE virtual/physical buffer API with
* 1. DMAE init channel
* 2. addr,
* 3. p_hwfb->temp_data,
* 4. fill_count
*/
SET_FIELD(params.flags, QED_DMAE_PARAMS_RW_REPL_SRC, 0x1);
return qed_dmae_host2grc(p_hwfn, p_ptt,
(uintptr_t)(&zero_buffer[0]),
addr, fill_count, &params);
}
static void qed_init_fill(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u32 addr, u32 fill, u32 fill_count)
{
u32 i;
for (i = 0; i < fill_count; i++, addr += sizeof(u32))
qed_wr(p_hwfn, p_ptt, addr, fill);
}
static int qed_init_cmd_array(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct init_write_op *cmd,
bool b_must_dmae, bool b_can_dmae)
{
u32 dmae_array_offset = le32_to_cpu(cmd->args.array_offset);
u32 data = le32_to_cpu(cmd->data);
u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2;
u32 offset, output_len, input_len, max_size;
struct qed_dev *cdev = p_hwfn->cdev;
union init_array_hdr *hdr;
const u32 *array_data;
int rc = 0;
u32 size;
array_data = cdev->fw_data->arr_data;
hdr = (union init_array_hdr *)(array_data + dmae_array_offset);
data = le32_to_cpu(hdr->raw.data);
switch (GET_FIELD(data, INIT_ARRAY_RAW_HDR_TYPE)) {
case INIT_ARR_ZIPPED:
offset = dmae_array_offset + 1;
input_len = GET_FIELD(data,
INIT_ARRAY_ZIPPED_HDR_ZIPPED_SIZE);
max_size = MAX_ZIPPED_SIZE * 4;
memset(p_hwfn->unzip_buf, 0, max_size);
output_len = qed_unzip_data(p_hwfn, input_len,
(u8 *)&array_data[offset],
max_size, (u8 *)p_hwfn->unzip_buf);
if (output_len) {
rc = qed_init_array_dmae(p_hwfn, p_ptt, addr, 0,
output_len,
p_hwfn->unzip_buf,
b_must_dmae, b_can_dmae);
} else {
DP_NOTICE(p_hwfn, "Failed to unzip dmae data\n");
rc = -EINVAL;
}
break;
case INIT_ARR_PATTERN:
{
u32 repeats = GET_FIELD(data,
INIT_ARRAY_PATTERN_HDR_REPETITIONS);
u32 i;
size = GET_FIELD(data, INIT_ARRAY_PATTERN_HDR_PATTERN_SIZE);
for (i = 0; i < repeats; i++, addr += size << 2) {
rc = qed_init_array_dmae(p_hwfn, p_ptt, addr,
dmae_array_offset + 1,
size, array_data,
b_must_dmae, b_can_dmae);
if (rc)
break;
}
break;
}
case INIT_ARR_STANDARD:
size = GET_FIELD(data, INIT_ARRAY_STANDARD_HDR_SIZE);
rc = qed_init_array_dmae(p_hwfn, p_ptt, addr,
dmae_array_offset + 1,
size, array_data,
b_must_dmae, b_can_dmae);
break;
}
return rc;
}
/* init_ops write command */
static int qed_init_cmd_wr(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct init_write_op *p_cmd, bool b_can_dmae)
{
u32 data = le32_to_cpu(p_cmd->data);
bool b_must_dmae = GET_FIELD(data, INIT_WRITE_OP_WIDE_BUS);
u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2;
union init_write_args *arg = &p_cmd->args;
int rc = 0;
/* Sanitize */
if (b_must_dmae && !b_can_dmae) {
DP_NOTICE(p_hwfn,
"Need to write to %08x for Wide-bus but DMAE isn't allowed\n",
addr);
return -EINVAL;
}
switch (GET_FIELD(data, INIT_WRITE_OP_SOURCE)) {
case INIT_SRC_INLINE:
data = le32_to_cpu(p_cmd->args.inline_val);
qed_wr(p_hwfn, p_ptt, addr, data);
break;
case INIT_SRC_ZEROS:
data = le32_to_cpu(p_cmd->args.zeros_count);
if (b_must_dmae || (b_can_dmae && (data >= 64)))
rc = qed_init_fill_dmae(p_hwfn, p_ptt, addr, 0, data);
else
qed_init_fill(p_hwfn, p_ptt, addr, 0, data);
break;
case INIT_SRC_ARRAY:
rc = qed_init_cmd_array(p_hwfn, p_ptt, p_cmd,
b_must_dmae, b_can_dmae);
break;
case INIT_SRC_RUNTIME:
qed_init_rt(p_hwfn, p_ptt, addr,
le16_to_cpu(arg->runtime.offset),
le16_to_cpu(arg->runtime.size),
b_must_dmae);
break;
}
return rc;
}
static inline bool comp_eq(u32 val, u32 expected_val)
{
return val == expected_val;
}
static inline bool comp_and(u32 val, u32 expected_val)
{
return (val & expected_val) == expected_val;
}
static inline bool comp_or(u32 val, u32 expected_val)
{
return (val | expected_val) > 0;
}
/* init_ops read/poll commands */
static void qed_init_cmd_rd(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, struct init_read_op *cmd)
{
bool (*comp_check)(u32 val, u32 expected_val);
u32 delay = QED_INIT_POLL_PERIOD_US, val;
u32 data, addr, poll;
int i;
data = le32_to_cpu(cmd->op_data);
addr = GET_FIELD(data, INIT_READ_OP_ADDRESS) << 2;
poll = GET_FIELD(data, INIT_READ_OP_POLL_TYPE);
val = qed_rd(p_hwfn, p_ptt, addr);
if (poll == INIT_POLL_NONE)
return;
switch (poll) {
case INIT_POLL_EQ:
comp_check = comp_eq;
break;
case INIT_POLL_OR:
comp_check = comp_or;
break;
case INIT_POLL_AND:
comp_check = comp_and;
break;
default:
DP_ERR(p_hwfn, "Invalid poll comparison type %08x\n",
cmd->op_data);
return;
}
data = le32_to_cpu(cmd->expected_val);
for (i = 0;
i < QED_INIT_MAX_POLL_COUNT && !comp_check(val, data);
i++) {
udelay(delay);
val = qed_rd(p_hwfn, p_ptt, addr);
}
if (i == QED_INIT_MAX_POLL_COUNT) {
DP_ERR(p_hwfn,
"Timeout when polling reg: 0x%08x [ Waiting-for: %08x Got: %08x (comparison %08x)]\n",
addr, le32_to_cpu(cmd->expected_val),
val, le32_to_cpu(cmd->op_data));
}
}
/* init_ops callbacks entry point */
static int qed_init_cmd_cb(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct init_callback_op *p_cmd)
{
int rc;
switch (p_cmd->callback_id) {
case DMAE_READY_CB:
rc = qed_dmae_sanity(p_hwfn, p_ptt, "engine_phase");
break;
default:
DP_NOTICE(p_hwfn, "Unexpected init op callback ID %d\n",
p_cmd->callback_id);
return -EINVAL;
}
return rc;
}
static u8 qed_init_cmd_mode_match(struct qed_hwfn *p_hwfn,
u16 *p_offset, int modes)
{
struct qed_dev *cdev = p_hwfn->cdev;
const u8 *modes_tree_buf;
u8 arg1, arg2, tree_val;
modes_tree_buf = cdev->fw_data->modes_tree_buf;
tree_val = modes_tree_buf[(*p_offset)++];
switch (tree_val) {
case INIT_MODE_OP_NOT:
return qed_init_cmd_mode_match(p_hwfn, p_offset, modes) ^ 1;
case INIT_MODE_OP_OR:
arg1 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes);
arg2 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes);
return arg1 | arg2;
case INIT_MODE_OP_AND:
arg1 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes);
arg2 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes);
return arg1 & arg2;
default:
tree_val -= MAX_INIT_MODE_OPS;
return (modes & BIT(tree_val)) ? 1 : 0;
}
}
static u32 qed_init_cmd_mode(struct qed_hwfn *p_hwfn,
struct init_if_mode_op *p_cmd, int modes)
{
u16 offset = le16_to_cpu(p_cmd->modes_buf_offset);
if (qed_init_cmd_mode_match(p_hwfn, &offset, modes))
return 0;
else
return GET_FIELD(le32_to_cpu(p_cmd->op_data),
INIT_IF_MODE_OP_CMD_OFFSET);
}
static u32 qed_init_cmd_phase(struct qed_hwfn *p_hwfn,
struct init_if_phase_op *p_cmd,
u32 phase, u32 phase_id)
{
u32 data = le32_to_cpu(p_cmd->phase_data);
u32 op_data = le32_to_cpu(p_cmd->op_data);
if (!(GET_FIELD(data, INIT_IF_PHASE_OP_PHASE) == phase &&
(GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == ANY_PHASE_ID ||
GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == phase_id)))
return GET_FIELD(op_data, INIT_IF_PHASE_OP_CMD_OFFSET);
else
return 0;
}
int qed_init_run(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, int phase, int phase_id, int modes)
{
bool b_dmae = (phase != PHASE_ENGINE);
struct qed_dev *cdev = p_hwfn->cdev;
u32 cmd_num, num_init_ops;
union init_op *init_ops;
int rc = 0;
num_init_ops = cdev->fw_data->init_ops_size;
init_ops = cdev->fw_data->init_ops;
p_hwfn->unzip_buf = kzalloc(MAX_ZIPPED_SIZE * 4, GFP_ATOMIC);
if (!p_hwfn->unzip_buf)
return -ENOMEM;
for (cmd_num = 0; cmd_num < num_init_ops; cmd_num++) {
union init_op *cmd = &init_ops[cmd_num];
u32 data = le32_to_cpu(cmd->raw.op_data);
switch (GET_FIELD(data, INIT_CALLBACK_OP_OP)) {
case INIT_OP_WRITE:
rc = qed_init_cmd_wr(p_hwfn, p_ptt, &cmd->write,
b_dmae);
break;
case INIT_OP_READ:
qed_init_cmd_rd(p_hwfn, p_ptt, &cmd->read);
break;
case INIT_OP_IF_MODE:
cmd_num += qed_init_cmd_mode(p_hwfn, &cmd->if_mode,
modes);
break;
case INIT_OP_IF_PHASE:
cmd_num += qed_init_cmd_phase(p_hwfn, &cmd->if_phase,
phase, phase_id);
break;
case INIT_OP_DELAY:
/* qed_init_run is always invoked from
* sleep-able context
*/
udelay(le32_to_cpu(cmd->delay.delay));
break;
case INIT_OP_CALLBACK:
rc = qed_init_cmd_cb(p_hwfn, p_ptt, &cmd->callback);
if (phase == PHASE_ENGINE &&
cmd->callback.callback_id == DMAE_READY_CB)
b_dmae = true;
break;
}
if (rc)
break;
}
kfree(p_hwfn->unzip_buf);
p_hwfn->unzip_buf = NULL;
return rc;
}
void qed_gtt_init(struct qed_hwfn *p_hwfn)
{
u32 gtt_base;
u32 i;
/* Set the global windows */
gtt_base = PXP_PF_WINDOW_ADMIN_START + PXP_PF_WINDOW_ADMIN_GLOBAL_START;
for (i = 0; i < ARRAY_SIZE(pxp_global_win); i++)
if (pxp_global_win[i])
REG_WR(p_hwfn, gtt_base + i * PXP_GLOBAL_ENTRY_SIZE,
pxp_global_win[i]);
}
int qed_init_fw_data(struct qed_dev *cdev, const u8 *data)
{
struct qed_fw_data *fw = cdev->fw_data;
struct bin_buffer_hdr *buf_hdr;
u32 offset, len;
if (!data) {
DP_NOTICE(cdev, "Invalid fw data\n");
return -EINVAL;
}
/* First Dword contains metadata and should be skipped */
buf_hdr = (struct bin_buffer_hdr *)data;
offset = buf_hdr[BIN_BUF_INIT_FW_VER_INFO].offset;
fw->fw_ver_info = (struct fw_ver_info *)(data + offset);
offset = buf_hdr[BIN_BUF_INIT_CMD].offset;
fw->init_ops = (union init_op *)(data + offset);
offset = buf_hdr[BIN_BUF_INIT_VAL].offset;
fw->arr_data = (u32 *)(data + offset);
offset = buf_hdr[BIN_BUF_INIT_MODE_TREE].offset;
fw->modes_tree_buf = (u8 *)(data + offset);
len = buf_hdr[BIN_BUF_INIT_CMD].length;
fw->init_ops_size = len / sizeof(struct init_raw_op);
offset = buf_hdr[BIN_BUF_INIT_OVERLAYS].offset;
fw->fw_overlays = (u32 *)(data + offset);
len = buf_hdr[BIN_BUF_INIT_OVERLAYS].length;
fw->fw_overlays_len = len;
return 0;
}