blob: 2c25ff3623cd3c73abb31a5e12801e3b5c277099 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Actions Semi Owl SoCs Ethernet MAC driver
*
* Copyright (c) 2012 Actions Semi Inc.
* Copyright (c) 2021 Cristian Ciocaltea <cristian.ciocaltea@gmail.com>
*/
#include <linux/circ_buf.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/reset.h>
#include "owl-emac.h"
#define OWL_EMAC_DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | \
NETIF_MSG_PROBE | \
NETIF_MSG_LINK)
static u32 owl_emac_reg_read(struct owl_emac_priv *priv, u32 reg)
{
return readl(priv->base + reg);
}
static void owl_emac_reg_write(struct owl_emac_priv *priv, u32 reg, u32 data)
{
writel(data, priv->base + reg);
}
static u32 owl_emac_reg_update(struct owl_emac_priv *priv,
u32 reg, u32 mask, u32 val)
{
u32 data, old_val;
data = owl_emac_reg_read(priv, reg);
old_val = data & mask;
data &= ~mask;
data |= val & mask;
owl_emac_reg_write(priv, reg, data);
return old_val;
}
static void owl_emac_reg_set(struct owl_emac_priv *priv, u32 reg, u32 bits)
{
owl_emac_reg_update(priv, reg, bits, bits);
}
static void owl_emac_reg_clear(struct owl_emac_priv *priv, u32 reg, u32 bits)
{
owl_emac_reg_update(priv, reg, bits, 0);
}
static struct device *owl_emac_get_dev(struct owl_emac_priv *priv)
{
return priv->netdev->dev.parent;
}
static void owl_emac_irq_enable(struct owl_emac_priv *priv)
{
/* Enable all interrupts except TU.
*
* Note the NIE and AIE bits shall also be set in order to actually
* enable the selected interrupts.
*/
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR7,
OWL_EMAC_BIT_MAC_CSR7_NIE |
OWL_EMAC_BIT_MAC_CSR7_AIE |
OWL_EMAC_BIT_MAC_CSR7_ALL_NOT_TUE);
}
static void owl_emac_irq_disable(struct owl_emac_priv *priv)
{
/* Disable all interrupts.
*
* WARNING: Unset only the NIE and AIE bits in CSR7 to workaround an
* unexpected side effect (MAC hardware bug?!) where some bits in the
* status register (CSR5) are cleared automatically before being able
* to read them via owl_emac_irq_clear().
*/
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR7,
OWL_EMAC_BIT_MAC_CSR7_ALL_NOT_TUE);
}
static u32 owl_emac_irq_status(struct owl_emac_priv *priv)
{
return owl_emac_reg_read(priv, OWL_EMAC_REG_MAC_CSR5);
}
static u32 owl_emac_irq_clear(struct owl_emac_priv *priv)
{
u32 val = owl_emac_irq_status(priv);
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR5, val);
return val;
}
static dma_addr_t owl_emac_dma_map_rx(struct owl_emac_priv *priv,
struct sk_buff *skb)
{
struct device *dev = owl_emac_get_dev(priv);
/* Buffer pointer for the RX DMA descriptor must be word aligned. */
return dma_map_single(dev, skb_tail_pointer(skb),
skb_tailroom(skb), DMA_FROM_DEVICE);
}
static void owl_emac_dma_unmap_rx(struct owl_emac_priv *priv,
struct sk_buff *skb, dma_addr_t dma_addr)
{
struct device *dev = owl_emac_get_dev(priv);
dma_unmap_single(dev, dma_addr, skb_tailroom(skb), DMA_FROM_DEVICE);
}
static dma_addr_t owl_emac_dma_map_tx(struct owl_emac_priv *priv,
struct sk_buff *skb)
{
struct device *dev = owl_emac_get_dev(priv);
return dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
}
static void owl_emac_dma_unmap_tx(struct owl_emac_priv *priv,
struct sk_buff *skb, dma_addr_t dma_addr)
{
struct device *dev = owl_emac_get_dev(priv);
dma_unmap_single(dev, dma_addr, skb_headlen(skb), DMA_TO_DEVICE);
}
static unsigned int owl_emac_ring_num_unused(struct owl_emac_ring *ring)
{
return CIRC_SPACE(ring->head, ring->tail, ring->size);
}
static unsigned int owl_emac_ring_get_next(struct owl_emac_ring *ring,
unsigned int cur)
{
return (cur + 1) & (ring->size - 1);
}
static void owl_emac_ring_push_head(struct owl_emac_ring *ring)
{
ring->head = owl_emac_ring_get_next(ring, ring->head);
}
static void owl_emac_ring_pop_tail(struct owl_emac_ring *ring)
{
ring->tail = owl_emac_ring_get_next(ring, ring->tail);
}
static struct sk_buff *owl_emac_alloc_skb(struct net_device *netdev)
{
struct sk_buff *skb;
int offset;
skb = netdev_alloc_skb(netdev, OWL_EMAC_RX_FRAME_MAX_LEN +
OWL_EMAC_SKB_RESERVE);
if (unlikely(!skb))
return NULL;
/* Ensure 4 bytes DMA alignment. */
offset = ((uintptr_t)skb->data) & (OWL_EMAC_SKB_ALIGN - 1);
if (unlikely(offset))
skb_reserve(skb, OWL_EMAC_SKB_ALIGN - offset);
return skb;
}
static int owl_emac_ring_prepare_rx(struct owl_emac_priv *priv)
{
struct owl_emac_ring *ring = &priv->rx_ring;
struct device *dev = owl_emac_get_dev(priv);
struct net_device *netdev = priv->netdev;
struct owl_emac_ring_desc *desc;
struct sk_buff *skb;
dma_addr_t dma_addr;
int i;
for (i = 0; i < ring->size; i++) {
skb = owl_emac_alloc_skb(netdev);
if (!skb)
return -ENOMEM;
dma_addr = owl_emac_dma_map_rx(priv, skb);
if (dma_mapping_error(dev, dma_addr)) {
dev_kfree_skb(skb);
return -ENOMEM;
}
desc = &ring->descs[i];
desc->status = OWL_EMAC_BIT_RDES0_OWN;
desc->control = skb_tailroom(skb) & OWL_EMAC_MSK_RDES1_RBS1;
desc->buf_addr = dma_addr;
desc->reserved = 0;
ring->skbs[i] = skb;
ring->skbs_dma[i] = dma_addr;
}
desc->control |= OWL_EMAC_BIT_RDES1_RER;
ring->head = 0;
ring->tail = 0;
return 0;
}
static void owl_emac_ring_prepare_tx(struct owl_emac_priv *priv)
{
struct owl_emac_ring *ring = &priv->tx_ring;
struct owl_emac_ring_desc *desc;
int i;
for (i = 0; i < ring->size; i++) {
desc = &ring->descs[i];
desc->status = 0;
desc->control = OWL_EMAC_BIT_TDES1_IC;
desc->buf_addr = 0;
desc->reserved = 0;
}
desc->control |= OWL_EMAC_BIT_TDES1_TER;
memset(ring->skbs_dma, 0, sizeof(dma_addr_t) * ring->size);
ring->head = 0;
ring->tail = 0;
}
static void owl_emac_ring_unprepare_rx(struct owl_emac_priv *priv)
{
struct owl_emac_ring *ring = &priv->rx_ring;
int i;
for (i = 0; i < ring->size; i++) {
ring->descs[i].status = 0;
if (!ring->skbs_dma[i])
continue;
owl_emac_dma_unmap_rx(priv, ring->skbs[i], ring->skbs_dma[i]);
ring->skbs_dma[i] = 0;
dev_kfree_skb(ring->skbs[i]);
ring->skbs[i] = NULL;
}
}
static void owl_emac_ring_unprepare_tx(struct owl_emac_priv *priv)
{
struct owl_emac_ring *ring = &priv->tx_ring;
int i;
for (i = 0; i < ring->size; i++) {
ring->descs[i].status = 0;
if (!ring->skbs_dma[i])
continue;
owl_emac_dma_unmap_tx(priv, ring->skbs[i], ring->skbs_dma[i]);
ring->skbs_dma[i] = 0;
dev_kfree_skb(ring->skbs[i]);
ring->skbs[i] = NULL;
}
}
static int owl_emac_ring_alloc(struct device *dev, struct owl_emac_ring *ring,
unsigned int size)
{
ring->descs = dmam_alloc_coherent(dev,
sizeof(struct owl_emac_ring_desc) * size,
&ring->descs_dma, GFP_KERNEL);
if (!ring->descs)
return -ENOMEM;
ring->skbs = devm_kcalloc(dev, size, sizeof(struct sk_buff *),
GFP_KERNEL);
if (!ring->skbs)
return -ENOMEM;
ring->skbs_dma = devm_kcalloc(dev, size, sizeof(dma_addr_t),
GFP_KERNEL);
if (!ring->skbs_dma)
return -ENOMEM;
ring->size = size;
return 0;
}
static void owl_emac_dma_cmd_resume_rx(struct owl_emac_priv *priv)
{
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR2,
OWL_EMAC_VAL_MAC_CSR2_RPD);
}
static void owl_emac_dma_cmd_resume_tx(struct owl_emac_priv *priv)
{
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR1,
OWL_EMAC_VAL_MAC_CSR1_TPD);
}
static u32 owl_emac_dma_cmd_set_tx(struct owl_emac_priv *priv, u32 status)
{
return owl_emac_reg_update(priv, OWL_EMAC_REG_MAC_CSR6,
OWL_EMAC_BIT_MAC_CSR6_ST, status);
}
static u32 owl_emac_dma_cmd_start_tx(struct owl_emac_priv *priv)
{
return owl_emac_dma_cmd_set_tx(priv, ~0);
}
static u32 owl_emac_dma_cmd_set(struct owl_emac_priv *priv, u32 status)
{
return owl_emac_reg_update(priv, OWL_EMAC_REG_MAC_CSR6,
OWL_EMAC_MSK_MAC_CSR6_STSR, status);
}
static u32 owl_emac_dma_cmd_start(struct owl_emac_priv *priv)
{
return owl_emac_dma_cmd_set(priv, ~0);
}
static u32 owl_emac_dma_cmd_stop(struct owl_emac_priv *priv)
{
return owl_emac_dma_cmd_set(priv, 0);
}
static void owl_emac_set_hw_mac_addr(struct net_device *netdev)
{
struct owl_emac_priv *priv = netdev_priv(netdev);
u8 *mac_addr = netdev->dev_addr;
u32 addr_high, addr_low;
addr_high = mac_addr[0] << 8 | mac_addr[1];
addr_low = mac_addr[2] << 24 | mac_addr[3] << 16 |
mac_addr[4] << 8 | mac_addr[5];
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR17, addr_high);
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR16, addr_low);
}
static void owl_emac_update_link_state(struct owl_emac_priv *priv)
{
u32 val, status;
if (priv->pause) {
val = OWL_EMAC_BIT_MAC_CSR20_FCE | OWL_EMAC_BIT_MAC_CSR20_TUE;
val |= OWL_EMAC_BIT_MAC_CSR20_TPE | OWL_EMAC_BIT_MAC_CSR20_RPE;
val |= OWL_EMAC_BIT_MAC_CSR20_BPE;
} else {
val = 0;
}
/* Update flow control. */
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR20, val);
val = (priv->speed == SPEED_100) ? OWL_EMAC_VAL_MAC_CSR6_SPEED_100M :
OWL_EMAC_VAL_MAC_CSR6_SPEED_10M;
val <<= OWL_EMAC_OFF_MAC_CSR6_SPEED;
if (priv->duplex == DUPLEX_FULL)
val |= OWL_EMAC_BIT_MAC_CSR6_FD;
spin_lock_bh(&priv->lock);
/* Temporarily stop DMA TX & RX. */
status = owl_emac_dma_cmd_stop(priv);
/* Update operation modes. */
owl_emac_reg_update(priv, OWL_EMAC_REG_MAC_CSR6,
OWL_EMAC_MSK_MAC_CSR6_SPEED |
OWL_EMAC_BIT_MAC_CSR6_FD, val);
/* Restore DMA TX & RX status. */
owl_emac_dma_cmd_set(priv, status);
spin_unlock_bh(&priv->lock);
}
static void owl_emac_adjust_link(struct net_device *netdev)
{
struct owl_emac_priv *priv = netdev_priv(netdev);
struct phy_device *phydev = netdev->phydev;
bool state_changed = false;
if (phydev->link) {
if (!priv->link) {
priv->link = phydev->link;
state_changed = true;
}
if (priv->speed != phydev->speed) {
priv->speed = phydev->speed;
state_changed = true;
}
if (priv->duplex != phydev->duplex) {
priv->duplex = phydev->duplex;
state_changed = true;
}
if (priv->pause != phydev->pause) {
priv->pause = phydev->pause;
state_changed = true;
}
} else {
if (priv->link) {
priv->link = phydev->link;
state_changed = true;
}
}
if (state_changed) {
if (phydev->link)
owl_emac_update_link_state(priv);
if (netif_msg_link(priv))
phy_print_status(phydev);
}
}
static irqreturn_t owl_emac_handle_irq(int irq, void *data)
{
struct net_device *netdev = data;
struct owl_emac_priv *priv = netdev_priv(netdev);
if (netif_running(netdev)) {
owl_emac_irq_disable(priv);
napi_schedule(&priv->napi);
}
return IRQ_HANDLED;
}
static void owl_emac_ether_addr_push(u8 **dst, const u8 *src)
{
u32 *a = (u32 *)(*dst);
const u16 *b = (const u16 *)src;
a[0] = b[0];
a[1] = b[1];
a[2] = b[2];
*dst += 12;
}
static void
owl_emac_setup_frame_prepare(struct owl_emac_priv *priv, struct sk_buff *skb)
{
const u8 bcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
const u8 *mac_addr = priv->netdev->dev_addr;
u8 *frame;
int i;
skb_put(skb, OWL_EMAC_SETUP_FRAME_LEN);
frame = skb->data;
memset(frame, 0, skb->len);
owl_emac_ether_addr_push(&frame, mac_addr);
owl_emac_ether_addr_push(&frame, bcast_addr);
/* Fill multicast addresses. */
WARN_ON(priv->mcaddr_list.count >= OWL_EMAC_MAX_MULTICAST_ADDRS);
for (i = 0; i < priv->mcaddr_list.count; i++) {
mac_addr = priv->mcaddr_list.addrs[i];
owl_emac_ether_addr_push(&frame, mac_addr);
}
}
/* The setup frame is a special descriptor which is used to provide physical
* addresses (i.e. mac, broadcast and multicast) to the MAC hardware for
* filtering purposes. To be recognized as a setup frame, the TDES1_SET bit
* must be set in the TX descriptor control field.
*/
static int owl_emac_setup_frame_xmit(struct owl_emac_priv *priv)
{
struct owl_emac_ring *ring = &priv->tx_ring;
struct net_device *netdev = priv->netdev;
struct owl_emac_ring_desc *desc;
struct sk_buff *skb;
unsigned int tx_head;
u32 status, control;
dma_addr_t dma_addr;
int ret;
skb = owl_emac_alloc_skb(netdev);
if (!skb)
return -ENOMEM;
owl_emac_setup_frame_prepare(priv, skb);
dma_addr = owl_emac_dma_map_tx(priv, skb);
if (dma_mapping_error(owl_emac_get_dev(priv), dma_addr)) {
ret = -ENOMEM;
goto err_free_skb;
}
spin_lock_bh(&priv->lock);
tx_head = ring->head;
desc = &ring->descs[tx_head];
status = READ_ONCE(desc->status);
control = READ_ONCE(desc->control);
dma_rmb(); /* Ensure data has been read before used. */
if (unlikely(status & OWL_EMAC_BIT_TDES0_OWN) ||
!owl_emac_ring_num_unused(ring)) {
spin_unlock_bh(&priv->lock);
owl_emac_dma_unmap_tx(priv, skb, dma_addr);
ret = -EBUSY;
goto err_free_skb;
}
ring->skbs[tx_head] = skb;
ring->skbs_dma[tx_head] = dma_addr;
control &= OWL_EMAC_BIT_TDES1_IC | OWL_EMAC_BIT_TDES1_TER; /* Maintain bits */
control |= OWL_EMAC_BIT_TDES1_SET;
control |= OWL_EMAC_MSK_TDES1_TBS1 & skb->len;
WRITE_ONCE(desc->control, control);
WRITE_ONCE(desc->buf_addr, dma_addr);
dma_wmb(); /* Flush descriptor before changing ownership. */
WRITE_ONCE(desc->status, OWL_EMAC_BIT_TDES0_OWN);
owl_emac_ring_push_head(ring);
/* Temporarily enable DMA TX. */
status = owl_emac_dma_cmd_start_tx(priv);
/* Trigger setup frame processing. */
owl_emac_dma_cmd_resume_tx(priv);
/* Restore DMA TX status. */
owl_emac_dma_cmd_set_tx(priv, status);
/* Stop regular TX until setup frame is processed. */
netif_stop_queue(netdev);
spin_unlock_bh(&priv->lock);
return 0;
err_free_skb:
dev_kfree_skb(skb);
return ret;
}
static netdev_tx_t owl_emac_ndo_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct owl_emac_priv *priv = netdev_priv(netdev);
struct device *dev = owl_emac_get_dev(priv);
struct owl_emac_ring *ring = &priv->tx_ring;
struct owl_emac_ring_desc *desc;
unsigned int tx_head;
u32 status, control;
dma_addr_t dma_addr;
dma_addr = owl_emac_dma_map_tx(priv, skb);
if (dma_mapping_error(dev, dma_addr)) {
dev_err_ratelimited(&netdev->dev, "TX DMA mapping failed\n");
dev_kfree_skb(skb);
netdev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
spin_lock_bh(&priv->lock);
tx_head = ring->head;
desc = &ring->descs[tx_head];
status = READ_ONCE(desc->status);
control = READ_ONCE(desc->control);
dma_rmb(); /* Ensure data has been read before used. */
if (!owl_emac_ring_num_unused(ring) ||
unlikely(status & OWL_EMAC_BIT_TDES0_OWN)) {
netif_stop_queue(netdev);
spin_unlock_bh(&priv->lock);
dev_dbg_ratelimited(&netdev->dev, "TX buffer full, status=0x%08x\n",
owl_emac_irq_status(priv));
owl_emac_dma_unmap_tx(priv, skb, dma_addr);
netdev->stats.tx_dropped++;
return NETDEV_TX_BUSY;
}
ring->skbs[tx_head] = skb;
ring->skbs_dma[tx_head] = dma_addr;
control &= OWL_EMAC_BIT_TDES1_IC | OWL_EMAC_BIT_TDES1_TER; /* Maintain bits */
control |= OWL_EMAC_BIT_TDES1_FS | OWL_EMAC_BIT_TDES1_LS;
control |= OWL_EMAC_MSK_TDES1_TBS1 & skb->len;
WRITE_ONCE(desc->control, control);
WRITE_ONCE(desc->buf_addr, dma_addr);
dma_wmb(); /* Flush descriptor before changing ownership. */
WRITE_ONCE(desc->status, OWL_EMAC_BIT_TDES0_OWN);
owl_emac_dma_cmd_resume_tx(priv);
owl_emac_ring_push_head(ring);
/* FIXME: The transmission is currently restricted to a single frame
* at a time as a workaround for a MAC hardware bug that causes random
* freeze of the TX queue processor.
*/
netif_stop_queue(netdev);
spin_unlock_bh(&priv->lock);
return NETDEV_TX_OK;
}
static bool owl_emac_tx_complete_tail(struct owl_emac_priv *priv)
{
struct owl_emac_ring *ring = &priv->tx_ring;
struct net_device *netdev = priv->netdev;
struct owl_emac_ring_desc *desc;
struct sk_buff *skb;
unsigned int tx_tail;
u32 status;
tx_tail = ring->tail;
desc = &ring->descs[tx_tail];
status = READ_ONCE(desc->status);
dma_rmb(); /* Ensure data has been read before used. */
if (status & OWL_EMAC_BIT_TDES0_OWN)
return false;
/* Check for errors. */
if (status & OWL_EMAC_BIT_TDES0_ES) {
dev_dbg_ratelimited(&netdev->dev,
"TX complete error status: 0x%08x\n",
status);
netdev->stats.tx_errors++;
if (status & OWL_EMAC_BIT_TDES0_UF)
netdev->stats.tx_fifo_errors++;
if (status & OWL_EMAC_BIT_TDES0_EC)
netdev->stats.tx_aborted_errors++;
if (status & OWL_EMAC_BIT_TDES0_LC)
netdev->stats.tx_window_errors++;
if (status & OWL_EMAC_BIT_TDES0_NC)
netdev->stats.tx_heartbeat_errors++;
if (status & OWL_EMAC_BIT_TDES0_LO)
netdev->stats.tx_carrier_errors++;
} else {
netdev->stats.tx_packets++;
netdev->stats.tx_bytes += ring->skbs[tx_tail]->len;
}
/* Some collisions occurred, but pkt has been transmitted. */
if (status & OWL_EMAC_BIT_TDES0_DE)
netdev->stats.collisions++;
skb = ring->skbs[tx_tail];
owl_emac_dma_unmap_tx(priv, skb, ring->skbs_dma[tx_tail]);
dev_kfree_skb(skb);
ring->skbs[tx_tail] = NULL;
ring->skbs_dma[tx_tail] = 0;
owl_emac_ring_pop_tail(ring);
if (unlikely(netif_queue_stopped(netdev)))
netif_wake_queue(netdev);
return true;
}
static void owl_emac_tx_complete(struct owl_emac_priv *priv)
{
struct owl_emac_ring *ring = &priv->tx_ring;
struct net_device *netdev = priv->netdev;
unsigned int tx_next;
u32 status;
spin_lock(&priv->lock);
while (ring->tail != ring->head) {
if (!owl_emac_tx_complete_tail(priv))
break;
}
/* FIXME: This is a workaround for a MAC hardware bug not clearing
* (sometimes) the OWN bit for a transmitted frame descriptor.
*
* At this point, when TX queue is full, the tail descriptor has the
* OWN bit set, which normally means the frame has not been processed
* or transmitted yet. But if there is at least one descriptor in the
* queue having the OWN bit cleared, we can safely assume the tail
* frame has been also processed by the MAC hardware.
*
* If that's the case, let's force the frame completion by manually
* clearing the OWN bit.
*/
if (unlikely(!owl_emac_ring_num_unused(ring))) {
tx_next = ring->tail;
while ((tx_next = owl_emac_ring_get_next(ring, tx_next)) != ring->head) {
status = READ_ONCE(ring->descs[tx_next].status);
dma_rmb(); /* Ensure data has been read before used. */
if (status & OWL_EMAC_BIT_TDES0_OWN)
continue;
netdev_dbg(netdev, "Found uncleared TX desc OWN bit\n");
status = READ_ONCE(ring->descs[ring->tail].status);
dma_rmb(); /* Ensure data has been read before used. */
status &= ~OWL_EMAC_BIT_TDES0_OWN;
WRITE_ONCE(ring->descs[ring->tail].status, status);
owl_emac_tx_complete_tail(priv);
break;
}
}
spin_unlock(&priv->lock);
}
static int owl_emac_rx_process(struct owl_emac_priv *priv, int budget)
{
struct owl_emac_ring *ring = &priv->rx_ring;
struct device *dev = owl_emac_get_dev(priv);
struct net_device *netdev = priv->netdev;
struct owl_emac_ring_desc *desc;
struct sk_buff *curr_skb, *new_skb;
dma_addr_t curr_dma, new_dma;
unsigned int rx_tail, len;
u32 status;
int recv = 0;
while (recv < budget) {
spin_lock(&priv->lock);
rx_tail = ring->tail;
desc = &ring->descs[rx_tail];
status = READ_ONCE(desc->status);
dma_rmb(); /* Ensure data has been read before used. */
if (status & OWL_EMAC_BIT_RDES0_OWN) {
spin_unlock(&priv->lock);
break;
}
curr_skb = ring->skbs[rx_tail];
curr_dma = ring->skbs_dma[rx_tail];
owl_emac_ring_pop_tail(ring);
spin_unlock(&priv->lock);
if (status & (OWL_EMAC_BIT_RDES0_DE | OWL_EMAC_BIT_RDES0_RF |
OWL_EMAC_BIT_RDES0_TL | OWL_EMAC_BIT_RDES0_CS |
OWL_EMAC_BIT_RDES0_DB | OWL_EMAC_BIT_RDES0_CE |
OWL_EMAC_BIT_RDES0_ZERO)) {
dev_dbg_ratelimited(&netdev->dev,
"RX desc error status: 0x%08x\n",
status);
if (status & OWL_EMAC_BIT_RDES0_DE)
netdev->stats.rx_over_errors++;
if (status & (OWL_EMAC_BIT_RDES0_RF | OWL_EMAC_BIT_RDES0_DB))
netdev->stats.rx_frame_errors++;
if (status & OWL_EMAC_BIT_RDES0_TL)
netdev->stats.rx_length_errors++;
if (status & OWL_EMAC_BIT_RDES0_CS)
netdev->stats.collisions++;
if (status & OWL_EMAC_BIT_RDES0_CE)
netdev->stats.rx_crc_errors++;
if (status & OWL_EMAC_BIT_RDES0_ZERO)
netdev->stats.rx_fifo_errors++;
goto drop_skb;
}
len = (status & OWL_EMAC_MSK_RDES0_FL) >> OWL_EMAC_OFF_RDES0_FL;
if (unlikely(len > OWL_EMAC_RX_FRAME_MAX_LEN)) {
netdev->stats.rx_length_errors++;
netdev_err(netdev, "invalid RX frame len: %u\n", len);
goto drop_skb;
}
/* Prepare new skb before receiving the current one. */
new_skb = owl_emac_alloc_skb(netdev);
if (unlikely(!new_skb))
goto drop_skb;
new_dma = owl_emac_dma_map_rx(priv, new_skb);
if (dma_mapping_error(dev, new_dma)) {
dev_kfree_skb(new_skb);
netdev_err(netdev, "RX DMA mapping failed\n");
goto drop_skb;
}
owl_emac_dma_unmap_rx(priv, curr_skb, curr_dma);
skb_put(curr_skb, len - ETH_FCS_LEN);
curr_skb->ip_summed = CHECKSUM_NONE;
curr_skb->protocol = eth_type_trans(curr_skb, netdev);
curr_skb->dev = netdev;
netif_receive_skb(curr_skb);
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += len;
recv++;
goto push_skb;
drop_skb:
netdev->stats.rx_dropped++;
netdev->stats.rx_errors++;
/* Reuse the current skb. */
new_skb = curr_skb;
new_dma = curr_dma;
push_skb:
spin_lock(&priv->lock);
ring->skbs[ring->head] = new_skb;
ring->skbs_dma[ring->head] = new_dma;
WRITE_ONCE(desc->buf_addr, new_dma);
dma_wmb(); /* Flush descriptor before changing ownership. */
WRITE_ONCE(desc->status, OWL_EMAC_BIT_RDES0_OWN);
owl_emac_ring_push_head(ring);
spin_unlock(&priv->lock);
}
return recv;
}
static int owl_emac_poll(struct napi_struct *napi, int budget)
{
int work_done = 0, ru_cnt = 0, recv;
static int tx_err_cnt, rx_err_cnt;
struct owl_emac_priv *priv;
u32 status, proc_status;
priv = container_of(napi, struct owl_emac_priv, napi);
while ((status = owl_emac_irq_clear(priv)) &
(OWL_EMAC_BIT_MAC_CSR5_NIS | OWL_EMAC_BIT_MAC_CSR5_AIS)) {
recv = 0;
/* TX setup frame raises ETI instead of TI. */
if (status & (OWL_EMAC_BIT_MAC_CSR5_TI | OWL_EMAC_BIT_MAC_CSR5_ETI)) {
owl_emac_tx_complete(priv);
tx_err_cnt = 0;
/* Count MAC internal RX errors. */
proc_status = status & OWL_EMAC_MSK_MAC_CSR5_RS;
proc_status >>= OWL_EMAC_OFF_MAC_CSR5_RS;
if (proc_status == OWL_EMAC_VAL_MAC_CSR5_RS_DATA ||
proc_status == OWL_EMAC_VAL_MAC_CSR5_RS_CDES ||
proc_status == OWL_EMAC_VAL_MAC_CSR5_RS_FDES)
rx_err_cnt++;
}
if (status & OWL_EMAC_BIT_MAC_CSR5_RI) {
recv = owl_emac_rx_process(priv, budget - work_done);
rx_err_cnt = 0;
/* Count MAC internal TX errors. */
proc_status = status & OWL_EMAC_MSK_MAC_CSR5_TS;
proc_status >>= OWL_EMAC_OFF_MAC_CSR5_TS;
if (proc_status == OWL_EMAC_VAL_MAC_CSR5_TS_DATA ||
proc_status == OWL_EMAC_VAL_MAC_CSR5_TS_CDES)
tx_err_cnt++;
} else if (status & OWL_EMAC_BIT_MAC_CSR5_RU) {
/* MAC AHB is in suspended state, will return to RX
* descriptor processing when the host changes ownership
* of the descriptor and either an RX poll demand CMD is
* issued or a new frame is recognized by the MAC AHB.
*/
if (++ru_cnt == 2)
owl_emac_dma_cmd_resume_rx(priv);
recv = owl_emac_rx_process(priv, budget - work_done);
/* Guard against too many RU interrupts. */
if (ru_cnt > 3)
break;
}
work_done += recv;
if (work_done >= budget)
break;
}
if (work_done < budget) {
napi_complete_done(napi, work_done);
owl_emac_irq_enable(priv);
}
/* Reset MAC when getting too many internal TX or RX errors. */
if (tx_err_cnt > 10 || rx_err_cnt > 10) {
netdev_dbg(priv->netdev, "%s error status: 0x%08x\n",
tx_err_cnt > 10 ? "TX" : "RX", status);
rx_err_cnt = 0;
tx_err_cnt = 0;
schedule_work(&priv->mac_reset_task);
}
return work_done;
}
static void owl_emac_mdio_clock_enable(struct owl_emac_priv *priv)
{
u32 val;
/* Enable MDC clock generation by adjusting CLKDIV according to
* the vendor implementation of the original driver.
*/
val = owl_emac_reg_read(priv, OWL_EMAC_REG_MAC_CSR10);
val &= OWL_EMAC_MSK_MAC_CSR10_CLKDIV;
val |= OWL_EMAC_VAL_MAC_CSR10_CLKDIV_128 << OWL_EMAC_OFF_MAC_CSR10_CLKDIV;
val |= OWL_EMAC_BIT_MAC_CSR10_SB;
val |= OWL_EMAC_VAL_MAC_CSR10_OPCODE_CDS << OWL_EMAC_OFF_MAC_CSR10_OPCODE;
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR10, val);
}
static void owl_emac_core_hw_reset(struct owl_emac_priv *priv)
{
/* Trigger hardware reset. */
reset_control_assert(priv->reset);
usleep_range(10, 20);
reset_control_deassert(priv->reset);
usleep_range(100, 200);
}
static int owl_emac_core_sw_reset(struct owl_emac_priv *priv)
{
u32 val;
int ret;
/* Trigger software reset. */
owl_emac_reg_set(priv, OWL_EMAC_REG_MAC_CSR0, OWL_EMAC_BIT_MAC_CSR0_SWR);
ret = readl_poll_timeout(priv->base + OWL_EMAC_REG_MAC_CSR0,
val, !(val & OWL_EMAC_BIT_MAC_CSR0_SWR),
OWL_EMAC_POLL_DELAY_USEC,
OWL_EMAC_RESET_POLL_TIMEOUT_USEC);
if (ret)
return ret;
if (priv->phy_mode == PHY_INTERFACE_MODE_RMII) {
/* Enable RMII and use the 50MHz rmii clk as output to PHY. */
val = 0;
} else {
/* Enable SMII and use the 125MHz rmii clk as output to PHY.
* Additionally set SMII SYNC delay to 4 half cycle.
*/
val = 0x04 << OWL_EMAC_OFF_MAC_CTRL_SSDC;
val |= OWL_EMAC_BIT_MAC_CTRL_RSIS;
}
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CTRL, val);
/* MDC is disabled after reset. */
owl_emac_mdio_clock_enable(priv);
/* Set FIFO pause & restart threshold levels. */
val = 0x40 << OWL_EMAC_OFF_MAC_CSR19_FPTL;
val |= 0x10 << OWL_EMAC_OFF_MAC_CSR19_FRTL;
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR19, val);
/* Set flow control pause quanta time to ~100 ms. */
val = 0x4FFF << OWL_EMAC_OFF_MAC_CSR18_PQT;
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR18, val);
/* Setup interrupt mitigation. */
val = 7 << OWL_EMAC_OFF_MAC_CSR11_NRP;
val |= 4 << OWL_EMAC_OFF_MAC_CSR11_RT;
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR11, val);
/* Set RX/TX rings base addresses. */
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR3,
(u32)(priv->rx_ring.descs_dma));
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR4,
(u32)(priv->tx_ring.descs_dma));
/* Setup initial operation mode. */
val = OWL_EMAC_VAL_MAC_CSR6_SPEED_100M << OWL_EMAC_OFF_MAC_CSR6_SPEED;
val |= OWL_EMAC_BIT_MAC_CSR6_FD;
owl_emac_reg_update(priv, OWL_EMAC_REG_MAC_CSR6,
OWL_EMAC_MSK_MAC_CSR6_SPEED |
OWL_EMAC_BIT_MAC_CSR6_FD, val);
owl_emac_reg_clear(priv, OWL_EMAC_REG_MAC_CSR6,
OWL_EMAC_BIT_MAC_CSR6_PR | OWL_EMAC_BIT_MAC_CSR6_PM);
priv->link = 0;
priv->speed = SPEED_UNKNOWN;
priv->duplex = DUPLEX_UNKNOWN;
priv->pause = 0;
priv->mcaddr_list.count = 0;
return 0;
}
static int owl_emac_enable(struct net_device *netdev, bool start_phy)
{
struct owl_emac_priv *priv = netdev_priv(netdev);
int ret;
owl_emac_dma_cmd_stop(priv);
owl_emac_irq_disable(priv);
owl_emac_irq_clear(priv);
owl_emac_ring_prepare_tx(priv);
ret = owl_emac_ring_prepare_rx(priv);
if (ret)
goto err_unprep;
ret = owl_emac_core_sw_reset(priv);
if (ret) {
netdev_err(netdev, "failed to soft reset MAC core: %d\n", ret);
goto err_unprep;
}
owl_emac_set_hw_mac_addr(netdev);
owl_emac_setup_frame_xmit(priv);
netdev_reset_queue(netdev);
napi_enable(&priv->napi);
owl_emac_irq_enable(priv);
owl_emac_dma_cmd_start(priv);
if (start_phy)
phy_start(netdev->phydev);
netif_start_queue(netdev);
return 0;
err_unprep:
owl_emac_ring_unprepare_rx(priv);
owl_emac_ring_unprepare_tx(priv);
return ret;
}
static void owl_emac_disable(struct net_device *netdev, bool stop_phy)
{
struct owl_emac_priv *priv = netdev_priv(netdev);
owl_emac_dma_cmd_stop(priv);
owl_emac_irq_disable(priv);
netif_stop_queue(netdev);
napi_disable(&priv->napi);
if (stop_phy)
phy_stop(netdev->phydev);
owl_emac_ring_unprepare_rx(priv);
owl_emac_ring_unprepare_tx(priv);
}
static int owl_emac_ndo_open(struct net_device *netdev)
{
return owl_emac_enable(netdev, true);
}
static int owl_emac_ndo_stop(struct net_device *netdev)
{
owl_emac_disable(netdev, true);
return 0;
}
static void owl_emac_set_multicast(struct net_device *netdev, int count)
{
struct owl_emac_priv *priv = netdev_priv(netdev);
struct netdev_hw_addr *ha;
int index = 0;
if (count <= 0) {
priv->mcaddr_list.count = 0;
return;
}
netdev_for_each_mc_addr(ha, netdev) {
if (!is_multicast_ether_addr(ha->addr))
continue;
WARN_ON(index >= OWL_EMAC_MAX_MULTICAST_ADDRS);
ether_addr_copy(priv->mcaddr_list.addrs[index++], ha->addr);
}
priv->mcaddr_list.count = index;
owl_emac_setup_frame_xmit(priv);
}
static void owl_emac_ndo_set_rx_mode(struct net_device *netdev)
{
struct owl_emac_priv *priv = netdev_priv(netdev);
u32 status, val = 0;
int mcast_count = 0;
if (netdev->flags & IFF_PROMISC) {
val = OWL_EMAC_BIT_MAC_CSR6_PR;
} else if (netdev->flags & IFF_ALLMULTI) {
val = OWL_EMAC_BIT_MAC_CSR6_PM;
} else if (netdev->flags & IFF_MULTICAST) {
mcast_count = netdev_mc_count(netdev);
if (mcast_count > OWL_EMAC_MAX_MULTICAST_ADDRS) {
val = OWL_EMAC_BIT_MAC_CSR6_PM;
mcast_count = 0;
}
}
spin_lock_bh(&priv->lock);
/* Temporarily stop DMA TX & RX. */
status = owl_emac_dma_cmd_stop(priv);
/* Update operation modes. */
owl_emac_reg_update(priv, OWL_EMAC_REG_MAC_CSR6,
OWL_EMAC_BIT_MAC_CSR6_PR | OWL_EMAC_BIT_MAC_CSR6_PM,
val);
/* Restore DMA TX & RX status. */
owl_emac_dma_cmd_set(priv, status);
spin_unlock_bh(&priv->lock);
/* Set/reset multicast addr list. */
owl_emac_set_multicast(netdev, mcast_count);
}
static int owl_emac_ndo_set_mac_addr(struct net_device *netdev, void *addr)
{
struct sockaddr *skaddr = addr;
if (!is_valid_ether_addr(skaddr->sa_data))
return -EADDRNOTAVAIL;
if (netif_running(netdev))
return -EBUSY;
eth_hw_addr_set(netdev, skaddr->sa_data);
owl_emac_set_hw_mac_addr(netdev);
return owl_emac_setup_frame_xmit(netdev_priv(netdev));
}
static int owl_emac_ndo_eth_ioctl(struct net_device *netdev,
struct ifreq *req, int cmd)
{
if (!netif_running(netdev))
return -EINVAL;
return phy_mii_ioctl(netdev->phydev, req, cmd);
}
static void owl_emac_ndo_tx_timeout(struct net_device *netdev,
unsigned int txqueue)
{
struct owl_emac_priv *priv = netdev_priv(netdev);
schedule_work(&priv->mac_reset_task);
}
static void owl_emac_reset_task(struct work_struct *work)
{
struct owl_emac_priv *priv;
priv = container_of(work, struct owl_emac_priv, mac_reset_task);
netdev_dbg(priv->netdev, "resetting MAC\n");
owl_emac_disable(priv->netdev, false);
owl_emac_enable(priv->netdev, false);
}
static struct net_device_stats *
owl_emac_ndo_get_stats(struct net_device *netdev)
{
/* FIXME: If possible, try to get stats from MAC hardware registers
* instead of tracking them manually in the driver.
*/
return &netdev->stats;
}
static const struct net_device_ops owl_emac_netdev_ops = {
.ndo_open = owl_emac_ndo_open,
.ndo_stop = owl_emac_ndo_stop,
.ndo_start_xmit = owl_emac_ndo_start_xmit,
.ndo_set_rx_mode = owl_emac_ndo_set_rx_mode,
.ndo_set_mac_address = owl_emac_ndo_set_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_eth_ioctl = owl_emac_ndo_eth_ioctl,
.ndo_tx_timeout = owl_emac_ndo_tx_timeout,
.ndo_get_stats = owl_emac_ndo_get_stats,
};
static void owl_emac_ethtool_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strscpy(info->driver, OWL_EMAC_DRVNAME, sizeof(info->driver));
}
static u32 owl_emac_ethtool_get_msglevel(struct net_device *netdev)
{
struct owl_emac_priv *priv = netdev_priv(netdev);
return priv->msg_enable;
}
static void owl_emac_ethtool_set_msglevel(struct net_device *ndev, u32 val)
{
struct owl_emac_priv *priv = netdev_priv(ndev);
priv->msg_enable = val;
}
static const struct ethtool_ops owl_emac_ethtool_ops = {
.get_drvinfo = owl_emac_ethtool_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
.get_msglevel = owl_emac_ethtool_get_msglevel,
.set_msglevel = owl_emac_ethtool_set_msglevel,
};
static int owl_emac_mdio_wait(struct owl_emac_priv *priv)
{
u32 val;
/* Wait while data transfer is in progress. */
return readl_poll_timeout(priv->base + OWL_EMAC_REG_MAC_CSR10,
val, !(val & OWL_EMAC_BIT_MAC_CSR10_SB),
OWL_EMAC_POLL_DELAY_USEC,
OWL_EMAC_MDIO_POLL_TIMEOUT_USEC);
}
static int owl_emac_mdio_read(struct mii_bus *bus, int addr, int regnum)
{
struct owl_emac_priv *priv = bus->priv;
u32 data, tmp;
int ret;
if (regnum & MII_ADDR_C45)
return -EOPNOTSUPP;
data = OWL_EMAC_BIT_MAC_CSR10_SB;
data |= OWL_EMAC_VAL_MAC_CSR10_OPCODE_RD << OWL_EMAC_OFF_MAC_CSR10_OPCODE;
tmp = addr << OWL_EMAC_OFF_MAC_CSR10_PHYADD;
data |= tmp & OWL_EMAC_MSK_MAC_CSR10_PHYADD;
tmp = regnum << OWL_EMAC_OFF_MAC_CSR10_REGADD;
data |= tmp & OWL_EMAC_MSK_MAC_CSR10_REGADD;
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR10, data);
ret = owl_emac_mdio_wait(priv);
if (ret)
return ret;
data = owl_emac_reg_read(priv, OWL_EMAC_REG_MAC_CSR10);
data &= OWL_EMAC_MSK_MAC_CSR10_DATA;
return data;
}
static int
owl_emac_mdio_write(struct mii_bus *bus, int addr, int regnum, u16 val)
{
struct owl_emac_priv *priv = bus->priv;
u32 data, tmp;
if (regnum & MII_ADDR_C45)
return -EOPNOTSUPP;
data = OWL_EMAC_BIT_MAC_CSR10_SB;
data |= OWL_EMAC_VAL_MAC_CSR10_OPCODE_WR << OWL_EMAC_OFF_MAC_CSR10_OPCODE;
tmp = addr << OWL_EMAC_OFF_MAC_CSR10_PHYADD;
data |= tmp & OWL_EMAC_MSK_MAC_CSR10_PHYADD;
tmp = regnum << OWL_EMAC_OFF_MAC_CSR10_REGADD;
data |= tmp & OWL_EMAC_MSK_MAC_CSR10_REGADD;
data |= val & OWL_EMAC_MSK_MAC_CSR10_DATA;
owl_emac_reg_write(priv, OWL_EMAC_REG_MAC_CSR10, data);
return owl_emac_mdio_wait(priv);
}
static int owl_emac_mdio_init(struct net_device *netdev)
{
struct owl_emac_priv *priv = netdev_priv(netdev);
struct device *dev = owl_emac_get_dev(priv);
struct device_node *mdio_node;
int ret;
mdio_node = of_get_child_by_name(dev->of_node, "mdio");
if (!mdio_node)
return -ENODEV;
if (!of_device_is_available(mdio_node)) {
ret = -ENODEV;
goto err_put_node;
}
priv->mii = devm_mdiobus_alloc(dev);
if (!priv->mii) {
ret = -ENOMEM;
goto err_put_node;
}
snprintf(priv->mii->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
priv->mii->name = "owl-emac-mdio";
priv->mii->parent = dev;
priv->mii->read = owl_emac_mdio_read;
priv->mii->write = owl_emac_mdio_write;
priv->mii->phy_mask = ~0; /* Mask out all PHYs from auto probing. */
priv->mii->priv = priv;
ret = devm_of_mdiobus_register(dev, priv->mii, mdio_node);
err_put_node:
of_node_put(mdio_node);
return ret;
}
static int owl_emac_phy_init(struct net_device *netdev)
{
struct owl_emac_priv *priv = netdev_priv(netdev);
struct device *dev = owl_emac_get_dev(priv);
struct phy_device *phy;
phy = of_phy_get_and_connect(netdev, dev->of_node,
owl_emac_adjust_link);
if (!phy)
return -ENODEV;
phy_set_sym_pause(phy, true, true, true);
if (netif_msg_link(priv))
phy_attached_info(phy);
return 0;
}
static void owl_emac_get_mac_addr(struct net_device *netdev)
{
struct device *dev = netdev->dev.parent;
int ret;
ret = eth_platform_get_mac_address(dev, netdev->dev_addr);
if (!ret && is_valid_ether_addr(netdev->dev_addr))
return;
eth_hw_addr_random(netdev);
dev_warn(dev, "using random MAC address %pM\n", netdev->dev_addr);
}
static __maybe_unused int owl_emac_suspend(struct device *dev)
{
struct net_device *netdev = dev_get_drvdata(dev);
struct owl_emac_priv *priv = netdev_priv(netdev);
disable_irq(netdev->irq);
if (netif_running(netdev)) {
owl_emac_disable(netdev, true);
netif_device_detach(netdev);
}
clk_bulk_disable_unprepare(OWL_EMAC_NCLKS, priv->clks);
return 0;
}
static __maybe_unused int owl_emac_resume(struct device *dev)
{
struct net_device *netdev = dev_get_drvdata(dev);
struct owl_emac_priv *priv = netdev_priv(netdev);
int ret;
ret = clk_bulk_prepare_enable(OWL_EMAC_NCLKS, priv->clks);
if (ret)
return ret;
if (netif_running(netdev)) {
owl_emac_core_hw_reset(priv);
owl_emac_core_sw_reset(priv);
ret = owl_emac_enable(netdev, true);
if (ret) {
clk_bulk_disable_unprepare(OWL_EMAC_NCLKS, priv->clks);
return ret;
}
netif_device_attach(netdev);
}
enable_irq(netdev->irq);
return 0;
}
static void owl_emac_clk_disable_unprepare(void *data)
{
struct owl_emac_priv *priv = data;
clk_bulk_disable_unprepare(OWL_EMAC_NCLKS, priv->clks);
}
static int owl_emac_clk_set_rate(struct owl_emac_priv *priv)
{
struct device *dev = owl_emac_get_dev(priv);
unsigned long rate;
int ret;
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_RMII:
rate = 50000000;
break;
case PHY_INTERFACE_MODE_SMII:
rate = 125000000;
break;
default:
dev_err(dev, "unsupported phy interface mode %d\n",
priv->phy_mode);
return -EOPNOTSUPP;
}
ret = clk_set_rate(priv->clks[OWL_EMAC_CLK_RMII].clk, rate);
if (ret)
dev_err(dev, "failed to set RMII clock rate: %d\n", ret);
return ret;
}
static int owl_emac_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct net_device *netdev;
struct owl_emac_priv *priv;
int ret, i;
netdev = devm_alloc_etherdev(dev, sizeof(*priv));
if (!netdev)
return -ENOMEM;
platform_set_drvdata(pdev, netdev);
SET_NETDEV_DEV(netdev, dev);
priv = netdev_priv(netdev);
priv->netdev = netdev;
priv->msg_enable = netif_msg_init(-1, OWL_EMAC_DEFAULT_MSG_ENABLE);
ret = of_get_phy_mode(dev->of_node, &priv->phy_mode);
if (ret) {
dev_err(dev, "failed to get phy mode: %d\n", ret);
return ret;
}
spin_lock_init(&priv->lock);
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(dev, "unsupported DMA mask\n");
return ret;
}
ret = owl_emac_ring_alloc(dev, &priv->rx_ring, OWL_EMAC_RX_RING_SIZE);
if (ret)
return ret;
ret = owl_emac_ring_alloc(dev, &priv->tx_ring, OWL_EMAC_TX_RING_SIZE);
if (ret)
return ret;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
netdev->irq = platform_get_irq(pdev, 0);
if (netdev->irq < 0)
return netdev->irq;
ret = devm_request_irq(dev, netdev->irq, owl_emac_handle_irq,
IRQF_SHARED, netdev->name, netdev);
if (ret) {
dev_err(dev, "failed to request irq: %d\n", netdev->irq);
return ret;
}
for (i = 0; i < OWL_EMAC_NCLKS; i++)
priv->clks[i].id = owl_emac_clk_names[i];
ret = devm_clk_bulk_get(dev, OWL_EMAC_NCLKS, priv->clks);
if (ret)
return ret;
ret = clk_bulk_prepare_enable(OWL_EMAC_NCLKS, priv->clks);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, owl_emac_clk_disable_unprepare, priv);
if (ret)
return ret;
ret = owl_emac_clk_set_rate(priv);
if (ret)
return ret;
priv->reset = devm_reset_control_get_exclusive(dev, NULL);
if (IS_ERR(priv->reset))
return dev_err_probe(dev, PTR_ERR(priv->reset),
"failed to get reset control");
owl_emac_get_mac_addr(netdev);
owl_emac_core_hw_reset(priv);
owl_emac_mdio_clock_enable(priv);
ret = owl_emac_mdio_init(netdev);
if (ret) {
dev_err(dev, "failed to initialize MDIO bus\n");
return ret;
}
ret = owl_emac_phy_init(netdev);
if (ret) {
dev_err(dev, "failed to initialize PHY\n");
return ret;
}
INIT_WORK(&priv->mac_reset_task, owl_emac_reset_task);
netdev->min_mtu = OWL_EMAC_MTU_MIN;
netdev->max_mtu = OWL_EMAC_MTU_MAX;
netdev->watchdog_timeo = OWL_EMAC_TX_TIMEOUT;
netdev->netdev_ops = &owl_emac_netdev_ops;
netdev->ethtool_ops = &owl_emac_ethtool_ops;
netif_napi_add(netdev, &priv->napi, owl_emac_poll, NAPI_POLL_WEIGHT);
ret = devm_register_netdev(dev, netdev);
if (ret) {
netif_napi_del(&priv->napi);
phy_disconnect(netdev->phydev);
return ret;
}
return 0;
}
static int owl_emac_remove(struct platform_device *pdev)
{
struct owl_emac_priv *priv = platform_get_drvdata(pdev);
netif_napi_del(&priv->napi);
phy_disconnect(priv->netdev->phydev);
cancel_work_sync(&priv->mac_reset_task);
return 0;
}
static const struct of_device_id owl_emac_of_match[] = {
{ .compatible = "actions,owl-emac", },
{ }
};
MODULE_DEVICE_TABLE(of, owl_emac_of_match);
static SIMPLE_DEV_PM_OPS(owl_emac_pm_ops,
owl_emac_suspend, owl_emac_resume);
static struct platform_driver owl_emac_driver = {
.driver = {
.name = OWL_EMAC_DRVNAME,
.of_match_table = owl_emac_of_match,
.pm = &owl_emac_pm_ops,
},
.probe = owl_emac_probe,
.remove = owl_emac_remove,
};
module_platform_driver(owl_emac_driver);
MODULE_DESCRIPTION("Actions Semi Owl SoCs Ethernet MAC Driver");
MODULE_AUTHOR("Actions Semi Inc.");
MODULE_AUTHOR("Cristian Ciocaltea <cristian.ciocaltea@gmail.com>");
MODULE_LICENSE("GPL");