blob: 4e6b7356a7221a29c20faa79299ba118bd9cfebe [file] [log] [blame]
/*
* linux/arch/arm26/kernel/ptrace.c
*
* By Ross Biro 1/23/92
* edited by Linus Torvalds
* ARM modifications Copyright (C) 2000 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/security.h>
#include <linux/signal.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/system.h>
//#include <asm/processor.h>
#include "ptrace.h"
#define REG_PC 15
#define REG_PSR 15
/*
* does not yet catch signals sent when the child dies.
* in exit.c or in signal.c.
*/
/*
* Breakpoint SWI instruction: SWI &9F0001
*/
#define BREAKINST_ARM 0xef9f0001
/*
* Get the address of the live pt_regs for the specified task.
* These are saved onto the top kernel stack when the process
* is not running.
*
* Note: if a user thread is execve'd from kernel space, the
* kernel stack will not be empty on entry to the kernel, so
* ptracing these tasks will fail.
*/
static inline struct pt_regs *
get_user_regs(struct task_struct *task)
{
return __get_user_regs(task->thread_info);
}
/*
* this routine will get a word off of the processes privileged stack.
* the offset is how far from the base addr as stored in the THREAD.
* this routine assumes that all the privileged stacks are in our
* data space.
*/
static inline long get_user_reg(struct task_struct *task, int offset)
{
return get_user_regs(task)->uregs[offset];
}
/*
* this routine will put a word on the processes privileged stack.
* the offset is how far from the base addr as stored in the THREAD.
* this routine assumes that all the privileged stacks are in our
* data space.
*/
static inline int
put_user_reg(struct task_struct *task, int offset, long data)
{
struct pt_regs newregs, *regs = get_user_regs(task);
int ret = -EINVAL;
newregs = *regs;
newregs.uregs[offset] = data;
if (valid_user_regs(&newregs)) {
regs->uregs[offset] = data;
ret = 0;
}
return ret;
}
static inline int
read_u32(struct task_struct *task, unsigned long addr, u32 *res)
{
int ret;
ret = access_process_vm(task, addr, res, sizeof(*res), 0);
return ret == sizeof(*res) ? 0 : -EIO;
}
static inline int
read_instr(struct task_struct *task, unsigned long addr, u32 *res)
{
int ret;
u32 val;
ret = access_process_vm(task, addr & ~3, &val, sizeof(val), 0);
ret = ret == sizeof(val) ? 0 : -EIO;
*res = val;
return ret;
}
/*
* Get value of register `rn' (in the instruction)
*/
static unsigned long
ptrace_getrn(struct task_struct *child, unsigned long insn)
{
unsigned int reg = (insn >> 16) & 15;
unsigned long val;
val = get_user_reg(child, reg);
if (reg == 15)
val = pc_pointer(val + 8); //FIXME - correct for arm26?
return val;
}
/*
* Get value of operand 2 (in an ALU instruction)
*/
static unsigned long
ptrace_getaluop2(struct task_struct *child, unsigned long insn)
{
unsigned long val;
int shift;
int type;
if (insn & 1 << 25) {
val = insn & 255;
shift = (insn >> 8) & 15;
type = 3;
} else {
val = get_user_reg (child, insn & 15);
if (insn & (1 << 4))
shift = (int)get_user_reg (child, (insn >> 8) & 15);
else
shift = (insn >> 7) & 31;
type = (insn >> 5) & 3;
}
switch (type) {
case 0: val <<= shift; break;
case 1: val >>= shift; break;
case 2:
val = (((signed long)val) >> shift);
break;
case 3:
val = (val >> shift) | (val << (32 - shift));
break;
}
return val;
}
/*
* Get value of operand 2 (in a LDR instruction)
*/
static unsigned long
ptrace_getldrop2(struct task_struct *child, unsigned long insn)
{
unsigned long val;
int shift;
int type;
val = get_user_reg(child, insn & 15);
shift = (insn >> 7) & 31;
type = (insn >> 5) & 3;
switch (type) {
case 0: val <<= shift; break;
case 1: val >>= shift; break;
case 2:
val = (((signed long)val) >> shift);
break;
case 3:
val = (val >> shift) | (val << (32 - shift));
break;
}
return val;
}
#define OP_MASK 0x01e00000
#define OP_AND 0x00000000
#define OP_EOR 0x00200000
#define OP_SUB 0x00400000
#define OP_RSB 0x00600000
#define OP_ADD 0x00800000
#define OP_ADC 0x00a00000
#define OP_SBC 0x00c00000
#define OP_RSC 0x00e00000
#define OP_ORR 0x01800000
#define OP_MOV 0x01a00000
#define OP_BIC 0x01c00000
#define OP_MVN 0x01e00000
static unsigned long
get_branch_address(struct task_struct *child, unsigned long pc, unsigned long insn)
{
u32 alt = 0;
switch (insn & 0x0e000000) {
case 0x00000000:
case 0x02000000: {
/*
* data processing
*/
long aluop1, aluop2, ccbit;
if ((insn & 0xf000) != 0xf000)
break;
aluop1 = ptrace_getrn(child, insn);
aluop2 = ptrace_getaluop2(child, insn);
ccbit = get_user_reg(child, REG_PSR) & PSR_C_BIT ? 1 : 0;
switch (insn & OP_MASK) {
case OP_AND: alt = aluop1 & aluop2; break;
case OP_EOR: alt = aluop1 ^ aluop2; break;
case OP_SUB: alt = aluop1 - aluop2; break;
case OP_RSB: alt = aluop2 - aluop1; break;
case OP_ADD: alt = aluop1 + aluop2; break;
case OP_ADC: alt = aluop1 + aluop2 + ccbit; break;
case OP_SBC: alt = aluop1 - aluop2 + ccbit; break;
case OP_RSC: alt = aluop2 - aluop1 + ccbit; break;
case OP_ORR: alt = aluop1 | aluop2; break;
case OP_MOV: alt = aluop2; break;
case OP_BIC: alt = aluop1 & ~aluop2; break;
case OP_MVN: alt = ~aluop2; break;
}
break;
}
case 0x04000000:
case 0x06000000:
/*
* ldr
*/
if ((insn & 0x0010f000) == 0x0010f000) {
unsigned long base;
base = ptrace_getrn(child, insn);
if (insn & 1 << 24) {
long aluop2;
if (insn & 0x02000000)
aluop2 = ptrace_getldrop2(child, insn);
else
aluop2 = insn & 0xfff;
if (insn & 1 << 23)
base += aluop2;
else
base -= aluop2;
}
if (read_u32(child, base, &alt) == 0)
alt = pc_pointer(alt);
}
break;
case 0x08000000:
/*
* ldm
*/
if ((insn & 0x00108000) == 0x00108000) {
unsigned long base;
unsigned int nr_regs;
if (insn & (1 << 23)) {
nr_regs = hweight16(insn & 65535) << 2;
if (!(insn & (1 << 24)))
nr_regs -= 4;
} else {
if (insn & (1 << 24))
nr_regs = -4;
else
nr_regs = 0;
}
base = ptrace_getrn(child, insn);
if (read_u32(child, base + nr_regs, &alt) == 0)
alt = pc_pointer(alt);
break;
}
break;
case 0x0a000000: {
/*
* bl or b
*/
signed long displ;
/* It's a branch/branch link: instead of trying to
* figure out whether the branch will be taken or not,
* we'll put a breakpoint at both locations. This is
* simpler, more reliable, and probably not a whole lot
* slower than the alternative approach of emulating the
* branch.
*/
displ = (insn & 0x00ffffff) << 8;
displ = (displ >> 6) + 8;
if (displ != 0 && displ != 4)
alt = pc + displ;
}
break;
}
return alt;
}
static int
swap_insn(struct task_struct *task, unsigned long addr,
void *old_insn, void *new_insn, int size)
{
int ret;
ret = access_process_vm(task, addr, old_insn, size, 0);
if (ret == size)
ret = access_process_vm(task, addr, new_insn, size, 1);
return ret;
}
static void
add_breakpoint(struct task_struct *task, struct debug_info *dbg, unsigned long addr)
{
int nr = dbg->nsaved;
if (nr < 2) {
u32 new_insn = BREAKINST_ARM;
int res;
res = swap_insn(task, addr, &dbg->bp[nr].insn, &new_insn, 4);
if (res == 4) {
dbg->bp[nr].address = addr;
dbg->nsaved += 1;
}
} else
printk(KERN_ERR "ptrace: too many breakpoints\n");
}
/*
* Clear one breakpoint in the user program. We copy what the hardware
* does and use bit 0 of the address to indicate whether this is a Thumb
* breakpoint or an ARM breakpoint.
*/
static void clear_breakpoint(struct task_struct *task, struct debug_entry *bp)
{
unsigned long addr = bp->address;
u32 old_insn;
int ret;
ret = swap_insn(task, addr & ~3, &old_insn,
&bp->insn, 4);
if (ret != 4 || old_insn != BREAKINST_ARM)
printk(KERN_ERR "%s:%d: corrupted ARM breakpoint at "
"0x%08lx (0x%08x)\n", task->comm, task->pid,
addr, old_insn);
}
void ptrace_set_bpt(struct task_struct *child)
{
struct pt_regs *regs;
unsigned long pc;
u32 insn;
int res;
regs = get_user_regs(child);
pc = instruction_pointer(regs);
res = read_instr(child, pc, &insn);
if (!res) {
struct debug_info *dbg = &child->thread.debug;
unsigned long alt;
dbg->nsaved = 0;
alt = get_branch_address(child, pc, insn);
if (alt)
add_breakpoint(child, dbg, alt);
/*
* Note that we ignore the result of setting the above
* breakpoint since it may fail. When it does, this is
* not so much an error, but a forewarning that we may
* be receiving a prefetch abort shortly.
*
* If we don't set this breakpoint here, then we can
* lose control of the thread during single stepping.
*/
if (!alt || predicate(insn) != PREDICATE_ALWAYS)
add_breakpoint(child, dbg, pc + 4);
}
}
/*
* Ensure no single-step breakpoint is pending. Returns non-zero
* value if child was being single-stepped.
*/
void ptrace_cancel_bpt(struct task_struct *child)
{
int i, nsaved = child->thread.debug.nsaved;
child->thread.debug.nsaved = 0;
if (nsaved > 2) {
printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved);
nsaved = 2;
}
for (i = 0; i < nsaved; i++)
clear_breakpoint(child, &child->thread.debug.bp[i]);
}
/*
* Called by kernel/ptrace.c when detaching..
*
* Make sure the single step bit is not set.
*/
void ptrace_disable(struct task_struct *child)
{
child->ptrace &= ~PT_SINGLESTEP;
ptrace_cancel_bpt(child);
}
/*
* Handle hitting a breakpoint.
*/
void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
{
siginfo_t info;
/*
* The PC is always left pointing at the next instruction. Fix this.
*/
regs->ARM_pc -= 4;
if (tsk->thread.debug.nsaved == 0)
printk(KERN_ERR "ptrace: bogus breakpoint trap\n");
ptrace_cancel_bpt(tsk);
info.si_signo = SIGTRAP;
info.si_errno = 0;
info.si_code = TRAP_BRKPT;
info.si_addr = (void *)instruction_pointer(regs) - 4;
force_sig_info(SIGTRAP, &info, tsk);
}
/*
* Read the word at offset "off" into the "struct user". We
* actually access the pt_regs stored on the kernel stack.
*/
static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
unsigned long *ret)
{
unsigned long tmp;
if (off & 3 || off >= sizeof(struct user))
return -EIO;
tmp = 0;
if (off < sizeof(struct pt_regs))
tmp = get_user_reg(tsk, off >> 2);
return put_user(tmp, ret);
}
/*
* Write the word at offset "off" into "struct user". We
* actually access the pt_regs stored on the kernel stack.
*/
static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
unsigned long val)
{
if (off & 3 || off >= sizeof(struct user))
return -EIO;
if (off >= sizeof(struct pt_regs))
return 0;
return put_user_reg(tsk, off >> 2, val);
}
/*
* Get all user integer registers.
*/
static int ptrace_getregs(struct task_struct *tsk, void *uregs)
{
struct pt_regs *regs = get_user_regs(tsk);
return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0;
}
/*
* Set all user integer registers.
*/
static int ptrace_setregs(struct task_struct *tsk, void *uregs)
{
struct pt_regs newregs;
int ret;
ret = -EFAULT;
if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) {
struct pt_regs *regs = get_user_regs(tsk);
ret = -EINVAL;
if (valid_user_regs(&newregs)) {
*regs = newregs;
ret = 0;
}
}
return ret;
}
/*
* Get the child FPU state.
*/
static int ptrace_getfpregs(struct task_struct *tsk, void *ufp)
{
return copy_to_user(ufp, &tsk->thread_info->fpstate,
sizeof(struct user_fp)) ? -EFAULT : 0;
}
/*
* Set the child FPU state.
*/
static int ptrace_setfpregs(struct task_struct *tsk, void *ufp)
{
set_stopped_child_used_math(tsk);
return copy_from_user(&tsk->thread_info->fpstate, ufp,
sizeof(struct user_fp)) ? -EFAULT : 0;
}
long arch_ptrace(struct task_struct *child, long request, long addr, long data)
{
unsigned long tmp;
int ret;
switch (request) {
/*
* read word at location "addr" in the child process.
*/
case PTRACE_PEEKTEXT:
case PTRACE_PEEKDATA:
ret = access_process_vm(child, addr, &tmp,
sizeof(unsigned long), 0);
if (ret == sizeof(unsigned long))
ret = put_user(tmp, (unsigned long *) data);
else
ret = -EIO;
break;
case PTRACE_PEEKUSR:
ret = ptrace_read_user(child, addr, (unsigned long *)data);
break;
/*
* write the word at location addr.
*/
case PTRACE_POKETEXT:
case PTRACE_POKEDATA:
ret = access_process_vm(child, addr, &data,
sizeof(unsigned long), 1);
if (ret == sizeof(unsigned long))
ret = 0;
else
ret = -EIO;
break;
case PTRACE_POKEUSR:
ret = ptrace_write_user(child, addr, data);
break;
/*
* continue/restart and stop at next (return from) syscall
*/
case PTRACE_SYSCALL:
case PTRACE_CONT:
ret = -EIO;
if (!valid_signal(data))
break;
if (request == PTRACE_SYSCALL)
set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
else
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
child->exit_code = data;
/* make sure single-step breakpoint is gone. */
child->ptrace &= ~PT_SINGLESTEP;
ptrace_cancel_bpt(child);
wake_up_process(child);
ret = 0;
break;
/*
* make the child exit. Best I can do is send it a sigkill.
* perhaps it should be put in the status that it wants to
* exit.
*/
case PTRACE_KILL:
/* make sure single-step breakpoint is gone. */
child->ptrace &= ~PT_SINGLESTEP;
ptrace_cancel_bpt(child);
if (child->exit_state != EXIT_ZOMBIE) {
child->exit_code = SIGKILL;
wake_up_process(child);
}
ret = 0;
break;
/*
* execute single instruction.
*/
case PTRACE_SINGLESTEP:
ret = -EIO;
if (!valid_signal(data))
break;
child->ptrace |= PT_SINGLESTEP;
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
child->exit_code = data;
/* give it a chance to run. */
wake_up_process(child);
ret = 0;
break;
case PTRACE_DETACH:
ret = ptrace_detach(child, data);
break;
case PTRACE_GETREGS:
ret = ptrace_getregs(child, (void *)data);
break;
case PTRACE_SETREGS:
ret = ptrace_setregs(child, (void *)data);
break;
case PTRACE_GETFPREGS:
ret = ptrace_getfpregs(child, (void *)data);
break;
case PTRACE_SETFPREGS:
ret = ptrace_setfpregs(child, (void *)data);
break;
default:
ret = ptrace_request(child, request, addr, data);
break;
}
return ret;
}
asmlinkage void syscall_trace(int why, struct pt_regs *regs)
{
unsigned long ip;
if (!test_thread_flag(TIF_SYSCALL_TRACE))
return;
if (!(current->ptrace & PT_PTRACED))
return;
/*
* Save IP. IP is used to denote syscall entry/exit:
* IP = 0 -> entry, = 1 -> exit
*/
ip = regs->ARM_ip;
regs->ARM_ip = why;
/* the 0x80 provides a way for the tracing parent to distinguish
between a syscall stop and SIGTRAP delivery */
ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
? 0x80 : 0));
/*
* this isn't the same as continuing with a signal, but it will do
* for normal use. strace only continues with a signal if the
* stopping signal is not SIGTRAP. -brl
*/
if (current->exit_code) {
send_sig(current->exit_code, current, 1);
current->exit_code = 0;
}
regs->ARM_ip = ip;
}