| /* |
| * ALI ali5455 and friends ICH driver for Linux |
| * LEI HU <Lei_Hu@ali.com.tw> |
| * |
| * Built from: |
| * drivers/sound/i810_audio |
| * |
| * The ALi 5455 is similar but not quite identical to the Intel ICH |
| * series of controllers. Its easier to keep the driver separated from |
| * the i810 driver. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * |
| * ALi 5455 theory of operation |
| * |
| * The chipset provides three DMA channels that talk to an AC97 |
| * CODEC (AC97 is a digital/analog mixer standard). At its simplest |
| * you get 48Khz audio with basic volume and mixer controls. At the |
| * best you get rate adaption in the codec. We set the card up so |
| * that we never take completion interrupts but instead keep the card |
| * chasing its tail around a ring buffer. This is needed for mmap |
| * mode audio and happens to work rather well for non-mmap modes too. |
| * |
| * The board has one output channel for PCM audio (supported) and |
| * a stereo line in and mono microphone input. Again these are normally |
| * locked to 48Khz only. Right now recording is not finished. |
| * |
| * There is no midi support, no synth support. Use timidity. To get |
| * esd working you need to use esd -r 48000 as it won't probe 48KHz |
| * by default. mpg123 can't handle 48Khz only audio so use xmms. |
| * |
| * If you need to force a specific rate set the clocking= option |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/string.h> |
| #include <linux/ctype.h> |
| #include <linux/ioport.h> |
| #include <linux/sched.h> |
| #include <linux/delay.h> |
| #include <linux/sound.h> |
| #include <linux/slab.h> |
| #include <linux/soundcard.h> |
| #include <linux/pci.h> |
| #include <asm/io.h> |
| #include <asm/dma.h> |
| #include <linux/init.h> |
| #include <linux/poll.h> |
| #include <linux/spinlock.h> |
| #include <linux/smp_lock.h> |
| #include <linux/ac97_codec.h> |
| #include <linux/interrupt.h> |
| #include <asm/uaccess.h> |
| |
| #ifndef PCI_DEVICE_ID_ALI_5455 |
| #define PCI_DEVICE_ID_ALI_5455 0x5455 |
| #endif |
| |
| #ifndef PCI_VENDOR_ID_ALI |
| #define PCI_VENDOR_ID_ALI 0x10b9 |
| #endif |
| |
| static int strict_clocking = 0; |
| static unsigned int clocking = 0; |
| static unsigned int codec_pcmout_share_spdif_locked = 0; |
| static unsigned int codec_independent_spdif_locked = 0; |
| static unsigned int controller_pcmout_share_spdif_locked = 0; |
| static unsigned int controller_independent_spdif_locked = 0; |
| static unsigned int globel = 0; |
| |
| #define ADC_RUNNING 1 |
| #define DAC_RUNNING 2 |
| #define CODEC_SPDIFOUT_RUNNING 8 |
| #define CONTROLLER_SPDIFOUT_RUNNING 4 |
| |
| #define SPDIF_ENABLE_OUTPUT 4 /* bits 0,1 are PCM */ |
| |
| #define ALI5455_FMT_16BIT 1 |
| #define ALI5455_FMT_STEREO 2 |
| #define ALI5455_FMT_MASK 3 |
| |
| #define SPDIF_ON 0x0004 |
| #define SURR_ON 0x0010 |
| #define CENTER_LFE_ON 0x0020 |
| #define VOL_MUTED 0x8000 |
| |
| |
| #define ALI_SPDIF_OUT_CH_STATUS 0xbf |
| /* the 810's array of pointers to data buffers */ |
| |
| struct sg_item { |
| #define BUSADDR_MASK 0xFFFFFFFE |
| u32 busaddr; |
| #define CON_IOC 0x80000000 /* interrupt on completion */ |
| #define CON_BUFPAD 0x40000000 /* pad underrun with last sample, else 0 */ |
| #define CON_BUFLEN_MASK 0x0000ffff /* buffer length in samples */ |
| u32 control; |
| }; |
| |
| /* an instance of the ali channel */ |
| #define SG_LEN 32 |
| struct ali_channel { |
| /* these sg guys should probably be allocated |
| separately as nocache. Must be 8 byte aligned */ |
| struct sg_item sg[SG_LEN]; /* 32*8 */ |
| u32 offset; /* 4 */ |
| u32 port; /* 4 */ |
| u32 used; |
| u32 num; |
| }; |
| |
| /* |
| * we have 3 separate dma engines. pcm in, pcm out, and mic. |
| * each dma engine has controlling registers. These goofy |
| * names are from the datasheet, but make it easy to write |
| * code while leafing through it. |
| */ |
| |
| #define ENUM_ENGINE(PRE,DIG) \ |
| enum { \ |
| PRE##_BDBAR = 0x##DIG##0, /* Buffer Descriptor list Base Address */ \ |
| PRE##_CIV = 0x##DIG##4, /* Current Index Value */ \ |
| PRE##_LVI = 0x##DIG##5, /* Last Valid Index */ \ |
| PRE##_SR = 0x##DIG##6, /* Status Register */ \ |
| PRE##_PICB = 0x##DIG##8, /* Position In Current Buffer */ \ |
| PRE##_CR = 0x##DIG##b /* Control Register */ \ |
| } |
| |
| ENUM_ENGINE(OFF, 0); /* Offsets */ |
| ENUM_ENGINE(PI, 4); /* PCM In */ |
| ENUM_ENGINE(PO, 5); /* PCM Out */ |
| ENUM_ENGINE(MC, 6); /* Mic In */ |
| ENUM_ENGINE(CODECSPDIFOUT, 7); /* CODEC SPDIF OUT */ |
| ENUM_ENGINE(CONTROLLERSPDIFIN, A); /* CONTROLLER SPDIF In */ |
| ENUM_ENGINE(CONTROLLERSPDIFOUT, B); /* CONTROLLER SPDIF OUT */ |
| |
| |
| enum { |
| ALI_SCR = 0x00, /* System Control Register */ |
| ALI_SSR = 0x04, /* System Status Register */ |
| ALI_DMACR = 0x08, /* DMA Control Register */ |
| ALI_FIFOCR1 = 0x0c, /* FIFO Control Register 1 */ |
| ALI_INTERFACECR = 0x10, /* Interface Control Register */ |
| ALI_INTERRUPTCR = 0x14, /* Interrupt control Register */ |
| ALI_INTERRUPTSR = 0x18, /* Interrupt Status Register */ |
| ALI_FIFOCR2 = 0x1c, /* FIFO Control Register 2 */ |
| ALI_CPR = 0x20, /* Command Port Register */ |
| ALI_SPR = 0x24, /* Status Port Register */ |
| ALI_FIFOCR3 = 0x2c, /* FIFO Control Register 3 */ |
| ALI_TTSR = 0x30, /* Transmit Tag Slot Register */ |
| ALI_RTSR = 0x34, /* Receive Tag Slot Register */ |
| ALI_CSPSR = 0x38, /* Command/Status Port Status Register */ |
| ALI_CAS = 0x3c, /* Codec Write Semaphore Register */ |
| ALI_SPDIFCSR = 0xf8, /* spdif channel status register */ |
| ALI_SPDIFICS = 0xfc /* spdif interface control/status */ |
| }; |
| |
| // x-status register(x:pcm in ,pcm out, mic in,) |
| /* interrupts for a dma engine */ |
| #define DMA_INT_FIFO (1<<4) /* fifo under/over flow */ |
| #define DMA_INT_COMPLETE (1<<3) /* buffer read/write complete and ioc set */ |
| #define DMA_INT_LVI (1<<2) /* last valid done */ |
| #define DMA_INT_CELV (1<<1) /* last valid is current */ |
| #define DMA_INT_DCH (1) /* DMA Controller Halted (happens on LVI interrupts) */ //not eqult intel |
| #define DMA_INT_MASK (DMA_INT_FIFO|DMA_INT_COMPLETE|DMA_INT_LVI) |
| |
| /* interrupts for the whole chip */// by interrupt status register finish |
| |
| #define INT_SPDIFOUT (1<<23) /* controller spdif out INTERRUPT */ |
| #define INT_SPDIFIN (1<<22) |
| #define INT_CODECSPDIFOUT (1<<19) |
| #define INT_MICIN (1<<18) |
| #define INT_PCMOUT (1<<17) |
| #define INT_PCMIN (1<<16) |
| #define INT_CPRAIS (1<<7) |
| #define INT_SPRAIS (1<<5) |
| #define INT_GPIO (1<<1) |
| #define INT_MASK (INT_SPDIFOUT|INT_CODECSPDIFOUT|INT_MICIN|INT_PCMOUT|INT_PCMIN) |
| |
| #define DRIVER_VERSION "0.02ac" |
| |
| /* magic numbers to protect our data structures */ |
| #define ALI5455_CARD_MAGIC 0x5072696E /* "Prin" */ |
| #define ALI5455_STATE_MAGIC 0x63657373 /* "cess" */ |
| #define ALI5455_DMA_MASK 0xffffffff /* DMA buffer mask for pci_alloc_consist */ |
| #define NR_HW_CH 5 //I think 5 channel |
| |
| /* maxinum number of AC97 codecs connected, AC97 2.0 defined 4 */ |
| #define NR_AC97 2 |
| |
| /* Please note that an 8bit mono stream is not valid on this card, you must have a 16bit */ |
| /* stream at a minimum for this card to be happy */ |
| static const unsigned sample_size[] = { 1, 2, 2, 4 }; |
| /* Samples are 16bit values, so we are shifting to a word, not to a byte, hence shift */ |
| /* values are one less than might be expected */ |
| static const unsigned sample_shift[] = { -1, 0, 0, 1 }; |
| |
| #define ALI5455 |
| static char *card_names[] = { |
| "ALI 5455" |
| }; |
| |
| static struct pci_device_id ali_pci_tbl[] = { |
| {PCI_VENDOR_ID_ALI, PCI_DEVICE_ID_ALI_5455, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, ALI5455}, |
| {0,} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, ali_pci_tbl); |
| |
| #ifdef CONFIG_PM |
| #define PM_SUSPENDED(card) (card->pm_suspended) |
| #else |
| #define PM_SUSPENDED(card) (0) |
| #endif |
| |
| /* "software" or virtual channel, an instance of opened /dev/dsp */ |
| struct ali_state { |
| unsigned int magic; |
| struct ali_card *card; /* Card info */ |
| |
| /* single open lock mechanism, only used for recording */ |
| struct semaphore open_sem; |
| wait_queue_head_t open_wait; |
| |
| /* file mode */ |
| mode_t open_mode; |
| |
| /* virtual channel number */ |
| int virt; |
| |
| #ifdef CONFIG_PM |
| unsigned int pm_saved_dac_rate, pm_saved_adc_rate; |
| #endif |
| struct dmabuf { |
| /* wave sample stuff */ |
| unsigned int rate; |
| unsigned char fmt, enable, trigger; |
| |
| /* hardware channel */ |
| struct ali_channel *read_channel; |
| struct ali_channel *write_channel; |
| struct ali_channel *codec_spdifout_channel; |
| struct ali_channel *controller_spdifout_channel; |
| |
| /* OSS buffer management stuff */ |
| void *rawbuf; |
| dma_addr_t dma_handle; |
| unsigned buforder; |
| unsigned numfrag; |
| unsigned fragshift; |
| |
| /* our buffer acts like a circular ring */ |
| unsigned hwptr; /* where dma last started, updated by update_ptr */ |
| unsigned swptr; /* where driver last clear/filled, updated by read/write */ |
| int count; /* bytes to be consumed or been generated by dma machine */ |
| unsigned total_bytes; /* total bytes dmaed by hardware */ |
| |
| unsigned error; /* number of over/underruns */ |
| wait_queue_head_t wait; /* put process on wait queue when no more space in buffer */ |
| |
| /* redundant, but makes calculations easier */ |
| /* what the hardware uses */ |
| unsigned dmasize; |
| unsigned fragsize; |
| unsigned fragsamples; |
| |
| /* what we tell the user to expect */ |
| unsigned userfrags; |
| unsigned userfragsize; |
| |
| /* OSS stuff */ |
| unsigned mapped:1; |
| unsigned ready:1; |
| unsigned update_flag; |
| unsigned ossfragsize; |
| unsigned ossmaxfrags; |
| unsigned subdivision; |
| } dmabuf; |
| }; |
| |
| |
| struct ali_card { |
| struct ali_channel channel[5]; |
| unsigned int magic; |
| |
| /* We keep ali5455 cards in a linked list */ |
| struct ali_card *next; |
| |
| /* The ali has a certain amount of cross channel interaction |
| so we use a single per card lock */ |
| spinlock_t lock; |
| spinlock_t ac97_lock; |
| |
| /* PCI device stuff */ |
| struct pci_dev *pci_dev; |
| u16 pci_id; |
| #ifdef CONFIG_PM |
| u16 pm_suspended; |
| int pm_saved_mixer_settings[SOUND_MIXER_NRDEVICES][NR_AC97]; |
| #endif |
| /* soundcore stuff */ |
| int dev_audio; |
| |
| /* structures for abstraction of hardware facilities, codecs, banks and channels */ |
| struct ac97_codec *ac97_codec[NR_AC97]; |
| struct ali_state *states[NR_HW_CH]; |
| |
| u16 ac97_features; |
| u16 ac97_status; |
| u16 channels; |
| |
| /* hardware resources */ |
| unsigned long iobase; |
| |
| u32 irq; |
| |
| /* Function support */ |
| struct ali_channel *(*alloc_pcm_channel) (struct ali_card *); |
| struct ali_channel *(*alloc_rec_pcm_channel) (struct ali_card *); |
| struct ali_channel *(*alloc_rec_mic_channel) (struct ali_card *); |
| struct ali_channel *(*alloc_codec_spdifout_channel) (struct ali_card *); |
| struct ali_channel *(*alloc_controller_spdifout_channel) (struct ali_card *); |
| void (*free_pcm_channel) (struct ali_card *, int chan); |
| |
| /* We have a *very* long init time possibly, so use this to block */ |
| /* attempts to open our devices before we are ready (stops oops'es) */ |
| int initializing; |
| }; |
| |
| |
| static struct ali_card *devs = NULL; |
| |
| static int ali_open_mixdev(struct inode *inode, struct file *file); |
| static int ali_ioctl_mixdev(struct inode *inode, struct file *file, |
| unsigned int cmd, unsigned long arg); |
| static u16 ali_ac97_get(struct ac97_codec *dev, u8 reg); |
| static void ali_ac97_set(struct ac97_codec *dev, u8 reg, u16 data); |
| |
| static struct ali_channel *ali_alloc_pcm_channel(struct ali_card *card) |
| { |
| if (card->channel[1].used == 1) |
| return NULL; |
| card->channel[1].used = 1; |
| return &card->channel[1]; |
| } |
| |
| static struct ali_channel *ali_alloc_rec_pcm_channel(struct ali_card *card) |
| { |
| if (card->channel[0].used == 1) |
| return NULL; |
| card->channel[0].used = 1; |
| return &card->channel[0]; |
| } |
| |
| static struct ali_channel *ali_alloc_rec_mic_channel(struct ali_card *card) |
| { |
| if (card->channel[2].used == 1) |
| return NULL; |
| card->channel[2].used = 1; |
| return &card->channel[2]; |
| } |
| |
| static struct ali_channel *ali_alloc_codec_spdifout_channel(struct ali_card *card) |
| { |
| if (card->channel[3].used == 1) |
| return NULL; |
| card->channel[3].used = 1; |
| return &card->channel[3]; |
| } |
| |
| static struct ali_channel *ali_alloc_controller_spdifout_channel(struct ali_card *card) |
| { |
| if (card->channel[4].used == 1) |
| return NULL; |
| card->channel[4].used = 1; |
| return &card->channel[4]; |
| } |
| static void ali_free_pcm_channel(struct ali_card *card, int channel) |
| { |
| card->channel[channel].used = 0; |
| } |
| |
| |
| //add support codec spdif out |
| static int ali_valid_spdif_rate(struct ac97_codec *codec, int rate) |
| { |
| unsigned long id = 0L; |
| |
| id = (ali_ac97_get(codec, AC97_VENDOR_ID1) << 16); |
| id |= ali_ac97_get(codec, AC97_VENDOR_ID2) & 0xffff; |
| switch (id) { |
| case 0x41445361: /* AD1886 */ |
| if (rate == 48000) { |
| return 1; |
| } |
| break; |
| case 0x414c4720: /* ALC650 */ |
| if (rate == 48000) { |
| return 1; |
| } |
| break; |
| default: /* all other codecs, until we know otherwiae */ |
| if (rate == 48000 || rate == 44100 || rate == 32000) { |
| return 1; |
| } |
| break; |
| } |
| return (0); |
| } |
| |
| /* ali_set_spdif_output |
| * |
| * Configure the S/PDIF output transmitter. When we turn on |
| * S/PDIF, we turn off the analog output. This may not be |
| * the right thing to do. |
| * |
| * Assumptions: |
| * The DSP sample rate must already be set to a supported |
| * S/PDIF rate (32kHz, 44.1kHz, or 48kHz) or we abort. |
| */ |
| static void ali_set_spdif_output(struct ali_state *state, int slots, |
| int rate) |
| { |
| int vol; |
| int aud_reg; |
| struct ac97_codec *codec = state->card->ac97_codec[0]; |
| |
| if (!(state->card->ac97_features & 4)) { |
| state->card->ac97_status &= ~SPDIF_ON; |
| } else { |
| if (slots == -1) { /* Turn off S/PDIF */ |
| aud_reg = ali_ac97_get(codec, AC97_EXTENDED_STATUS); |
| ali_ac97_set(codec, AC97_EXTENDED_STATUS, (aud_reg & ~AC97_EA_SPDIF)); |
| |
| /* If the volume wasn't muted before we turned on S/PDIF, unmute it */ |
| if (!(state->card->ac97_status & VOL_MUTED)) { |
| aud_reg = ali_ac97_get(codec, AC97_MASTER_VOL_STEREO); |
| ali_ac97_set(codec, AC97_MASTER_VOL_STEREO, |
| (aud_reg & ~VOL_MUTED)); |
| } |
| state->card->ac97_status &= ~(VOL_MUTED | SPDIF_ON); |
| return; |
| } |
| |
| vol = ali_ac97_get(codec, AC97_MASTER_VOL_STEREO); |
| state->card->ac97_status = vol & VOL_MUTED; |
| |
| /* Set S/PDIF transmitter sample rate */ |
| aud_reg = ali_ac97_get(codec, AC97_SPDIF_CONTROL); |
| switch (rate) { |
| case 32000: |
| aud_reg = (aud_reg & AC97_SC_SPSR_MASK) | AC97_SC_SPSR_32K; |
| break; |
| case 44100: |
| aud_reg = (aud_reg & AC97_SC_SPSR_MASK) | AC97_SC_SPSR_44K; |
| break; |
| case 48000: |
| aud_reg = (aud_reg & AC97_SC_SPSR_MASK) | AC97_SC_SPSR_48K; |
| break; |
| default: |
| /* turn off S/PDIF */ |
| aud_reg = ali_ac97_get(codec, AC97_EXTENDED_STATUS); |
| ali_ac97_set(codec, AC97_EXTENDED_STATUS, (aud_reg & ~AC97_EA_SPDIF)); |
| state->card->ac97_status &= ~SPDIF_ON; |
| return; |
| } |
| |
| ali_ac97_set(codec, AC97_SPDIF_CONTROL, aud_reg); |
| |
| aud_reg = ali_ac97_get(codec, AC97_EXTENDED_STATUS); |
| aud_reg = (aud_reg & AC97_EA_SLOT_MASK) | slots | AC97_EA_SPDIF; |
| ali_ac97_set(codec, AC97_EXTENDED_STATUS, aud_reg); |
| |
| aud_reg = ali_ac97_get(codec, AC97_POWER_CONTROL); |
| aud_reg |= 0x0002; |
| ali_ac97_set(codec, AC97_POWER_CONTROL, aud_reg); |
| udelay(1); |
| |
| state->card->ac97_status |= SPDIF_ON; |
| |
| /* Check to make sure the configuration is valid */ |
| aud_reg = ali_ac97_get(codec, AC97_EXTENDED_STATUS); |
| if (!(aud_reg & 0x0400)) { |
| /* turn off S/PDIF */ |
| ali_ac97_set(codec, AC97_EXTENDED_STATUS, (aud_reg & ~AC97_EA_SPDIF)); |
| state->card->ac97_status &= ~SPDIF_ON; |
| return; |
| } |
| if (codec_independent_spdif_locked > 0) { |
| aud_reg = ali_ac97_get(codec, 0x6a); |
| ali_ac97_set(codec, 0x6a, (aud_reg & 0xefff)); |
| } |
| /* Mute the analog output */ |
| /* Should this only mute the PCM volume??? */ |
| } |
| } |
| |
| /* ali_set_dac_channels |
| * |
| * Configure the codec's multi-channel DACs |
| * |
| * The logic is backwards. Setting the bit to 1 turns off the DAC. |
| * |
| * What about the ICH? We currently configure it using the |
| * SNDCTL_DSP_CHANNELS ioctl. If we're turnning on the DAC, |
| * does that imply that we want the ICH set to support |
| * these channels? |
| * |
| * TODO: |
| * vailidate that the codec really supports these DACs |
| * before turning them on. |
| */ |
| static void ali_set_dac_channels(struct ali_state *state, int channel) |
| { |
| int aud_reg; |
| struct ac97_codec *codec = state->card->ac97_codec[0]; |
| |
| aud_reg = ali_ac97_get(codec, AC97_EXTENDED_STATUS); |
| aud_reg |= AC97_EA_PRI | AC97_EA_PRJ | AC97_EA_PRK; |
| state->card->ac97_status &= ~(SURR_ON | CENTER_LFE_ON); |
| |
| switch (channel) { |
| case 2: /* always enabled */ |
| break; |
| case 4: |
| aud_reg &= ~AC97_EA_PRJ; |
| state->card->ac97_status |= SURR_ON; |
| break; |
| case 6: |
| aud_reg &= ~(AC97_EA_PRJ | AC97_EA_PRI | AC97_EA_PRK); |
| state->card->ac97_status |= SURR_ON | CENTER_LFE_ON; |
| break; |
| default: |
| break; |
| } |
| ali_ac97_set(codec, AC97_EXTENDED_STATUS, aud_reg); |
| |
| } |
| |
| /* set playback sample rate */ |
| static unsigned int ali_set_dac_rate(struct ali_state *state, |
| unsigned int rate) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| u32 new_rate; |
| struct ac97_codec *codec = state->card->ac97_codec[0]; |
| |
| if (!(state->card->ac97_features & 0x0001)) { |
| dmabuf->rate = clocking; |
| return clocking; |
| } |
| |
| if (rate > 48000) |
| rate = 48000; |
| if (rate < 8000) |
| rate = 8000; |
| dmabuf->rate = rate; |
| |
| /* |
| * Adjust for misclocked crap |
| */ |
| |
| rate = (rate * clocking) / 48000; |
| |
| if (strict_clocking && rate < 8000) { |
| rate = 8000; |
| dmabuf->rate = (rate * 48000) / clocking; |
| } |
| |
| new_rate = ac97_set_dac_rate(codec, rate); |
| if (new_rate != rate) { |
| dmabuf->rate = (new_rate * 48000) / clocking; |
| } |
| rate = new_rate; |
| return dmabuf->rate; |
| } |
| |
| /* set recording sample rate */ |
| static unsigned int ali_set_adc_rate(struct ali_state *state, |
| unsigned int rate) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| u32 new_rate; |
| struct ac97_codec *codec = state->card->ac97_codec[0]; |
| |
| if (!(state->card->ac97_features & 0x0001)) { |
| dmabuf->rate = clocking; |
| return clocking; |
| } |
| |
| if (rate > 48000) |
| rate = 48000; |
| if (rate < 8000) |
| rate = 8000; |
| dmabuf->rate = rate; |
| |
| /* |
| * Adjust for misclocked crap |
| */ |
| |
| rate = (rate * clocking) / 48000; |
| if (strict_clocking && rate < 8000) { |
| rate = 8000; |
| dmabuf->rate = (rate * 48000) / clocking; |
| } |
| |
| new_rate = ac97_set_adc_rate(codec, rate); |
| |
| if (new_rate != rate) { |
| dmabuf->rate = (new_rate * 48000) / clocking; |
| rate = new_rate; |
| } |
| return dmabuf->rate; |
| } |
| |
| /* set codec independent spdifout sample rate */ |
| static unsigned int ali_set_codecspdifout_rate(struct ali_state *state, |
| unsigned int rate) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| |
| if (!(state->card->ac97_features & 0x0001)) { |
| dmabuf->rate = clocking; |
| return clocking; |
| } |
| |
| if (rate > 48000) |
| rate = 48000; |
| if (rate < 8000) |
| rate = 8000; |
| dmabuf->rate = rate; |
| |
| return dmabuf->rate; |
| } |
| |
| /* set controller independent spdif out function sample rate */ |
| static void ali_set_spdifout_rate(struct ali_state *state, |
| unsigned int rate) |
| { |
| unsigned char ch_st_sel; |
| unsigned short status_rate; |
| |
| switch (rate) { |
| case 44100: |
| status_rate = 0; |
| break; |
| case 32000: |
| status_rate = 0x300; |
| break; |
| case 48000: |
| default: |
| status_rate = 0x200; |
| break; |
| } |
| |
| ch_st_sel = inb(state->card->iobase + ALI_SPDIFICS) & ALI_SPDIF_OUT_CH_STATUS; //select spdif_out |
| |
| ch_st_sel |= 0x80; //select right |
| outb(ch_st_sel, (state->card->iobase + ALI_SPDIFICS)); |
| outb(status_rate | 0x20, (state->card->iobase + ALI_SPDIFCSR + 2)); |
| |
| ch_st_sel &= (~0x80); //select left |
| outb(ch_st_sel, (state->card->iobase + ALI_SPDIFICS)); |
| outw(status_rate | 0x10, (state->card->iobase + ALI_SPDIFCSR + 2)); |
| } |
| |
| /* get current playback/recording dma buffer pointer (byte offset from LBA), |
| called with spinlock held! */ |
| |
| static inline unsigned ali_get_dma_addr(struct ali_state *state, int rec) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| unsigned int civ, offset, port, port_picb; |
| unsigned int data; |
| |
| if (!dmabuf->enable) |
| return 0; |
| |
| if (rec == 1) |
| port = state->card->iobase + dmabuf->read_channel->port; |
| else if (rec == 2) |
| port = state->card->iobase + dmabuf->codec_spdifout_channel->port; |
| else if (rec == 3) |
| port = state->card->iobase + dmabuf->controller_spdifout_channel->port; |
| else |
| port = state->card->iobase + dmabuf->write_channel->port; |
| |
| port_picb = port + OFF_PICB; |
| |
| do { |
| civ = inb(port + OFF_CIV) & 31; |
| offset = inw(port_picb); |
| /* Must have a delay here! */ |
| if (offset == 0) |
| udelay(1); |
| |
| /* Reread both registers and make sure that that total |
| * offset from the first reading to the second is 0. |
| * There is an issue with SiS hardware where it will count |
| * picb down to 0, then update civ to the next value, |
| * then set the new picb to fragsize bytes. We can catch |
| * it between the civ update and the picb update, making |
| * it look as though we are 1 fragsize ahead of where we |
| * are. The next to we get the address though, it will |
| * be back in thdelay is more than long enough |
| * that we won't have to worry about the chip still being |
| * out of sync with reality ;-) |
| */ |
| } while (civ != (inb(port + OFF_CIV) & 31) || offset != inw(port_picb)); |
| |
| data = ((civ + 1) * dmabuf->fragsize - (2 * offset)) % dmabuf->dmasize; |
| if (inw(port_picb) == 0) |
| data -= 2048; |
| |
| return data; |
| } |
| |
| /* Stop recording (lock held) */ |
| static inline void __stop_adc(struct ali_state *state) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| struct ali_card *card = state->card; |
| |
| dmabuf->enable &= ~ADC_RUNNING; |
| |
| outl((1 << 18) | (1 << 16), card->iobase + ALI_DMACR); |
| udelay(1); |
| |
| outb(0, card->iobase + PI_CR); |
| while (inb(card->iobase + PI_CR) != 0); |
| |
| // now clear any latent interrupt bits (like the halt bit) |
| outb(inb(card->iobase + PI_SR) | 0x001e, card->iobase + PI_SR); |
| outl(inl(card->iobase + ALI_INTERRUPTSR) & INT_PCMIN, card->iobase + ALI_INTERRUPTSR); |
| } |
| |
| static void stop_adc(struct ali_state *state) |
| { |
| struct ali_card *card = state->card; |
| unsigned long flags; |
| spin_lock_irqsave(&card->lock, flags); |
| __stop_adc(state); |
| spin_unlock_irqrestore(&card->lock, flags); |
| } |
| |
| static inline void __start_adc(struct ali_state *state) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| |
| if (dmabuf->count < dmabuf->dmasize && dmabuf->ready |
| && !dmabuf->enable && (dmabuf->trigger & PCM_ENABLE_INPUT)) { |
| dmabuf->enable |= ADC_RUNNING; |
| outb((1 << 4) | (1 << 2), state->card->iobase + PI_CR); |
| if (state->card->channel[0].used == 1) |
| outl(1, state->card->iobase + ALI_DMACR); // DMA CONTROL REGISTRER |
| udelay(100); |
| if (state->card->channel[2].used == 1) |
| outl((1 << 2), state->card->iobase + ALI_DMACR); //DMA CONTROL REGISTER |
| udelay(100); |
| } |
| } |
| |
| static void start_adc(struct ali_state *state) |
| { |
| struct ali_card *card = state->card; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&card->lock, flags); |
| __start_adc(state); |
| spin_unlock_irqrestore(&card->lock, flags); |
| } |
| |
| /* stop playback (lock held) */ |
| static inline void __stop_dac(struct ali_state *state) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| struct ali_card *card = state->card; |
| |
| dmabuf->enable &= ~DAC_RUNNING; |
| outl(0x00020000, card->iobase + 0x08); |
| outb(0, card->iobase + PO_CR); |
| while (inb(card->iobase + PO_CR) != 0) |
| cpu_relax(); |
| |
| outb(inb(card->iobase + PO_SR) | 0x001e, card->iobase + PO_SR); |
| |
| outl(inl(card->iobase + ALI_INTERRUPTSR) & INT_PCMOUT, card->iobase + ALI_INTERRUPTSR); |
| } |
| |
| static void stop_dac(struct ali_state *state) |
| { |
| struct ali_card *card = state->card; |
| unsigned long flags; |
| spin_lock_irqsave(&card->lock, flags); |
| __stop_dac(state); |
| spin_unlock_irqrestore(&card->lock, flags); |
| } |
| |
| static inline void __start_dac(struct ali_state *state) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| if (dmabuf->count > 0 && dmabuf->ready && !dmabuf->enable && |
| (dmabuf->trigger & PCM_ENABLE_OUTPUT)) { |
| dmabuf->enable |= DAC_RUNNING; |
| outb((1 << 4) | (1 << 2), state->card->iobase + PO_CR); |
| outl((1 << 1), state->card->iobase + 0x08); //dma control register |
| } |
| } |
| |
| static void start_dac(struct ali_state *state) |
| { |
| struct ali_card *card = state->card; |
| unsigned long flags; |
| spin_lock_irqsave(&card->lock, flags); |
| __start_dac(state); |
| spin_unlock_irqrestore(&card->lock, flags); |
| } |
| |
| /* stop codec and controller spdif out (lock held) */ |
| static inline void __stop_spdifout(struct ali_state *state) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| struct ali_card *card = state->card; |
| |
| if (codec_independent_spdif_locked > 0) { |
| dmabuf->enable &= ~CODEC_SPDIFOUT_RUNNING; |
| outl((1 << 19), card->iobase + 0x08); |
| outb(0, card->iobase + CODECSPDIFOUT_CR); |
| |
| while (inb(card->iobase + CODECSPDIFOUT_CR) != 0) |
| cpu_relax(); |
| |
| outb(inb(card->iobase + CODECSPDIFOUT_SR) | 0x001e, card->iobase + CODECSPDIFOUT_SR); |
| outl(inl(card->iobase + ALI_INTERRUPTSR) & INT_CODECSPDIFOUT, card->iobase + ALI_INTERRUPTSR); |
| } else { |
| if (controller_independent_spdif_locked > 0) { |
| dmabuf->enable &= ~CONTROLLER_SPDIFOUT_RUNNING; |
| outl((1 << 23), card->iobase + 0x08); |
| outb(0, card->iobase + CONTROLLERSPDIFOUT_CR); |
| while (inb(card->iobase + CONTROLLERSPDIFOUT_CR) != 0) |
| cpu_relax(); |
| outb(inb(card->iobase + CONTROLLERSPDIFOUT_SR) | 0x001e, card->iobase + CONTROLLERSPDIFOUT_SR); |
| outl(inl(card->iobase + ALI_INTERRUPTSR) & INT_SPDIFOUT, card->iobase + ALI_INTERRUPTSR); |
| } |
| } |
| } |
| |
| static void stop_spdifout(struct ali_state *state) |
| { |
| struct ali_card *card = state->card; |
| unsigned long flags; |
| spin_lock_irqsave(&card->lock, flags); |
| __stop_spdifout(state); |
| spin_unlock_irqrestore(&card->lock, flags); |
| } |
| |
| static inline void __start_spdifout(struct ali_state *state) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| if (dmabuf->count > 0 && dmabuf->ready && !dmabuf->enable && |
| (dmabuf->trigger & SPDIF_ENABLE_OUTPUT)) { |
| if (codec_independent_spdif_locked > 0) { |
| dmabuf->enable |= CODEC_SPDIFOUT_RUNNING; |
| outb((1 << 4) | (1 << 2), state->card->iobase + CODECSPDIFOUT_CR); |
| outl((1 << 3), state->card->iobase + 0x08); //dma control register |
| } else { |
| if (controller_independent_spdif_locked > 0) { |
| dmabuf->enable |= CONTROLLER_SPDIFOUT_RUNNING; |
| outb((1 << 4) | (1 << 2), state->card->iobase + CONTROLLERSPDIFOUT_CR); |
| outl((1 << 7), state->card->iobase + 0x08); //dma control register |
| } |
| } |
| } |
| } |
| |
| static void start_spdifout(struct ali_state *state) |
| { |
| struct ali_card *card = state->card; |
| unsigned long flags; |
| spin_lock_irqsave(&card->lock, flags); |
| __start_spdifout(state); |
| spin_unlock_irqrestore(&card->lock, flags); |
| } |
| |
| #define DMABUF_DEFAULTORDER (16-PAGE_SHIFT) |
| #define DMABUF_MINORDER 1 |
| |
| /* allocate DMA buffer, playback , recording,spdif out buffer should be allocated separately */ |
| static int alloc_dmabuf(struct ali_state *state) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| void *rawbuf = NULL; |
| int order, size; |
| struct page *page, *pend; |
| |
| /* If we don't have any oss frag params, then use our default ones */ |
| if (dmabuf->ossmaxfrags == 0) |
| dmabuf->ossmaxfrags = 4; |
| if (dmabuf->ossfragsize == 0) |
| dmabuf->ossfragsize = (PAGE_SIZE << DMABUF_DEFAULTORDER) / dmabuf->ossmaxfrags; |
| size = dmabuf->ossfragsize * dmabuf->ossmaxfrags; |
| |
| if (dmabuf->rawbuf && (PAGE_SIZE << dmabuf->buforder) == size) |
| return 0; |
| /* alloc enough to satisfy the oss params */ |
| for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--) { |
| if ((PAGE_SIZE << order) > size) |
| continue; |
| if ((rawbuf = pci_alloc_consistent(state->card->pci_dev, |
| PAGE_SIZE << order, |
| &dmabuf->dma_handle))) |
| break; |
| } |
| if (!rawbuf) |
| return -ENOMEM; |
| |
| dmabuf->ready = dmabuf->mapped = 0; |
| dmabuf->rawbuf = rawbuf; |
| dmabuf->buforder = order; |
| |
| /* now mark the pages as reserved; otherwise remap_pfn_range doesn't do what we want */ |
| pend = virt_to_page(rawbuf + (PAGE_SIZE << order) - 1); |
| for (page = virt_to_page(rawbuf); page <= pend; page++) |
| SetPageReserved(page); |
| return 0; |
| } |
| |
| /* free DMA buffer */ |
| static void dealloc_dmabuf(struct ali_state *state) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| struct page *page, *pend; |
| |
| if (dmabuf->rawbuf) { |
| /* undo marking the pages as reserved */ |
| pend = virt_to_page(dmabuf->rawbuf + (PAGE_SIZE << dmabuf->buforder) - 1); |
| for (page = virt_to_page(dmabuf->rawbuf); page <= pend; page++) |
| ClearPageReserved(page); |
| pci_free_consistent(state->card->pci_dev, |
| PAGE_SIZE << dmabuf->buforder, |
| dmabuf->rawbuf, dmabuf->dma_handle); |
| } |
| dmabuf->rawbuf = NULL; |
| dmabuf->mapped = dmabuf->ready = 0; |
| } |
| |
| static int prog_dmabuf(struct ali_state *state, unsigned rec) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| struct ali_channel *c = NULL; |
| struct sg_item *sg; |
| unsigned long flags; |
| int ret; |
| unsigned fragint; |
| int i; |
| |
| spin_lock_irqsave(&state->card->lock, flags); |
| if (dmabuf->enable & DAC_RUNNING) |
| __stop_dac(state); |
| if (dmabuf->enable & ADC_RUNNING) |
| __stop_adc(state); |
| if (dmabuf->enable & CODEC_SPDIFOUT_RUNNING) |
| __stop_spdifout(state); |
| if (dmabuf->enable & CONTROLLER_SPDIFOUT_RUNNING) |
| __stop_spdifout(state); |
| |
| dmabuf->total_bytes = 0; |
| dmabuf->count = dmabuf->error = 0; |
| dmabuf->swptr = dmabuf->hwptr = 0; |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| |
| /* allocate DMA buffer, let alloc_dmabuf determine if we are already |
| * allocated well enough or if we should replace the current buffer |
| * (assuming one is already allocated, if it isn't, then allocate it). |
| */ |
| if ((ret = alloc_dmabuf(state))) |
| return ret; |
| |
| /* FIXME: figure out all this OSS fragment stuff */ |
| /* I did, it now does what it should according to the OSS API. DL */ |
| /* We may not have realloced our dmabuf, but the fragment size to |
| * fragment number ratio may have changed, so go ahead and reprogram |
| * things |
| */ |
| |
| dmabuf->dmasize = PAGE_SIZE << dmabuf->buforder; |
| dmabuf->numfrag = SG_LEN; |
| dmabuf->fragsize = dmabuf->dmasize / dmabuf->numfrag; |
| dmabuf->fragsamples = dmabuf->fragsize >> 1; |
| dmabuf->userfragsize = dmabuf->ossfragsize; |
| dmabuf->userfrags = dmabuf->dmasize / dmabuf->ossfragsize; |
| |
| memset(dmabuf->rawbuf, 0, dmabuf->dmasize); |
| |
| if (dmabuf->ossmaxfrags == 4) { |
| fragint = 8; |
| dmabuf->fragshift = 2; |
| } else if (dmabuf->ossmaxfrags == 8) { |
| fragint = 4; |
| dmabuf->fragshift = 3; |
| } else if (dmabuf->ossmaxfrags == 16) { |
| fragint = 2; |
| dmabuf->fragshift = 4; |
| } else { |
| fragint = 1; |
| dmabuf->fragshift = 5; |
| } |
| /* |
| * Now set up the ring |
| */ |
| |
| if (rec == 1) |
| c = dmabuf->read_channel; |
| else if (rec == 2) |
| c = dmabuf->codec_spdifout_channel; |
| else if (rec == 3) |
| c = dmabuf->controller_spdifout_channel; |
| else if (rec == 0) |
| c = dmabuf->write_channel; |
| if (c != NULL) { |
| sg = &c->sg[0]; |
| /* |
| * Load up 32 sg entries and take an interrupt at half |
| * way (we might want more interrupts later..) |
| */ |
| for (i = 0; i < dmabuf->numfrag; i++) { |
| sg->busaddr = |
| virt_to_bus(dmabuf->rawbuf + |
| dmabuf->fragsize * i); |
| // the card will always be doing 16bit stereo |
| sg->control = dmabuf->fragsamples; |
| sg->control |= CON_BUFPAD; //I modify |
| // set us up to get IOC interrupts as often as needed to |
| // satisfy numfrag requirements, no more |
| if (((i + 1) % fragint) == 0) { |
| sg->control |= CON_IOC; |
| } |
| sg++; |
| } |
| spin_lock_irqsave(&state->card->lock, flags); |
| outb(2, state->card->iobase + c->port + OFF_CR); /* reset DMA machine */ |
| outl(virt_to_bus(&c->sg[0]), state->card->iobase + c->port + OFF_BDBAR); |
| outb(0, state->card->iobase + c->port + OFF_CIV); |
| outb(0, state->card->iobase + c->port + OFF_LVI); |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| } |
| /* set the ready flag for the dma buffer */ |
| dmabuf->ready = 1; |
| return 0; |
| } |
| |
| static void __ali_update_lvi(struct ali_state *state, int rec) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| int x, port; |
| port = state->card->iobase; |
| if (rec == 1) |
| port += dmabuf->read_channel->port; |
| else if (rec == 2) |
| port += dmabuf->codec_spdifout_channel->port; |
| else if (rec == 3) |
| port += dmabuf->controller_spdifout_channel->port; |
| else if (rec == 0) |
| port += dmabuf->write_channel->port; |
| /* if we are currently stopped, then our CIV is actually set to our |
| * *last* sg segment and we are ready to wrap to the next. However, |
| * if we set our LVI to the last sg segment, then it won't wrap to |
| * the next sg segment, it won't even get a start. So, instead, when |
| * we are stopped, we set both the LVI value and also we increment |
| * the CIV value to the next sg segment to be played so that when |
| * we call start_{dac,adc}, things will operate properly |
| */ |
| if (!dmabuf->enable && dmabuf->ready) { |
| if (rec && dmabuf->count < dmabuf->dmasize && (dmabuf->trigger & PCM_ENABLE_INPUT)) { |
| outb((inb(port + OFF_CIV) + 1) & 31, port + OFF_LVI); |
| __start_adc(state); |
| while (! (inb(port + OFF_CR) & ((1 << 4) | (1 << 2)))) |
| cpu_relax(); |
| } else if (!rec && dmabuf->count && (dmabuf->trigger & PCM_ENABLE_OUTPUT)) { |
| outb((inb(port + OFF_CIV) + 1) & 31, port + OFF_LVI); |
| __start_dac(state); |
| while (!(inb(port + OFF_CR) & ((1 << 4) | (1 << 2)))) |
| cpu_relax(); |
| } else if (rec && dmabuf->count && (dmabuf->trigger & SPDIF_ENABLE_OUTPUT)) { |
| if (codec_independent_spdif_locked > 0) { |
| // outb((inb(port+OFF_CIV))&31, port+OFF_LVI); |
| outb((inb(port + OFF_CIV) + 1) & 31, port + OFF_LVI); |
| __start_spdifout(state); |
| while (!(inb(port + OFF_CR) & ((1 << 4) | (1 << 2)))) |
| cpu_relax(); |
| } else { |
| if (controller_independent_spdif_locked > 0) { |
| outb((inb(port + OFF_CIV) + 1) & 31, port + OFF_LVI); |
| __start_spdifout(state); |
| while (!(inb(port + OFF_CR) & ((1 << 4) | (1 << 2)))) |
| cpu_relax(); |
| } |
| } |
| } |
| } |
| |
| /* swptr - 1 is the tail of our transfer */ |
| x = (dmabuf->dmasize + dmabuf->swptr - 1) % dmabuf->dmasize; |
| x /= dmabuf->fragsize; |
| outb(x, port + OFF_LVI); |
| } |
| |
| static void ali_update_lvi(struct ali_state *state, int rec) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| unsigned long flags; |
| if (!dmabuf->ready) |
| return; |
| spin_lock_irqsave(&state->card->lock, flags); |
| __ali_update_lvi(state, rec); |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| } |
| |
| /* update buffer manangement pointers, especially, dmabuf->count and dmabuf->hwptr */ |
| static void ali_update_ptr(struct ali_state *state) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| unsigned hwptr; |
| int diff; |
| |
| /* error handling and process wake up for DAC */ |
| if (dmabuf->enable == ADC_RUNNING) { |
| /* update hardware pointer */ |
| hwptr = ali_get_dma_addr(state, 1); |
| diff = (dmabuf->dmasize + hwptr - dmabuf->hwptr) % dmabuf->dmasize; |
| dmabuf->hwptr = hwptr; |
| dmabuf->total_bytes += diff; |
| dmabuf->count += diff; |
| if (dmabuf->count > dmabuf->dmasize) { |
| /* buffer underrun or buffer overrun */ |
| /* this is normal for the end of a read */ |
| /* only give an error if we went past the */ |
| /* last valid sg entry */ |
| if ((inb(state->card->iobase + PI_CIV) & 31) != (inb(state->card->iobase + PI_LVI) & 31)) { |
| printk(KERN_WARNING "ali_audio: DMA overrun on read\n"); |
| dmabuf->error++; |
| } |
| } |
| if (dmabuf->count > dmabuf->userfragsize) |
| wake_up(&dmabuf->wait); |
| } |
| /* error handling and process wake up for DAC */ |
| if (dmabuf->enable == DAC_RUNNING) { |
| /* update hardware pointer */ |
| hwptr = ali_get_dma_addr(state, 0); |
| diff = |
| (dmabuf->dmasize + hwptr - |
| dmabuf->hwptr) % dmabuf->dmasize; |
| #if defined(DEBUG_INTERRUPTS) || defined(DEBUG_MMAP) |
| printk("DAC HWP %d,%d,%d\n", hwptr, dmabuf->hwptr, diff); |
| #endif |
| dmabuf->hwptr = hwptr; |
| dmabuf->total_bytes += diff; |
| dmabuf->count -= diff; |
| if (dmabuf->count < 0) { |
| /* buffer underrun or buffer overrun */ |
| /* this is normal for the end of a write */ |
| /* only give an error if we went past the */ |
| /* last valid sg entry */ |
| if ((inb(state->card->iobase + PO_CIV) & 31) != (inb(state->card->iobase + PO_LVI) & 31)) { |
| printk(KERN_WARNING "ali_audio: DMA overrun on write\n"); |
| printk(KERN_DEBUG "ali_audio: CIV %d, LVI %d, hwptr %x, count %d\n", |
| inb(state->card->iobase + PO_CIV) & 31, |
| inb(state->card->iobase + PO_LVI) & 31, |
| dmabuf->hwptr, |
| dmabuf->count); |
| dmabuf->error++; |
| } |
| } |
| if (dmabuf->count < (dmabuf->dmasize - dmabuf->userfragsize)) |
| wake_up(&dmabuf->wait); |
| } |
| |
| /* error handling and process wake up for CODEC SPDIF OUT */ |
| if (dmabuf->enable == CODEC_SPDIFOUT_RUNNING) { |
| /* update hardware pointer */ |
| hwptr = ali_get_dma_addr(state, 2); |
| diff = (dmabuf->dmasize + hwptr - dmabuf->hwptr) % dmabuf->dmasize; |
| dmabuf->hwptr = hwptr; |
| dmabuf->total_bytes += diff; |
| dmabuf->count -= diff; |
| if (dmabuf->count < 0) { |
| /* buffer underrun or buffer overrun */ |
| /* this is normal for the end of a write */ |
| /* only give an error if we went past the */ |
| /* last valid sg entry */ |
| if ((inb(state->card->iobase + CODECSPDIFOUT_CIV) & 31) != (inb(state->card->iobase + CODECSPDIFOUT_LVI) & 31)) { |
| printk(KERN_WARNING "ali_audio: DMA overrun on write\n"); |
| printk(KERN_DEBUG "ali_audio: CIV %d, LVI %d, hwptr %x, count %d\n", |
| inb(state->card->iobase + CODECSPDIFOUT_CIV) & 31, |
| inb(state->card->iobase + CODECSPDIFOUT_LVI) & 31, |
| dmabuf->hwptr, dmabuf->count); |
| dmabuf->error++; |
| } |
| } |
| if (dmabuf->count < (dmabuf->dmasize - dmabuf->userfragsize)) |
| wake_up(&dmabuf->wait); |
| } |
| /* error handling and process wake up for CONTROLLER SPDIF OUT */ |
| if (dmabuf->enable == CONTROLLER_SPDIFOUT_RUNNING) { |
| /* update hardware pointer */ |
| hwptr = ali_get_dma_addr(state, 3); |
| diff = (dmabuf->dmasize + hwptr - dmabuf->hwptr) % dmabuf->dmasize; |
| dmabuf->hwptr = hwptr; |
| dmabuf->total_bytes += diff; |
| dmabuf->count -= diff; |
| if (dmabuf->count < 0) { |
| /* buffer underrun or buffer overrun */ |
| /* this is normal for the end of a write */ |
| /* only give an error if we went past the */ |
| /* last valid sg entry */ |
| if ((inb(state->card->iobase + CONTROLLERSPDIFOUT_CIV) & 31) != (inb(state->card->iobase + CONTROLLERSPDIFOUT_LVI) & 31)) { |
| printk(KERN_WARNING |
| "ali_audio: DMA overrun on write\n"); |
| printk("ali_audio: CIV %d, LVI %d, hwptr %x, " |
| "count %d\n", |
| inb(state->card->iobase + CONTROLLERSPDIFOUT_CIV) & 31, |
| inb(state->card->iobase + CONTROLLERSPDIFOUT_LVI) & 31, |
| dmabuf->hwptr, dmabuf->count); |
| dmabuf->error++; |
| } |
| } |
| if (dmabuf->count < (dmabuf->dmasize - dmabuf->userfragsize)) |
| wake_up(&dmabuf->wait); |
| } |
| } |
| |
| static inline int ali_get_free_write_space(struct |
| ali_state |
| *state) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| int free; |
| |
| if (dmabuf->count < 0) { |
| dmabuf->count = 0; |
| dmabuf->swptr = dmabuf->hwptr; |
| } |
| free = dmabuf->dmasize - dmabuf->swptr; |
| if ((dmabuf->count + free) > dmabuf->dmasize){ |
| free = dmabuf->dmasize - dmabuf->count; |
| } |
| return free; |
| } |
| |
| static inline int ali_get_available_read_data(struct |
| ali_state |
| *state) |
| { |
| struct dmabuf *dmabuf = &state->dmabuf; |
| int avail; |
| ali_update_ptr(state); |
| // catch overruns during record |
| if (dmabuf->count > dmabuf->dmasize) { |
| dmabuf->count = dmabuf->dmasize; |
| dmabuf->swptr = dmabuf->hwptr; |
| } |
| avail = dmabuf->count; |
| avail -= (dmabuf->hwptr % dmabuf->fragsize); |
| if (avail < 0) |
| return (0); |
| return (avail); |
| } |
| |
| static int drain_dac(struct ali_state *state, int signals_allowed) |
| { |
| |
| DECLARE_WAITQUEUE(wait, current); |
| struct dmabuf *dmabuf = &state->dmabuf; |
| unsigned long flags; |
| unsigned long tmo; |
| int count; |
| if (!dmabuf->ready) |
| return 0; |
| if (dmabuf->mapped) { |
| stop_dac(state); |
| return 0; |
| } |
| add_wait_queue(&dmabuf->wait, &wait); |
| for (;;) { |
| |
| spin_lock_irqsave(&state->card->lock, flags); |
| ali_update_ptr(state); |
| count = dmabuf->count; |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| if (count <= 0) |
| break; |
| /* |
| * This will make sure that our LVI is correct, that our |
| * pointer is updated, and that the DAC is running. We |
| * have to force the setting of dmabuf->trigger to avoid |
| * any possible deadlocks. |
| */ |
| if (!dmabuf->enable) { |
| dmabuf->trigger = PCM_ENABLE_OUTPUT; |
| ali_update_lvi(state, 0); |
| } |
| if (signal_pending(current) && signals_allowed) { |
| break; |
| } |
| |
| /* It seems that we have to set the current state to |
| * TASK_INTERRUPTIBLE every time to make the process |
| * really go to sleep. This also has to be *after* the |
| * update_ptr() call because update_ptr is likely to |
| * do a wake_up() which will unset this before we ever |
| * try to sleep, resuling in a tight loop in this code |
| * instead of actually sleeping and waiting for an |
| * interrupt to wake us up! |
| */ |
| set_current_state(TASK_INTERRUPTIBLE); |
| /* |
| * set the timeout to significantly longer than it *should* |
| * take for the DAC to drain the DMA buffer |
| */ |
| tmo = (count * HZ) / (dmabuf->rate); |
| if (!schedule_timeout(tmo >= 2 ? tmo : 2)) { |
| printk(KERN_ERR "ali_audio: drain_dac, dma timeout?\n"); |
| count = 0; |
| break; |
| } |
| } |
| set_current_state(TASK_RUNNING); |
| remove_wait_queue(&dmabuf->wait, &wait); |
| if (count > 0 && signal_pending(current) && signals_allowed) |
| return -ERESTARTSYS; |
| stop_dac(state); |
| return 0; |
| } |
| |
| |
| static int drain_spdifout(struct ali_state *state, int signals_allowed) |
| { |
| |
| DECLARE_WAITQUEUE(wait, current); |
| struct dmabuf *dmabuf = &state->dmabuf; |
| unsigned long flags; |
| unsigned long tmo; |
| int count; |
| if (!dmabuf->ready) |
| return 0; |
| if (dmabuf->mapped) { |
| stop_spdifout(state); |
| return 0; |
| } |
| add_wait_queue(&dmabuf->wait, &wait); |
| for (;;) { |
| |
| spin_lock_irqsave(&state->card->lock, flags); |
| ali_update_ptr(state); |
| count = dmabuf->count; |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| if (count <= 0) |
| break; |
| /* |
| * This will make sure that our LVI is correct, that our |
| * pointer is updated, and that the DAC is running. We |
| * have to force the setting of dmabuf->trigger to avoid |
| * any possible deadlocks. |
| */ |
| if (!dmabuf->enable) { |
| if (codec_independent_spdif_locked > 0) { |
| dmabuf->trigger = SPDIF_ENABLE_OUTPUT; |
| ali_update_lvi(state, 2); |
| } else { |
| if (controller_independent_spdif_locked > 0) { |
| dmabuf->trigger = SPDIF_ENABLE_OUTPUT; |
| ali_update_lvi(state, 3); |
| } |
| } |
| } |
| if (signal_pending(current) && signals_allowed) { |
| break; |
| } |
| |
| /* It seems that we have to set the current state to |
| * TASK_INTERRUPTIBLE every time to make the process |
| * really go to sleep. This also has to be *after* the |
| * update_ptr() call because update_ptr is likely to |
| * do a wake_up() which will unset this before we ever |
| * try to sleep, resuling in a tight loop in this code |
| * instead of actually sleeping and waiting for an |
| * interrupt to wake us up! |
| */ |
| set_current_state(TASK_INTERRUPTIBLE); |
| /* |
| * set the timeout to significantly longer than it *should* |
| * take for the DAC to drain the DMA buffer |
| */ |
| tmo = (count * HZ) / (dmabuf->rate); |
| if (!schedule_timeout(tmo >= 2 ? tmo : 2)) { |
| printk(KERN_ERR "ali_audio: drain_spdifout, dma timeout?\n"); |
| count = 0; |
| break; |
| } |
| } |
| set_current_state(TASK_RUNNING); |
| remove_wait_queue(&dmabuf->wait, &wait); |
| if (count > 0 && signal_pending(current) && signals_allowed) |
| return -ERESTARTSYS; |
| stop_spdifout(state); |
| return 0; |
| } |
| |
| static void ali_channel_interrupt(struct ali_card *card) |
| { |
| int i, count; |
| |
| for (i = 0; i < NR_HW_CH; i++) { |
| struct ali_state *state = card->states[i]; |
| struct ali_channel *c = NULL; |
| struct dmabuf *dmabuf; |
| unsigned long port = card->iobase; |
| u16 status; |
| if (!state) |
| continue; |
| if (!state->dmabuf.ready) |
| continue; |
| dmabuf = &state->dmabuf; |
| if (codec_independent_spdif_locked > 0) { |
| if (dmabuf->enable & CODEC_SPDIFOUT_RUNNING) { |
| c = dmabuf->codec_spdifout_channel; |
| } |
| } else { |
| if (controller_independent_spdif_locked > 0) { |
| if (dmabuf->enable & CONTROLLER_SPDIFOUT_RUNNING) |
| c = dmabuf->controller_spdifout_channel; |
| } else { |
| if (dmabuf->enable & DAC_RUNNING) { |
| c = dmabuf->write_channel; |
| } else if (dmabuf->enable & ADC_RUNNING) { |
| c = dmabuf->read_channel; |
| } else |
| continue; |
| } |
| } |
| port += c->port; |
| |
| status = inw(port + OFF_SR); |
| |
| if (status & DMA_INT_COMPLETE) { |
| /* only wake_up() waiters if this interrupt signals |
| * us being beyond a userfragsize of data open or |
| * available, and ali_update_ptr() does that for |
| * us |
| */ |
| ali_update_ptr(state); |
| } |
| |
| if (status & DMA_INT_LVI) { |
| ali_update_ptr(state); |
| wake_up(&dmabuf->wait); |
| |
| if (dmabuf->enable & DAC_RUNNING) |
| count = dmabuf->count; |
| else if (dmabuf->enable & ADC_RUNNING) |
| count = dmabuf->dmasize - dmabuf->count; |
| else if (dmabuf->enable & CODEC_SPDIFOUT_RUNNING) |
| count = dmabuf->count; |
| else if (dmabuf->enable & CONTROLLER_SPDIFOUT_RUNNING) |
| count = dmabuf->count; |
| else count = 0; |
| |
| if (count > 0) { |
| if (dmabuf->enable & DAC_RUNNING) |
| outl((1 << 1), state->card->iobase + ALI_DMACR); |
| else if (dmabuf->enable & CODEC_SPDIFOUT_RUNNING) |
| outl((1 << 3), state->card->iobase + ALI_DMACR); |
| else if (dmabuf->enable & CONTROLLER_SPDIFOUT_RUNNING) |
| outl((1 << 7), state->card->iobase + ALI_DMACR); |
| } else { |
| if (dmabuf->enable & DAC_RUNNING) |
| __stop_dac(state); |
| if (dmabuf->enable & ADC_RUNNING) |
| __stop_adc(state); |
| if (dmabuf->enable & CODEC_SPDIFOUT_RUNNING) |
| __stop_spdifout(state); |
| if (dmabuf->enable & CONTROLLER_SPDIFOUT_RUNNING) |
| __stop_spdifout(state); |
| dmabuf->enable = 0; |
| wake_up(&dmabuf->wait); |
| } |
| |
| } |
| if (!(status & DMA_INT_DCH)) { |
| ali_update_ptr(state); |
| wake_up(&dmabuf->wait); |
| if (dmabuf->enable & DAC_RUNNING) |
| count = dmabuf->count; |
| else if (dmabuf->enable & ADC_RUNNING) |
| count = dmabuf->dmasize - dmabuf->count; |
| else if (dmabuf->enable & CODEC_SPDIFOUT_RUNNING) |
| count = dmabuf->count; |
| else if (dmabuf->enable & CONTROLLER_SPDIFOUT_RUNNING) |
| count = dmabuf->count; |
| else |
| count = 0; |
| |
| if (count > 0) { |
| if (dmabuf->enable & DAC_RUNNING) |
| outl((1 << 1), state->card->iobase + ALI_DMACR); |
| else if (dmabuf->enable & CODEC_SPDIFOUT_RUNNING) |
| outl((1 << 3), state->card->iobase + ALI_DMACR); |
| else if (dmabuf->enable & CONTROLLER_SPDIFOUT_RUNNING) |
| outl((1 << 7), state->card->iobase + ALI_DMACR); |
| } else { |
| if (dmabuf->enable & DAC_RUNNING) |
| __stop_dac(state); |
| if (dmabuf->enable & ADC_RUNNING) |
| __stop_adc(state); |
| if (dmabuf->enable & CODEC_SPDIFOUT_RUNNING) |
| __stop_spdifout(state); |
| if (dmabuf->enable & CONTROLLER_SPDIFOUT_RUNNING) |
| __stop_spdifout(state); |
| dmabuf->enable = 0; |
| wake_up(&dmabuf->wait); |
| } |
| } |
| outw(status & DMA_INT_MASK, port + OFF_SR); |
| } |
| } |
| |
| static irqreturn_t ali_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct ali_card *card = (struct ali_card *) dev_id; |
| u32 status; |
| u16 status2; |
| |
| spin_lock(&card->lock); |
| status = inl(card->iobase + ALI_INTERRUPTSR); |
| if (!(status & INT_MASK)) { |
| spin_unlock(&card->lock); |
| return IRQ_NONE; /* not for us */ |
| } |
| |
| if (codec_independent_spdif_locked > 0) { |
| if (globel == 0) { |
| globel += 1; |
| status2 = inw(card->iobase + 0x76); |
| outw(status2 | 0x000c, card->iobase + 0x76); |
| } else { |
| if (status & (INT_PCMOUT | INT_PCMIN | INT_MICIN | INT_SPDIFOUT | INT_CODECSPDIFOUT)) |
| ali_channel_interrupt(card); |
| } |
| } else { |
| if (status & (INT_PCMOUT | INT_PCMIN | INT_MICIN | INT_SPDIFOUT | INT_CODECSPDIFOUT)) |
| ali_channel_interrupt(card); |
| } |
| |
| /* clear 'em */ |
| outl(status & INT_MASK, card->iobase + ALI_INTERRUPTSR); |
| spin_unlock(&card->lock); |
| return IRQ_HANDLED; |
| } |
| |
| /* in this loop, dmabuf.count signifies the amount of data that is |
| waiting to be copied to the user's buffer. It is filled by the dma |
| machine and drained by this loop. */ |
| |
| static ssize_t ali_read(struct file *file, char __user *buffer, |
| size_t count, loff_t * ppos) |
| { |
| struct ali_state *state = (struct ali_state *) file->private_data; |
| struct ali_card *card = state ? state->card : NULL; |
| struct dmabuf *dmabuf = &state->dmabuf; |
| ssize_t ret; |
| unsigned long flags; |
| unsigned int swptr; |
| int cnt; |
| DECLARE_WAITQUEUE(waita, current); |
| #ifdef DEBUG2 |
| printk("ali_audio: ali_read called, count = %d\n", count); |
| #endif |
| if (dmabuf->mapped) |
| return -ENXIO; |
| if (dmabuf->enable & DAC_RUNNING) |
| return -ENODEV; |
| if (!dmabuf->read_channel) { |
| dmabuf->ready = 0; |
| dmabuf->read_channel = card->alloc_rec_pcm_channel(card); |
| if (!dmabuf->read_channel) { |
| return -EBUSY; |
| } |
| } |
| if (!dmabuf->ready && (ret = prog_dmabuf(state, 1))) |
| return ret; |
| if (!access_ok(VERIFY_WRITE, buffer, count)) |
| return -EFAULT; |
| ret = 0; |
| add_wait_queue(&dmabuf->wait, &waita); |
| while (count > 0) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| spin_lock_irqsave(&card->lock, flags); |
| if (PM_SUSPENDED(card)) { |
| spin_unlock_irqrestore(&card->lock, flags); |
| schedule(); |
| if (signal_pending(current)) { |
| if (!ret) |
| ret = -EAGAIN; |
| break; |
| } |
| continue; |
| } |
| swptr = dmabuf->swptr; |
| cnt = ali_get_available_read_data(state); |
| // this is to make the copy_to_user simpler below |
| if (cnt > (dmabuf->dmasize - swptr)) |
| cnt = dmabuf->dmasize - swptr; |
| spin_unlock_irqrestore(&card->lock, flags); |
| if (cnt > count) |
| cnt = count; |
| /* Lop off the last two bits to force the code to always |
| * write in full samples. This keeps software that sets |
| * O_NONBLOCK but doesn't check the return value of the |
| * write call from getting things out of state where they |
| * think a full 4 byte sample was written when really only |
| * a portion was, resulting in odd sound and stereo |
| * hysteresis. |
| */ |
| cnt &= ~0x3; |
| if (cnt <= 0) { |
| unsigned long tmo; |
| /* |
| * Don't let us deadlock. The ADC won't start if |
| * dmabuf->trigger isn't set. A call to SETTRIGGER |
| * could have turned it off after we set it to on |
| * previously. |
| */ |
| dmabuf->trigger = PCM_ENABLE_INPUT; |
| /* |
| * This does three things. Updates LVI to be correct, |
| * makes sure the ADC is running, and updates the |
| * hwptr. |
| */ |
| ali_update_lvi(state, 1); |
| if (file->f_flags & O_NONBLOCK) { |
| if (!ret) |
| ret = -EAGAIN; |
| goto done; |
| } |
| /* Set the timeout to how long it would take to fill |
| * two of our buffers. If we haven't been woke up |
| * by then, then we know something is wrong. |
| */ |
| tmo = (dmabuf->dmasize * HZ * 2) / (dmabuf->rate * 4); |
| |
| /* There are two situations when sleep_on_timeout returns, one is when |
| the interrupt is serviced correctly and the process is waked up by |
| ISR ON TIME. Another is when timeout is expired, which means that |
| either interrupt is NOT serviced correctly (pending interrupt) or it |
| is TOO LATE for the process to be scheduled to run (scheduler latency) |
| which results in a (potential) buffer overrun. And worse, there is |
| NOTHING we can do to prevent it. */ |
| if (!schedule_timeout(tmo >= 2 ? tmo : 2)) { |
| printk(KERN_ERR |
| "ali_audio: recording schedule timeout, " |
| "dmasz %u fragsz %u count %i hwptr %u swptr %u\n", |
| dmabuf->dmasize, dmabuf->fragsize, |
| dmabuf->count, dmabuf->hwptr, |
| dmabuf->swptr); |
| /* a buffer overrun, we delay the recovery until next time the |
| while loop begin and we REALLY have space to record */ |
| } |
| if (signal_pending(current)) { |
| ret = ret ? ret : -ERESTARTSYS; |
| goto done; |
| } |
| continue; |
| } |
| |
| if (copy_to_user(buffer, dmabuf->rawbuf + swptr, cnt)) { |
| if (!ret) |
| ret = -EFAULT; |
| goto done; |
| } |
| |
| swptr = (swptr + cnt) % dmabuf->dmasize; |
| spin_lock_irqsave(&card->lock, flags); |
| if (PM_SUSPENDED(card)) { |
| spin_unlock_irqrestore(&card->lock, flags); |
| continue; |
| } |
| dmabuf->swptr = swptr; |
| dmabuf->count -= cnt; |
| spin_unlock_irqrestore(&card->lock, flags); |
| count -= cnt; |
| buffer += cnt; |
| ret += cnt; |
| } |
| done: |
| ali_update_lvi(state, 1); |
| set_current_state(TASK_RUNNING); |
| remove_wait_queue(&dmabuf->wait, &waita); |
| return ret; |
| } |
| |
| /* in this loop, dmabuf.count signifies the amount of data that is waiting to be dma to |
| the soundcard. it is drained by the dma machine and filled by this loop. */ |
| static ssize_t ali_write(struct file *file, |
| const char __user *buffer, size_t count, loff_t * ppos) |
| { |
| struct ali_state *state = (struct ali_state *) file->private_data; |
| struct ali_card *card = state ? state->card : NULL; |
| struct dmabuf *dmabuf = &state->dmabuf; |
| ssize_t ret; |
| unsigned long flags; |
| unsigned int swptr = 0; |
| int cnt, x; |
| DECLARE_WAITQUEUE(waita, current); |
| #ifdef DEBUG2 |
| printk("ali_audio: ali_write called, count = %d\n", count); |
| #endif |
| if (dmabuf->mapped) |
| return -ENXIO; |
| if (dmabuf->enable & ADC_RUNNING) |
| return -ENODEV; |
| if (codec_independent_spdif_locked > 0) { |
| if (!dmabuf->codec_spdifout_channel) { |
| dmabuf->ready = 0; |
| dmabuf->codec_spdifout_channel = card->alloc_codec_spdifout_channel(card); |
| if (!dmabuf->codec_spdifout_channel) |
| return -EBUSY; |
| } |
| } else { |
| if (controller_independent_spdif_locked > 0) { |
| if (!dmabuf->controller_spdifout_channel) { |
| dmabuf->ready = 0; |
| dmabuf->controller_spdifout_channel = card->alloc_controller_spdifout_channel(card); |
| if (!dmabuf->controller_spdifout_channel) |
| return -EBUSY; |
| } |
| } else { |
| if (!dmabuf->write_channel) { |
| dmabuf->ready = 0; |
| dmabuf->write_channel = |
| card->alloc_pcm_channel(card); |
| if (!dmabuf->write_channel) |
| return -EBUSY; |
| } |
| } |
| } |
| |
| if (codec_independent_spdif_locked > 0) { |
| if (!dmabuf->ready && (ret = prog_dmabuf(state, 2))) |
| return ret; |
| } else { |
| if (controller_independent_spdif_locked > 0) { |
| if (!dmabuf->ready && (ret = prog_dmabuf(state, 3))) |
| return ret; |
| } else { |
| |
| if (!dmabuf->ready && (ret = prog_dmabuf(state, 0))) |
| return ret; |
| } |
| } |
| if (!access_ok(VERIFY_READ, buffer, count)) |
| return -EFAULT; |
| ret = 0; |
| add_wait_queue(&dmabuf->wait, &waita); |
| while (count > 0) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| spin_lock_irqsave(&state->card->lock, flags); |
| if (PM_SUSPENDED(card)) { |
| spin_unlock_irqrestore(&card->lock, flags); |
| schedule(); |
| if (signal_pending(current)) { |
| if (!ret) |
| ret = -EAGAIN; |
| break; |
| } |
| continue; |
| } |
| |
| swptr = dmabuf->swptr; |
| cnt = ali_get_free_write_space(state); |
| /* Bound the maximum size to how much we can copy to the |
| * dma buffer before we hit the end. If we have more to |
| * copy then it will get done in a second pass of this |
| * loop starting from the beginning of the buffer. |
| */ |
| if (cnt > (dmabuf->dmasize - swptr)) |
| cnt = dmabuf->dmasize - swptr; |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| #ifdef DEBUG2 |
| printk(KERN_INFO |
| "ali_audio: ali_write: %d bytes available space\n", |
| cnt); |
| #endif |
| if (cnt > count) |
| cnt = count; |
| /* Lop off the last two bits to force the code to always |
| * write in full samples. This keeps software that sets |
| * O_NONBLOCK but doesn't check the return value of the |
| * write call from getting things out of state where they |
| * think a full 4 byte sample was written when really only |
| * a portion was, resulting in odd sound and stereo |
| * hysteresis. |
| */ |
| cnt &= ~0x3; |
| if (cnt <= 0) { |
| unsigned long tmo; |
| // There is data waiting to be played |
| /* |
| * Force the trigger setting since we would |
| * deadlock with it set any other way |
| */ |
| if (codec_independent_spdif_locked > 0) { |
| dmabuf->trigger = SPDIF_ENABLE_OUTPUT; |
| ali_update_lvi(state, 2); |
| } else { |
| if (controller_independent_spdif_locked > 0) { |
| dmabuf->trigger = SPDIF_ENABLE_OUTPUT; |
| ali_update_lvi(state, 3); |
| } else { |
| |
| dmabuf->trigger = PCM_ENABLE_OUTPUT; |
| ali_update_lvi(state, 0); |
| } |
| } |
| if (file->f_flags & O_NONBLOCK) { |
| if (!ret) |
| ret = -EAGAIN; |
| goto ret; |
| } |
| /* Not strictly correct but works */ |
| tmo = (dmabuf->dmasize * HZ * 2) / (dmabuf->rate * 4); |
| /* There are two situations when sleep_on_timeout returns, one is when |
| the interrupt is serviced correctly and the process is waked up by |
| ISR ON TIME. Another is when timeout is expired, which means that |
| either interrupt is NOT serviced correctly (pending interrupt) or it |
| is TOO LATE for the process to be scheduled to run (scheduler latency) |
| which results in a (potential) buffer underrun. And worse, there is |
| NOTHING we can do to prevent it. */ |
| |
| /* FIXME - do timeout handling here !! */ |
| schedule_timeout(tmo >= 2 ? tmo : 2); |
| |
| if (signal_pending(current)) { |
| if (!ret) |
| ret = -ERESTARTSYS; |
| goto ret; |
| } |
| continue; |
| } |
| if (copy_from_user(dmabuf->rawbuf + swptr, buffer, cnt)) { |
| if (!ret) |
| ret = -EFAULT; |
| goto ret; |
| } |
| |
| swptr = (swptr + cnt) % dmabuf->dmasize; |
| spin_lock_irqsave(&state->card->lock, flags); |
| if (PM_SUSPENDED(card)) { |
| spin_unlock_irqrestore(&card->lock, flags); |
| continue; |
| } |
| |
| dmabuf->swptr = swptr; |
| dmabuf->count += cnt; |
| count -= cnt; |
| buffer += cnt; |
| ret += cnt; |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| } |
| if (swptr % dmabuf->fragsize) { |
| x = dmabuf->fragsize - (swptr % dmabuf->fragsize); |
| memset(dmabuf->rawbuf + swptr, '\0', x); |
| } |
| ret: |
| if (codec_independent_spdif_locked > 0) { |
| ali_update_lvi(state, 2); |
| } else { |
| if (controller_independent_spdif_locked > 0) { |
| ali_update_lvi(state, 3); |
| } else { |
| ali_update_lvi(state, 0); |
| } |
| } |
| set_current_state(TASK_RUNNING); |
| remove_wait_queue(&dmabuf->wait, &waita); |
| return ret; |
| } |
| |
| /* No kernel lock - we have our own spinlock */ |
| static unsigned int ali_poll(struct file *file, struct poll_table_struct |
| *wait) |
| { |
| struct ali_state *state = (struct ali_state *) file->private_data; |
| struct dmabuf *dmabuf = &state->dmabuf; |
| unsigned long flags; |
| unsigned int mask = 0; |
| if (!dmabuf->ready) |
| return 0; |
| poll_wait(file, &dmabuf->wait, wait); |
| spin_lock_irqsave(&state->card->lock, flags); |
| ali_update_ptr(state); |
| if (file->f_mode & FMODE_READ && dmabuf->enable & ADC_RUNNING) { |
| if (dmabuf->count >= (signed) dmabuf->fragsize) |
| mask |= POLLIN | POLLRDNORM; |
| } |
| if (file->f_mode & FMODE_WRITE && (dmabuf->enable & (DAC_RUNNING|CODEC_SPDIFOUT_RUNNING|CONTROLLER_SPDIFOUT_RUNNING))) { |
| if ((signed) dmabuf->dmasize >= dmabuf->count + (signed) dmabuf->fragsize) |
| mask |= POLLOUT | POLLWRNORM; |
| } |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| return mask; |
| } |
| |
| static int ali_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| struct ali_state *state = (struct ali_state *) file->private_data; |
| struct dmabuf *dmabuf = &state->dmabuf; |
| int ret = -EINVAL; |
| unsigned long size; |
| lock_kernel(); |
| if (vma->vm_flags & VM_WRITE) { |
| if (!dmabuf->write_channel && (dmabuf->write_channel = state->card->alloc_pcm_channel(state->card)) == NULL) { |
| ret = -EBUSY; |
| goto out; |
| } |
| } |
| if (vma->vm_flags & VM_READ) { |
| if (!dmabuf->read_channel && (dmabuf->read_channel = state->card->alloc_rec_pcm_channel(state->card)) == NULL) { |
| ret = -EBUSY; |
| goto out; |
| } |
| } |
| if ((ret = prog_dmabuf(state, 0)) != 0) |
| goto out; |
| ret = -EINVAL; |
| if (vma->vm_pgoff != 0) |
| goto out; |
| size = vma->vm_end - vma->vm_start; |
| if (size > (PAGE_SIZE << dmabuf->buforder)) |
| goto out; |
| ret = -EAGAIN; |
| if (remap_pfn_range(vma, vma->vm_start, |
| virt_to_phys(dmabuf->rawbuf) >> PAGE_SHIFT, |
| size, vma->vm_page_prot)) |
| goto out; |
| dmabuf->mapped = 1; |
| dmabuf->trigger = 0; |
| ret = 0; |
| out: |
| unlock_kernel(); |
| return ret; |
| } |
| |
| static int ali_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| struct ali_state *state = (struct ali_state *) file->private_data; |
| struct ali_channel *c = NULL; |
| struct dmabuf *dmabuf = &state->dmabuf; |
| unsigned long flags; |
| audio_buf_info abinfo; |
| count_info cinfo; |
| unsigned int i_scr; |
| int val = 0, ret; |
| struct ac97_codec *codec = state->card->ac97_codec[0]; |
| void __user *argp = (void __user *)arg; |
| int __user *p = argp; |
| |
| #ifdef DEBUG |
| printk("ali_audio: ali_ioctl, arg=0x%x, cmd=", |
| arg ? *p : 0); |
| #endif |
| switch (cmd) { |
| case OSS_GETVERSION: |
| #ifdef DEBUG |
| printk("OSS_GETVERSION\n"); |
| #endif |
| return put_user(SOUND_VERSION, p); |
| case SNDCTL_DSP_RESET: |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_RESET\n"); |
| #endif |
| spin_lock_irqsave(&state->card->lock, flags); |
| if (dmabuf->enable == DAC_RUNNING) { |
| c = dmabuf->write_channel; |
| __stop_dac(state); |
| } |
| if (dmabuf->enable == ADC_RUNNING) { |
| c = dmabuf->read_channel; |
| __stop_adc(state); |
| } |
| if (dmabuf->enable == CODEC_SPDIFOUT_RUNNING) { |
| c = dmabuf->codec_spdifout_channel; |
| __stop_spdifout(state); |
| } |
| if (dmabuf->enable == CONTROLLER_SPDIFOUT_RUNNING) { |
| c = dmabuf->controller_spdifout_channel; |
| __stop_spdifout(state); |
| } |
| if (c != NULL) { |
| outb(2, state->card->iobase + c->port + OFF_CR); /* reset DMA machine */ |
| outl(virt_to_bus(&c->sg[0]), |
| state->card->iobase + c->port + OFF_BDBAR); |
| outb(0, state->card->iobase + c->port + OFF_CIV); |
| outb(0, state->card->iobase + c->port + OFF_LVI); |
| } |
| |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| synchronize_irq(state->card->pci_dev->irq); |
| dmabuf->ready = 0; |
| dmabuf->swptr = dmabuf->hwptr = 0; |
| dmabuf->count = dmabuf->total_bytes = 0; |
| return 0; |
| case SNDCTL_DSP_SYNC: |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_SYNC\n"); |
| #endif |
| if (codec_independent_spdif_locked > 0) { |
| if (dmabuf->enable != CODEC_SPDIFOUT_RUNNING |
| || file->f_flags & O_NONBLOCK) |
| return 0; |
| if ((val = drain_spdifout(state, 1))) |
| return val; |
| } else { |
| if (controller_independent_spdif_locked > 0) { |
| if (dmabuf->enable != |
| CONTROLLER_SPDIFOUT_RUNNING |
| || file->f_flags & O_NONBLOCK) |
| return 0; |
| if ((val = drain_spdifout(state, 1))) |
| return val; |
| } else { |
| if (dmabuf->enable != DAC_RUNNING |
| || file->f_flags & O_NONBLOCK) |
| return 0; |
| if ((val = drain_dac(state, 1))) |
| return val; |
| } |
| } |
| dmabuf->total_bytes = 0; |
| return 0; |
| case SNDCTL_DSP_SPEED: /* set smaple rate */ |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_SPEED\n"); |
| #endif |
| if (get_user(val, p)) |
| return -EFAULT; |
| if (val >= 0) { |
| if (file->f_mode & FMODE_WRITE) { |
| if ((state->card->ac97_status & SPDIF_ON)) { /* S/PDIF Enabled */ |
| /* RELTEK ALC650 only support 48000, need to check that */ |
| if (ali_valid_spdif_rate(codec, val)) { |
| if (codec_independent_spdif_locked > 0) { |
| ali_set_spdif_output(state, -1, 0); |
| stop_spdifout(state); |
| dmabuf->ready = 0; |
| /* I add test codec independent spdif out */ |
| spin_lock_irqsave(&state->card->lock, flags); |
| ali_set_codecspdifout_rate(state, val); // I modified |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| /* Set S/PDIF transmitter rate. */ |
| i_scr = inl(state->card->iobase + ALI_SCR); |
| if ((i_scr & 0x00300000) == 0x00100000) { |
| ali_set_spdif_output(state, AC97_EA_SPSA_7_8, codec_independent_spdif_locked); |
| } else { |
| if ((i_scr&0x00300000) == 0x00200000) |
| { |
| ali_set_spdif_output(state, AC97_EA_SPSA_6_9, codec_independent_spdif_locked); |
| } else { |
| if ((i_scr & 0x00300000) == 0x00300000) { |
| ali_set_spdif_output(state, AC97_EA_SPSA_10_11, codec_independent_spdif_locked); |
| } else { |
| ali_set_spdif_output(state, AC97_EA_SPSA_7_8, codec_independent_spdif_locked); |
| } |
| } |
| } |
| |
| if (!(state->card->ac97_status & SPDIF_ON)) { |
| val = dmabuf->rate; |
| } |
| } else { |
| if (controller_independent_spdif_locked > 0) |
| { |
| stop_spdifout(state); |
| dmabuf->ready = 0; |
| spin_lock_irqsave(&state->card->lock, flags); |
| ali_set_spdifout_rate(state, controller_independent_spdif_locked); |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| } else { |
| /* Set DAC rate */ |
| ali_set_spdif_output(state, -1, 0); |
| stop_dac(state); |
| dmabuf->ready = 0; |
| spin_lock_irqsave(&state->card->lock, flags); |
| ali_set_dac_rate(state, val); |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| /* Set S/PDIF transmitter rate. */ |
| ali_set_spdif_output(state, AC97_EA_SPSA_3_4, val); |
| if (!(state->card->ac97_status & SPDIF_ON)) |
| { |
| val = dmabuf->rate; |
| } |
| } |
| } |
| } else { /* Not a valid rate for S/PDIF, ignore it */ |
| val = dmabuf->rate; |
| } |
| } else { |
| stop_dac(state); |
| dmabuf->ready = 0; |
| spin_lock_irqsave(&state->card->lock, flags); |
| ali_set_dac_rate(state, val); |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| } |
| } |
| if (file->f_mode & FMODE_READ) { |
| stop_adc(state); |
| dmabuf->ready = 0; |
| spin_lock_irqsave(&state->card->lock, flags); |
| ali_set_adc_rate(state, val); |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| } |
| } |
| return put_user(dmabuf->rate, p); |
| case SNDCTL_DSP_STEREO: /* set stereo or mono channel */ |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_STEREO\n"); |
| #endif |
| if (dmabuf->enable & DAC_RUNNING) { |
| stop_dac(state); |
| } |
| if (dmabuf->enable & ADC_RUNNING) { |
| stop_adc(state); |
| } |
| if (dmabuf->enable & CODEC_SPDIFOUT_RUNNING) { |
| stop_spdifout(state); |
| } |
| if (dmabuf->enable & CONTROLLER_SPDIFOUT_RUNNING) { |
| stop_spdifout(state); |
| } |
| return put_user(1, p); |
| case SNDCTL_DSP_GETBLKSIZE: |
| if (file->f_mode & FMODE_WRITE) { |
| if (codec_independent_spdif_locked > 0) { |
| if (!dmabuf->ready && (val = prog_dmabuf(state, 2))) |
| return val; |
| } else { |
| if (controller_independent_spdif_locked > 0) { |
| if (!dmabuf->ready && (val = prog_dmabuf(state, 3))) |
| return val; |
| } else { |
| if (!dmabuf->ready && (val = prog_dmabuf(state, 0))) |
| return val; |
| } |
| } |
| } |
| |
| if (file->f_mode & FMODE_READ) { |
| if (!dmabuf->ready && (val = prog_dmabuf(state, 1))) |
| return val; |
| } |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_GETBLKSIZE %d\n", dmabuf->userfragsize); |
| #endif |
| return put_user(dmabuf->userfragsize, p); |
| case SNDCTL_DSP_GETFMTS: /* Returns a mask of supported sample format */ |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_GETFMTS\n"); |
| #endif |
| return put_user(AFMT_S16_LE, p); |
| case SNDCTL_DSP_SETFMT: /* Select sample format */ |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_SETFMT\n"); |
| #endif |
| return put_user(AFMT_S16_LE, p); |
| case SNDCTL_DSP_CHANNELS: // add support 4,6 channel |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_CHANNELS\n"); |
| #endif |
| if (get_user(val, p)) |
| return -EFAULT; |
| if (val > 0) { |
| if (dmabuf->enable & DAC_RUNNING) { |
| stop_dac(state); |
| } |
| if (dmabuf->enable & CODEC_SPDIFOUT_RUNNING) { |
| stop_spdifout(state); |
| } |
| if (dmabuf->enable & CONTROLLER_SPDIFOUT_RUNNING) { |
| stop_spdifout(state); |
| } |
| if (dmabuf->enable & ADC_RUNNING) { |
| stop_adc(state); |
| } |
| } else { |
| return put_user(state->card->channels, p); |
| } |
| |
| i_scr = inl(state->card->iobase + ALI_SCR); |
| /* Current # of channels enabled */ |
| if (i_scr & 0x00000100) |
| ret = 4; |
| else if (i_scr & 0x00000200) |
| ret = 6; |
| else |
| ret = 2; |
| switch (val) { |
| case 2: /* 2 channels is always supported */ |
| if (codec_independent_spdif_locked > 0) { |
| outl(((i_scr & 0xfffffcff) | 0x00100000), (state->card->iobase + ALI_SCR)); |
| } else |
| outl((i_scr & 0xfffffcff), (state->card->iobase + ALI_SCR)); |
| /* Do we need to change mixer settings???? */ |
| break; |
| case 4: /* Supported on some chipsets, better check first */ |
| if (codec_independent_spdif_locked > 0) { |
| outl(((i_scr & 0xfffffcff) | 0x00000100 | 0x00200000), (state->card->iobase + ALI_SCR)); |
| } else |
| outl(((i_scr & 0xfffffcff) | 0x00000100), (state->card->iobase + ALI_SCR)); |
| break; |
| case 6: /* Supported on some chipsets, better check first */ |
| if (codec_independent_spdif_locked > 0) { |
| outl(((i_scr & 0xfffffcff) | 0x00000200 | 0x00008000 | 0x00300000), (state->card->iobase + ALI_SCR)); |
| } else |
| outl(((i_scr & 0xfffffcff) | 0x00000200 | 0x00008000), (state->card->iobase + ALI_SCR)); |
| break; |
| default: /* nothing else is ever supported by the chipset */ |
| val = ret; |
| break; |
| } |
| return put_user(val, p); |
| case SNDCTL_DSP_POST: /* the user has sent all data and is notifying us */ |
| /* we update the swptr to the end of the last sg segment then return */ |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_POST\n"); |
| #endif |
| if (codec_independent_spdif_locked > 0) { |
| if (!dmabuf->ready || (dmabuf->enable != CODEC_SPDIFOUT_RUNNING)) |
| return 0; |
| } else { |
| if (controller_independent_spdif_locked > 0) { |
| if (!dmabuf->ready || (dmabuf->enable != CONTROLLER_SPDIFOUT_RUNNING)) |
| return 0; |
| } else { |
| if (!dmabuf->ready || (dmabuf->enable != DAC_RUNNING)) |
| return 0; |
| } |
| } |
| if ((dmabuf->swptr % dmabuf->fragsize) != 0) { |
| val = dmabuf->fragsize - (dmabuf->swptr % dmabuf->fragsize); |
| dmabuf->swptr += val; |
| dmabuf->count += val; |
| } |
| return 0; |
| case SNDCTL_DSP_SUBDIVIDE: |
| if (dmabuf->subdivision) |
| return -EINVAL; |
| if (get_user(val, p)) |
| return -EFAULT; |
| if (val != 1 && val != 2 && val != 4) |
| return -EINVAL; |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_SUBDIVIDE %d\n", val); |
| #endif |
| dmabuf->subdivision = val; |
| dmabuf->ready = 0; |
| return 0; |
| case SNDCTL_DSP_SETFRAGMENT: |
| if (get_user(val, p)) |
| return -EFAULT; |
| dmabuf->ossfragsize = 1 << (val & 0xffff); |
| dmabuf->ossmaxfrags = (val >> 16) & 0xffff; |
| if (!dmabuf->ossfragsize || !dmabuf->ossmaxfrags) |
| return -EINVAL; |
| /* |
| * Bound the frag size into our allowed range of 256 - 4096 |
| */ |
| if (dmabuf->ossfragsize < 256) |
| dmabuf->ossfragsize = 256; |
| else if (dmabuf->ossfragsize > 4096) |
| dmabuf->ossfragsize = 4096; |
| /* |
| * The numfrags could be something reasonable, or it could |
| * be 0xffff meaning "Give me as much as possible". So, |
| * we check the numfrags * fragsize doesn't exceed our |
| * 64k buffer limit, nor is it less than our 8k minimum. |
| * If it fails either one of these checks, then adjust the |
| * number of fragments, not the size of them. It's OK if |
| * our number of fragments doesn't equal 32 or anything |
| * like our hardware based number now since we are using |
| * a different frag count for the hardware. Before we get |
| * into this though, bound the maxfrags to avoid overflow |
| * issues. A reasonable bound would be 64k / 256 since our |
| * maximum buffer size is 64k and our minimum frag size is |
| * 256. On the other end, our minimum buffer size is 8k and |
| * our maximum frag size is 4k, so the lower bound should |
| * be 2. |
| */ |
| if (dmabuf->ossmaxfrags > 256) |
| dmabuf->ossmaxfrags = 256; |
| else if (dmabuf->ossmaxfrags < 2) |
| dmabuf->ossmaxfrags = 2; |
| val = dmabuf->ossfragsize * dmabuf->ossmaxfrags; |
| while (val < 8192) { |
| val <<= 1; |
| dmabuf->ossmaxfrags <<= 1; |
| } |
| while (val > 65536) { |
| val >>= 1; |
| dmabuf->ossmaxfrags >>= 1; |
| } |
| dmabuf->ready = 0; |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_SETFRAGMENT 0x%x, %d, %d\n", val, |
| dmabuf->ossfragsize, dmabuf->ossmaxfrags); |
| #endif |
| return 0; |
| case SNDCTL_DSP_GETOSPACE: |
| if (!(file->f_mode & FMODE_WRITE)) |
| return -EINVAL; |
| if (codec_independent_spdif_locked > 0) { |
| if (!dmabuf->ready && (val = prog_dmabuf(state, 2)) != 0) |
| return val; |
| } else { |
| if (controller_independent_spdif_locked > 0) { |
| if (!dmabuf->ready && (val = prog_dmabuf(state, 3)) != 0) |
| return val; |
| } else { |
| if (!dmabuf->ready && (val = prog_dmabuf(state, 0)) != 0) |
| return val; |
| } |
| } |
| spin_lock_irqsave(&state->card->lock, flags); |
| ali_update_ptr(state); |
| abinfo.fragsize = dmabuf->userfragsize; |
| abinfo.fragstotal = dmabuf->userfrags; |
| if (dmabuf->mapped) |
| abinfo.bytes = dmabuf->dmasize; |
| else |
| abinfo.bytes = ali_get_free_write_space(state); |
| abinfo.fragments = abinfo.bytes / dmabuf->userfragsize; |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| #if defined(DEBUG) || defined(DEBUG_MMAP) |
| printk("SNDCTL_DSP_GETOSPACE %d, %d, %d, %d\n", |
| abinfo.bytes, abinfo.fragsize, abinfo.fragments, |
| abinfo.fragstotal); |
| #endif |
| return copy_to_user(argp, &abinfo, |
| sizeof(abinfo)) ? -EFAULT : 0; |
| case SNDCTL_DSP_GETOPTR: |
| if (!(file->f_mode & FMODE_WRITE)) |
| return -EINVAL; |
| if (codec_independent_spdif_locked > 0) { |
| if (!dmabuf->ready && (val = prog_dmabuf(state, 2)) != 0) |
| return val; |
| } else { |
| if (controller_independent_spdif_locked > 0) { |
| if (!dmabuf->ready && (val = prog_dmabuf(state, 3)) != 0) |
| return val; |
| } else { |
| if (!dmabuf->ready && (val = prog_dmabuf(state, 0)) != 0) |
| return val; |
| } |
| } |
| spin_lock_irqsave(&state->card->lock, flags); |
| val = ali_get_free_write_space(state); |
| cinfo.bytes = dmabuf->total_bytes; |
| cinfo.ptr = dmabuf->hwptr; |
| cinfo.blocks = val / dmabuf->userfragsize; |
| if (codec_independent_spdif_locked > 0) { |
| if (dmabuf->mapped && (dmabuf->trigger & SPDIF_ENABLE_OUTPUT)) { |
| dmabuf->count += val; |
| dmabuf->swptr = (dmabuf->swptr + val) % dmabuf->dmasize; |
| __ali_update_lvi(state, 2); |
| } |
| } else { |
| if (controller_independent_spdif_locked > 0) { |
| if (dmabuf->mapped && (dmabuf->trigger & SPDIF_ENABLE_OUTPUT)) { |
| dmabuf->count += val; |
| dmabuf->swptr = (dmabuf->swptr + val) % dmabuf->dmasize; |
| __ali_update_lvi(state, 3); |
| } |
| } else { |
| if (dmabuf->mapped && (dmabuf->trigger & PCM_ENABLE_OUTPUT)) { |
| dmabuf->count += val; |
| dmabuf->swptr = (dmabuf->swptr + val) % dmabuf->dmasize; |
| __ali_update_lvi(state, 0); |
| } |
| } |
| } |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| #if defined(DEBUG) || defined(DEBUG_MMAP) |
| printk("SNDCTL_DSP_GETOPTR %d, %d, %d, %d\n", cinfo.bytes, |
| cinfo.blocks, cinfo.ptr, dmabuf->count); |
| #endif |
| return copy_to_user(argp, &cinfo, sizeof(cinfo))? -EFAULT : 0; |
| case SNDCTL_DSP_GETISPACE: |
| if (!(file->f_mode & FMODE_READ)) |
| return -EINVAL; |
| if (!dmabuf->ready && (val = prog_dmabuf(state, 1)) != 0) |
| return val; |
| spin_lock_irqsave(&state->card->lock, flags); |
| abinfo.bytes = ali_get_available_read_data(state); |
| abinfo.fragsize = dmabuf->userfragsize; |
| abinfo.fragstotal = dmabuf->userfrags; |
| abinfo.fragments = abinfo.bytes / dmabuf->userfragsize; |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| #if defined(DEBUG) || defined(DEBUG_MMAP) |
| printk("SNDCTL_DSP_GETISPACE %d, %d, %d, %d\n", |
| abinfo.bytes, abinfo.fragsize, abinfo.fragments, |
| abinfo.fragstotal); |
| #endif |
| return copy_to_user(argp, &abinfo, |
| sizeof(abinfo)) ? -EFAULT : 0; |
| case SNDCTL_DSP_GETIPTR: |
| if (!(file->f_mode & FMODE_READ)) |
| return -EINVAL; |
| if (!dmabuf->ready && (val = prog_dmabuf(state, 0)) != 0) |
| return val; |
| spin_lock_irqsave(&state->card->lock, flags); |
| val = ali_get_available_read_data(state); |
| cinfo.bytes = dmabuf->total_bytes; |
| cinfo.blocks = val / dmabuf->userfragsize; |
| cinfo.ptr = dmabuf->hwptr; |
| if (dmabuf->mapped && (dmabuf->trigger & PCM_ENABLE_INPUT)) { |
| dmabuf->count -= val; |
| dmabuf->swptr = (dmabuf->swptr + val) % dmabuf->dmasize; |
| __ali_update_lvi(state, 1); |
| } |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| #if defined(DEBUG) || defined(DEBUG_MMAP) |
| printk("SNDCTL_DSP_GETIPTR %d, %d, %d, %d\n", cinfo.bytes, |
| cinfo.blocks, cinfo.ptr, dmabuf->count); |
| #endif |
| return copy_to_user(argp, &cinfo, sizeof(cinfo))? -EFAULT: 0; |
| case SNDCTL_DSP_NONBLOCK: |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_NONBLOCK\n"); |
| #endif |
| file->f_flags |= O_NONBLOCK; |
| return 0; |
| case SNDCTL_DSP_GETCAPS: |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_GETCAPS\n"); |
| #endif |
| return put_user(DSP_CAP_REALTIME | DSP_CAP_TRIGGER | |
| DSP_CAP_MMAP | DSP_CAP_BIND, p); |
| case SNDCTL_DSP_GETTRIGGER: |
| val = 0; |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_GETTRIGGER 0x%x\n", dmabuf->trigger); |
| #endif |
| return put_user(dmabuf->trigger, p); |
| case SNDCTL_DSP_SETTRIGGER: |
| if (get_user(val, p)) |
| return -EFAULT; |
| #if defined(DEBUG) || defined(DEBUG_MMAP) |
| printk("SNDCTL_DSP_SETTRIGGER 0x%x\n", val); |
| #endif |
| if (!(val & PCM_ENABLE_INPUT) && dmabuf->enable == ADC_RUNNING) { |
| stop_adc(state); |
| } |
| if (!(val & PCM_ENABLE_OUTPUT) && dmabuf->enable == DAC_RUNNING) { |
| stop_dac(state); |
| } |
| if (!(val & SPDIF_ENABLE_OUTPUT) && dmabuf->enable == CODEC_SPDIFOUT_RUNNING) { |
| stop_spdifout(state); |
| } |
| if (!(val & SPDIF_ENABLE_OUTPUT) && dmabuf->enable == CONTROLLER_SPDIFOUT_RUNNING) { |
| stop_spdifout(state); |
| } |
| dmabuf->trigger = val; |
| if (val & PCM_ENABLE_OUTPUT && !(dmabuf->enable & DAC_RUNNING)) { |
| if (!dmabuf->write_channel) { |
| dmabuf->ready = 0; |
| dmabuf->write_channel = state->card->alloc_pcm_channel(state->card); |
| if (!dmabuf->write_channel) |
| return -EBUSY; |
| } |
| if (!dmabuf->ready && (ret = prog_dmabuf(state, 0))) |
| return ret; |
| if (dmabuf->mapped) { |
| spin_lock_irqsave(&state->card->lock, flags); |
| ali_update_ptr(state); |
| dmabuf->count = 0; |
| dmabuf->swptr = dmabuf->hwptr; |
| dmabuf->count = ali_get_free_write_space(state); |
| dmabuf->swptr = (dmabuf->swptr + dmabuf->count) % dmabuf->dmasize; |
| __ali_update_lvi(state, 0); |
| spin_unlock_irqrestore(&state->card->lock, |
| flags); |
| } else |
| start_dac(state); |
| } |
| if (val & SPDIF_ENABLE_OUTPUT && !(dmabuf->enable & CODEC_SPDIFOUT_RUNNING)) { |
| if (!dmabuf->codec_spdifout_channel) { |
| dmabuf->ready = 0; |
| dmabuf->codec_spdifout_channel = state->card->alloc_codec_spdifout_channel(state->card); |
| if (!dmabuf->codec_spdifout_channel) |
| return -EBUSY; |
| } |
| if (!dmabuf->ready && (ret = prog_dmabuf(state, 2))) |
| return ret; |
| if (dmabuf->mapped) { |
| spin_lock_irqsave(&state->card->lock, flags); |
| ali_update_ptr(state); |
| dmabuf->count = 0; |
| dmabuf->swptr = dmabuf->hwptr; |
| dmabuf->count = ali_get_free_write_space(state); |
| dmabuf->swptr = (dmabuf->swptr + dmabuf->count) % dmabuf->dmasize; |
| __ali_update_lvi(state, 2); |
| spin_unlock_irqrestore(&state->card->lock, |
| flags); |
| } else |
| start_spdifout(state); |
| } |
| if (val & SPDIF_ENABLE_OUTPUT && !(dmabuf->enable & CONTROLLER_SPDIFOUT_RUNNING)) { |
| if (!dmabuf->controller_spdifout_channel) { |
| dmabuf->ready = 0; |
| dmabuf->controller_spdifout_channel = state->card->alloc_controller_spdifout_channel(state->card); |
| if (!dmabuf->controller_spdifout_channel) |
| return -EBUSY; |
| } |
| if (!dmabuf->ready && (ret = prog_dmabuf(state, 3))) |
| return ret; |
| if (dmabuf->mapped) { |
| spin_lock_irqsave(&state->card->lock, flags); |
| ali_update_ptr(state); |
| dmabuf->count = 0; |
| dmabuf->swptr = dmabuf->hwptr; |
| dmabuf->count = ali_get_free_write_space(state); |
| dmabuf->swptr = (dmabuf->swptr + dmabuf->count) % dmabuf->dmasize; |
| __ali_update_lvi(state, 3); |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| } else |
| start_spdifout(state); |
| } |
| if (val & PCM_ENABLE_INPUT && !(dmabuf->enable & ADC_RUNNING)) { |
| if (!dmabuf->read_channel) { |
| dmabuf->ready = 0; |
| dmabuf->read_channel = state->card->alloc_rec_pcm_channel(state->card); |
| if (!dmabuf->read_channel) |
| return -EBUSY; |
| } |
| if (!dmabuf->ready && (ret = prog_dmabuf(state, 1))) |
| return ret; |
| if (dmabuf->mapped) { |
| spin_lock_irqsave(&state->card->lock, |
| flags); |
| ali_update_ptr(state); |
| dmabuf->swptr = dmabuf->hwptr; |
| dmabuf->count = 0; |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| } |
| ali_update_lvi(state, 1); |
| start_adc(state); |
| } |
| return 0; |
| case SNDCTL_DSP_SETDUPLEX: |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_SETDUPLEX\n"); |
| #endif |
| return -EINVAL; |
| case SNDCTL_DSP_GETODELAY: |
| if (!(file->f_mode & FMODE_WRITE)) |
| return -EINVAL; |
| spin_lock_irqsave(&state->card->lock, flags); |
| ali_update_ptr(state); |
| val = dmabuf->count; |
| spin_unlock_irqrestore(&state->card->lock, flags); |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_GETODELAY %d\n", dmabuf->count); |
| #endif |
| return put_user(val, p); |
| case SOUND_PCM_READ_RATE: |
| #ifdef DEBUG |
| printk("SOUND_PCM_READ_RATE %d\n", dmabuf->rate); |
| #endif |
| return put_user(dmabuf->rate, p); |
| case SOUND_PCM_READ_CHANNELS: |
| #ifdef DEBUG |
| printk("SOUND_PCM_READ_CHANNELS\n"); |
| #endif |
| return put_user(2, p); |
| case SOUND_PCM_READ_BITS: |
| #ifdef DEBUG |
| printk("SOUND_PCM_READ_BITS\n"); |
| #endif |
| return put_user(AFMT_S16_LE, p); |
| case SNDCTL_DSP_SETSPDIF: /* Set S/PDIF Control register */ |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_SETSPDIF\n"); |
| #endif |
| if (get_user(val, p)) |
| return -EFAULT; |
| /* Check to make sure the codec supports S/PDIF transmitter */ |
| if ((state->card->ac97_features & 4)) { |
| /* mask out the transmitter speed bits so the user can't set them */ |
| val &= ~0x3000; |
| /* Add the current transmitter speed bits to the passed value */ |
| ret = ali_ac97_get(codec, AC97_SPDIF_CONTROL); |
| val |= (ret & 0x3000); |
| ali_ac97_set(codec, AC97_SPDIF_CONTROL, val); |
| if (ali_ac97_get(codec, AC97_SPDIF_CONTROL) != val) { |
| printk(KERN_ERR "ali_audio: Unable to set S/PDIF configuration to 0x%04x.\n", val); |
| return -EFAULT; |
| } |
| } |
| #ifdef DEBUG |
| else |
| printk(KERN_WARNING "ali_audio: S/PDIF transmitter not avalible.\n"); |
| #endif |
| return put_user(val, p); |
| case SNDCTL_DSP_GETSPDIF: /* Get S/PDIF Control register */ |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_GETSPDIF\n"); |
| #endif |
| if (get_user(val, p)) |
| return -EFAULT; |
| /* Check to make sure the codec supports S/PDIF transmitter */ |
| if (!(state->card->ac97_features & 4)) { |
| #ifdef DEBUG |
| printk(KERN_WARNING "ali_audio: S/PDIF transmitter not avalible.\n"); |
| #endif |
| val = 0; |
| } else { |
| val = ali_ac97_get(codec, AC97_SPDIF_CONTROL); |
| } |
| |
| return put_user(val, p); |
| //end add support spdif out |
| //add support 4,6 channel |
| case SNDCTL_DSP_GETCHANNELMASK: |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_GETCHANNELMASK\n"); |
| #endif |
| if (get_user(val, p)) |
| return -EFAULT; |
| /* Based on AC'97 DAC support, not ICH hardware */ |
| val = DSP_BIND_FRONT; |
| if (state->card->ac97_features & 0x0004) |
| val |= DSP_BIND_SPDIF; |
| if (state->card->ac97_features & 0x0080) |
| val |= DSP_BIND_SURR; |
| if (state->card->ac97_features & 0x0140) |
| val |= DSP_BIND_CENTER_LFE; |
| return put_user(val, p); |
| case SNDCTL_DSP_BIND_CHANNEL: |
| #ifdef DEBUG |
| printk("SNDCTL_DSP_BIND_CHANNEL\n"); |
| #endif |
| if (get_user(val, p)) |
| return -EFAULT; |
| if (val == DSP_BIND_QUERY) { |
| val = DSP_BIND_FRONT; /* Always report this as being enabled */ |
| if (state->card->ac97_status & SPDIF_ON) |
| val |= DSP_BIND_SPDIF; |
| else { |
| if (state->card->ac97_status & SURR_ON) |
| val |= DSP_BIND_SURR; |
| if (state->card-> |
| ac97_status & CENTER_LFE_ON) |
| val |= DSP_BIND_CENTER_LFE; |
| } |
| } else { /* Not a query, set it */ |
| if (!(file->f_mode & FMODE_WRITE)) |
| return -EINVAL; |
| if (dmabuf->enable == DAC_RUNNING) { |
| stop_dac(state); |
| } |
| if (val & DSP_BIND_SPDIF) { /* Turn on SPDIF */ |
| /* Ok, this should probably define what slots |
| * to use. For now, we'll only set it to the |
| * defaults: |
| * |
| * non multichannel codec maps to slots 3&4 |
| * 2 channel codec maps to slots 7&8 |
| * 4 channel codec maps to slots 6&9 |
| * 6 channel codec maps to slots 10&11 |
| * |
| * there should be some way for the app to |
| * select the slot assignment. |
| */ |
| i_scr = inl(state->card->iobase + ALI_SCR); |
| if (codec_independent_spdif_locked > 0) { |
| |
| if ((i_scr & 0x00300000) == 0x00100000) { |
| ali_set_spdif_output(state, AC97_EA_SPSA_7_8, codec_independent_spdif_locked); |
| } else { |
| if ((i_scr & 0x00300000) == 0x00200000) { |
| ali_set_spdif_output(state, AC97_EA_SPSA_6_9, codec_independent_spdif_locked); |
| } else { |
| if ((i_scr & 0x00300000) == 0x00300000) { |
| ali_set_spdif_output(state, AC97_EA_SPSA_10_11, codec_independent_spdif_locked); |
| } |
| } |
| } |
| } else { /* codec spdif out (pcm out share ) */ |
| ali_set_spdif_output(state, AC97_EA_SPSA_3_4, dmabuf->rate); //I do not modify |
| } |
| |
| if (!(state->card->ac97_status & SPDIF_ON)) |
| val &= ~DSP_BIND_SPDIF; |
| } else { |
| int mask; |
| int channels; |
| /* Turn off S/PDIF if it was on */ |
| if (state->card->ac97_status & SPDIF_ON) |
| ali_set_spdif_output(state, -1, 0); |
| mask = |
| val & (DSP_BIND_FRONT | DSP_BIND_SURR | |
| DSP_BIND_CENTER_LFE); |
| switch (mask) { |
| case DSP_BIND_FRONT: |
| channels = 2; |
| break; |
| case DSP_BIND_FRONT | DSP_BIND_SURR: |
| channels = 4; |
| break; |
| case DSP_BIND_FRONT | DSP_BIND_SURR | DSP_BIND_CENTER_LFE: |
| channels = 6; |
| break; |
| default: |
| val = DSP_BIND_FRONT; |
| channels = 2; |
| break; |
| } |
| ali_set_dac_channels(state, channels); |
| /* check that they really got turned on */ |
| if (!state->card->ac97_status & SURR_ON) |
| val &= ~DSP_BIND_SURR; |
| if (!state->card-> |
| ac97_status & CENTER_LFE_ON) |
| val &= ~DSP_BIND_CENTER_LFE; |
| } |
| } |
| return put_user(val, p); |
| case SNDCTL_DSP_MAPINBUF: |
| case SNDCTL_DSP_MAPOUTBUF: |
| case SNDCTL_DSP_SETSYNCRO: |
| case SOUND_PCM_WRITE_FILTER: |
| case SOUND_PCM_READ_FILTER: |
| return -EINVAL; |
| } |
| return -EINVAL; |
| } |
| |
| static int ali_open(struct inode *inode, struct file *file) |
| { |
| int i = 0; |
| struct ali_card *card = devs; |
| struct ali_state *state = NULL; |
| struct dmabuf *dmabuf = NULL; |
| unsigned int i_scr; |
| |
| /* find an available virtual channel (instance of /dev/dsp) */ |
| |
| while (card != NULL) { |
| |
| /* |
| * If we are initializing and then fail, card could go |
| * away unuexpectedly while we are in the for() loop. |
| * So, check for card on each iteration before we check |
| * for card->initializing to avoid a possible oops. |
| * This usually only matters for times when the driver is |
| * autoloaded by kmod. |
| */ |
| for (i = 0; i < 50 && card && card->initializing; i++) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| schedule_timeout(HZ / 20); |
| } |
| |
| for (i = 0; i < NR_HW_CH && card && !card->initializing; i++) { |
| if (card->states[i] == NULL) { |
| state = card->states[i] = (struct ali_state *) kmalloc(sizeof(struct ali_state), GFP_KERNEL); |
| if (state == NULL) |
| return -ENOMEM; |
| memset(state, 0, sizeof(struct ali_state)); |
| dmabuf = &state->dmabuf; |
| goto found_virt; |
| } |
| } |
| card = card->next; |
| } |
| |
| /* no more virtual channel avaiable */ |
| if (!state) |
| return -ENODEV; |
| found_virt: |
| /* initialize the virtual channel */ |
| |
| state->virt = i; |
| state->card = card; |
| state->magic = ALI5455_STATE_MAGIC; |
| init_waitqueue_head(&dmabuf->wait); |
| init_MUTEX(&state->open_sem); |
| file->private_data = state; |
| dmabuf->trigger = 0; |
| /* allocate hardware channels */ |
| if (file->f_mode & FMODE_READ) { |
| if ((dmabuf->read_channel = |
| card->alloc_rec_pcm_channel(card)) == NULL) { |
| kfree(card->states[i]); |
| card->states[i] |