| /* |
| * kernel/sched.c |
| * |
| * Kernel scheduler and related syscalls |
| * |
| * Copyright (C) 1991-2002 Linus Torvalds |
| * |
| * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and |
| * make semaphores SMP safe |
| * 1998-11-19 Implemented schedule_timeout() and related stuff |
| * by Andrea Arcangeli |
| * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: |
| * hybrid priority-list and round-robin design with |
| * an array-switch method of distributing timeslices |
| * and per-CPU runqueues. Cleanups and useful suggestions |
| * by Davide Libenzi, preemptible kernel bits by Robert Love. |
| * 2003-09-03 Interactivity tuning by Con Kolivas. |
| * 2004-04-02 Scheduler domains code by Nick Piggin |
| * 2007-04-15 Work begun on replacing all interactivity tuning with a |
| * fair scheduling design by Con Kolivas. |
| * 2007-05-05 Load balancing (smp-nice) and other improvements |
| * by Peter Williams |
| * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith |
| * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri |
| * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, |
| * Thomas Gleixner, Mike Kravetz |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/nmi.h> |
| #include <linux/init.h> |
| #include <linux/uaccess.h> |
| #include <linux/highmem.h> |
| #include <linux/smp_lock.h> |
| #include <asm/mmu_context.h> |
| #include <linux/interrupt.h> |
| #include <linux/capability.h> |
| #include <linux/completion.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/debug_locks.h> |
| #include <linux/security.h> |
| #include <linux/notifier.h> |
| #include <linux/profile.h> |
| #include <linux/freezer.h> |
| #include <linux/vmalloc.h> |
| #include <linux/blkdev.h> |
| #include <linux/delay.h> |
| #include <linux/pid_namespace.h> |
| #include <linux/smp.h> |
| #include <linux/threads.h> |
| #include <linux/timer.h> |
| #include <linux/rcupdate.h> |
| #include <linux/cpu.h> |
| #include <linux/cpuset.h> |
| #include <linux/percpu.h> |
| #include <linux/kthread.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/sysctl.h> |
| #include <linux/syscalls.h> |
| #include <linux/times.h> |
| #include <linux/tsacct_kern.h> |
| #include <linux/kprobes.h> |
| #include <linux/delayacct.h> |
| #include <linux/reciprocal_div.h> |
| #include <linux/unistd.h> |
| #include <linux/pagemap.h> |
| #include <linux/hrtimer.h> |
| #include <linux/tick.h> |
| #include <linux/bootmem.h> |
| #include <linux/debugfs.h> |
| #include <linux/ctype.h> |
| #include <linux/ftrace.h> |
| #include <trace/sched.h> |
| |
| #include <asm/tlb.h> |
| #include <asm/irq_regs.h> |
| |
| #include "sched_cpupri.h" |
| |
| /* |
| * Convert user-nice values [ -20 ... 0 ... 19 ] |
| * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], |
| * and back. |
| */ |
| #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) |
| #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) |
| #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) |
| |
| /* |
| * 'User priority' is the nice value converted to something we |
| * can work with better when scaling various scheduler parameters, |
| * it's a [ 0 ... 39 ] range. |
| */ |
| #define USER_PRIO(p) ((p)-MAX_RT_PRIO) |
| #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) |
| #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) |
| |
| /* |
| * Helpers for converting nanosecond timing to jiffy resolution |
| */ |
| #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) |
| |
| #define NICE_0_LOAD SCHED_LOAD_SCALE |
| #define NICE_0_SHIFT SCHED_LOAD_SHIFT |
| |
| /* |
| * These are the 'tuning knobs' of the scheduler: |
| * |
| * default timeslice is 100 msecs (used only for SCHED_RR tasks). |
| * Timeslices get refilled after they expire. |
| */ |
| #define DEF_TIMESLICE (100 * HZ / 1000) |
| |
| /* |
| * single value that denotes runtime == period, ie unlimited time. |
| */ |
| #define RUNTIME_INF ((u64)~0ULL) |
| |
| DEFINE_TRACE(sched_wait_task); |
| DEFINE_TRACE(sched_wakeup); |
| DEFINE_TRACE(sched_wakeup_new); |
| DEFINE_TRACE(sched_switch); |
| DEFINE_TRACE(sched_migrate_task); |
| |
| #ifdef CONFIG_SMP |
| |
| static void double_rq_lock(struct rq *rq1, struct rq *rq2); |
| |
| /* |
| * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) |
| * Since cpu_power is a 'constant', we can use a reciprocal divide. |
| */ |
| static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) |
| { |
| return reciprocal_divide(load, sg->reciprocal_cpu_power); |
| } |
| |
| /* |
| * Each time a sched group cpu_power is changed, |
| * we must compute its reciprocal value |
| */ |
| static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) |
| { |
| sg->__cpu_power += val; |
| sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); |
| } |
| #endif |
| |
| static inline int rt_policy(int policy) |
| { |
| if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
| return 1; |
| return 0; |
| } |
| |
| static inline int task_has_rt_policy(struct task_struct *p) |
| { |
| return rt_policy(p->policy); |
| } |
| |
| /* |
| * This is the priority-queue data structure of the RT scheduling class: |
| */ |
| struct rt_prio_array { |
| DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ |
| struct list_head queue[MAX_RT_PRIO]; |
| }; |
| |
| struct rt_bandwidth { |
| /* nests inside the rq lock: */ |
| spinlock_t rt_runtime_lock; |
| ktime_t rt_period; |
| u64 rt_runtime; |
| struct hrtimer rt_period_timer; |
| }; |
| |
| static struct rt_bandwidth def_rt_bandwidth; |
| |
| static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); |
| |
| static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) |
| { |
| struct rt_bandwidth *rt_b = |
| container_of(timer, struct rt_bandwidth, rt_period_timer); |
| ktime_t now; |
| int overrun; |
| int idle = 0; |
| |
| for (;;) { |
| now = hrtimer_cb_get_time(timer); |
| overrun = hrtimer_forward(timer, now, rt_b->rt_period); |
| |
| if (!overrun) |
| break; |
| |
| idle = do_sched_rt_period_timer(rt_b, overrun); |
| } |
| |
| return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; |
| } |
| |
| static |
| void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) |
| { |
| rt_b->rt_period = ns_to_ktime(period); |
| rt_b->rt_runtime = runtime; |
| |
| spin_lock_init(&rt_b->rt_runtime_lock); |
| |
| hrtimer_init(&rt_b->rt_period_timer, |
| CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| rt_b->rt_period_timer.function = sched_rt_period_timer; |
| } |
| |
| static inline int rt_bandwidth_enabled(void) |
| { |
| return sysctl_sched_rt_runtime >= 0; |
| } |
| |
| static void start_rt_bandwidth(struct rt_bandwidth *rt_b) |
| { |
| ktime_t now; |
| |
| if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) |
| return; |
| |
| if (hrtimer_active(&rt_b->rt_period_timer)) |
| return; |
| |
| spin_lock(&rt_b->rt_runtime_lock); |
| for (;;) { |
| unsigned long delta; |
| ktime_t soft, hard; |
| |
| if (hrtimer_active(&rt_b->rt_period_timer)) |
| break; |
| |
| now = hrtimer_cb_get_time(&rt_b->rt_period_timer); |
| hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); |
| |
| soft = hrtimer_get_softexpires(&rt_b->rt_period_timer); |
| hard = hrtimer_get_expires(&rt_b->rt_period_timer); |
| delta = ktime_to_ns(ktime_sub(hard, soft)); |
| __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, |
| HRTIMER_MODE_ABS, 0); |
| } |
| spin_unlock(&rt_b->rt_runtime_lock); |
| } |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) |
| { |
| hrtimer_cancel(&rt_b->rt_period_timer); |
| } |
| #endif |
| |
| /* |
| * sched_domains_mutex serializes calls to arch_init_sched_domains, |
| * detach_destroy_domains and partition_sched_domains. |
| */ |
| static DEFINE_MUTEX(sched_domains_mutex); |
| |
| #ifdef CONFIG_GROUP_SCHED |
| |
| #include <linux/cgroup.h> |
| |
| struct cfs_rq; |
| |
| static LIST_HEAD(task_groups); |
| |
| /* task group related information */ |
| struct task_group { |
| #ifdef CONFIG_CGROUP_SCHED |
| struct cgroup_subsys_state css; |
| #endif |
| |
| #ifdef CONFIG_USER_SCHED |
| uid_t uid; |
| #endif |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| /* schedulable entities of this group on each cpu */ |
| struct sched_entity **se; |
| /* runqueue "owned" by this group on each cpu */ |
| struct cfs_rq **cfs_rq; |
| unsigned long shares; |
| #endif |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| struct sched_rt_entity **rt_se; |
| struct rt_rq **rt_rq; |
| |
| struct rt_bandwidth rt_bandwidth; |
| #endif |
| |
| struct rcu_head rcu; |
| struct list_head list; |
| |
| struct task_group *parent; |
| struct list_head siblings; |
| struct list_head children; |
| }; |
| |
| #ifdef CONFIG_USER_SCHED |
| |
| /* Helper function to pass uid information to create_sched_user() */ |
| void set_tg_uid(struct user_struct *user) |
| { |
| user->tg->uid = user->uid; |
| } |
| |
| /* |
| * Root task group. |
| * Every UID task group (including init_task_group aka UID-0) will |
| * be a child to this group. |
| */ |
| struct task_group root_task_group; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| /* Default task group's sched entity on each cpu */ |
| static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); |
| /* Default task group's cfs_rq on each cpu */ |
| static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); |
| static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; |
| #endif /* CONFIG_RT_GROUP_SCHED */ |
| #else /* !CONFIG_USER_SCHED */ |
| #define root_task_group init_task_group |
| #endif /* CONFIG_USER_SCHED */ |
| |
| /* task_group_lock serializes add/remove of task groups and also changes to |
| * a task group's cpu shares. |
| */ |
| static DEFINE_SPINLOCK(task_group_lock); |
| |
| #ifdef CONFIG_SMP |
| static int root_task_group_empty(void) |
| { |
| return list_empty(&root_task_group.children); |
| } |
| #endif |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| #ifdef CONFIG_USER_SCHED |
| # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) |
| #else /* !CONFIG_USER_SCHED */ |
| # define INIT_TASK_GROUP_LOAD NICE_0_LOAD |
| #endif /* CONFIG_USER_SCHED */ |
| |
| /* |
| * A weight of 0 or 1 can cause arithmetics problems. |
| * A weight of a cfs_rq is the sum of weights of which entities |
| * are queued on this cfs_rq, so a weight of a entity should not be |
| * too large, so as the shares value of a task group. |
| * (The default weight is 1024 - so there's no practical |
| * limitation from this.) |
| */ |
| #define MIN_SHARES 2 |
| #define MAX_SHARES (1UL << 18) |
| |
| static int init_task_group_load = INIT_TASK_GROUP_LOAD; |
| #endif |
| |
| /* Default task group. |
| * Every task in system belong to this group at bootup. |
| */ |
| struct task_group init_task_group; |
| |
| /* return group to which a task belongs */ |
| static inline struct task_group *task_group(struct task_struct *p) |
| { |
| struct task_group *tg; |
| |
| #ifdef CONFIG_USER_SCHED |
| rcu_read_lock(); |
| tg = __task_cred(p)->user->tg; |
| rcu_read_unlock(); |
| #elif defined(CONFIG_CGROUP_SCHED) |
| tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), |
| struct task_group, css); |
| #else |
| tg = &init_task_group; |
| #endif |
| return tg; |
| } |
| |
| /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu) |
| { |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; |
| p->se.parent = task_group(p)->se[cpu]; |
| #endif |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| p->rt.rt_rq = task_group(p)->rt_rq[cpu]; |
| p->rt.parent = task_group(p)->rt_se[cpu]; |
| #endif |
| } |
| |
| #else |
| |
| #ifdef CONFIG_SMP |
| static int root_task_group_empty(void) |
| { |
| return 1; |
| } |
| #endif |
| |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
| static inline struct task_group *task_group(struct task_struct *p) |
| { |
| return NULL; |
| } |
| |
| #endif /* CONFIG_GROUP_SCHED */ |
| |
| /* CFS-related fields in a runqueue */ |
| struct cfs_rq { |
| struct load_weight load; |
| unsigned long nr_running; |
| |
| u64 exec_clock; |
| u64 min_vruntime; |
| |
| struct rb_root tasks_timeline; |
| struct rb_node *rb_leftmost; |
| |
| struct list_head tasks; |
| struct list_head *balance_iterator; |
| |
| /* |
| * 'curr' points to currently running entity on this cfs_rq. |
| * It is set to NULL otherwise (i.e when none are currently running). |
| */ |
| struct sched_entity *curr, *next, *last; |
| |
| unsigned int nr_spread_over; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ |
| |
| /* |
| * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in |
| * a hierarchy). Non-leaf lrqs hold other higher schedulable entities |
| * (like users, containers etc.) |
| * |
| * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This |
| * list is used during load balance. |
| */ |
| struct list_head leaf_cfs_rq_list; |
| struct task_group *tg; /* group that "owns" this runqueue */ |
| |
| #ifdef CONFIG_SMP |
| /* |
| * the part of load.weight contributed by tasks |
| */ |
| unsigned long task_weight; |
| |
| /* |
| * h_load = weight * f(tg) |
| * |
| * Where f(tg) is the recursive weight fraction assigned to |
| * this group. |
| */ |
| unsigned long h_load; |
| |
| /* |
| * this cpu's part of tg->shares |
| */ |
| unsigned long shares; |
| |
| /* |
| * load.weight at the time we set shares |
| */ |
| unsigned long rq_weight; |
| #endif |
| #endif |
| }; |
| |
| /* Real-Time classes' related field in a runqueue: */ |
| struct rt_rq { |
| struct rt_prio_array active; |
| unsigned long rt_nr_running; |
| #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
| struct { |
| int curr; /* highest queued rt task prio */ |
| #ifdef CONFIG_SMP |
| int next; /* next highest */ |
| #endif |
| } highest_prio; |
| #endif |
| #ifdef CONFIG_SMP |
| unsigned long rt_nr_migratory; |
| int overloaded; |
| struct plist_head pushable_tasks; |
| #endif |
| int rt_throttled; |
| u64 rt_time; |
| u64 rt_runtime; |
| /* Nests inside the rq lock: */ |
| spinlock_t rt_runtime_lock; |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| unsigned long rt_nr_boosted; |
| |
| struct rq *rq; |
| struct list_head leaf_rt_rq_list; |
| struct task_group *tg; |
| struct sched_rt_entity *rt_se; |
| #endif |
| }; |
| |
| #ifdef CONFIG_SMP |
| |
| /* |
| * We add the notion of a root-domain which will be used to define per-domain |
| * variables. Each exclusive cpuset essentially defines an island domain by |
| * fully partitioning the member cpus from any other cpuset. Whenever a new |
| * exclusive cpuset is created, we also create and attach a new root-domain |
| * object. |
| * |
| */ |
| struct root_domain { |
| atomic_t refcount; |
| cpumask_var_t span; |
| cpumask_var_t online; |
| |
| /* |
| * The "RT overload" flag: it gets set if a CPU has more than |
| * one runnable RT task. |
| */ |
| cpumask_var_t rto_mask; |
| atomic_t rto_count; |
| #ifdef CONFIG_SMP |
| struct cpupri cpupri; |
| #endif |
| #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
| /* |
| * Preferred wake up cpu nominated by sched_mc balance that will be |
| * used when most cpus are idle in the system indicating overall very |
| * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2) |
| */ |
| unsigned int sched_mc_preferred_wakeup_cpu; |
| #endif |
| }; |
| |
| /* |
| * By default the system creates a single root-domain with all cpus as |
| * members (mimicking the global state we have today). |
| */ |
| static struct root_domain def_root_domain; |
| |
| #endif |
| |
| /* |
| * This is the main, per-CPU runqueue data structure. |
| * |
| * Locking rule: those places that want to lock multiple runqueues |
| * (such as the load balancing or the thread migration code), lock |
| * acquire operations must be ordered by ascending &runqueue. |
| */ |
| struct rq { |
| /* runqueue lock: */ |
| spinlock_t lock; |
| |
| /* |
| * nr_running and cpu_load should be in the same cacheline because |
| * remote CPUs use both these fields when doing load calculation. |
| */ |
| unsigned long nr_running; |
| #define CPU_LOAD_IDX_MAX 5 |
| unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
| #ifdef CONFIG_NO_HZ |
| unsigned long last_tick_seen; |
| unsigned char in_nohz_recently; |
| #endif |
| /* capture load from *all* tasks on this cpu: */ |
| struct load_weight load; |
| unsigned long nr_load_updates; |
| u64 nr_switches; |
| |
| struct cfs_rq cfs; |
| struct rt_rq rt; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| /* list of leaf cfs_rq on this cpu: */ |
| struct list_head leaf_cfs_rq_list; |
| #endif |
| #ifdef CONFIG_RT_GROUP_SCHED |
| struct list_head leaf_rt_rq_list; |
| #endif |
| |
| /* |
| * This is part of a global counter where only the total sum |
| * over all CPUs matters. A task can increase this counter on |
| * one CPU and if it got migrated afterwards it may decrease |
| * it on another CPU. Always updated under the runqueue lock: |
| */ |
| unsigned long nr_uninterruptible; |
| |
| struct task_struct *curr, *idle; |
| unsigned long next_balance; |
| struct mm_struct *prev_mm; |
| |
| u64 clock; |
| |
| atomic_t nr_iowait; |
| |
| #ifdef CONFIG_SMP |
| struct root_domain *rd; |
| struct sched_domain *sd; |
| |
| unsigned char idle_at_tick; |
| /* For active balancing */ |
| int active_balance; |
| int push_cpu; |
| /* cpu of this runqueue: */ |
| int cpu; |
| int online; |
| |
| unsigned long avg_load_per_task; |
| |
| struct task_struct *migration_thread; |
| struct list_head migration_queue; |
| #endif |
| |
| #ifdef CONFIG_SCHED_HRTICK |
| #ifdef CONFIG_SMP |
| int hrtick_csd_pending; |
| struct call_single_data hrtick_csd; |
| #endif |
| struct hrtimer hrtick_timer; |
| #endif |
| |
| #ifdef CONFIG_SCHEDSTATS |
| /* latency stats */ |
| struct sched_info rq_sched_info; |
| unsigned long long rq_cpu_time; |
| /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ |
| |
| /* sys_sched_yield() stats */ |
| unsigned int yld_count; |
| |
| /* schedule() stats */ |
| unsigned int sched_switch; |
| unsigned int sched_count; |
| unsigned int sched_goidle; |
| |
| /* try_to_wake_up() stats */ |
| unsigned int ttwu_count; |
| unsigned int ttwu_local; |
| |
| /* BKL stats */ |
| unsigned int bkl_count; |
| #endif |
| }; |
| |
| static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
| |
| static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync) |
| { |
| rq->curr->sched_class->check_preempt_curr(rq, p, sync); |
| } |
| |
| static inline int cpu_of(struct rq *rq) |
| { |
| #ifdef CONFIG_SMP |
| return rq->cpu; |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* |
| * The domain tree (rq->sd) is protected by RCU's quiescent state transition. |
| * See detach_destroy_domains: synchronize_sched for details. |
| * |
| * The domain tree of any CPU may only be accessed from within |
| * preempt-disabled sections. |
| */ |
| #define for_each_domain(cpu, __sd) \ |
| for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) |
| |
| #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
| #define this_rq() (&__get_cpu_var(runqueues)) |
| #define task_rq(p) cpu_rq(task_cpu(p)) |
| #define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
| |
| static inline void update_rq_clock(struct rq *rq) |
| { |
| rq->clock = sched_clock_cpu(cpu_of(rq)); |
| } |
| |
| /* |
| * Tunables that become constants when CONFIG_SCHED_DEBUG is off: |
| */ |
| #ifdef CONFIG_SCHED_DEBUG |
| # define const_debug __read_mostly |
| #else |
| # define const_debug static const |
| #endif |
| |
| /** |
| * runqueue_is_locked |
| * |
| * Returns true if the current cpu runqueue is locked. |
| * This interface allows printk to be called with the runqueue lock |
| * held and know whether or not it is OK to wake up the klogd. |
| */ |
| int runqueue_is_locked(void) |
| { |
| int cpu = get_cpu(); |
| struct rq *rq = cpu_rq(cpu); |
| int ret; |
| |
| ret = spin_is_locked(&rq->lock); |
| put_cpu(); |
| return ret; |
| } |
| |
| /* |
| * Debugging: various feature bits |
| */ |
| |
| #define SCHED_FEAT(name, enabled) \ |
| __SCHED_FEAT_##name , |
| |
| enum { |
| #include "sched_features.h" |
| }; |
| |
| #undef SCHED_FEAT |
| |
| #define SCHED_FEAT(name, enabled) \ |
| (1UL << __SCHED_FEAT_##name) * enabled | |
| |
| const_debug unsigned int sysctl_sched_features = |
| #include "sched_features.h" |
| 0; |
| |
| #undef SCHED_FEAT |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| #define SCHED_FEAT(name, enabled) \ |
| #name , |
| |
| static __read_mostly char *sched_feat_names[] = { |
| #include "sched_features.h" |
| NULL |
| }; |
| |
| #undef SCHED_FEAT |
| |
| static int sched_feat_show(struct seq_file *m, void *v) |
| { |
| int i; |
| |
| for (i = 0; sched_feat_names[i]; i++) { |
| if (!(sysctl_sched_features & (1UL << i))) |
| seq_puts(m, "NO_"); |
| seq_printf(m, "%s ", sched_feat_names[i]); |
| } |
| seq_puts(m, "\n"); |
| |
| return 0; |
| } |
| |
| static ssize_t |
| sched_feat_write(struct file *filp, const char __user *ubuf, |
| size_t cnt, loff_t *ppos) |
| { |
| char buf[64]; |
| char *cmp = buf; |
| int neg = 0; |
| int i; |
| |
| if (cnt > 63) |
| cnt = 63; |
| |
| if (copy_from_user(&buf, ubuf, cnt)) |
| return -EFAULT; |
| |
| buf[cnt] = 0; |
| |
| if (strncmp(buf, "NO_", 3) == 0) { |
| neg = 1; |
| cmp += 3; |
| } |
| |
| for (i = 0; sched_feat_names[i]; i++) { |
| int len = strlen(sched_feat_names[i]); |
| |
| if (strncmp(cmp, sched_feat_names[i], len) == 0) { |
| if (neg) |
| sysctl_sched_features &= ~(1UL << i); |
| else |
| sysctl_sched_features |= (1UL << i); |
| break; |
| } |
| } |
| |
| if (!sched_feat_names[i]) |
| return -EINVAL; |
| |
| filp->f_pos += cnt; |
| |
| return cnt; |
| } |
| |
| static int sched_feat_open(struct inode *inode, struct file *filp) |
| { |
| return single_open(filp, sched_feat_show, NULL); |
| } |
| |
| static struct file_operations sched_feat_fops = { |
| .open = sched_feat_open, |
| .write = sched_feat_write, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static __init int sched_init_debug(void) |
| { |
| debugfs_create_file("sched_features", 0644, NULL, NULL, |
| &sched_feat_fops); |
| |
| return 0; |
| } |
| late_initcall(sched_init_debug); |
| |
| #endif |
| |
| #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) |
| |
| /* |
| * Number of tasks to iterate in a single balance run. |
| * Limited because this is done with IRQs disabled. |
| */ |
| const_debug unsigned int sysctl_sched_nr_migrate = 32; |
| |
| /* |
| * ratelimit for updating the group shares. |
| * default: 0.25ms |
| */ |
| unsigned int sysctl_sched_shares_ratelimit = 250000; |
| |
| /* |
| * Inject some fuzzyness into changing the per-cpu group shares |
| * this avoids remote rq-locks at the expense of fairness. |
| * default: 4 |
| */ |
| unsigned int sysctl_sched_shares_thresh = 4; |
| |
| /* |
| * period over which we measure -rt task cpu usage in us. |
| * default: 1s |
| */ |
| unsigned int sysctl_sched_rt_period = 1000000; |
| |
| static __read_mostly int scheduler_running; |
| |
| /* |
| * part of the period that we allow rt tasks to run in us. |
| * default: 0.95s |
| */ |
| int sysctl_sched_rt_runtime = 950000; |
| |
| static inline u64 global_rt_period(void) |
| { |
| return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; |
| } |
| |
| static inline u64 global_rt_runtime(void) |
| { |
| if (sysctl_sched_rt_runtime < 0) |
| return RUNTIME_INF; |
| |
| return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; |
| } |
| |
| #ifndef prepare_arch_switch |
| # define prepare_arch_switch(next) do { } while (0) |
| #endif |
| #ifndef finish_arch_switch |
| # define finish_arch_switch(prev) do { } while (0) |
| #endif |
| |
| static inline int task_current(struct rq *rq, struct task_struct *p) |
| { |
| return rq->curr == p; |
| } |
| |
| #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
| static inline int task_running(struct rq *rq, struct task_struct *p) |
| { |
| return task_current(rq, p); |
| } |
| |
| static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
| { |
| } |
| |
| static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
| { |
| #ifdef CONFIG_DEBUG_SPINLOCK |
| /* this is a valid case when another task releases the spinlock */ |
| rq->lock.owner = current; |
| #endif |
| /* |
| * If we are tracking spinlock dependencies then we have to |
| * fix up the runqueue lock - which gets 'carried over' from |
| * prev into current: |
| */ |
| spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); |
| |
| spin_unlock_irq(&rq->lock); |
| } |
| |
| #else /* __ARCH_WANT_UNLOCKED_CTXSW */ |
| static inline int task_running(struct rq *rq, struct task_struct *p) |
| { |
| #ifdef CONFIG_SMP |
| return p->oncpu; |
| #else |
| return task_current(rq, p); |
| #endif |
| } |
| |
| static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
| { |
| #ifdef CONFIG_SMP |
| /* |
| * We can optimise this out completely for !SMP, because the |
| * SMP rebalancing from interrupt is the only thing that cares |
| * here. |
| */ |
| next->oncpu = 1; |
| #endif |
| #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
| spin_unlock_irq(&rq->lock); |
| #else |
| spin_unlock(&rq->lock); |
| #endif |
| } |
| |
| static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
| { |
| #ifdef CONFIG_SMP |
| /* |
| * After ->oncpu is cleared, the task can be moved to a different CPU. |
| * We must ensure this doesn't happen until the switch is completely |
| * finished. |
| */ |
| smp_wmb(); |
| prev->oncpu = 0; |
| #endif |
| #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
| local_irq_enable(); |
| #endif |
| } |
| #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ |
| |
| /* |
| * __task_rq_lock - lock the runqueue a given task resides on. |
| * Must be called interrupts disabled. |
| */ |
| static inline struct rq *__task_rq_lock(struct task_struct *p) |
| __acquires(rq->lock) |
| { |
| for (;;) { |
| struct rq *rq = task_rq(p); |
| spin_lock(&rq->lock); |
| if (likely(rq == task_rq(p))) |
| return rq; |
| spin_unlock(&rq->lock); |
| } |
| } |
| |
| /* |
| * task_rq_lock - lock the runqueue a given task resides on and disable |
| * interrupts. Note the ordering: we can safely lookup the task_rq without |
| * explicitly disabling preemption. |
| */ |
| static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) |
| __acquires(rq->lock) |
| { |
| struct rq *rq; |
| |
| for (;;) { |
| local_irq_save(*flags); |
| rq = task_rq(p); |
| spin_lock(&rq->lock); |
| if (likely(rq == task_rq(p))) |
| return rq; |
| spin_unlock_irqrestore(&rq->lock, *flags); |
| } |
| } |
| |
| void task_rq_unlock_wait(struct task_struct *p) |
| { |
| struct rq *rq = task_rq(p); |
| |
| smp_mb(); /* spin-unlock-wait is not a full memory barrier */ |
| spin_unlock_wait(&rq->lock); |
| } |
| |
| static void __task_rq_unlock(struct rq *rq) |
| __releases(rq->lock) |
| { |
| spin_unlock(&rq->lock); |
| } |
| |
| static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) |
| __releases(rq->lock) |
| { |
| spin_unlock_irqrestore(&rq->lock, *flags); |
| } |
| |
| /* |
| * this_rq_lock - lock this runqueue and disable interrupts. |
| */ |
| static struct rq *this_rq_lock(void) |
| __acquires(rq->lock) |
| { |
| struct rq *rq; |
| |
| local_irq_disable(); |
| rq = this_rq(); |
| spin_lock(&rq->lock); |
| |
| return rq; |
| } |
| |
| #ifdef CONFIG_SCHED_HRTICK |
| /* |
| * Use HR-timers to deliver accurate preemption points. |
| * |
| * Its all a bit involved since we cannot program an hrt while holding the |
| * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a |
| * reschedule event. |
| * |
| * When we get rescheduled we reprogram the hrtick_timer outside of the |
| * rq->lock. |
| */ |
| |
| /* |
| * Use hrtick when: |
| * - enabled by features |
| * - hrtimer is actually high res |
| */ |
| static inline int hrtick_enabled(struct rq *rq) |
| { |
| if (!sched_feat(HRTICK)) |
| return 0; |
| if (!cpu_active(cpu_of(rq))) |
| return 0; |
| return hrtimer_is_hres_active(&rq->hrtick_timer); |
| } |
| |
| static void hrtick_clear(struct rq *rq) |
| { |
| if (hrtimer_active(&rq->hrtick_timer)) |
| hrtimer_cancel(&rq->hrtick_timer); |
| } |
| |
| /* |
| * High-resolution timer tick. |
| * Runs from hardirq context with interrupts disabled. |
| */ |
| static enum hrtimer_restart hrtick(struct hrtimer *timer) |
| { |
| struct rq *rq = container_of(timer, struct rq, hrtick_timer); |
| |
| WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); |
| |
| spin_lock(&rq->lock); |
| update_rq_clock(rq); |
| rq->curr->sched_class->task_tick(rq, rq->curr, 1); |
| spin_unlock(&rq->lock); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| #ifdef CONFIG_SMP |
| /* |
| * called from hardirq (IPI) context |
| */ |
| static void __hrtick_start(void *arg) |
| { |
| struct rq *rq = arg; |
| |
| spin_lock(&rq->lock); |
| hrtimer_restart(&rq->hrtick_timer); |
| rq->hrtick_csd_pending = 0; |
| spin_unlock(&rq->lock); |
| } |
| |
| /* |
| * Called to set the hrtick timer state. |
| * |
| * called with rq->lock held and irqs disabled |
| */ |
| static void hrtick_start(struct rq *rq, u64 delay) |
| { |
| struct hrtimer *timer = &rq->hrtick_timer; |
| ktime_t time = ktime_add_ns(timer->base->get_time(), delay); |
| |
| hrtimer_set_expires(timer, time); |
| |
| if (rq == this_rq()) { |
| hrtimer_restart(timer); |
| } else if (!rq->hrtick_csd_pending) { |
| __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); |
| rq->hrtick_csd_pending = 1; |
| } |
| } |
| |
| static int |
| hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) |
| { |
| int cpu = (int)(long)hcpu; |
| |
| switch (action) { |
| case CPU_UP_CANCELED: |
| case CPU_UP_CANCELED_FROZEN: |
| case CPU_DOWN_PREPARE: |
| case CPU_DOWN_PREPARE_FROZEN: |
| case CPU_DEAD: |
| case CPU_DEAD_FROZEN: |
| hrtick_clear(cpu_rq(cpu)); |
| return NOTIFY_OK; |
| } |
| |
| return NOTIFY_DONE; |
| } |
| |
| static __init void init_hrtick(void) |
| { |
| hotcpu_notifier(hotplug_hrtick, 0); |
| } |
| #else |
| /* |
| * Called to set the hrtick timer state. |
| * |
| * called with rq->lock held and irqs disabled |
| */ |
| static void hrtick_start(struct rq *rq, u64 delay) |
| { |
| __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, |
| HRTIMER_MODE_REL, 0); |
| } |
| |
| static inline void init_hrtick(void) |
| { |
| } |
| #endif /* CONFIG_SMP */ |
| |
| static void init_rq_hrtick(struct rq *rq) |
| { |
| #ifdef CONFIG_SMP |
| rq->hrtick_csd_pending = 0; |
| |
| rq->hrtick_csd.flags = 0; |
| rq->hrtick_csd.func = __hrtick_start; |
| rq->hrtick_csd.info = rq; |
| #endif |
| |
| hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| rq->hrtick_timer.function = hrtick; |
| } |
| #else /* CONFIG_SCHED_HRTICK */ |
| static inline void hrtick_clear(struct rq *rq) |
| { |
| } |
| |
| static inline void init_rq_hrtick(struct rq *rq) |
| { |
| } |
| |
| static inline void init_hrtick(void) |
| { |
| } |
| #endif /* CONFIG_SCHED_HRTICK */ |
| |
| /* |
| * resched_task - mark a task 'to be rescheduled now'. |
| * |
| * On UP this means the setting of the need_resched flag, on SMP it |
| * might also involve a cross-CPU call to trigger the scheduler on |
| * the target CPU. |
| */ |
| #ifdef CONFIG_SMP |
| |
| #ifndef tsk_is_polling |
| #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) |
| #endif |
| |
| static void resched_task(struct task_struct *p) |
| { |
| int cpu; |
| |
| assert_spin_locked(&task_rq(p)->lock); |
| |
| if (test_tsk_need_resched(p)) |
| return; |
| |
| set_tsk_need_resched(p); |
| |
| cpu = task_cpu(p); |
| if (cpu == smp_processor_id()) |
| return; |
| |
| /* NEED_RESCHED must be visible before we test polling */ |
| smp_mb(); |
| if (!tsk_is_polling(p)) |
| smp_send_reschedule(cpu); |
| } |
| |
| static void resched_cpu(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| unsigned long flags; |
| |
| if (!spin_trylock_irqsave(&rq->lock, flags)) |
| return; |
| resched_task(cpu_curr(cpu)); |
| spin_unlock_irqrestore(&rq->lock, flags); |
| } |
| |
| #ifdef CONFIG_NO_HZ |
| /* |
| * When add_timer_on() enqueues a timer into the timer wheel of an |
| * idle CPU then this timer might expire before the next timer event |
| * which is scheduled to wake up that CPU. In case of a completely |
| * idle system the next event might even be infinite time into the |
| * future. wake_up_idle_cpu() ensures that the CPU is woken up and |
| * leaves the inner idle loop so the newly added timer is taken into |
| * account when the CPU goes back to idle and evaluates the timer |
| * wheel for the next timer event. |
| */ |
| void wake_up_idle_cpu(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| if (cpu == smp_processor_id()) |
| return; |
| |
| /* |
| * This is safe, as this function is called with the timer |
| * wheel base lock of (cpu) held. When the CPU is on the way |
| * to idle and has not yet set rq->curr to idle then it will |
| * be serialized on the timer wheel base lock and take the new |
| * timer into account automatically. |
| */ |
| if (rq->curr != rq->idle) |
| return; |
| |
| /* |
| * We can set TIF_RESCHED on the idle task of the other CPU |
| * lockless. The worst case is that the other CPU runs the |
| * idle task through an additional NOOP schedule() |
| */ |
| set_tsk_need_resched(rq->idle); |
| |
| /* NEED_RESCHED must be visible before we test polling */ |
| smp_mb(); |
| if (!tsk_is_polling(rq->idle)) |
| smp_send_reschedule(cpu); |
| } |
| #endif /* CONFIG_NO_HZ */ |
| |
| #else /* !CONFIG_SMP */ |
| static void resched_task(struct task_struct *p) |
| { |
| assert_spin_locked(&task_rq(p)->lock); |
| set_tsk_need_resched(p); |
| } |
| #endif /* CONFIG_SMP */ |
| |
| #if BITS_PER_LONG == 32 |
| # define WMULT_CONST (~0UL) |
| #else |
| # define WMULT_CONST (1UL << 32) |
| #endif |
| |
| #define WMULT_SHIFT 32 |
| |
| /* |
| * Shift right and round: |
| */ |
| #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) |
| |
| /* |
| * delta *= weight / lw |
| */ |
| static unsigned long |
| calc_delta_mine(unsigned long delta_exec, unsigned long weight, |
| struct load_weight *lw) |
| { |
| u64 tmp; |
| |
| if (!lw->inv_weight) { |
| if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) |
| lw->inv_weight = 1; |
| else |
| lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) |
| / (lw->weight+1); |
| } |
| |
| tmp = (u64)delta_exec * weight; |
| /* |
| * Check whether we'd overflow the 64-bit multiplication: |
| */ |
| if (unlikely(tmp > WMULT_CONST)) |
| tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, |
| WMULT_SHIFT/2); |
| else |
| tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); |
| |
| return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); |
| } |
| |
| static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
| { |
| lw->weight += inc; |
| lw->inv_weight = 0; |
| } |
| |
| static inline void update_load_sub(struct load_weight *lw, unsigned long dec) |
| { |
| lw->weight -= dec; |
| lw->inv_weight = 0; |
| } |
| |
| /* |
| * To aid in avoiding the subversion of "niceness" due to uneven distribution |
| * of tasks with abnormal "nice" values across CPUs the contribution that |
| * each task makes to its run queue's load is weighted according to its |
| * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a |
| * scaled version of the new time slice allocation that they receive on time |
| * slice expiry etc. |
| */ |
| |
| #define WEIGHT_IDLEPRIO 3 |
| #define WMULT_IDLEPRIO 1431655765 |
| |
| /* |
| * Nice levels are multiplicative, with a gentle 10% change for every |
| * nice level changed. I.e. when a CPU-bound task goes from nice 0 to |
| * nice 1, it will get ~10% less CPU time than another CPU-bound task |
| * that remained on nice 0. |
| * |
| * The "10% effect" is relative and cumulative: from _any_ nice level, |
| * if you go up 1 level, it's -10% CPU usage, if you go down 1 level |
| * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. |
| * If a task goes up by ~10% and another task goes down by ~10% then |
| * the relative distance between them is ~25%.) |
| */ |
| static const int prio_to_weight[40] = { |
| /* -20 */ 88761, 71755, 56483, 46273, 36291, |
| /* -15 */ 29154, 23254, 18705, 14949, 11916, |
| /* -10 */ 9548, 7620, 6100, 4904, 3906, |
| /* -5 */ 3121, 2501, 1991, 1586, 1277, |
| /* 0 */ 1024, 820, 655, 526, 423, |
| /* 5 */ 335, 272, 215, 172, 137, |
| /* 10 */ 110, 87, 70, 56, 45, |
| /* 15 */ 36, 29, 23, 18, 15, |
| }; |
| |
| /* |
| * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. |
| * |
| * In cases where the weight does not change often, we can use the |
| * precalculated inverse to speed up arithmetics by turning divisions |
| * into multiplications: |
| */ |
| static const u32 prio_to_wmult[40] = { |
| /* -20 */ 48388, 59856, 76040, 92818, 118348, |
| /* -15 */ 147320, 184698, 229616, 287308, 360437, |
| /* -10 */ 449829, 563644, 704093, 875809, 1099582, |
| /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, |
| /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, |
| /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, |
| /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, |
| /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, |
| }; |
| |
| static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); |
| |
| /* |
| * runqueue iterator, to support SMP load-balancing between different |
| * scheduling classes, without having to expose their internal data |
| * structures to the load-balancing proper: |
| */ |
| struct rq_iterator { |
| void *arg; |
| struct task_struct *(*start)(void *); |
| struct task_struct *(*next)(void *); |
| }; |
| |
| #ifdef CONFIG_SMP |
| static unsigned long |
| balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, |
| unsigned long max_load_move, struct sched_domain *sd, |
| enum cpu_idle_type idle, int *all_pinned, |
| int *this_best_prio, struct rq_iterator *iterator); |
| |
| static int |
| iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, |
| struct sched_domain *sd, enum cpu_idle_type idle, |
| struct rq_iterator *iterator); |
| #endif |
| |
| /* Time spent by the tasks of the cpu accounting group executing in ... */ |
| enum cpuacct_stat_index { |
| CPUACCT_STAT_USER, /* ... user mode */ |
| CPUACCT_STAT_SYSTEM, /* ... kernel mode */ |
| |
| CPUACCT_STAT_NSTATS, |
| }; |
| |
| #ifdef CONFIG_CGROUP_CPUACCT |
| static void cpuacct_charge(struct task_struct *tsk, u64 cputime); |
| static void cpuacct_update_stats(struct task_struct *tsk, |
| enum cpuacct_stat_index idx, cputime_t val); |
| #else |
| static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} |
| static inline void cpuacct_update_stats(struct task_struct *tsk, |
| enum cpuacct_stat_index idx, cputime_t val) {} |
| #endif |
| |
| static inline void inc_cpu_load(struct rq *rq, unsigned long load) |
| { |
| update_load_add(&rq->load, load); |
| } |
| |
| static inline void dec_cpu_load(struct rq *rq, unsigned long load) |
| { |
| update_load_sub(&rq->load, load); |
| } |
| |
| #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) |
| typedef int (*tg_visitor)(struct task_group *, void *); |
| |
| /* |
| * Iterate the full tree, calling @down when first entering a node and @up when |
| * leaving it for the final time. |
| */ |
| static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) |
| { |
| struct task_group *parent, *child; |
| int ret; |
| |
| rcu_read_lock(); |
| parent = &root_task_group; |
| down: |
| ret = (*down)(parent, data); |
| if (ret) |
| goto out_unlock; |
| list_for_each_entry_rcu(child, &parent->children, siblings) { |
| parent = child; |
| goto down; |
| |
| up: |
| continue; |
| } |
| ret = (*up)(parent, data); |
| if (ret) |
| goto out_unlock; |
| |
| child = parent; |
| parent = parent->parent; |
| if (parent) |
| goto up; |
| out_unlock: |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static int tg_nop(struct task_group *tg, void *data) |
| { |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_SMP |
| static unsigned long source_load(int cpu, int type); |
| static unsigned long target_load(int cpu, int type); |
| static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); |
| |
| static unsigned long cpu_avg_load_per_task(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| unsigned long nr_running = ACCESS_ONCE(rq->nr_running); |
| |
| if (nr_running) |
| rq->avg_load_per_task = rq->load.weight / nr_running; |
| else |
| rq->avg_load_per_task = 0; |
| |
| return rq->avg_load_per_task; |
| } |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| |
| static void __set_se_shares(struct sched_entity *se, unsigned long shares); |
| |
| /* |
| * Calculate and set the cpu's group shares. |
| */ |
| static void |
| update_group_shares_cpu(struct task_group *tg, int cpu, |
| unsigned long sd_shares, unsigned long sd_rq_weight) |
| { |
| unsigned long shares; |
| unsigned long rq_weight; |
| |
| if (!tg->se[cpu]) |
| return; |
| |
| rq_weight = tg->cfs_rq[cpu]->rq_weight; |
| |
| /* |
| * \Sum shares * rq_weight |
| * shares = ----------------------- |
| * \Sum rq_weight |
| * |
| */ |
| shares = (sd_shares * rq_weight) / sd_rq_weight; |
| shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); |
| |
| if (abs(shares - tg->se[cpu]->load.weight) > |
| sysctl_sched_shares_thresh) { |
| struct rq *rq = cpu_rq(cpu); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rq->lock, flags); |
| tg->cfs_rq[cpu]->shares = shares; |
| |
| __set_se_shares(tg->se[cpu], shares); |
| spin_unlock_irqrestore(&rq->lock, flags); |
| } |
| } |
| |
| /* |
| * Re-compute the task group their per cpu shares over the given domain. |
| * This needs to be done in a bottom-up fashion because the rq weight of a |
| * parent group depends on the shares of its child groups. |
| */ |
| static int tg_shares_up(struct task_group *tg, void *data) |
| { |
| unsigned long weight, rq_weight = 0; |
| unsigned long shares = 0; |
| struct sched_domain *sd = data; |
| int i; |
| |
| for_each_cpu(i, sched_domain_span(sd)) { |
| /* |
| * If there are currently no tasks on the cpu pretend there |
| * is one of average load so that when a new task gets to |
| * run here it will not get delayed by group starvation. |
| */ |
| weight = tg->cfs_rq[i]->load.weight; |
| if (!weight) |
| weight = NICE_0_LOAD; |
| |
| tg->cfs_rq[i]->rq_weight = weight; |
| rq_weight += weight; |
| shares += tg->cfs_rq[i]->shares; |
| } |
| |
| if ((!shares && rq_weight) || shares > tg->shares) |
| shares = tg->shares; |
| |
| if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) |
| shares = tg->shares; |
| |
| for_each_cpu(i, sched_domain_span(sd)) |
| update_group_shares_cpu(tg, i, shares, rq_weight); |
| |
| return 0; |
| } |
| |
| /* |
| * Compute the cpu's hierarchical load factor for each task group. |
| * This needs to be done in a top-down fashion because the load of a child |
| * group is a fraction of its parents load. |
| */ |
| static int tg_load_down(struct task_group *tg, void *data) |
| { |
| unsigned long load; |
| long cpu = (long)data; |
| |
| if (!tg->parent) { |
| load = cpu_rq(cpu)->load.weight; |
| } else { |
| load = tg->parent->cfs_rq[cpu]->h_load; |
| load *= tg->cfs_rq[cpu]->shares; |
| load /= tg->parent->cfs_rq[cpu]->load.weight + 1; |
| } |
| |
| tg->cfs_rq[cpu]->h_load = load; |
| |
| return 0; |
| } |
| |
| static void update_shares(struct sched_domain *sd) |
| { |
| u64 now = cpu_clock(raw_smp_processor_id()); |
| s64 elapsed = now - sd->last_update; |
| |
| if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { |
| sd->last_update = now; |
| walk_tg_tree(tg_nop, tg_shares_up, sd); |
| } |
| } |
| |
| static void update_shares_locked(struct rq *rq, struct sched_domain *sd) |
| { |
| spin_unlock(&rq->lock); |
| update_shares(sd); |
| spin_lock(&rq->lock); |
| } |
| |
| static void update_h_load(long cpu) |
| { |
| walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); |
| } |
| |
| #else |
| |
| static inline void update_shares(struct sched_domain *sd) |
| { |
| } |
| |
| static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) |
| { |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_PREEMPT |
| |
| /* |
| * fair double_lock_balance: Safely acquires both rq->locks in a fair |
| * way at the expense of forcing extra atomic operations in all |
| * invocations. This assures that the double_lock is acquired using the |
| * same underlying policy as the spinlock_t on this architecture, which |
| * reduces latency compared to the unfair variant below. However, it |
| * also adds more overhead and therefore may reduce throughput. |
| */ |
| static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| __releases(this_rq->lock) |
| __acquires(busiest->lock) |
| __acquires(this_rq->lock) |
| { |
| spin_unlock(&this_rq->lock); |
| double_rq_lock(this_rq, busiest); |
| |
| return 1; |
| } |
| |
| #else |
| /* |
| * Unfair double_lock_balance: Optimizes throughput at the expense of |
| * latency by eliminating extra atomic operations when the locks are |
| * already in proper order on entry. This favors lower cpu-ids and will |
| * grant the double lock to lower cpus over higher ids under contention, |
| * regardless of entry order into the function. |
| */ |
| static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| __releases(this_rq->lock) |
| __acquires(busiest->lock) |
| __acquires(this_rq->lock) |
| { |
| int ret = 0; |
| |
| if (unlikely(!spin_trylock(&busiest->lock))) { |
| if (busiest < this_rq) { |
| spin_unlock(&this_rq->lock); |
| spin_lock(&busiest->lock); |
| spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); |
| ret = 1; |
| } else |
| spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); |
| } |
| return ret; |
| } |
| |
| #endif /* CONFIG_PREEMPT */ |
| |
| /* |
| * double_lock_balance - lock the busiest runqueue, this_rq is locked already. |
| */ |
| static int double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| { |
| if (unlikely(!irqs_disabled())) { |
| /* printk() doesn't work good under rq->lock */ |
| spin_unlock(&this_rq->lock); |
| BUG_ON(1); |
| } |
| |
| return _double_lock_balance(this_rq, busiest); |
| } |
| |
| static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
| __releases(busiest->lock) |
| { |
| spin_unlock(&busiest->lock); |
| lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
| } |
| #endif |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) |
| { |
| #ifdef CONFIG_SMP |
| cfs_rq->shares = shares; |
| #endif |
| } |
| #endif |
| |
| #include "sched_stats.h" |
| #include "sched_idletask.c" |
| #include "sched_fair.c" |
| #include "sched_rt.c" |
| #ifdef CONFIG_SCHED_DEBUG |
| # include "sched_debug.c" |
| #endif |
| |
| #define sched_class_highest (&rt_sched_class) |
| #define for_each_class(class) \ |
| for (class = sched_class_highest; class; class = class->next) |
| |
| static void inc_nr_running(struct rq *rq) |
| { |
| rq->nr_running++; |
| } |
| |
| static void dec_nr_running(struct rq *rq) |
| { |
| rq->nr_running--; |
| } |
| |
| static void set_load_weight(struct task_struct *p) |
| { |
| if (task_has_rt_policy(p)) { |
| p->se.load.weight = prio_to_weight[0] * 2; |
| p->se.load.inv_weight = prio_to_wmult[0] >> 1; |
| return; |
| } |
| |
| /* |
| * SCHED_IDLE tasks get minimal weight: |
| */ |
| if (p->policy == SCHED_IDLE) { |
| p->se.load.weight = WEIGHT_IDLEPRIO; |
| p->se.load.inv_weight = WMULT_IDLEPRIO; |
| return; |
| } |
| |
| p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; |
| p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; |
| } |
| |
| static void update_avg(u64 *avg, u64 sample) |
| { |
| s64 diff = sample - *avg; |
| *avg += diff >> 3; |
| } |
| |
| static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) |
| { |
| if (wakeup) |
| p->se.start_runtime = p->se.sum_exec_runtime; |
| |
| sched_info_queued(p); |
| p->sched_class->enqueue_task(rq, p, wakeup); |
| p->se.on_rq = 1; |
| } |
| |
| static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) |
| { |
| if (sleep) { |
| if (p->se.last_wakeup) { |
| update_avg(&p->se.avg_overlap, |
| p->se.sum_exec_runtime - p->se.last_wakeup); |
| p->se.last_wakeup = 0; |
| } else { |
| update_avg(&p->se.avg_wakeup, |
| sysctl_sched_wakeup_granularity); |
| } |
| } |
| |
| sched_info_dequeued(p); |
| p->sched_class->dequeue_task(rq, p, sleep); |
| p->se.on_rq = 0; |
| } |
| |
| /* |
| * __normal_prio - return the priority that is based on the static prio |
| */ |
| static inline int __normal_prio(struct task_struct *p) |
| { |
| return p->static_prio; |
| } |
| |
| /* |
| * Calculate the expected normal priority: i.e. priority |
| * without taking RT-inheritance into account. Might be |
| * boosted by interactivity modifiers. Changes upon fork, |
| * setprio syscalls, and whenever the interactivity |
| * estimator recalculates. |
| */ |
| static inline int normal_prio(struct task_struct *p) |
| { |
| int prio; |
| |
| if (task_has_rt_policy(p)) |
| prio = MAX_RT_PRIO-1 - p->rt_priority; |
| else |
| prio = __normal_prio(p); |
| return prio; |
| } |
| |
| /* |
| * Calculate the current priority, i.e. the priority |
| * taken into account by the scheduler. This value might |
| * be boosted by RT tasks, or might be boosted by |
| * interactivity modifiers. Will be RT if the task got |
| * RT-boosted. If not then it returns p->normal_prio. |
| */ |
| static int effective_prio(struct task_struct *p) |
| { |
| p->normal_prio = normal_prio(p); |
| /* |
| * If we are RT tasks or we were boosted to RT priority, |
| * keep the priority unchanged. Otherwise, update priority |
| * to the normal priority: |
| */ |
| if (!rt_prio(p->prio)) |
| return p->normal_prio; |
| return p->prio; |
| } |
| |
| /* |
| * activate_task - move a task to the runqueue. |
| */ |
| static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) |
| { |
| if (task_contributes_to_load(p)) |
| rq->nr_uninterruptible--; |
| |
| enqueue_task(rq, p, wakeup); |
| inc_nr_running(rq); |
| } |
| |
| /* |
| * deactivate_task - remove a task from the runqueue. |
| */ |
| static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) |
| { |
| if (task_contributes_to_load(p)) |
| rq->nr_uninterruptible++; |
| |
| dequeue_task(rq, p, sleep); |
| dec_nr_running(rq); |
| } |
| |
| /** |
| * task_curr - is this task currently executing on a CPU? |
| * @p: the task in question. |
| */ |
| inline int task_curr(const struct task_struct *p) |
| { |
| return cpu_curr(task_cpu(p)) == p; |
| } |
| |
| static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
| { |
| set_task_rq(p, cpu); |
| #ifdef CONFIG_SMP |
| /* |
| * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be |
| * successfuly executed on another CPU. We must ensure that updates of |
| * per-task data have been completed by this moment. |
| */ |
| smp_wmb(); |
| task_thread_info(p)->cpu = cpu; |
| #endif |
| } |
| |
| static inline void check_class_changed(struct rq *rq, struct task_struct *p, |
| const struct sched_class *prev_class, |
| int oldprio, int running) |
| { |
| if (prev_class != p->sched_class) { |
| if (prev_class->switched_from) |
| prev_class->switched_from(rq, p, running); |
| p->sched_class->switched_to(rq, p, running); |
| } else |
| p->sched_class->prio_changed(rq, p, oldprio, running); |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| /* Used instead of source_load when we know the type == 0 */ |
| static unsigned long weighted_cpuload(const int cpu) |
| { |
| return cpu_rq(cpu)->load.weight; |
| } |
| |
| /* |
| * Is this task likely cache-hot: |
| */ |
| static int |
| task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) |
| { |
| s64 delta; |
| |
| /* |
| * Buddy candidates are cache hot: |
| */ |
| if (sched_feat(CACHE_HOT_BUDDY) && |
| (&p->se == cfs_rq_of(&p->se)->next || |
| &p->se == cfs_rq_of(&p->se)->last)) |
| return 1; |
| |
| if (p->sched_class != &fair_sched_class) |
| return 0; |
| |
| if (sysctl_sched_migration_cost == -1) |
| return 1; |
| if (sysctl_sched_migration_cost == 0) |
| return 0; |
| |
| delta = now - p->se.exec_start; |
| |
| return delta < (s64)sysctl_sched_migration_cost; |
| } |
| |
| |
| void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
| { |
| int old_cpu = task_cpu(p); |
| struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); |
| struct cfs_rq *old_cfsrq = task_cfs_rq(p), |
| *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); |
| u64 clock_offset; |
| |
| clock_offset = old_rq->clock - new_rq->clock; |
| |
| trace_sched_migrate_task(p, task_cpu(p), new_cpu); |
| |
| #ifdef CONFIG_SCHEDSTATS |
| if (p->se.wait_start) |
| p->se.wait_start -= clock_offset; |
| if (p->se.sleep_start) |
| p->se.sleep_start -= clock_offset; |
| if (p->se.block_start) |
| p->se.block_start -= clock_offset; |
| if (old_cpu != new_cpu) { |
| schedstat_inc(p, se.nr_migrations); |
| if (task_hot(p, old_rq->clock, NULL)) |
| schedstat_inc(p, se.nr_forced2_migrations); |
| } |
| #endif |
| p->se.vruntime -= old_cfsrq->min_vruntime - |
| new_cfsrq->min_vruntime; |
| |
| __set_task_cpu(p, new_cpu); |
| } |
| |
| struct migration_req { |
| struct list_head list; |
| |
| struct task_struct *task; |
| int dest_cpu; |
| |
| struct completion done; |
| }; |
| |
| /* |
| * The task's runqueue lock must be held. |
| * Returns true if you have to wait for migration thread. |
| */ |
| static int |
| migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) |
| { |
| struct rq *rq = task_rq(p); |
| |
| /* |
| * If the task is not on a runqueue (and not running), then |
| * it is sufficient to simply update the task's cpu field. |
| */ |
| if (!p->se.on_rq && !task_running(rq, p)) { |
| set_task_cpu(p, dest_cpu); |
| return 0; |
| } |
| |
| init_completion(&req->done); |
| req->task = p; |
| req->dest_cpu = dest_cpu; |
| list_add(&req->list, &rq->migration_queue); |
| |
| return 1; |
| } |
| |
| /* |
| * wait_task_inactive - wait for a thread to unschedule. |
| * |
| * If @match_state is nonzero, it's the @p->state value just checked and |
| * not expected to change. If it changes, i.e. @p might have woken up, |
| * then return zero. When we succeed in waiting for @p to be off its CPU, |
| * we return a positive number (its total switch count). If a second call |
| * a short while later returns the same number, the caller can be sure that |
| * @p has remained unscheduled the whole time. |
| * |
| * The caller must ensure that the task *will* unschedule sometime soon, |
| * else this function might spin for a *long* time. This function can't |
| * be called with interrupts off, or it may introduce deadlock with |
| * smp_call_function() if an IPI is sent by the same process we are |
| * waiting to become inactive. |
| */ |
| unsigned long wait_task_inactive(struct task_struct *p, long match_state) |
| { |
| unsigned long flags; |
| int running, on_rq; |
| unsigned long ncsw; |
| struct rq *rq; |
| |
| for (;;) { |
| /* |
| * We do the initial early heuristics without holding |
| * any task-queue locks at all. We'll only try to get |
| * the runqueue lock when things look like they will |
| * work out! |
| */ |
| rq = task_rq(p); |
| |
| /* |
| * If the task is actively running on another CPU |
| * still, just relax and busy-wait without holding |
| * any locks. |
| * |
| * NOTE! Since we don't hold any locks, it's not |
| * even sure that "rq" stays as the right runqueue! |
| * But we don't care, since "task_running()" will |
| * return false if the runqueue has changed and p |
| * is actually now running somewhere else! |
| */ |
| while (task_running(rq, p)) { |
| if (match_state && unlikely(p->state != match_state)) |
| return 0; |
| cpu_relax(); |
| } |
| |
| /* |
| * Ok, time to look more closely! We need the rq |
| * lock now, to be *sure*. If we're wrong, we'll |
| * just go back and repeat. |
| */ |
| rq = task_rq_lock(p, &flags); |
| trace_sched_wait_task(rq, p); |
| running = task_running(rq, p); |
| on_rq = p->se.on_rq; |
| ncsw = 0; |
| if (!match_state || p->state == match_state) |
| ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ |
| task_rq_unlock(rq, &flags); |
| |
| /* |
| * If it changed from the expected state, bail out now. |
| */ |
| if (unlikely(!ncsw)) |
| break; |
| |
| /* |
| * Was it really running after all now that we |
| * checked with the proper locks actually held? |
| * |
| * Oops. Go back and try again.. |
| */ |
| if (unlikely(running)) { |
| cpu_relax(); |
| continue; |
| } |
| |
| /* |
| * It's not enough that it's not actively running, |
| * it must be off the runqueue _entirely_, and not |
| * preempted! |
| * |
| * So if it was still runnable (but just not actively |
| * running right now), it's preempted, and we should |
| * yield - it could be a while. |
| */ |
| if (unlikely(on_rq)) { |
| schedule_timeout_uninterruptible(1); |
| continue; |
| } |
| |
| /* |
| * Ahh, all good. It wasn't running, and it wasn't |
| * runnable, which means that it will never become |
| * running in the future either. We're all done! |
| */ |
| break; |
| } |
| |
| return ncsw; |
| } |
| |
| /*** |
| * kick_process - kick a running thread to enter/exit the kernel |
| * @p: the to-be-kicked thread |
| * |
| * Cause a process which is running on another CPU to enter |
| * kernel-mode, without any delay. (to get signals handled.) |
| * |
| * NOTE: this function doesnt have to take the runqueue lock, |
| * because all it wants to ensure is that the remote task enters |
| * the kernel. If the IPI races and the task has been migrated |
| * to another CPU then no harm is done and the purpose has been |
| * achieved as well. |
| */ |
| void kick_process(struct task_struct *p) |
| { |
| int cpu; |
| |
| preempt_disable(); |
| cpu = task_cpu(p); |
| if ((cpu != smp_processor_id()) && task_curr(p)) |
| smp_send_reschedule(cpu); |
| preempt_enable(); |
| } |
| |
| /* |
| * Return a low guess at the load of a migration-source cpu weighted |
| * according to the scheduling class and "nice" value. |
| * |
| * We want to under-estimate the load of migration sources, to |
| * balance conservatively. |
| */ |
| static unsigned long source_load(int cpu, int type) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| unsigned long total = weighted_cpuload(cpu); |
| |
| if (type == 0 || !sched_feat(LB_BIAS)) |
| return total; |
| |
| return min(rq->cpu_load[type-1], total); |
| } |
| |
| /* |
| * Return a high guess at the load of a migration-target cpu weighted |
| * according to the scheduling class and "nice" value. |
| */ |
| static unsigned long target_load(int cpu, int type) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| unsigned long total = weighted_cpuload(cpu); |
| |
| if (type == 0 || !sched_feat(LB_BIAS)) |
| return total; |
| |
| return max(rq->cpu_load[type-1], total); |
| } |
| |
| /* |
| * find_idlest_group finds and returns the least busy CPU group within the |
| * domain. |
| */ |
| static struct sched_group * |
| find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) |
| { |
| struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; |
| unsigned long min_load = ULONG_MAX, this_load = 0; |
| int load_idx = sd->forkexec_idx; |
| int imbalance = 100 + (sd->imbalance_pct-100)/2; |
| |
| do { |
| unsigned long load, avg_load; |
| int local_group; |
| int i; |
| |
| /* Skip over this group if it has no CPUs allowed */ |
| if (!cpumask_intersects(sched_group_cpus(group), |
| &p->cpus_allowed)) |
| continue; |
| |
| local_group = cpumask_test_cpu(this_cpu, |
| sched_group_cpus(group)); |
| |
| /* Tally up the load of all CPUs in the group */ |
| avg_load = 0; |
| |
| for_each_cpu(i, sched_group_cpus(group)) { |
| /* Bias balancing toward cpus of our domain */ |
| if (local_group) |
| load = source_load(i, load_idx); |
| else |
| load = target_load(i, load_idx); |
| |
| avg_load += load; |
| } |
| |
| /* Adjust by relative CPU power of the group */ |
| avg_load = sg_div_cpu_power(group, |
| avg_load * SCHED_LOAD_SCALE); |
| |
| if (local_group) { |
| this_load = avg_load; |
| this = group; |
| } else if (avg_load < min_load) { |
| min_load = avg_load; |
| idlest = group; |
| } |
| } while (group = group->next, group != sd->groups); |
| |
| if (!idlest || 100*this_load < imbalance*min_load) |
| return NULL; |
| return idlest; |
| } |
| |
| /* |
| * find_idlest_cpu - find the idlest cpu among the cpus in group. |
| */ |
| static int |
| find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) |
| { |
| unsigned long load, min_load = ULONG_MAX; |
| int idlest = -1; |
| int i; |
| |
| /* Traverse only the allowed CPUs */ |
| for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { |
| load = weighted_cpuload(i); |
| |
| if (load < min_load || (load == min_load && i == this_cpu)) { |
| min_load = load; |
| idlest = i; |
| } |
| } |
| |
| return idlest; |
| } |
| |
| /* |
| * sched_balance_self: balance the current task (running on cpu) in domains |
| * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and |
| * SD_BALANCE_EXEC. |
| * |
| * Balance, ie. select the least loaded group. |
| * |
| * Returns the target CPU number, or the same CPU if no balancing is needed. |
| * |
| * preempt must be disabled. |
| */ |
| static int sched_balance_self(int cpu, int flag) |
| { |
| struct task_struct *t = current; |
| struct sched_domain *tmp, *sd = NULL; |
| |
| for_each_domain(cpu, tmp) { |
| /* |
| * If power savings logic is enabled for a domain, stop there. |
| */ |
| if (tmp->flags & SD_POWERSAVINGS_BALANCE) |
| break; |
| if (tmp->flags & flag) |
| sd = tmp; |
| } |
| |
| if (sd) |
| update_shares(sd); |
| |
| while (sd) { |
| struct sched_group *group; |
| int new_cpu, weight; |
| |
| if (!(sd->flags & flag)) { |
| sd = sd->child; |
| continue; |
| } |
| |
| group = find_idlest_group(sd, t, cpu); |
| if (!group) { |
| sd = sd->child; |
| continue; |
| } |
| |
| new_cpu = find_idlest_cpu(group, t, cpu); |
| if (new_cpu == -1 || new_cpu == cpu) { |
| /* Now try balancing at a lower domain level of cpu */ |
| sd = sd->child; |
| continue; |
| } |
| |
| /* Now try balancing at a lower domain level of new_cpu */ |
| cpu = new_cpu; |
| weight = cpumask_weight(sched_domain_span(sd)); |
| sd = NULL; |
| for_each_domain(cpu, tmp) { |
| if (weight <= cpumask_weight(sched_domain_span(tmp))) |
| break; |
| if (tmp->flags & flag) |
| sd = tmp; |
| } |
| /* while loop will break here if sd == NULL */ |
| } |
| |
| return cpu; |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| /*** |
| * try_to_wake_up - wake up a thread |
| * @p: the to-be-woken-up thread |
| * @state: the mask of task states that can be woken |
| * @sync: do a synchronous wakeup? |
| * |
| * Put it on the run-queue if it's not already there. The "current" |
| * thread is always on the run-queue (except when the actual |
| * re-schedule is in progress), and as such you're allowed to do |
| * the simpler "current->state = TASK_RUNNING" to mark yourself |
| * runnable without the overhead of this. |
| * |
| * returns failure only if the task is already active. |
| */ |
| static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) |
| { |
| int cpu, orig_cpu, this_cpu, success = 0; |
| unsigned long flags; |
| long old_state; |
| struct rq *rq; |
| |
| if (!sched_feat(SYNC_WAKEUPS)) |
| sync = 0; |
| |
| #ifdef CONFIG_SMP |
| if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { |
| struct sched_domain *sd; |
| |
| this_cpu = raw_smp_processor_id(); |
| cpu = task_cpu(p); |
| |
| for_each_domain(this_cpu, sd) { |
| if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
| update_shares(sd); |
| break; |
| } |
| } |
| } |
| #endif |
| |
| smp_wmb(); |
| rq = task_rq_lock(p, &flags); |
| update_rq_clock(rq); |
| old_state = p->state; |
| if (!(old_state & state)) |
| goto out; |
| |
| if (p->se.on_rq) |
| goto out_running; |
| |
| cpu = task_cpu(p); |
| orig_cpu = cpu; |
| this_cpu = smp_processor_id(); |
| |
| #ifdef CONFIG_SMP |
| if (unlikely(task_running(rq, p))) |
| goto out_activate; |
| |
| cpu = p->sched_class->select_task_rq(p, sync); |
| if (cpu != orig_cpu) { |
| set_task_cpu(p, cpu); |
| task_rq_unlock(rq, &flags); |
| /* might preempt at this point */ |
| rq = task_rq_lock(p, &flags); |
| old_state = p->state; |
| if (!(old_state & state)) |
| goto out; |
| if (p->se.on_rq) |
| goto out_running; |
| |
| this_cpu = smp_processor_id(); |
| cpu = task_cpu(p); |
| } |
| |
| #ifdef CONFIG_SCHEDSTATS |
| schedstat_inc(rq, ttwu_count); |
| if (cpu == this_cpu) |
| schedstat_inc(rq, ttwu_local); |
| else { |
| struct sched_domain *sd; |
| for_each_domain(this_cpu, sd) { |
| if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
| schedstat_inc(sd, ttwu_wake_remote); |
| break; |
| } |
| } |
| } |
| #endif /* CONFIG_SCHEDSTATS */ |
| |
| out_activate: |
| #endif /* CONFIG_SMP */ |
| schedstat_inc(p, se.nr_wakeups); |
| if (sync) |
| schedstat_inc(p, se.nr_wakeups_sync); |
| if (orig_cpu != cpu) |
| schedstat_inc(p, se.nr_wakeups_migrate); |
| if (cpu == this_cpu) |
| schedstat_inc(p, se.nr_wakeups_local); |
| else |
| schedstat_inc(p, se.nr_wakeups_remote); |
| activate_task(rq, p, 1); |
| success = 1; |
| |
| /* |
| * Only attribute actual wakeups done by this task. |
| */ |
| if (!in_interrupt()) { |
| struct sched_entity *se = ¤t->se; |
| u64 sample = se->sum_exec_runtime; |
| |
| if (se->last_wakeup) |
| sample -= se->last_wakeup; |
| else |
| sample -= se->start_runtime; |
| update_avg(&se->avg_wakeup, sample); |
| |
| se->last_wakeup = se->sum_exec_runtime; |
| } |
| |
| out_running: |
| trace_sched_wakeup(rq, p, success); |
| check_preempt_curr(rq, p, sync); |
| |
| p->state = TASK_RUNNING; |
| #ifdef CONFIG_SMP |
| if (p->sched_class->task_wake_up) |
| p->sched_class->task_wake_up(rq, p); |
| #endif |
| out: |
| task_rq_unlock(rq, &flags); |
| |
| return success; |
| } |
| |
| int wake_up_process(struct task_struct *p) |
| { |
| return try_to_wake_up(p, TASK_ALL, 0); |
| } |
| EXPORT_SYMBOL(wake_up_process); |
| |
| int wake_up_state(struct task_struct *p, unsigned int state) |
| { |
| return try_to_wake_up(p, state, 0); |
| } |
| |
| /* |
| * Perform scheduler related setup for a newly forked process p. |
| * p is forked by current. |
| * |
| * __sched_fork() is basic setup used by init_idle() too: |
| */ |
| static void __sched_fork(struct task_struct *p) |
| { |
| p->se.exec_start = 0; |
| p->se.sum_exec_runtime = 0; |
| p->se.prev_sum_exec_runtime = 0; |
| p->se.last_wakeup = 0; |
| p->se.avg_overlap = 0; |
| p->se.start_runtime = 0; |
| p->se.avg_wakeup = sysctl_sched_wakeup_granularity; |
| |
| #ifdef CONFIG_SCHEDSTATS |
| p->se.wait_start = 0; |
| p->se.sum_sleep_runtime = 0; |
| p->se.sleep_start = 0; |
| p->se.block_start = 0; |
| p->se.sleep_max = 0; |
| p->se.block_max = 0; |
| p->se.exec_max = 0; |
| p->se.slice_max = 0; |
| p->se.wait_max = 0; |
| #endif |
| |
| INIT_LIST_HEAD(&p->rt.run_list); |
| p->se.on_rq = 0; |
| INIT_LIST_HEAD(&p->se.group_node); |
| |
| #ifdef CONFIG_PREEMPT_NOTIFIERS |
| INIT_HLIST_HEAD(&p->preempt_notifiers); |
| #endif |
| |
| /* |
| * We mark the process as running here, but have not actually |
| * inserted it onto the runqueue yet. This guarantees that |
| * nobody will actually run it, and a signal or other external |
| * event cannot wake it up and insert it on the runqueue either. |
| */ |
| p->state = TASK_RUNNING; |
| } |
| |
| /* |
| * fork()/clone()-time setup: |
| */ |
| void sched_fork(struct task_struct *p, int clone_flags) |
| { |
| int cpu = get_cpu(); |
| |
| __sched_fork(p); |
| |
| #ifdef CONFIG_SMP |
| cpu = sched_balance_self(cpu, SD_BALANCE_FORK); |
| #endif |
| set_task_cpu(p, cpu); |
| |
| /* |
| * Make sure we do not leak PI boosting priority to the child: |
| */ |
| p->prio = current->normal_prio; |
| if (!rt_prio(p->prio)) |
| p->sched_class = &fair_sched_class; |
| |
| #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
| if (likely(sched_info_on())) |
| memset(&p->sched_info, 0, sizeof(p->sched_info)); |
| #endif |
| #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
| p->oncpu = 0; |
| #endif |
| #ifdef CONFIG_PREEMPT |
| /* Want to start with kernel preemption disabled. */ |
| task_thread_info(p)->preempt_count = 1; |
| #endif |
| plist_node_init(&p->pushable_tasks, MAX_PRIO); |
| |
| put_cpu(); |
| } |
| |
| /* |
| * wake_up_new_task - wake up a newly created task for the first time. |
| * |
| * This function will do some initial scheduler statistics housekeeping |
| * that must be done for every newly created context, then puts the task |
| * on the runqueue and wakes it. |
| */ |
| void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) |
| { |
| unsigned long flags; |
| struct rq *rq; |
| |
| rq = task_rq_lock(p, &flags); |
| BUG_ON(p->state != TASK_RUNNING); |
| update_rq_clock(rq); |
| |
| p->prio = effective_prio(p); |
| |
| if (!p->sched_class->task_new || !current->se.on_rq) { |
| activate_task(rq, p, 0); |
| } else { |
| /* |
| * Let the scheduling class do new task startup |
| * management (if any): |
| */ |
| p->sched_class->task_new(rq, p); |
| inc_nr_running(rq); |
| } |
| trace_sched_wakeup_new(rq, p, 1); |
| check_preempt_curr(rq, p, 0); |
| #ifdef CONFIG_SMP |
| if (p->sched_class->task_wake_up) |
| p->sched_class->task_wake_up(rq, p); |
| #endif |
| task_rq_unlock(rq, &flags); |
| } |
| |
| #ifdef CONFIG_PREEMPT_NOTIFIERS |
| |
| /** |
| * preempt_notifier_register - tell me when current is being preempted & rescheduled |
| * @notifier: notifier struct to register |
| */ |
| void preempt_notifier_register(struct preempt_notifier *notifier) |
| { |
| hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); |
| } |
| EXPORT_SYMBOL_GPL(preempt_notifier_register); |
| |
| /** |
| * preempt_notifier_unregister - no longer interested in preemption notifications |
| * @notifier: notifier struct to unregister |
| * |
| * This is safe to call from within a preemption notifier. |
| */ |
| void preempt_notifier_unregister(struct preempt_notifier *notifier) |
| { |
| hlist_del(¬ifier->link); |
| } |
| EXPORT_SYMBOL_GPL(preempt_notifier_unregister); |
| |
| static void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
| { |
| struct preempt_notifier *notifier; |
| struct hlist_node *node; |
| |
| hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) |
| notifier->ops->sched_in(notifier, raw_smp_processor_id()); |
| } |
| |
| static void |
| fire_sched_out_preempt_notifiers(struct task_struct *curr, |
| struct task_struct *next) |
| { |
| struct preempt_notifier *notifier; |
| struct hlist_node *node; |
| |
| hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) |
| notifier->ops->sched_out(notifier, next); |
| } |
| |
| #else /* !CONFIG_PREEMPT_NOTIFIERS */ |
| |
| static void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
| { |
| } |
| |
| static void |
| fire_sched_out_preempt_notifiers(struct task_struct *curr, |
| struct task_struct *next) |
| { |
| } |
| |
| #endif /* CONFIG_PREEMPT_NOTIFIERS */ |
| |
| /** |
| * prepare_task_switch - prepare to switch tasks |
| * @rq: the runqueue preparing to switch |
| * @prev: the current task that is being switched out |
| * @next: the task we are going to switch to. |
| * |
| * This is called with the rq lock held and interrupts off. It must |
| * be paired with a subsequent finish_task_switch after the context |
| * switch. |
| * |
| * prepare_task_switch sets up locking and calls architecture specific |
| * hooks. |
| */ |
| static inline void |
| prepare_task_switch(struct rq *rq, struct task_struct *prev, |
| struct task_struct *next) |
| { |
| fire_sched_out_preempt_notifiers(prev, next); |
| prepare_lock_switch(rq, next); |
| prepare_arch_switch(next); |
| } |
| |
| /** |
| * finish_task_switch - clean up after a task-switch |
| * @rq: runqueue associated with task-switch |
| * @prev: the thread we just switched away from. |
| * |
| * finish_task_switch must be called after the context switch, paired |
| * with a prepare_task_switch call before the context switch. |
| * finish_task_switch will reconcile locking set up by prepare_task_switch, |
| * and do any other architecture-specific cleanup actions. |
| * |
| * Note that we may have delayed dropping an mm in context_switch(). If |
| * so, we finish that here outside of the runqueue lock. (Doing it |
| * with the lock held can cause deadlocks; see schedule() for |
| * details.) |
| */ |
| static void finish_task_switch(struct rq *rq, struct task_struct *prev) |
| __releases(rq->lock) |
| { |
| struct mm_struct *mm = rq->prev_mm; |
| long prev_state; |
| #ifdef CONFIG_SMP |
| int post_schedule = 0; |
| |
| if (current->sched_class->needs_post_schedule) |
| post_schedule = current->sched_class->needs_post_schedule(rq); |
| #endif |
| |
| rq->prev_mm = NULL; |
| |
| /* |
| * A task struct has one reference for the use as "current". |
| * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
| * schedule one last time. The schedule call will never return, and |
| * the scheduled task must drop that reference. |
| * The test for TASK_DEAD must occur while the runqueue locks are |
| * still held, otherwise prev could be scheduled on another cpu, die |
| * there before we look at prev->state, and then the reference would |
| * be dropped twice. |
| * Manfred Spraul <manfred@colorfullife.com> |
| */ |
| prev_state = prev->state; |
| finish_arch_switch(prev); |
| finish_lock_switch(rq, prev); |
| #ifdef CONFIG_SMP |
| if (post_schedule) |
| current->sched_class->post_schedule(rq); |
| #endif |
| |
| fire_sched_in_preempt_notifiers(current); |
| if (mm) |
| mmdrop(mm); |
| if (unlikely(prev_state == TASK_DEAD)) { |
| /* |
| * Remove function-return probe instances associated with this |
| * task and put them back on the free list. |
| */ |
| kprobe_flush_task(prev); |
| put_task_struct(prev); |
| } |
| } |
| |
| /** |
| * schedule_tail - first thing a freshly forked thread must call. |
| * @prev: the thread we just switched away from. |
| */ |
| asmlinkage void schedule_tail(struct task_struct *prev) |
| __releases(rq->lock) |
| { |
| struct rq *rq = this_rq(); |
| |
| finish_task_switch(rq, prev); |
| #ifdef __ARCH_WANT_UNLOCKED_CTXSW |
| /* In this case, finish_task_switch does not reenable preemption */ |
| preempt_enable(); |
| #endif |
| if (current->set_child_tid) |
| put_user(task_pid_vnr(current), current->set_child_tid); |
| } |
| |
| /* |
| * context_switch - switch to the new MM and the new |
| * thread's register state. |
| */ |
| static inline void |
| context_switch(struct rq *rq, struct task_struct *prev, |
| struct task_struct *next) |
| { |
| struct mm_struct *mm, *oldmm; |
| |
| prepare_task_switch(rq, prev, next); |
| trace_sched_switch(rq, prev, next); |
| mm = next->mm; |
| oldmm = prev->active_mm; |
| /* |
| * For paravirt, this is coupled with an exit in switch_to to |
| * combine the page table reload and the switch backend into |
| * one hypercall. |
| */ |
| arch_enter_lazy_cpu_mode(); |
| |
| if (unlikely(!mm)) { |
| next->active_mm = oldmm; |
| atomic_inc(&oldmm->mm_count); |
| enter_lazy_tlb(oldmm, next); |
| } else |
| switch_mm(oldmm, mm, next); |
| |
| if (unlikely(!prev->mm)) { |
| prev->active_mm = NULL; |
| rq->prev_mm = oldmm; |
| } |
| /* |
| * Since the runqueue lock will be released by the next |
| * task (which is an invalid locking op but in the case |
| * of the scheduler it's an obvious special-case), so we |
| * do an early lockdep release here: |
| */ |
| #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
| spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
| #endif |
| |
| /* Here we just switch the register state and the stack. */ |
| switch_to(prev, next, prev); |
| |
| barrier(); |
| /* |
| * this_rq must be evaluated again because prev may have moved |
| * CPUs since it called schedule(), thus the 'rq' on its stack |
| * frame will be invalid. |
| */ |
| finish_task_switch(this_rq(), prev); |
| } |
| |
| /* |
| * nr_running, nr_uninterruptible and nr_context_switches: |
| * |
| * externally visible scheduler statistics: current number of runnable |
| * threads, current number of uninterruptible-sleeping threads, total |
| * number of context switches performed since bootup. |
| */ |
| unsigned long nr_running(void) |
| { |
| unsigned long i, sum = 0; |
| |
| for_each_online_cpu(i) |
| sum += cpu_rq(i)->nr_running; |
| |
| return sum; |
| } |
| |
| unsigned long nr_uninterruptible(void) |
| { |
| unsigned long i, sum = 0; |
| |
| for_each_possible_cpu(i) |
| sum += cpu_rq(i)->nr_uninterruptible; |
| |
| /* |
| * Since we read the counters lockless, it might be slightly |
| * inaccurate. Do not allow it to go below zero though: |
| */ |
| if (unlikely((long)sum < 0)) |
| sum = 0; |
| |
| return sum; |
| } |
| |
| unsigned long long nr_context_switches(void) |
| { |
| int i; |
| unsigned long long sum = 0; |
| |
| for_each_possible_cpu(i) |
| sum += cpu_rq(i)->nr_switches; |
| |
| return sum; |
| } |
| |
| unsigned long nr_iowait(void) |
| { |
| unsigned long i, sum = 0; |
| |
| for_each_possible_cpu(i) |
| sum += atomic_read(&cpu_rq(i)->nr_iowait); |
| |
| return sum; |
| } |
| |
| unsigned long nr_active(void) |
| { |
| unsigned long i, running = 0, uninterruptible = 0; |
| |
| for_each_online_cpu(i) { |
| running += cpu_rq(i)->nr_running; |
| uninterruptible += cpu_rq(i)->nr_uninterruptible; |
| } |
| |
| if (unlikely((long)uninterruptible < 0)) |
| uninterruptible = 0; |
| |
| return running + uninterruptible; |
| } |
| |
| /* |
| * Update rq->cpu_load[] statistics. This function is usually called every |
| * scheduler tick (TICK_NSEC). |
| */ |
| static void update_cpu_load(struct rq *this_rq) |
| { |
| unsigned long this_load = this_rq->load.weight; |
| int i, scale; |
| |
| this_rq->nr_load_updates++; |
| |
| /* Update our load: */ |
| for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { |
| unsigned long old_load, new_load; |
| |
| /* scale is effectively 1 << i now, and >> i divides by scale */ |
| |
| old_load = this_rq->cpu_load[i]; |
| new_load = this_load; |
| /* |
| * Round up the averaging division if load is increasing. This |
| * prevents us from getting stuck on 9 if the load is 10, for |
| * example. |
| */ |
| if (new_load > old_load) |
| new_load += scale-1; |
| this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; |
| } |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| /* |
| * double_rq_lock - safely lock two runqueues |
| * |
| * Note this does not disable interrupts like task_rq_lock, |
| * you need to do so manually before calling. |
| */ |
| static void double_rq_lock(struct rq *rq1, struct rq *rq2) |
| __acquires(rq1->lock) |
| __acquires(rq2->lock) |
| { |
| BUG_ON(!irqs_disabled()); |
| if (rq1 == rq2) { |
| spin_lock(&rq1->lock); |
| __acquire(rq2->lock); /* Fake it out ;) */ |
| } else { |
| if (rq1 < rq2) { |
| spin_lock(&rq1->lock); |
| spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); |
| } else { |
| spin_lock(&rq2->lock); |
| spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); |
| } |
| } |
| update_rq_clock(rq1); |
| update_rq_clock(rq2); |
| } |
| |
| /* |
| * double_rq_unlock - safely unlock two runqueues |
| * |
| * Note this does not restore interrupts like task_rq_unlock, |
| * you need to do so manually after calling. |
| */ |
| static void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
| __releases(rq1->lock) |
| __releases(rq2->lock) |
| { |
| spin_unlock(&rq1->lock); |
| if (rq1 != rq2) |
| spin_unlock(&rq2->lock); |
| else |
| __release(rq2->lock); |
| } |
| |
| /* |
| * If dest_cpu is allowed for this process, migrate the task to it. |
| * This is accomplished by forcing the cpu_allowed mask to only |
| * allow dest_cpu, which will force the cpu onto dest_cpu. Then |
| * the cpu_allowed mask is restored. |
| */ |
| static void sched_migrate_task(struct task_struct *p, int dest_cpu) |
| { |
| struct migration_req req; |
| unsigned long flags; |
| struct rq *rq; |
| |
| rq = task_rq_lock(p, &flags); |
| if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) |
| || unlikely(!cpu_active(dest_cpu))) |
| goto out; |
| |
| /* force the process onto the specified CPU */ |
| if (migrate_task(p, dest_cpu, &req)) { |
| /* Need to wait for migration thread (might exit: take ref). */ |
| struct task_struct *mt = rq->migration_thread; |
| |
| get_task_struct(mt); |
| task_rq_unlock(rq, &flags); |
| wake_up_process(mt); |
| put_task_struct(mt); |
| wait_for_completion(&req.done); |
| |
| return; |
| } |
| out: |
| task_rq_unlock(rq, &flags); |
| } |
| |
| /* |
| * sched_exec - execve() is a valuable balancing opportunity, because at |
| * this point the task has the smallest effective memory and cache footprint. |
| */ |
| void sched_exec(void) |
| { |
| int new_cpu, this_cpu = get_cpu(); |
| new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); |
| put_cpu(); |
| if (new_cpu != this_cpu) |
| sched_migrate_task(current, new_cpu); |
| } |
| |
| /* |
| * pull_task - move a task from a remote runqueue to the local runqueue. |
| * Both runqueues must be locked. |
| */ |
| static void pull_task(struct rq *src_rq, struct task_struct *p, |
| struct rq *this_rq, int this_cpu) |
| { |
| deactivate_task(src_rq, p, 0); |
| set_task_cpu(p, this_cpu); |
| activate_task(this_rq, p, 0); |
| /* |
| * Note that idle threads have a prio of MAX_PRIO, for this test |
| * to be always true for them. |
| */ |
| check_preempt_curr(this_rq, p, 0); |
| } |
| |
| /* |
| * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? |
| */ |
| static |
| int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, |
| struct sched_domain *sd, enum cpu_idle_type idle, |
| int *all_pinned) |
| { |
| int tsk_cache_hot = 0; |
| /* |
| * We do not migrate tasks that are: |
| * 1) running (obviously), or |
| * 2) cannot be migrated to this CPU due to cpus_allowed, or |
| * 3) are cache-hot on their current CPU. |
| */ |
| if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { |
| schedstat_inc(p, se.nr_failed_migrations_affine); |
| return 0; |
| } |
| *all_pinned = 0; |
| |
| if (task_running(rq, p)) { |
| schedstat_inc(p, se.nr_failed_migrations_running); |
| return 0; |
| } |
| |
| /* |
| * Aggressive migration if: |
| * 1) task is cache cold, or |
| * 2) too many balance attempts have failed. |
| */ |
| |
| tsk_cache_hot = task_hot(p, rq->clock, sd); |
| if (!tsk_cache_hot || |
| sd->nr_balance_failed > sd->cache_nice_tries) { |
| #ifdef CONFIG_SCHEDSTATS |
| if (tsk_cache_hot) { |
| schedstat_inc(sd, lb_hot_gained[idle]); |
| schedstat_inc(p, se.nr_forced_migrations); |
| } |
| #endif |
| return 1; |
| } |
| |
| if (tsk_cache_hot) { |
| schedstat_inc(p, se.nr_failed_migrations_hot); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static unsigned long |
| balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, |
| unsigned long max_load_move, struct sched_domain *sd, |
| enum cpu_idle_type idle, int *all_pinned, |
| int *this_best_prio, struct rq_iterator *iterator) |
| { |
| int loops = 0, pulled = 0, pinned = 0; |
| struct task_struct *p; |
| long rem_load_move = max_load_move; |
| |
| if (max_load_move == 0) |
| goto out; |
| |
| pinned = 1; |
| |
| /* |
| * Start the load-balancing iterator: |
| */ |
| p = iterator->start(iterator->arg); |
| next: |
| if (!p || loops++ > sysctl_sched_nr_migrate) |
| goto out; |
| |
| if ((p->se.load.weight >> 1) > rem_load_move || |
| !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { |
| p = iterator->next(iterator->arg); |
| goto next; |
| } |
| |
| pull_task(busiest, p, this_rq, this_cpu); |
| pulled++; |
| rem_load_move -= p->se.load.weight; |
| |
| #ifdef CONFIG_PREEMPT |
| /* |
| * NEWIDLE balancing is a source of latency, so preemptible kernels |
| * will stop after the first task is pulled to minimize the critical |
| * section. |
| */ |
| if (idle == CPU_NEWLY_IDLE) |
| goto out; |
| #endif |
| |
| /* |
| * We only want to steal up to the prescribed amount of weighted load. |
| */ |
| if (rem_load_move > 0) { |
| if (p->prio < *this_best_prio) |
| *this_best_prio = p->prio; |
| p = iterator->next(iterator->arg); |
| goto next; |
| } |
| out: |
| /* |
| * Right now, this is one of only two places pull_task() is called, |
| * so we can safely collect pull_task() stats here rather than |
| * inside pull_task(). |
| */ |
| schedstat_add(sd, lb_gained[idle], pulled); |
| |
| if (all_pinned) |
| *all_pinned = pinned; |
| |
| return max_load_move - rem_load_move; |
| } |
| |
| /* |
| * move_tasks tries to move up to max_load_move weighted load from busiest to |
| * this_rq, as part of a balancing operation within domain "sd". |
| * Returns 1 if successful and 0 otherwise. |
| * |
| * Called with both runqueues locked. |
| */ |
| static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, |
| unsigned long max_load_move, |
| struct sched_domain *sd, enum cpu_idle_type idle, |
| int *all_pinned) |
| { |
| const struct sched_class *class = sched_class_highest; |
| unsigned long total_load_moved = 0; |
| int this_best_prio = this_rq->curr->prio; |
| |
| do { |
| total_load_moved += |
| class->load_balance(this_rq, this_cpu, busiest, |
| max_load_move - total_load_moved, |
| sd, idle, all_pinned, &this_best_prio); |
| class = class->next; |
| |
| #ifdef CONFIG_PREEMPT |
| /* |
| * NEWIDLE balancing is a source of latency, so preemptible |
| * kernels will stop after the first task is pulled to minimize |
| * the critical section. |
| */ |
| if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) |
| break; |
| #endif |
| } while (class && max_load_move > total_load_moved); |
| |
| return total_load_moved > 0; |
| } |
| |
| static int |
| iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, |
| struct sched_domain *sd, enum cpu_idle_type idle, |
| struct rq_iterator *iterator) |
| { |
| struct task_struct *p = iterator->start(iterator->arg); |
| int pinned = 0; |
| |
| while (p) { |
| if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { |
| pull_task(busiest, p, this_rq, this_cpu); |
| /* |
| * Right now, this is only the second place pull_task() |
| * is called, so we can safely collect pull_task() |
| * stats here rather than inside pull_task(). |
| */ |
| schedstat_inc(sd, lb_gained[idle]); |
| |
| return 1; |
| } |
| p = iterator->next(iterator->arg); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * move_one_task tries to move exactly one task from busiest to this_rq, as |
| * part of active balancing operations within "domain". |
| * Returns 1 if successful and 0 otherwise. |
| * |
| * Called with both runqueues locked. |
| */ |
| static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, |
| struct sched_domain *sd, enum cpu_idle_type idle) |
| { |
| const struct sched_class *class; |
| |
| for (class = sched_class_highest; class; class = class->next) |
| if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) |
| return 1; |
| |
| return 0; |
| } |
| /********** Helpers for find_busiest_group ************************/ |
| /* |
| * sd_lb_stats - Structure to store the statistics of a sched_domain |
| * during load balancing. |
| */ |
| struct sd_lb_stats { |
| struct sched_group *busiest; /* Busiest group in this sd */ |
| struct sched_group *this; /* Local group in this sd */ |
| unsigned long total_load; /* Total load of all groups in sd */ |
| unsigned long total_pwr; /* Total power of all groups in sd */ |
| unsigned long avg_load; /* Average load across all groups in sd */ |
| |
| /** Statistics of this group */ |
| unsigned long this_load; |
| unsigned long this_load_per_task; |
| unsigned long this_nr_running; |
| |
| /* Statistics of the busiest group */ |
| unsigned long max_load; |
| unsigned long busiest_load_per_task; |
| unsigned long busiest_nr_running; |
| |
| int group_imb; /* Is there imbalance in this sd */ |
| #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
| int power_savings_balance; /* Is powersave balance needed for this sd */ |
| struct sched_group *group_min; /* Least loaded group in sd */ |
| struct sched_group *group_leader; /* Group which relieves group_min */ |
| unsigned long min_load_per_task; /* load_per_task in group_min */ |
| unsigned long leader_nr_running; /* Nr running of group_leader */ |
| unsigned long min_nr_running; /* Nr running of group_min */ |
| #endif |
| }; |
| |
| /* |
| * sg_lb_stats - stats of a sched_group required for load_balancing |
| */ |
| struct sg_lb_stats { |
| unsigned long avg_load; /*Avg load across the CPUs of the group */ |
| unsigned long group_load; /* Total load over the CPUs of the group */ |
| unsigned long sum_nr_running; /* Nr tasks running in the group */ |
| unsigned long sum_weighted_load; /* Weighted load of group's tasks */ |
| unsigned long group_capacity; |
| int group_imb; /* Is there an imbalance in the group ? */ |
| }; |
| |
| /** |
| * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. |
| * @group: The group whose first cpu is to be returned. |
| */ |
| static inline unsigned int group_first_cpu(struct sched_group *group) |
| { |
| return cpumask_first(sched_group_cpus(group)); |
| } |
| |
| /** |
| * get_sd_load_idx - Obtain the load index for a given sched domain. |
| * @sd: The sched_domain whose load_idx is to be obtained. |
| * @idle: The Idle status of the CPU for whose sd load_icx is obtained. |
| */ |
| static inline int get_sd_load_idx(struct sched_domain *sd, |
| enum cpu_idle_type idle) |
| { |
| int load_idx; |
| |
| switch (idle) { |
| case CPU_NOT_IDLE: |
| load_idx = sd->busy_idx; |
| break; |
| |
| case CPU_NEWLY_IDLE: |
| load_idx = sd->newidle_idx; |
| break; |
| default: |
| load_idx = sd->idle_idx; |
| break; |
| } |
| |
| return load_idx; |
| } |
| |
| |
| #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
| /** |
| * init_sd_power_savings_stats - Initialize power savings statistics for |
| * the given sched_domain, during load balancing. |
| * |
| * @sd: Sched domain whose power-savings statistics are to be initialized. |
| * @sds: Variable containing the statistics for sd. |
| * @idle: Idle status of the CPU at which we're performing load-balancing. |
| */ |
| static inline void init_sd_power_savings_stats(struct sched_domain *sd, |
| struct sd_lb_stats *sds, enum cpu_idle_type idle) |
| { |
| /* |
| * Busy processors will not participate in power savings |
| * balance. |
| */ |
| if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) |
| sds->power_savings_balance = 0; |
| else { |
| sds->power_savings_balance = 1; |
| sds->min_nr_running = ULONG_MAX; |
| sds->leader_nr_running = 0; |
| } |
| } |
| |
| /** |
| * update_sd_power_savings_stats - Update the power saving stats for a |
| * sched_domain while performing load balancing. |
| * |
| * @group: sched_group belonging to the sched_domain under consideration. |
| * @sds: Variable containing the statistics of the sched_domain |
| * @local_group: Does group contain the CPU for which we're performing |
| * load balancing ? |
| * @sgs: Variable containing the statistics of the group. |
| */ |
| static inline void update_sd_power_savings_stats(struct sched_group *group, |
| struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) |
| { |
| |
| if (!sds->power_savings_balance) |
| return; |
| |
| /* |
| * If the local group is idle or completely loaded |
| * no need to do power savings balance at this domain |
| */ |
| if (local_group && (sds->this_nr_running >= sgs->group_capacity || |
| !sds->this_nr_running)) |
| sds->power_savings_balance = 0; |
| |
| /* |
| * If a group is already running at full capacity or idle, |
| * don't include that group in power savings calculations |
| */ |
| if (!sds->power_savings_balance || |
| sgs->sum_nr_running >= sgs->group_capacity || |
| !sgs->sum_nr_running) |
| return; |
| |
| /* |
| * Calculate the group which has the least non-idle load. |
| * This is the group from where we need to pick up the load |
| * for saving power |
| */ |
| if ((sgs->sum_nr_running < sds->min_nr_running) || |
| (sgs->sum_nr_running == sds->min_nr_running && |
| group_first_cpu(group) > group_first_cpu(sds->group_min))) { |
| sds->group_min = group; |
| sds->min_nr_running = sgs->sum_nr_running; |
| sds->min_load_per_task = sgs->sum_weighted_load / |
| sgs->sum_nr_running; |
| } |
| |
| /* |
| * Calculate the group which is almost near its |
|