blob: af0bcf95ee8a1d11dc2bb5e0e6cbb2292a2a8421 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* AD5933 AD5934 Impedance Converter, Network Analyzer
*
* Copyright 2011 Analog Devices Inc.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regulator/consumer.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/kfifo_buf.h>
#include <linux/iio/sysfs.h>
/* AD5933/AD5934 Registers */
#define AD5933_REG_CONTROL_HB 0x80 /* R/W, 1 byte */
#define AD5933_REG_CONTROL_LB 0x81 /* R/W, 1 byte */
#define AD5933_REG_FREQ_START 0x82 /* R/W, 3 bytes */
#define AD5933_REG_FREQ_INC 0x85 /* R/W, 3 bytes */
#define AD5933_REG_INC_NUM 0x88 /* R/W, 2 bytes, 9 bit */
#define AD5933_REG_SETTLING_CYCLES 0x8A /* R/W, 2 bytes */
#define AD5933_REG_STATUS 0x8F /* R, 1 byte */
#define AD5933_REG_TEMP_DATA 0x92 /* R, 2 bytes*/
#define AD5933_REG_REAL_DATA 0x94 /* R, 2 bytes*/
#define AD5933_REG_IMAG_DATA 0x96 /* R, 2 bytes*/
/* AD5933_REG_CONTROL_HB Bits */
#define AD5933_CTRL_INIT_START_FREQ (0x1 << 4)
#define AD5933_CTRL_START_SWEEP (0x2 << 4)
#define AD5933_CTRL_INC_FREQ (0x3 << 4)
#define AD5933_CTRL_REPEAT_FREQ (0x4 << 4)
#define AD5933_CTRL_MEASURE_TEMP (0x9 << 4)
#define AD5933_CTRL_POWER_DOWN (0xA << 4)
#define AD5933_CTRL_STANDBY (0xB << 4)
#define AD5933_CTRL_RANGE_2000mVpp (0x0 << 1)
#define AD5933_CTRL_RANGE_200mVpp (0x1 << 1)
#define AD5933_CTRL_RANGE_400mVpp (0x2 << 1)
#define AD5933_CTRL_RANGE_1000mVpp (0x3 << 1)
#define AD5933_CTRL_RANGE(x) ((x) << 1)
#define AD5933_CTRL_PGA_GAIN_1 (0x1 << 0)
#define AD5933_CTRL_PGA_GAIN_5 (0x0 << 0)
/* AD5933_REG_CONTROL_LB Bits */
#define AD5933_CTRL_RESET (0x1 << 4)
#define AD5933_CTRL_INT_SYSCLK (0x0 << 3)
#define AD5933_CTRL_EXT_SYSCLK (0x1 << 3)
/* AD5933_REG_STATUS Bits */
#define AD5933_STAT_TEMP_VALID (0x1 << 0)
#define AD5933_STAT_DATA_VALID (0x1 << 1)
#define AD5933_STAT_SWEEP_DONE (0x1 << 2)
/* I2C Block Commands */
#define AD5933_I2C_BLOCK_WRITE 0xA0
#define AD5933_I2C_BLOCK_READ 0xA1
#define AD5933_I2C_ADDR_POINTER 0xB0
/* Device Specs */
#define AD5933_INT_OSC_FREQ_Hz 16776000
#define AD5933_MAX_OUTPUT_FREQ_Hz 100000
#define AD5933_MAX_RETRIES 100
#define AD5933_OUT_RANGE 1
#define AD5933_OUT_RANGE_AVAIL 2
#define AD5933_OUT_SETTLING_CYCLES 3
#define AD5933_IN_PGA_GAIN 4
#define AD5933_IN_PGA_GAIN_AVAIL 5
#define AD5933_FREQ_POINTS 6
#define AD5933_POLL_TIME_ms 10
#define AD5933_INIT_EXCITATION_TIME_ms 100
struct ad5933_state {
struct i2c_client *client;
struct regulator *reg;
struct clk *mclk;
struct delayed_work work;
struct mutex lock; /* Protect sensor state */
unsigned long mclk_hz;
unsigned char ctrl_hb;
unsigned char ctrl_lb;
unsigned int range_avail[4];
unsigned short vref_mv;
unsigned short settling_cycles;
unsigned short freq_points;
unsigned int freq_start;
unsigned int freq_inc;
unsigned int state;
unsigned int poll_time_jiffies;
};
#define AD5933_CHANNEL(_type, _extend_name, _info_mask_separate, _address, \
_scan_index, _realbits) { \
.type = (_type), \
.extend_name = (_extend_name), \
.info_mask_separate = (_info_mask_separate), \
.address = (_address), \
.scan_index = (_scan_index), \
.scan_type = { \
.sign = 's', \
.realbits = (_realbits), \
.storagebits = 16, \
}, \
}
static const struct iio_chan_spec ad5933_channels[] = {
AD5933_CHANNEL(IIO_TEMP, NULL, BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE), AD5933_REG_TEMP_DATA, -1, 14),
/* Ring Channels */
AD5933_CHANNEL(IIO_VOLTAGE, "real", 0, AD5933_REG_REAL_DATA, 0, 16),
AD5933_CHANNEL(IIO_VOLTAGE, "imag", 0, AD5933_REG_IMAG_DATA, 1, 16),
};
static int ad5933_i2c_write(struct i2c_client *client, u8 reg, u8 len, u8 *data)
{
int ret;
while (len--) {
ret = i2c_smbus_write_byte_data(client, reg++, *data++);
if (ret < 0) {
dev_err(&client->dev, "I2C write error\n");
return ret;
}
}
return 0;
}
static int ad5933_i2c_read(struct i2c_client *client, u8 reg, u8 len, u8 *data)
{
int ret;
while (len--) {
ret = i2c_smbus_read_byte_data(client, reg++);
if (ret < 0) {
dev_err(&client->dev, "I2C read error\n");
return ret;
}
*data++ = ret;
}
return 0;
}
static int ad5933_cmd(struct ad5933_state *st, unsigned char cmd)
{
unsigned char dat = st->ctrl_hb | cmd;
return ad5933_i2c_write(st->client,
AD5933_REG_CONTROL_HB, 1, &dat);
}
static int ad5933_reset(struct ad5933_state *st)
{
unsigned char dat = st->ctrl_lb | AD5933_CTRL_RESET;
return ad5933_i2c_write(st->client,
AD5933_REG_CONTROL_LB, 1, &dat);
}
static int ad5933_wait_busy(struct ad5933_state *st, unsigned char event)
{
unsigned char val, timeout = AD5933_MAX_RETRIES;
int ret;
while (timeout--) {
ret = ad5933_i2c_read(st->client, AD5933_REG_STATUS, 1, &val);
if (ret < 0)
return ret;
if (val & event)
return val;
cpu_relax();
mdelay(1);
}
return -EAGAIN;
}
static int ad5933_set_freq(struct ad5933_state *st,
unsigned int reg, unsigned long freq)
{
unsigned long long freqreg;
union {
__be32 d32;
u8 d8[4];
} dat;
freqreg = (u64)freq * (u64)(1 << 27);
do_div(freqreg, st->mclk_hz / 4);
switch (reg) {
case AD5933_REG_FREQ_START:
st->freq_start = freq;
break;
case AD5933_REG_FREQ_INC:
st->freq_inc = freq;
break;
default:
return -EINVAL;
}
dat.d32 = cpu_to_be32(freqreg);
return ad5933_i2c_write(st->client, reg, 3, &dat.d8[1]);
}
static int ad5933_setup(struct ad5933_state *st)
{
__be16 dat;
int ret;
ret = ad5933_reset(st);
if (ret < 0)
return ret;
ret = ad5933_set_freq(st, AD5933_REG_FREQ_START, 10000);
if (ret < 0)
return ret;
ret = ad5933_set_freq(st, AD5933_REG_FREQ_INC, 200);
if (ret < 0)
return ret;
st->settling_cycles = 10;
dat = cpu_to_be16(st->settling_cycles);
ret = ad5933_i2c_write(st->client,
AD5933_REG_SETTLING_CYCLES,
2, (u8 *)&dat);
if (ret < 0)
return ret;
st->freq_points = 100;
dat = cpu_to_be16(st->freq_points);
return ad5933_i2c_write(st->client, AD5933_REG_INC_NUM, 2, (u8 *)&dat);
}
static void ad5933_calc_out_ranges(struct ad5933_state *st)
{
int i;
unsigned int normalized_3v3[4] = {1980, 198, 383, 970};
for (i = 0; i < 4; i++)
st->range_avail[i] = normalized_3v3[i] * st->vref_mv / 3300;
}
/*
* handles: AD5933_REG_FREQ_START and AD5933_REG_FREQ_INC
*/
static ssize_t ad5933_show_frequency(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad5933_state *st = iio_priv(indio_dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int ret;
unsigned long long freqreg;
union {
__be32 d32;
u8 d8[4];
} dat;
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = ad5933_i2c_read(st->client, this_attr->address, 3, &dat.d8[1]);
iio_device_release_direct_mode(indio_dev);
if (ret < 0)
return ret;
freqreg = be32_to_cpu(dat.d32) & 0xFFFFFF;
freqreg = (u64)freqreg * (u64)(st->mclk_hz / 4);
do_div(freqreg, BIT(27));
return sprintf(buf, "%d\n", (int)freqreg);
}
static ssize_t ad5933_store_frequency(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad5933_state *st = iio_priv(indio_dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
unsigned long val;
int ret;
ret = kstrtoul(buf, 10, &val);
if (ret)
return ret;
if (val > AD5933_MAX_OUTPUT_FREQ_Hz)
return -EINVAL;
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = ad5933_set_freq(st, this_attr->address, val);
iio_device_release_direct_mode(indio_dev);
return ret ? ret : len;
}
static IIO_DEVICE_ATTR(out_altvoltage0_frequency_start, 0644,
ad5933_show_frequency,
ad5933_store_frequency,
AD5933_REG_FREQ_START);
static IIO_DEVICE_ATTR(out_altvoltage0_frequency_increment, 0644,
ad5933_show_frequency,
ad5933_store_frequency,
AD5933_REG_FREQ_INC);
static ssize_t ad5933_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad5933_state *st = iio_priv(indio_dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int ret = 0, len = 0;
mutex_lock(&st->lock);
switch ((u32)this_attr->address) {
case AD5933_OUT_RANGE:
len = sprintf(buf, "%u\n",
st->range_avail[(st->ctrl_hb >> 1) & 0x3]);
break;
case AD5933_OUT_RANGE_AVAIL:
len = sprintf(buf, "%u %u %u %u\n", st->range_avail[0],
st->range_avail[3], st->range_avail[2],
st->range_avail[1]);
break;
case AD5933_OUT_SETTLING_CYCLES:
len = sprintf(buf, "%d\n", st->settling_cycles);
break;
case AD5933_IN_PGA_GAIN:
len = sprintf(buf, "%s\n",
(st->ctrl_hb & AD5933_CTRL_PGA_GAIN_1) ?
"1" : "0.2");
break;
case AD5933_IN_PGA_GAIN_AVAIL:
len = sprintf(buf, "1 0.2\n");
break;
case AD5933_FREQ_POINTS:
len = sprintf(buf, "%d\n", st->freq_points);
break;
default:
ret = -EINVAL;
}
mutex_unlock(&st->lock);
return ret ? ret : len;
}
static ssize_t ad5933_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad5933_state *st = iio_priv(indio_dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
u16 val;
int i, ret = 0;
__be16 dat;
if (this_attr->address != AD5933_IN_PGA_GAIN) {
ret = kstrtou16(buf, 10, &val);
if (ret)
return ret;
}
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
mutex_lock(&st->lock);
switch ((u32)this_attr->address) {
case AD5933_OUT_RANGE:
ret = -EINVAL;
for (i = 0; i < 4; i++)
if (val == st->range_avail[i]) {
st->ctrl_hb &= ~AD5933_CTRL_RANGE(0x3);
st->ctrl_hb |= AD5933_CTRL_RANGE(i);
ret = ad5933_cmd(st, 0);
break;
}
break;
case AD5933_IN_PGA_GAIN:
if (sysfs_streq(buf, "1")) {
st->ctrl_hb |= AD5933_CTRL_PGA_GAIN_1;
} else if (sysfs_streq(buf, "0.2")) {
st->ctrl_hb &= ~AD5933_CTRL_PGA_GAIN_1;
} else {
ret = -EINVAL;
break;
}
ret = ad5933_cmd(st, 0);
break;
case AD5933_OUT_SETTLING_CYCLES:
val = clamp(val, (u16)0, (u16)0x7FF);
st->settling_cycles = val;
/* 2x, 4x handling, see datasheet */
if (val > 1022)
val = (val >> 2) | (3 << 9);
else if (val > 511)
val = (val >> 1) | BIT(9);
dat = cpu_to_be16(val);
ret = ad5933_i2c_write(st->client,
AD5933_REG_SETTLING_CYCLES,
2, (u8 *)&dat);
break;
case AD5933_FREQ_POINTS:
val = clamp(val, (u16)0, (u16)511);
st->freq_points = val;
dat = cpu_to_be16(val);
ret = ad5933_i2c_write(st->client, AD5933_REG_INC_NUM, 2,
(u8 *)&dat);
break;
default:
ret = -EINVAL;
}
mutex_unlock(&st->lock);
iio_device_release_direct_mode(indio_dev);
return ret ? ret : len;
}
static IIO_DEVICE_ATTR(out_altvoltage0_raw, 0644,
ad5933_show,
ad5933_store,
AD5933_OUT_RANGE);
static IIO_DEVICE_ATTR(out_altvoltage0_scale_available, 0444,
ad5933_show,
NULL,
AD5933_OUT_RANGE_AVAIL);
static IIO_DEVICE_ATTR(in_voltage0_scale, 0644,
ad5933_show,
ad5933_store,
AD5933_IN_PGA_GAIN);
static IIO_DEVICE_ATTR(in_voltage0_scale_available, 0444,
ad5933_show,
NULL,
AD5933_IN_PGA_GAIN_AVAIL);
static IIO_DEVICE_ATTR(out_altvoltage0_frequency_points, 0644,
ad5933_show,
ad5933_store,
AD5933_FREQ_POINTS);
static IIO_DEVICE_ATTR(out_altvoltage0_settling_cycles, 0644,
ad5933_show,
ad5933_store,
AD5933_OUT_SETTLING_CYCLES);
/*
* note:
* ideally we would handle the scale attributes via the iio_info
* (read|write)_raw methods, however this part is a untypical since we
* don't create dedicated sysfs channel attributes for out0 and in0.
*/
static struct attribute *ad5933_attributes[] = {
&iio_dev_attr_out_altvoltage0_raw.dev_attr.attr,
&iio_dev_attr_out_altvoltage0_scale_available.dev_attr.attr,
&iio_dev_attr_out_altvoltage0_frequency_start.dev_attr.attr,
&iio_dev_attr_out_altvoltage0_frequency_increment.dev_attr.attr,
&iio_dev_attr_out_altvoltage0_frequency_points.dev_attr.attr,
&iio_dev_attr_out_altvoltage0_settling_cycles.dev_attr.attr,
&iio_dev_attr_in_voltage0_scale.dev_attr.attr,
&iio_dev_attr_in_voltage0_scale_available.dev_attr.attr,
NULL
};
static const struct attribute_group ad5933_attribute_group = {
.attrs = ad5933_attributes,
};
static int ad5933_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long m)
{
struct ad5933_state *st = iio_priv(indio_dev);
__be16 dat;
int ret;
switch (m) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = ad5933_cmd(st, AD5933_CTRL_MEASURE_TEMP);
if (ret < 0)
goto out;
ret = ad5933_wait_busy(st, AD5933_STAT_TEMP_VALID);
if (ret < 0)
goto out;
ret = ad5933_i2c_read(st->client,
AD5933_REG_TEMP_DATA,
2, (u8 *)&dat);
if (ret < 0)
goto out;
iio_device_release_direct_mode(indio_dev);
*val = sign_extend32(be16_to_cpu(dat), 13);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = 1000;
*val2 = 5;
return IIO_VAL_FRACTIONAL_LOG2;
}
return -EINVAL;
out:
iio_device_release_direct_mode(indio_dev);
return ret;
}
static const struct iio_info ad5933_info = {
.read_raw = ad5933_read_raw,
.attrs = &ad5933_attribute_group,
};
static int ad5933_ring_preenable(struct iio_dev *indio_dev)
{
struct ad5933_state *st = iio_priv(indio_dev);
int ret;
if (bitmap_empty(indio_dev->active_scan_mask, indio_dev->masklength))
return -EINVAL;
ret = ad5933_reset(st);
if (ret < 0)
return ret;
ret = ad5933_cmd(st, AD5933_CTRL_STANDBY);
if (ret < 0)
return ret;
ret = ad5933_cmd(st, AD5933_CTRL_INIT_START_FREQ);
if (ret < 0)
return ret;
st->state = AD5933_CTRL_INIT_START_FREQ;
return 0;
}
static int ad5933_ring_postenable(struct iio_dev *indio_dev)
{
struct ad5933_state *st = iio_priv(indio_dev);
/*
* AD5933_CTRL_INIT_START_FREQ:
* High Q complex circuits require a long time to reach steady state.
* To facilitate the measurement of such impedances, this mode allows
* the user full control of the settling time requirement before
* entering start frequency sweep mode where the impedance measurement
* takes place. In this mode the impedance is excited with the
* programmed start frequency (ad5933_ring_preenable),
* but no measurement takes place.
*/
schedule_delayed_work(&st->work,
msecs_to_jiffies(AD5933_INIT_EXCITATION_TIME_ms));
return 0;
}
static int ad5933_ring_postdisable(struct iio_dev *indio_dev)
{
struct ad5933_state *st = iio_priv(indio_dev);
cancel_delayed_work_sync(&st->work);
return ad5933_cmd(st, AD5933_CTRL_POWER_DOWN);
}
static const struct iio_buffer_setup_ops ad5933_ring_setup_ops = {
.preenable = ad5933_ring_preenable,
.postenable = ad5933_ring_postenable,
.postdisable = ad5933_ring_postdisable,
};
static int ad5933_register_ring_funcs_and_init(struct iio_dev *indio_dev)
{
struct iio_buffer *buffer;
buffer = iio_kfifo_allocate();
if (!buffer)
return -ENOMEM;
iio_device_attach_buffer(indio_dev, buffer);
/* Ring buffer functions - here trigger setup related */
indio_dev->setup_ops = &ad5933_ring_setup_ops;
return 0;
}
static void ad5933_work(struct work_struct *work)
{
struct ad5933_state *st = container_of(work,
struct ad5933_state, work.work);
struct iio_dev *indio_dev = i2c_get_clientdata(st->client);
__be16 buf[2];
int val[2];
unsigned char status;
int ret;
if (st->state == AD5933_CTRL_INIT_START_FREQ) {
/* start sweep */
ad5933_cmd(st, AD5933_CTRL_START_SWEEP);
st->state = AD5933_CTRL_START_SWEEP;
schedule_delayed_work(&st->work, st->poll_time_jiffies);
return;
}
ret = ad5933_i2c_read(st->client, AD5933_REG_STATUS, 1, &status);
if (ret)
return;
if (status & AD5933_STAT_DATA_VALID) {
int scan_count = bitmap_weight(indio_dev->active_scan_mask,
indio_dev->masklength);
ret = ad5933_i2c_read(st->client,
test_bit(1, indio_dev->active_scan_mask) ?
AD5933_REG_REAL_DATA : AD5933_REG_IMAG_DATA,
scan_count * 2, (u8 *)buf);
if (ret)
return;
if (scan_count == 2) {
val[0] = be16_to_cpu(buf[0]);
val[1] = be16_to_cpu(buf[1]);
} else {
val[0] = be16_to_cpu(buf[0]);
}
iio_push_to_buffers(indio_dev, val);
} else {
/* no data available - try again later */
schedule_delayed_work(&st->work, st->poll_time_jiffies);
return;
}
if (status & AD5933_STAT_SWEEP_DONE) {
/*
* last sample received - power down do
* nothing until the ring enable is toggled
*/
ad5933_cmd(st, AD5933_CTRL_POWER_DOWN);
} else {
/* we just received a valid datum, move on to the next */
ad5933_cmd(st, AD5933_CTRL_INC_FREQ);
schedule_delayed_work(&st->work, st->poll_time_jiffies);
}
}
static int ad5933_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int ret;
struct ad5933_state *st;
struct iio_dev *indio_dev;
unsigned long ext_clk_hz = 0;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
st->client = client;
mutex_init(&st->lock);
st->reg = devm_regulator_get(&client->dev, "vdd");
if (IS_ERR(st->reg))
return PTR_ERR(st->reg);
ret = regulator_enable(st->reg);
if (ret) {
dev_err(&client->dev, "Failed to enable specified VDD supply\n");
return ret;
}
ret = regulator_get_voltage(st->reg);
if (ret < 0)
goto error_disable_reg;
st->vref_mv = ret / 1000;
st->mclk = devm_clk_get(&client->dev, "mclk");
if (IS_ERR(st->mclk) && PTR_ERR(st->mclk) != -ENOENT) {
ret = PTR_ERR(st->mclk);
goto error_disable_reg;
}
if (!IS_ERR(st->mclk)) {
ret = clk_prepare_enable(st->mclk);
if (ret < 0)
goto error_disable_reg;
ext_clk_hz = clk_get_rate(st->mclk);
}
if (ext_clk_hz) {
st->mclk_hz = ext_clk_hz;
st->ctrl_lb = AD5933_CTRL_EXT_SYSCLK;
} else {
st->mclk_hz = AD5933_INT_OSC_FREQ_Hz;
st->ctrl_lb = AD5933_CTRL_INT_SYSCLK;
}
ad5933_calc_out_ranges(st);
INIT_DELAYED_WORK(&st->work, ad5933_work);
st->poll_time_jiffies = msecs_to_jiffies(AD5933_POLL_TIME_ms);
indio_dev->dev.parent = &client->dev;
indio_dev->info = &ad5933_info;
indio_dev->name = id->name;
indio_dev->modes = (INDIO_BUFFER_SOFTWARE | INDIO_DIRECT_MODE);
indio_dev->channels = ad5933_channels;
indio_dev->num_channels = ARRAY_SIZE(ad5933_channels);
ret = ad5933_register_ring_funcs_and_init(indio_dev);
if (ret)
goto error_disable_mclk;
ret = ad5933_setup(st);
if (ret)
goto error_unreg_ring;
ret = iio_device_register(indio_dev);
if (ret)
goto error_unreg_ring;
return 0;
error_unreg_ring:
iio_kfifo_free(indio_dev->buffer);
error_disable_mclk:
clk_disable_unprepare(st->mclk);
error_disable_reg:
regulator_disable(st->reg);
return ret;
}
static int ad5933_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct ad5933_state *st = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
iio_kfifo_free(indio_dev->buffer);
regulator_disable(st->reg);
clk_disable_unprepare(st->mclk);
return 0;
}
static const struct i2c_device_id ad5933_id[] = {
{ "ad5933", 0 },
{ "ad5934", 0 },
{}
};
MODULE_DEVICE_TABLE(i2c, ad5933_id);
static const struct of_device_id ad5933_of_match[] = {
{ .compatible = "adi,ad5933" },
{ .compatible = "adi,ad5934" },
{ },
};
MODULE_DEVICE_TABLE(of, ad5933_of_match);
static struct i2c_driver ad5933_driver = {
.driver = {
.name = "ad5933",
.of_match_table = ad5933_of_match,
},
.probe = ad5933_probe,
.remove = ad5933_remove,
.id_table = ad5933_id,
};
module_i2c_driver(ad5933_driver);
MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD5933 Impedance Conv. Network Analyzer");
MODULE_LICENSE("GPL v2");