blob: 9e42324fdecdd6e7ab64991db7770cbdc744ac79 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2014 Intel Corporation
*/
#include <linux/circ_buf.h>
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
#include "gt/intel_engine_pm.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_pm.h"
#include "gt/intel_lrc_reg.h"
#include "gt/intel_ring.h"
#include "intel_guc_submission.h"
#include "i915_drv.h"
#include "i915_trace.h"
/**
* DOC: GuC-based command submission
*
* IMPORTANT NOTE: GuC submission is currently not supported in i915. The GuC
* firmware is moving to an updated submission interface and we plan to
* turn submission back on when that lands. The below documentation (and related
* code) matches the old submission model and will be updated as part of the
* upgrade to the new flow.
*
* GuC stage descriptor:
* During initialization, the driver allocates a static pool of 1024 such
* descriptors, and shares them with the GuC. Currently, we only use one
* descriptor. This stage descriptor lets the GuC know about the workqueue and
* process descriptor. Theoretically, it also lets the GuC know about our HW
* contexts (context ID, etc...), but we actually employ a kind of submission
* where the GuC uses the LRCA sent via the work item instead. This is called
* a "proxy" submission.
*
* The Scratch registers:
* There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
* a value to the action register (SOFT_SCRATCH_0) along with any data. It then
* triggers an interrupt on the GuC via another register write (0xC4C8).
* Firmware writes a success/fail code back to the action register after
* processes the request. The kernel driver polls waiting for this update and
* then proceeds.
*
* Work Items:
* There are several types of work items that the host may place into a
* workqueue, each with its own requirements and limitations. Currently only
* WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
* represents in-order queue. The kernel driver packs ring tail pointer and an
* ELSP context descriptor dword into Work Item.
* See guc_add_request()
*
*/
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
return rb_entry(rb, struct i915_priolist, node);
}
static struct guc_stage_desc *__get_stage_desc(struct intel_guc *guc, u32 id)
{
struct guc_stage_desc *base = guc->stage_desc_pool_vaddr;
return &base[id];
}
static int guc_workqueue_create(struct intel_guc *guc)
{
return intel_guc_allocate_and_map_vma(guc, GUC_WQ_SIZE, &guc->workqueue,
&guc->workqueue_vaddr);
}
static void guc_workqueue_destroy(struct intel_guc *guc)
{
i915_vma_unpin_and_release(&guc->workqueue, I915_VMA_RELEASE_MAP);
}
/*
* Initialise the process descriptor shared with the GuC firmware.
*/
static int guc_proc_desc_create(struct intel_guc *guc)
{
const u32 size = PAGE_ALIGN(sizeof(struct guc_process_desc));
return intel_guc_allocate_and_map_vma(guc, size, &guc->proc_desc,
&guc->proc_desc_vaddr);
}
static void guc_proc_desc_destroy(struct intel_guc *guc)
{
i915_vma_unpin_and_release(&guc->proc_desc, I915_VMA_RELEASE_MAP);
}
static void guc_proc_desc_init(struct intel_guc *guc)
{
struct guc_process_desc *desc;
desc = memset(guc->proc_desc_vaddr, 0, sizeof(*desc));
/*
* XXX: pDoorbell and WQVBaseAddress are pointers in process address
* space for ring3 clients (set them as in mmap_ioctl) or kernel
* space for kernel clients (map on demand instead? May make debug
* easier to have it mapped).
*/
desc->wq_base_addr = 0;
desc->db_base_addr = 0;
desc->wq_size_bytes = GUC_WQ_SIZE;
desc->wq_status = WQ_STATUS_ACTIVE;
desc->priority = GUC_CLIENT_PRIORITY_KMD_NORMAL;
}
static void guc_proc_desc_fini(struct intel_guc *guc)
{
memset(guc->proc_desc_vaddr, 0, sizeof(struct guc_process_desc));
}
static int guc_stage_desc_pool_create(struct intel_guc *guc)
{
u32 size = PAGE_ALIGN(sizeof(struct guc_stage_desc) *
GUC_MAX_STAGE_DESCRIPTORS);
return intel_guc_allocate_and_map_vma(guc, size, &guc->stage_desc_pool,
&guc->stage_desc_pool_vaddr);
}
static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
{
i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP);
}
/*
* Initialise/clear the stage descriptor shared with the GuC firmware.
*
* This descriptor tells the GuC where (in GGTT space) to find the important
* data structures related to work submission (process descriptor, write queue,
* etc).
*/
static void guc_stage_desc_init(struct intel_guc *guc)
{
struct guc_stage_desc *desc;
/* we only use 1 stage desc, so hardcode it to 0 */
desc = __get_stage_desc(guc, 0);
memset(desc, 0, sizeof(*desc));
desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
GUC_STAGE_DESC_ATTR_KERNEL;
desc->stage_id = 0;
desc->priority = GUC_CLIENT_PRIORITY_KMD_NORMAL;
desc->process_desc = intel_guc_ggtt_offset(guc, guc->proc_desc);
desc->wq_addr = intel_guc_ggtt_offset(guc, guc->workqueue);
desc->wq_size = GUC_WQ_SIZE;
}
static void guc_stage_desc_fini(struct intel_guc *guc)
{
struct guc_stage_desc *desc;
desc = __get_stage_desc(guc, 0);
memset(desc, 0, sizeof(*desc));
}
/* Construct a Work Item and append it to the GuC's Work Queue */
static void guc_wq_item_append(struct intel_guc *guc,
u32 target_engine, u32 context_desc,
u32 ring_tail, u32 fence_id)
{
/* wqi_len is in DWords, and does not include the one-word header */
const size_t wqi_size = sizeof(struct guc_wq_item);
const u32 wqi_len = wqi_size / sizeof(u32) - 1;
struct guc_process_desc *desc = guc->proc_desc_vaddr;
struct guc_wq_item *wqi;
u32 wq_off;
lockdep_assert_held(&guc->wq_lock);
/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
* should not have the case where structure wqi is across page, neither
* wrapped to the beginning. This simplifies the implementation below.
*
* XXX: if not the case, we need save data to a temp wqi and copy it to
* workqueue buffer dw by dw.
*/
BUILD_BUG_ON(wqi_size != 16);
/* We expect the WQ to be active if we're appending items to it */
GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE);
/* Free space is guaranteed. */
wq_off = READ_ONCE(desc->tail);
GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
GUC_WQ_SIZE) < wqi_size);
GEM_BUG_ON(wq_off & (wqi_size - 1));
wqi = guc->workqueue_vaddr + wq_off;
/* Now fill in the 4-word work queue item */
wqi->header = WQ_TYPE_INORDER |
(wqi_len << WQ_LEN_SHIFT) |
(target_engine << WQ_TARGET_SHIFT) |
WQ_NO_WCFLUSH_WAIT;
wqi->context_desc = context_desc;
wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
wqi->fence_id = fence_id;
/* Make the update visible to GuC */
WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
}
static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
{
struct intel_engine_cs *engine = rq->engine;
u32 ctx_desc = lower_32_bits(rq->context->lrc_desc);
u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
guc_wq_item_append(guc, engine->guc_id, ctx_desc,
ring_tail, rq->fence.seqno);
}
/*
* When we're doing submissions using regular execlists backend, writing to
* ELSP from CPU side is enough to make sure that writes to ringbuffer pages
* pinned in mappable aperture portion of GGTT are visible to command streamer.
* Writes done by GuC on our behalf are not guaranteeing such ordering,
* therefore, to ensure the flush, we're issuing a POSTING READ.
*/
static void flush_ggtt_writes(struct i915_vma *vma)
{
if (i915_vma_is_map_and_fenceable(vma))
intel_uncore_posting_read_fw(vma->vm->gt->uncore,
GUC_STATUS);
}
static void guc_submit(struct intel_engine_cs *engine,
struct i915_request **out,
struct i915_request **end)
{
struct intel_guc *guc = &engine->gt->uc.guc;
spin_lock(&guc->wq_lock);
do {
struct i915_request *rq = *out++;
flush_ggtt_writes(rq->ring->vma);
guc_add_request(guc, rq);
} while (out != end);
spin_unlock(&guc->wq_lock);
}
static inline int rq_prio(const struct i915_request *rq)
{
return rq->sched.attr.priority | __NO_PREEMPTION;
}
static struct i915_request *schedule_in(struct i915_request *rq, int idx)
{
trace_i915_request_in(rq, idx);
/*
* Currently we are not tracking the rq->context being inflight
* (ce->inflight = rq->engine). It is only used by the execlists
* backend at the moment, a similar counting strategy would be
* required if we generalise the inflight tracking.
*/
__intel_gt_pm_get(rq->engine->gt);
return i915_request_get(rq);
}
static void schedule_out(struct i915_request *rq)
{
trace_i915_request_out(rq);
intel_gt_pm_put_async(rq->engine->gt);
i915_request_put(rq);
}
static void __guc_dequeue(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request **first = execlists->inflight;
struct i915_request ** const last_port = first + execlists->port_mask;
struct i915_request *last = first[0];
struct i915_request **port;
bool submit = false;
struct rb_node *rb;
lockdep_assert_held(&engine->active.lock);
if (last) {
if (*++first)
return;
last = NULL;
}
/*
* We write directly into the execlists->inflight queue and don't use
* the execlists->pending queue, as we don't have a distinct switch
* event.
*/
port = first;
while ((rb = rb_first_cached(&execlists->queue))) {
struct i915_priolist *p = to_priolist(rb);
struct i915_request *rq, *rn;
int i;
priolist_for_each_request_consume(rq, rn, p, i) {
if (last && rq->context != last->context) {
if (port == last_port)
goto done;
*port = schedule_in(last,
port - execlists->inflight);
port++;
}
list_del_init(&rq->sched.link);
__i915_request_submit(rq);
submit = true;
last = rq;
}
rb_erase_cached(&p->node, &execlists->queue);
i915_priolist_free(p);
}
done:
execlists->queue_priority_hint =
rb ? to_priolist(rb)->priority : INT_MIN;
if (submit) {
*port = schedule_in(last, port - execlists->inflight);
*++port = NULL;
guc_submit(engine, first, port);
}
execlists->active = execlists->inflight;
}
static void guc_submission_tasklet(unsigned long data)
{
struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request **port, *rq;
unsigned long flags;
spin_lock_irqsave(&engine->active.lock, flags);
for (port = execlists->inflight; (rq = *port); port++) {
if (!i915_request_completed(rq))
break;
schedule_out(rq);
}
if (port != execlists->inflight) {
int idx = port - execlists->inflight;
int rem = ARRAY_SIZE(execlists->inflight) - idx;
memmove(execlists->inflight, port, rem * sizeof(*port));
}
__guc_dequeue(engine);
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void guc_reset_prepare(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
ENGINE_TRACE(engine, "\n");
/*
* Prevent request submission to the hardware until we have
* completed the reset in i915_gem_reset_finish(). If a request
* is completed by one engine, it may then queue a request
* to a second via its execlists->tasklet *just* as we are
* calling engine->init_hw() and also writing the ELSP.
* Turning off the execlists->tasklet until the reset is over
* prevents the race.
*/
__tasklet_disable_sync_once(&execlists->tasklet);
}
static void
cancel_port_requests(struct intel_engine_execlists * const execlists)
{
struct i915_request * const *port, *rq;
/* Note we are only using the inflight and not the pending queue */
for (port = execlists->active; (rq = *port); port++)
schedule_out(rq);
execlists->active =
memset(execlists->inflight, 0, sizeof(execlists->inflight));
}
static void guc_reset_rewind(struct intel_engine_cs *engine, bool stalled)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request *rq;
unsigned long flags;
spin_lock_irqsave(&engine->active.lock, flags);
cancel_port_requests(execlists);
/* Push back any incomplete requests for replay after the reset. */
rq = execlists_unwind_incomplete_requests(execlists);
if (!rq)
goto out_unlock;
if (!i915_request_started(rq))
stalled = false;
__i915_request_reset(rq, stalled);
intel_lr_context_reset(engine, rq->context, rq->head, stalled);
out_unlock:
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void guc_reset_cancel(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request *rq, *rn;
struct rb_node *rb;
unsigned long flags;
ENGINE_TRACE(engine, "\n");
/*
* Before we call engine->cancel_requests(), we should have exclusive
* access to the submission state. This is arranged for us by the
* caller disabling the interrupt generation, the tasklet and other
* threads that may then access the same state, giving us a free hand
* to reset state. However, we still need to let lockdep be aware that
* we know this state may be accessed in hardirq context, so we
* disable the irq around this manipulation and we want to keep
* the spinlock focused on its duties and not accidentally conflate
* coverage to the submission's irq state. (Similarly, although we
* shouldn't need to disable irq around the manipulation of the
* submission's irq state, we also wish to remind ourselves that
* it is irq state.)
*/
spin_lock_irqsave(&engine->active.lock, flags);
/* Cancel the requests on the HW and clear the ELSP tracker. */
cancel_port_requests(execlists);
/* Mark all executing requests as skipped. */
list_for_each_entry(rq, &engine->active.requests, sched.link) {
if (!i915_request_signaled(rq))
dma_fence_set_error(&rq->fence, -EIO);
i915_request_mark_complete(rq);
}
/* Flush the queued requests to the timeline list (for retiring). */
while ((rb = rb_first_cached(&execlists->queue))) {
struct i915_priolist *p = to_priolist(rb);
int i;
priolist_for_each_request_consume(rq, rn, p, i) {
list_del_init(&rq->sched.link);
__i915_request_submit(rq);
dma_fence_set_error(&rq->fence, -EIO);
i915_request_mark_complete(rq);
}
rb_erase_cached(&p->node, &execlists->queue);
i915_priolist_free(p);
}
/* Remaining _unready_ requests will be nop'ed when submitted */
execlists->queue_priority_hint = INT_MIN;
execlists->queue = RB_ROOT_CACHED;
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void guc_reset_finish(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
if (__tasklet_enable(&execlists->tasklet))
/* And kick in case we missed a new request submission. */
tasklet_hi_schedule(&execlists->tasklet);
ENGINE_TRACE(engine, "depth->%d\n",
atomic_read(&execlists->tasklet.count));
}
/*
* Everything below here is concerned with setup & teardown, and is
* therefore not part of the somewhat time-critical batch-submission
* path of guc_submit() above.
*/
/*
* Set up the memory resources to be shared with the GuC (via the GGTT)
* at firmware loading time.
*/
int intel_guc_submission_init(struct intel_guc *guc)
{
int ret;
if (guc->stage_desc_pool)
return 0;
ret = guc_stage_desc_pool_create(guc);
if (ret)
return ret;
/*
* Keep static analysers happy, let them know that we allocated the
* vma after testing that it didn't exist earlier.
*/
GEM_BUG_ON(!guc->stage_desc_pool);
ret = guc_workqueue_create(guc);
if (ret)
goto err_pool;
ret = guc_proc_desc_create(guc);
if (ret)
goto err_workqueue;
spin_lock_init(&guc->wq_lock);
return 0;
err_workqueue:
guc_workqueue_destroy(guc);
err_pool:
guc_stage_desc_pool_destroy(guc);
return ret;
}
void intel_guc_submission_fini(struct intel_guc *guc)
{
if (guc->stage_desc_pool) {
guc_proc_desc_destroy(guc);
guc_workqueue_destroy(guc);
guc_stage_desc_pool_destroy(guc);
}
}
static void guc_interrupts_capture(struct intel_gt *gt)
{
struct intel_uncore *uncore = gt->uncore;
u32 irqs = GT_CONTEXT_SWITCH_INTERRUPT;
u32 dmask = irqs << 16 | irqs;
GEM_BUG_ON(INTEL_GEN(gt->i915) < 11);
/* Don't handle the ctx switch interrupt in GuC submission mode */
intel_uncore_rmw(uncore, GEN11_RENDER_COPY_INTR_ENABLE, dmask, 0);
intel_uncore_rmw(uncore, GEN11_VCS_VECS_INTR_ENABLE, dmask, 0);
}
static void guc_interrupts_release(struct intel_gt *gt)
{
struct intel_uncore *uncore = gt->uncore;
u32 irqs = GT_CONTEXT_SWITCH_INTERRUPT;
u32 dmask = irqs << 16 | irqs;
GEM_BUG_ON(INTEL_GEN(gt->i915) < 11);
/* Handle ctx switch interrupts again */
intel_uncore_rmw(uncore, GEN11_RENDER_COPY_INTR_ENABLE, 0, dmask);
intel_uncore_rmw(uncore, GEN11_VCS_VECS_INTR_ENABLE, 0, dmask);
}
static void guc_set_default_submission(struct intel_engine_cs *engine)
{
/*
* We inherit a bunch of functions from execlists that we'd like
* to keep using:
*
* engine->submit_request = execlists_submit_request;
* engine->cancel_requests = execlists_cancel_requests;
* engine->schedule = execlists_schedule;
*
* But we need to override the actual submission backend in order
* to talk to the GuC.
*/
intel_execlists_set_default_submission(engine);
engine->execlists.tasklet.func = guc_submission_tasklet;
/* do not use execlists park/unpark */
engine->park = engine->unpark = NULL;
engine->reset.prepare = guc_reset_prepare;
engine->reset.rewind = guc_reset_rewind;
engine->reset.cancel = guc_reset_cancel;
engine->reset.finish = guc_reset_finish;
engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
engine->flags |= I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
/*
* For the breadcrumb irq to work we need the interrupts to stay
* enabled. However, on all platforms on which we'll have support for
* GuC submission we don't allow disabling the interrupts at runtime, so
* we're always safe with the current flow.
*/
GEM_BUG_ON(engine->irq_enable || engine->irq_disable);
}
void intel_guc_submission_enable(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
struct intel_engine_cs *engine;
enum intel_engine_id id;
/*
* We're using GuC work items for submitting work through GuC. Since
* we're coalescing multiple requests from a single context into a
* single work item prior to assigning it to execlist_port, we can
* never have more work items than the total number of ports (for all
* engines). The GuC firmware is controlling the HEAD of work queue,
* and it is guaranteed that it will remove the work item from the
* queue before our request is completed.
*/
BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.inflight) *
sizeof(struct guc_wq_item) *
I915_NUM_ENGINES > GUC_WQ_SIZE);
guc_proc_desc_init(guc);
guc_stage_desc_init(guc);
/* Take over from manual control of ELSP (execlists) */
guc_interrupts_capture(gt);
for_each_engine(engine, gt, id) {
engine->set_default_submission = guc_set_default_submission;
engine->set_default_submission(engine);
}
}
void intel_guc_submission_disable(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
GEM_BUG_ON(gt->awake); /* GT should be parked first */
/* Note: By the time we're here, GuC may have already been reset */
guc_interrupts_release(gt);
guc_stage_desc_fini(guc);
guc_proc_desc_fini(guc);
}
static bool __guc_submission_support(struct intel_guc *guc)
{
/* XXX: GuC submission is unavailable for now */
return false;
if (!intel_guc_is_supported(guc))
return false;
return i915_modparams.enable_guc & ENABLE_GUC_SUBMISSION;
}
void intel_guc_submission_init_early(struct intel_guc *guc)
{
guc->submission_supported = __guc_submission_support(guc);
}
bool intel_engine_in_guc_submission_mode(const struct intel_engine_cs *engine)
{
return engine->set_default_submission == guc_set_default_submission;
}