blob: f4fec7eb4064f66022ec08d9ac6b8b9e6fc059f1 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include <linux/log2.h>
#include "gen6_ppgtt.h"
#include "i915_scatterlist.h"
#include "i915_trace.h"
#include "i915_vgpu.h"
#include "intel_gt.h"
/* Write pde (index) from the page directory @pd to the page table @pt */
static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
const unsigned int pde,
const struct i915_page_table *pt)
{
/* Caller needs to make sure the write completes if necessary */
iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
ppgtt->pd_addr + pde);
}
void gen7_ppgtt_enable(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_uncore *uncore = gt->uncore;
struct intel_engine_cs *engine;
enum intel_engine_id id;
u32 ecochk;
intel_uncore_rmw(uncore, GAC_ECO_BITS, 0, ECOBITS_PPGTT_CACHE64B);
ecochk = intel_uncore_read(uncore, GAM_ECOCHK);
if (IS_HASWELL(i915)) {
ecochk |= ECOCHK_PPGTT_WB_HSW;
} else {
ecochk |= ECOCHK_PPGTT_LLC_IVB;
ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
}
intel_uncore_write(uncore, GAM_ECOCHK, ecochk);
for_each_engine(engine, gt, id) {
/* GFX_MODE is per-ring on gen7+ */
ENGINE_WRITE(engine,
RING_MODE_GEN7,
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
}
}
void gen6_ppgtt_enable(struct intel_gt *gt)
{
struct intel_uncore *uncore = gt->uncore;
intel_uncore_rmw(uncore,
GAC_ECO_BITS,
0,
ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B);
intel_uncore_rmw(uncore,
GAB_CTL,
0,
GAB_CTL_CONT_AFTER_PAGEFAULT);
intel_uncore_rmw(uncore,
GAM_ECOCHK,
0,
ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
if (HAS_PPGTT(uncore->i915)) /* may be disabled for VT-d */
intel_uncore_write(uncore,
GFX_MODE,
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
}
/* PPGTT support for Sandybdrige/Gen6 and later */
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
u64 start, u64 length)
{
struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
const gen6_pte_t scratch_pte = vm->scratch[0].encode;
unsigned int pde = first_entry / GEN6_PTES;
unsigned int pte = first_entry % GEN6_PTES;
unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
while (num_entries) {
struct i915_page_table * const pt =
i915_pt_entry(ppgtt->base.pd, pde++);
const unsigned int count = min(num_entries, GEN6_PTES - pte);
gen6_pte_t *vaddr;
GEM_BUG_ON(px_base(pt) == px_base(&vm->scratch[1]));
num_entries -= count;
GEM_BUG_ON(count > atomic_read(&pt->used));
if (!atomic_sub_return(count, &pt->used))
ppgtt->scan_for_unused_pt = true;
/*
* Note that the hw doesn't support removing PDE on the fly
* (they are cached inside the context with no means to
* invalidate the cache), so we can only reset the PTE
* entries back to scratch.
*/
vaddr = kmap_atomic_px(pt);
memset32(vaddr + pte, scratch_pte, count);
kunmap_atomic(vaddr);
pte = 0;
}
}
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags)
{
struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct i915_page_directory * const pd = ppgtt->pd;
unsigned int first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
unsigned int act_pt = first_entry / GEN6_PTES;
unsigned int act_pte = first_entry % GEN6_PTES;
const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
struct sgt_dma iter = sgt_dma(vma);
gen6_pte_t *vaddr;
GEM_BUG_ON(pd->entry[act_pt] == &vm->scratch[1]);
vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
do {
GEM_BUG_ON(iter.sg->length < I915_GTT_PAGE_SIZE);
vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
iter.dma += I915_GTT_PAGE_SIZE;
if (iter.dma == iter.max) {
iter.sg = __sg_next(iter.sg);
if (!iter.sg)
break;
iter.dma = sg_dma_address(iter.sg);
iter.max = iter.dma + iter.sg->length;
}
if (++act_pte == GEN6_PTES) {
kunmap_atomic(vaddr);
vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
act_pte = 0;
}
} while (1);
kunmap_atomic(vaddr);
vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
}
static void gen6_flush_pd(struct gen6_ppgtt *ppgtt, u64 start, u64 end)
{
struct i915_page_directory * const pd = ppgtt->base.pd;
struct i915_page_table *pt;
unsigned int pde;
start = round_down(start, SZ_64K);
end = round_up(end, SZ_64K) - start;
mutex_lock(&ppgtt->flush);
gen6_for_each_pde(pt, pd, start, end, pde)
gen6_write_pde(ppgtt, pde, pt);
mb();
ioread32(ppgtt->pd_addr + pde - 1);
gen6_ggtt_invalidate(ppgtt->base.vm.gt->ggtt);
mb();
mutex_unlock(&ppgtt->flush);
}
static int gen6_alloc_va_range(struct i915_address_space *vm,
u64 start, u64 length)
{
struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
struct i915_page_directory * const pd = ppgtt->base.pd;
struct i915_page_table *pt, *alloc = NULL;
intel_wakeref_t wakeref;
u64 from = start;
unsigned int pde;
int ret = 0;
wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
spin_lock(&pd->lock);
gen6_for_each_pde(pt, pd, start, length, pde) {
const unsigned int count = gen6_pte_count(start, length);
if (px_base(pt) == px_base(&vm->scratch[1])) {
spin_unlock(&pd->lock);
pt = fetch_and_zero(&alloc);
if (!pt)
pt = alloc_pt(vm);
if (IS_ERR(pt)) {
ret = PTR_ERR(pt);
goto unwind_out;
}
fill32_px(pt, vm->scratch[0].encode);
spin_lock(&pd->lock);
if (pd->entry[pde] == &vm->scratch[1]) {
pd->entry[pde] = pt;
} else {
alloc = pt;
pt = pd->entry[pde];
}
}
atomic_add(count, &pt->used);
}
spin_unlock(&pd->lock);
if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND))
gen6_flush_pd(ppgtt, from, start);
goto out;
unwind_out:
gen6_ppgtt_clear_range(vm, from, start - from);
out:
if (alloc)
free_px(vm, alloc);
intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
return ret;
}
static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
{
struct i915_address_space * const vm = &ppgtt->base.vm;
struct i915_page_directory * const pd = ppgtt->base.pd;
int ret;
ret = setup_scratch_page(vm, __GFP_HIGHMEM);
if (ret)
return ret;
vm->scratch[0].encode =
vm->pte_encode(px_dma(&vm->scratch[0]),
I915_CACHE_NONE, PTE_READ_ONLY);
if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[1])))) {
cleanup_scratch_page(vm);
return -ENOMEM;
}
fill32_px(&vm->scratch[1], vm->scratch[0].encode);
memset_p(pd->entry, &vm->scratch[1], I915_PDES);
return 0;
}
static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
{
struct i915_page_directory * const pd = ppgtt->base.pd;
struct i915_page_dma * const scratch =
px_base(&ppgtt->base.vm.scratch[1]);
struct i915_page_table *pt;
u32 pde;
gen6_for_all_pdes(pt, pd, pde)
if (px_base(pt) != scratch)
free_px(&ppgtt->base.vm, pt);
}
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
__i915_vma_put(ppgtt->vma);
gen6_ppgtt_free_pd(ppgtt);
free_scratch(vm);
mutex_destroy(&ppgtt->flush);
mutex_destroy(&ppgtt->pin_mutex);
kfree(ppgtt->base.pd);
}
static int pd_vma_set_pages(struct i915_vma *vma)
{
vma->pages = ERR_PTR(-ENODEV);
return 0;
}
static void pd_vma_clear_pages(struct i915_vma *vma)
{
GEM_BUG_ON(!vma->pages);
vma->pages = NULL;
}
static int pd_vma_bind(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 unused)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
struct gen6_ppgtt *ppgtt = vma->private;
u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
px_base(ppgtt->base.pd)->ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
gen6_flush_pd(ppgtt, 0, ppgtt->base.vm.total);
return 0;
}
static void pd_vma_unbind(struct i915_vma *vma)
{
struct gen6_ppgtt *ppgtt = vma->private;
struct i915_page_directory * const pd = ppgtt->base.pd;
struct i915_page_dma * const scratch =
px_base(&ppgtt->base.vm.scratch[1]);
struct i915_page_table *pt;
unsigned int pde;
if (!ppgtt->scan_for_unused_pt)
return;
/* Free all no longer used page tables */
gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
if (px_base(pt) == scratch || atomic_read(&pt->used))
continue;
free_px(&ppgtt->base.vm, pt);
pd->entry[pde] = scratch;
}
ppgtt->scan_for_unused_pt = false;
}
static const struct i915_vma_ops pd_vma_ops = {
.set_pages = pd_vma_set_pages,
.clear_pages = pd_vma_clear_pages,
.bind_vma = pd_vma_bind,
.unbind_vma = pd_vma_unbind,
};
static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
{
struct i915_ggtt *ggtt = ppgtt->base.vm.gt->ggtt;
struct i915_vma *vma;
GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
GEM_BUG_ON(size > ggtt->vm.total);
vma = i915_vma_alloc();
if (!vma)
return ERR_PTR(-ENOMEM);
i915_active_init(&vma->active, NULL, NULL);
kref_init(&vma->ref);
mutex_init(&vma->pages_mutex);
vma->vm = i915_vm_get(&ggtt->vm);
vma->ops = &pd_vma_ops;
vma->private = ppgtt;
vma->size = size;
vma->fence_size = size;
atomic_set(&vma->flags, I915_VMA_GGTT);
vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
INIT_LIST_HEAD(&vma->obj_link);
INIT_LIST_HEAD(&vma->closed_link);
return vma;
}
int gen6_ppgtt_pin(struct i915_ppgtt *base)
{
struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
int err;
GEM_BUG_ON(!atomic_read(&ppgtt->base.vm.open));
/*
* Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
* which will be pinned into every active context.
* (When vma->pin_count becomes atomic, I expect we will naturally
* need a larger, unpacked, type and kill this redundancy.)
*/
if (atomic_add_unless(&ppgtt->pin_count, 1, 0))
return 0;
if (mutex_lock_interruptible(&ppgtt->pin_mutex))
return -EINTR;
/*
* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
* allocator works in address space sizes, so it's multiplied by page
* size. We allocate at the top of the GTT to avoid fragmentation.
*/
err = 0;
if (!atomic_read(&ppgtt->pin_count))
err = i915_ggtt_pin(ppgtt->vma, GEN6_PD_ALIGN, PIN_HIGH);
if (!err)
atomic_inc(&ppgtt->pin_count);
mutex_unlock(&ppgtt->pin_mutex);
return err;
}
void gen6_ppgtt_unpin(struct i915_ppgtt *base)
{
struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
GEM_BUG_ON(!atomic_read(&ppgtt->pin_count));
if (atomic_dec_and_test(&ppgtt->pin_count))
i915_vma_unpin(ppgtt->vma);
}
void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
{
struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
if (!atomic_read(&ppgtt->pin_count))
return;
i915_vma_unpin(ppgtt->vma);
atomic_set(&ppgtt->pin_count, 0);
}
struct i915_ppgtt *gen6_ppgtt_create(struct intel_gt *gt)
{
struct i915_ggtt * const ggtt = gt->ggtt;
struct gen6_ppgtt *ppgtt;
int err;
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
if (!ppgtt)
return ERR_PTR(-ENOMEM);
mutex_init(&ppgtt->flush);
mutex_init(&ppgtt->pin_mutex);
ppgtt_init(&ppgtt->base, gt);
ppgtt->base.vm.top = 1;
ppgtt->base.vm.bind_async_flags = I915_VMA_LOCAL_BIND;
ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
ppgtt->base.pd = __alloc_pd(sizeof(*ppgtt->base.pd));
if (!ppgtt->base.pd) {
err = -ENOMEM;
goto err_free;
}
err = gen6_ppgtt_init_scratch(ppgtt);
if (err)
goto err_pd;
ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
if (IS_ERR(ppgtt->vma)) {
err = PTR_ERR(ppgtt->vma);
goto err_scratch;
}
return &ppgtt->base;
err_scratch:
free_scratch(&ppgtt->base.vm);
err_pd:
kfree(ppgtt->base.pd);
err_free:
mutex_destroy(&ppgtt->pin_mutex);
kfree(ppgtt);
return ERR_PTR(err);
}