blob: 41168c027a5a444d2be4b3a47f847d211c4af04d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* acpi_osl.c - OS-dependent functions ($Revision: 83 $)
*
* Copyright (C) 2000 Andrew Henroid
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
* Copyright (c) 2008 Intel Corporation
* Author: Matthew Wilcox <willy@linux.intel.com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/lockdep.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/kmod.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/nmi.h>
#include <linux/acpi.h>
#include <linux/efi.h>
#include <linux/ioport.h>
#include <linux/list.h>
#include <linux/jiffies.h>
#include <linux/semaphore.h>
#include <linux/security.h>
#include <asm/io.h>
#include <linux/uaccess.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include "acpica/accommon.h"
#include "acpica/acnamesp.h"
#include "internal.h"
#define _COMPONENT ACPI_OS_SERVICES
ACPI_MODULE_NAME("osl");
struct acpi_os_dpc {
acpi_osd_exec_callback function;
void *context;
struct work_struct work;
};
#ifdef ENABLE_DEBUGGER
#include <linux/kdb.h>
/* stuff for debugger support */
int acpi_in_debugger;
EXPORT_SYMBOL(acpi_in_debugger);
#endif /*ENABLE_DEBUGGER */
static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
u32 pm1b_ctrl);
static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
u32 val_b);
static acpi_osd_handler acpi_irq_handler;
static void *acpi_irq_context;
static struct workqueue_struct *kacpid_wq;
static struct workqueue_struct *kacpi_notify_wq;
static struct workqueue_struct *kacpi_hotplug_wq;
static bool acpi_os_initialized;
unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
bool acpi_permanent_mmap = false;
/*
* This list of permanent mappings is for memory that may be accessed from
* interrupt context, where we can't do the ioremap().
*/
struct acpi_ioremap {
struct list_head list;
void __iomem *virt;
acpi_physical_address phys;
acpi_size size;
unsigned long refcount;
};
static LIST_HEAD(acpi_ioremaps);
static DEFINE_MUTEX(acpi_ioremap_lock);
#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
static void __init acpi_request_region (struct acpi_generic_address *gas,
unsigned int length, char *desc)
{
u64 addr;
/* Handle possible alignment issues */
memcpy(&addr, &gas->address, sizeof(addr));
if (!addr || !length)
return;
/* Resources are never freed */
if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
request_region(addr, length, desc);
else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
request_mem_region(addr, length, desc);
}
static int __init acpi_reserve_resources(void)
{
acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
"ACPI PM1a_EVT_BLK");
acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
"ACPI PM1b_EVT_BLK");
acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
"ACPI PM1a_CNT_BLK");
acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
"ACPI PM1b_CNT_BLK");
if (acpi_gbl_FADT.pm_timer_length == 4)
acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
"ACPI PM2_CNT_BLK");
/* Length of GPE blocks must be a non-negative multiple of 2 */
if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
return 0;
}
fs_initcall_sync(acpi_reserve_resources);
void acpi_os_printf(const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
acpi_os_vprintf(fmt, args);
va_end(args);
}
EXPORT_SYMBOL(acpi_os_printf);
void acpi_os_vprintf(const char *fmt, va_list args)
{
static char buffer[512];
vsprintf(buffer, fmt, args);
#ifdef ENABLE_DEBUGGER
if (acpi_in_debugger) {
kdb_printf("%s", buffer);
} else {
if (printk_get_level(buffer))
printk("%s", buffer);
else
printk(KERN_CONT "%s", buffer);
}
#else
if (acpi_debugger_write_log(buffer) < 0) {
if (printk_get_level(buffer))
printk("%s", buffer);
else
printk(KERN_CONT "%s", buffer);
}
#endif
}
#ifdef CONFIG_KEXEC
static unsigned long acpi_rsdp;
static int __init setup_acpi_rsdp(char *arg)
{
return kstrtoul(arg, 16, &acpi_rsdp);
}
early_param("acpi_rsdp", setup_acpi_rsdp);
#endif
acpi_physical_address __init acpi_os_get_root_pointer(void)
{
acpi_physical_address pa;
#ifdef CONFIG_KEXEC
/*
* We may have been provided with an RSDP on the command line,
* but if a malicious user has done so they may be pointing us
* at modified ACPI tables that could alter kernel behaviour -
* so, we check the lockdown status before making use of
* it. If we trust it then also stash it in an architecture
* specific location (if appropriate) so it can be carried
* over further kexec()s.
*/
if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
acpi_arch_set_root_pointer(acpi_rsdp);
return acpi_rsdp;
}
#endif
pa = acpi_arch_get_root_pointer();
if (pa)
return pa;
if (efi_enabled(EFI_CONFIG_TABLES)) {
if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
return efi.acpi20;
if (efi.acpi != EFI_INVALID_TABLE_ADDR)
return efi.acpi;
pr_err(PREFIX "System description tables not found\n");
} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
acpi_find_root_pointer(&pa);
}
return pa;
}
/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
static struct acpi_ioremap *
acpi_map_lookup(acpi_physical_address phys, acpi_size size)
{
struct acpi_ioremap *map;
list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
if (map->phys <= phys &&
phys + size <= map->phys + map->size)
return map;
return NULL;
}
/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
static void __iomem *
acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
{
struct acpi_ioremap *map;
map = acpi_map_lookup(phys, size);
if (map)
return map->virt + (phys - map->phys);
return NULL;
}
void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
{
struct acpi_ioremap *map;
void __iomem *virt = NULL;
mutex_lock(&acpi_ioremap_lock);
map = acpi_map_lookup(phys, size);
if (map) {
virt = map->virt + (phys - map->phys);
map->refcount++;
}
mutex_unlock(&acpi_ioremap_lock);
return virt;
}
EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
static struct acpi_ioremap *
acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
{
struct acpi_ioremap *map;
list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
if (map->virt <= virt &&
virt + size <= map->virt + map->size)
return map;
return NULL;
}
#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
/* ioremap will take care of cache attributes */
#define should_use_kmap(pfn) 0
#else
#define should_use_kmap(pfn) page_is_ram(pfn)
#endif
static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
{
unsigned long pfn;
pfn = pg_off >> PAGE_SHIFT;
if (should_use_kmap(pfn)) {
if (pg_sz > PAGE_SIZE)
return NULL;
return (void __iomem __force *)kmap(pfn_to_page(pfn));
} else
return acpi_os_ioremap(pg_off, pg_sz);
}
static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
{
unsigned long pfn;
pfn = pg_off >> PAGE_SHIFT;
if (should_use_kmap(pfn))
kunmap(pfn_to_page(pfn));
else
iounmap(vaddr);
}
/**
* acpi_os_map_iomem - Get a virtual address for a given physical address range.
* @phys: Start of the physical address range to map.
* @size: Size of the physical address range to map.
*
* Look up the given physical address range in the list of existing ACPI memory
* mappings. If found, get a reference to it and return a pointer to it (its
* virtual address). If not found, map it, add it to that list and return a
* pointer to it.
*
* During early init (when acpi_permanent_mmap has not been set yet) this
* routine simply calls __acpi_map_table() to get the job done.
*/
void __iomem __ref
*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
{
struct acpi_ioremap *map;
void __iomem *virt;
acpi_physical_address pg_off;
acpi_size pg_sz;
if (phys > ULONG_MAX) {
printk(KERN_ERR PREFIX "Cannot map memory that high\n");
return NULL;
}
if (!acpi_permanent_mmap)
return __acpi_map_table((unsigned long)phys, size);
mutex_lock(&acpi_ioremap_lock);
/* Check if there's a suitable mapping already. */
map = acpi_map_lookup(phys, size);
if (map) {
map->refcount++;
goto out;
}
map = kzalloc(sizeof(*map), GFP_KERNEL);
if (!map) {
mutex_unlock(&acpi_ioremap_lock);
return NULL;
}
pg_off = round_down(phys, PAGE_SIZE);
pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
virt = acpi_map(pg_off, pg_sz);
if (!virt) {
mutex_unlock(&acpi_ioremap_lock);
kfree(map);
return NULL;
}
INIT_LIST_HEAD(&map->list);
map->virt = virt;
map->phys = pg_off;
map->size = pg_sz;
map->refcount = 1;
list_add_tail_rcu(&map->list, &acpi_ioremaps);
out:
mutex_unlock(&acpi_ioremap_lock);
return map->virt + (phys - map->phys);
}
EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
{
return (void *)acpi_os_map_iomem(phys, size);
}
EXPORT_SYMBOL_GPL(acpi_os_map_memory);
/* Must be called with mutex_lock(&acpi_ioremap_lock) */
static unsigned long acpi_os_drop_map_ref(struct acpi_ioremap *map)
{
unsigned long refcount = --map->refcount;
if (!refcount)
list_del_rcu(&map->list);
return refcount;
}
static void acpi_os_map_cleanup(struct acpi_ioremap *map)
{
synchronize_rcu_expedited();
acpi_unmap(map->phys, map->virt);
kfree(map);
}
/**
* acpi_os_unmap_iomem - Drop a memory mapping reference.
* @virt: Start of the address range to drop a reference to.
* @size: Size of the address range to drop a reference to.
*
* Look up the given virtual address range in the list of existing ACPI memory
* mappings, drop a reference to it and unmap it if there are no more active
* references to it.
*
* During early init (when acpi_permanent_mmap has not been set yet) this
* routine simply calls __acpi_unmap_table() to get the job done. Since
* __acpi_unmap_table() is an __init function, the __ref annotation is needed
* here.
*/
void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
{
struct acpi_ioremap *map;
unsigned long refcount;
if (!acpi_permanent_mmap) {
__acpi_unmap_table(virt, size);
return;
}
mutex_lock(&acpi_ioremap_lock);
map = acpi_map_lookup_virt(virt, size);
if (!map) {
mutex_unlock(&acpi_ioremap_lock);
WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
return;
}
refcount = acpi_os_drop_map_ref(map);
mutex_unlock(&acpi_ioremap_lock);
if (!refcount)
acpi_os_map_cleanup(map);
}
EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
{
return acpi_os_unmap_iomem((void __iomem *)virt, size);
}
EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
int acpi_os_map_generic_address(struct acpi_generic_address *gas)
{
u64 addr;
void __iomem *virt;
if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
return 0;
/* Handle possible alignment issues */
memcpy(&addr, &gas->address, sizeof(addr));
if (!addr || !gas->bit_width)
return -EINVAL;
virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
if (!virt)
return -EIO;
return 0;
}
EXPORT_SYMBOL(acpi_os_map_generic_address);
void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
{
u64 addr;
struct acpi_ioremap *map;
unsigned long refcount;
if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
return;
/* Handle possible alignment issues */
memcpy(&addr, &gas->address, sizeof(addr));
if (!addr || !gas->bit_width)
return;
mutex_lock(&acpi_ioremap_lock);
map = acpi_map_lookup(addr, gas->bit_width / 8);
if (!map) {
mutex_unlock(&acpi_ioremap_lock);
return;
}
refcount = acpi_os_drop_map_ref(map);
mutex_unlock(&acpi_ioremap_lock);
if (!refcount)
acpi_os_map_cleanup(map);
}
EXPORT_SYMBOL(acpi_os_unmap_generic_address);
#ifdef ACPI_FUTURE_USAGE
acpi_status
acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
{
if (!phys || !virt)
return AE_BAD_PARAMETER;
*phys = virt_to_phys(virt);
return AE_OK;
}
#endif
#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
static bool acpi_rev_override;
int __init acpi_rev_override_setup(char *str)
{
acpi_rev_override = true;
return 1;
}
__setup("acpi_rev_override", acpi_rev_override_setup);
#else
#define acpi_rev_override false
#endif
#define ACPI_MAX_OVERRIDE_LEN 100
static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
acpi_string *new_val)
{
if (!init_val || !new_val)
return AE_BAD_PARAMETER;
*new_val = NULL;
if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
acpi_os_name);
*new_val = acpi_os_name;
}
if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
*new_val = (char *)5;
}
return AE_OK;
}
static irqreturn_t acpi_irq(int irq, void *dev_id)
{
u32 handled;
handled = (*acpi_irq_handler) (acpi_irq_context);
if (handled) {
acpi_irq_handled++;
return IRQ_HANDLED;
} else {
acpi_irq_not_handled++;
return IRQ_NONE;
}
}
acpi_status
acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
void *context)
{
unsigned int irq;
acpi_irq_stats_init();
/*
* ACPI interrupts different from the SCI in our copy of the FADT are
* not supported.
*/
if (gsi != acpi_gbl_FADT.sci_interrupt)
return AE_BAD_PARAMETER;
if (acpi_irq_handler)
return AE_ALREADY_ACQUIRED;
if (acpi_gsi_to_irq(gsi, &irq) < 0) {
printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
gsi);
return AE_OK;
}
acpi_irq_handler = handler;
acpi_irq_context = context;
if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
acpi_irq_handler = NULL;
return AE_NOT_ACQUIRED;
}
acpi_sci_irq = irq;
return AE_OK;
}
acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
{
if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
return AE_BAD_PARAMETER;
free_irq(acpi_sci_irq, acpi_irq);
acpi_irq_handler = NULL;
acpi_sci_irq = INVALID_ACPI_IRQ;
return AE_OK;
}
/*
* Running in interpreter thread context, safe to sleep
*/
void acpi_os_sleep(u64 ms)
{
msleep(ms);
}
void acpi_os_stall(u32 us)
{
while (us) {
u32 delay = 1000;
if (delay > us)
delay = us;
udelay(delay);
touch_nmi_watchdog();
us -= delay;
}
}
/*
* Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
* monotonically increasing timer with 100ns granularity. Do not use
* ktime_get() to implement this function because this function may get
* called after timekeeping has been suspended. Note: calling this function
* after timekeeping has been suspended may lead to unexpected results
* because when timekeeping is suspended the jiffies counter is not
* incremented. See also timekeeping_suspend().
*/
u64 acpi_os_get_timer(void)
{
return (get_jiffies_64() - INITIAL_JIFFIES) *
(ACPI_100NSEC_PER_SEC / HZ);
}
acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
{
u32 dummy;
if (!value)
value = &dummy;
*value = 0;
if (width <= 8) {
*(u8 *) value = inb(port);
} else if (width <= 16) {
*(u16 *) value = inw(port);
} else if (width <= 32) {
*(u32 *) value = inl(port);
} else {
BUG();
}
return AE_OK;
}
EXPORT_SYMBOL(acpi_os_read_port);
acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
{
if (width <= 8) {
outb(value, port);
} else if (width <= 16) {
outw(value, port);
} else if (width <= 32) {
outl(value, port);
} else {
BUG();
}
return AE_OK;
}
EXPORT_SYMBOL(acpi_os_write_port);
int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
{
switch (width) {
case 8:
*(u8 *) value = readb(virt_addr);
break;
case 16:
*(u16 *) value = readw(virt_addr);
break;
case 32:
*(u32 *) value = readl(virt_addr);
break;
case 64:
*(u64 *) value = readq(virt_addr);
break;
default:
return -EINVAL;
}
return 0;
}
acpi_status
acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
{
void __iomem *virt_addr;
unsigned int size = width / 8;
bool unmap = false;
u64 dummy;
int error;
rcu_read_lock();
virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
if (!virt_addr) {
rcu_read_unlock();
virt_addr = acpi_os_ioremap(phys_addr, size);
if (!virt_addr)
return AE_BAD_ADDRESS;
unmap = true;
}
if (!value)
value = &dummy;
error = acpi_os_read_iomem(virt_addr, value, width);
BUG_ON(error);
if (unmap)
iounmap(virt_addr);
else
rcu_read_unlock();
return AE_OK;
}
acpi_status
acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
{
void __iomem *virt_addr;
unsigned int size = width / 8;
bool unmap = false;
rcu_read_lock();
virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
if (!virt_addr) {
rcu_read_unlock();
virt_addr = acpi_os_ioremap(phys_addr, size);
if (!virt_addr)
return AE_BAD_ADDRESS;
unmap = true;
}
switch (width) {
case 8:
writeb(value, virt_addr);
break;
case 16:
writew(value, virt_addr);
break;
case 32:
writel(value, virt_addr);
break;
case 64:
writeq(value, virt_addr);
break;
default:
BUG();
}
if (unmap)
iounmap(virt_addr);
else
rcu_read_unlock();
return AE_OK;
}
#ifdef CONFIG_PCI
acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
u64 *value, u32 width)
{
int result, size;
u32 value32;
if (!value)
return AE_BAD_PARAMETER;
switch (width) {
case 8:
size = 1;
break;
case 16:
size = 2;
break;
case 32:
size = 4;
break;
default:
return AE_ERROR;
}
result = raw_pci_read(pci_id->segment, pci_id->bus,
PCI_DEVFN(pci_id->device, pci_id->function),
reg, size, &value32);
*value = value32;
return (result ? AE_ERROR : AE_OK);
}
acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
u64 value, u32 width)
{
int result, size;
switch (width) {
case 8:
size = 1;
break;
case 16:
size = 2;
break;
case 32:
size = 4;
break;
default:
return AE_ERROR;
}
result = raw_pci_write(pci_id->segment, pci_id->bus,
PCI_DEVFN(pci_id->device, pci_id->function),
reg, size, value);
return (result ? AE_ERROR : AE_OK);
}
#endif
static void acpi_os_execute_deferred(struct work_struct *work)
{
struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
dpc->function(dpc->context);
kfree(dpc);
}
#ifdef CONFIG_ACPI_DEBUGGER
static struct acpi_debugger acpi_debugger;
static bool acpi_debugger_initialized;
int acpi_register_debugger(struct module *owner,
const struct acpi_debugger_ops *ops)
{
int ret = 0;
mutex_lock(&acpi_debugger.lock);
if (acpi_debugger.ops) {
ret = -EBUSY;
goto err_lock;
}
acpi_debugger.owner = owner;
acpi_debugger.ops = ops;
err_lock:
mutex_unlock(&acpi_debugger.lock);
return ret;
}
EXPORT_SYMBOL(acpi_register_debugger);
void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
{
mutex_lock(&acpi_debugger.lock);
if (ops == acpi_debugger.ops) {
acpi_debugger.ops = NULL;
acpi_debugger.owner = NULL;
}
mutex_unlock(&acpi_debugger.lock);
}
EXPORT_SYMBOL(acpi_unregister_debugger);
int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
{
int ret;
int (*func)(acpi_osd_exec_callback, void *);
struct module *owner;
if (!acpi_debugger_initialized)
return -ENODEV;
mutex_lock(&acpi_debugger.lock);
if (!acpi_debugger.ops) {
ret = -ENODEV;
goto err_lock;
}
if (!try_module_get(acpi_debugger.owner)) {
ret = -ENODEV;
goto err_lock;
}
func = acpi_debugger.ops->create_thread;
owner = acpi_debugger.owner;
mutex_unlock(&acpi_debugger.lock);
ret = func(function, context);
mutex_lock(&acpi_debugger.lock);
module_put(owner);
err_lock:
mutex_unlock(&acpi_debugger.lock);
return ret;
}
ssize_t acpi_debugger_write_log(const char *msg)
{
ssize_t ret;
ssize_t (*func)(const char *);
struct module *owner;
if (!acpi_debugger_initialized)
return -ENODEV;
mutex_lock(&acpi_debugger.lock);
if (!acpi_debugger.ops) {
ret = -ENODEV;
goto err_lock;
}
if (!try_module_get(acpi_debugger.owner)) {
ret = -ENODEV;
goto err_lock;
}
func = acpi_debugger.ops->write_log;
owner = acpi_debugger.owner;
mutex_unlock(&acpi_debugger.lock);
ret = func(msg);
mutex_lock(&acpi_debugger.lock);
module_put(owner);
err_lock:
mutex_unlock(&acpi_debugger.lock);
return ret;
}
ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
{
ssize_t ret;
ssize_t (*func)(char *, size_t);
struct module *owner;
if (!acpi_debugger_initialized)
return -ENODEV;
mutex_lock(&acpi_debugger.lock);
if (!acpi_debugger.ops) {
ret = -ENODEV;
goto err_lock;
}
if (!try_module_get(acpi_debugger.owner)) {
ret = -ENODEV;
goto err_lock;
}
func = acpi_debugger.ops->read_cmd;
owner = acpi_debugger.owner;
mutex_unlock(&acpi_debugger.lock);
ret = func(buffer, buffer_length);
mutex_lock(&acpi_debugger.lock);
module_put(owner);
err_lock:
mutex_unlock(&acpi_debugger.lock);
return ret;
}
int acpi_debugger_wait_command_ready(void)
{
int ret;
int (*func)(bool, char *, size_t);
struct module *owner;
if (!acpi_debugger_initialized)
return -ENODEV;
mutex_lock(&acpi_debugger.lock);
if (!acpi_debugger.ops) {
ret = -ENODEV;
goto err_lock;
}
if (!try_module_get(acpi_debugger.owner)) {
ret = -ENODEV;
goto err_lock;
}
func = acpi_debugger.ops->wait_command_ready;
owner = acpi_debugger.owner;
mutex_unlock(&acpi_debugger.lock);
ret = func(acpi_gbl_method_executing,
acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
mutex_lock(&acpi_debugger.lock);
module_put(owner);
err_lock:
mutex_unlock(&acpi_debugger.lock);
return ret;
}
int acpi_debugger_notify_command_complete(void)
{
int ret;
int (*func)(void);
struct module *owner;
if (!acpi_debugger_initialized)
return -ENODEV;
mutex_lock(&acpi_debugger.lock);
if (!acpi_debugger.ops) {
ret = -ENODEV;
goto err_lock;
}
if (!try_module_get(acpi_debugger.owner)) {
ret = -ENODEV;
goto err_lock;
}
func = acpi_debugger.ops->notify_command_complete;
owner = acpi_debugger.owner;
mutex_unlock(&acpi_debugger.lock);
ret = func();
mutex_lock(&acpi_debugger.lock);
module_put(owner);
err_lock:
mutex_unlock(&acpi_debugger.lock);
return ret;
}
int __init acpi_debugger_init(void)
{
mutex_init(&acpi_debugger.lock);
acpi_debugger_initialized = true;
return 0;
}
#endif
/*******************************************************************************
*
* FUNCTION: acpi_os_execute
*
* PARAMETERS: Type - Type of the callback
* Function - Function to be executed
* Context - Function parameters
*
* RETURN: Status
*
* DESCRIPTION: Depending on type, either queues function for deferred execution or
* immediately executes function on a separate thread.
*
******************************************************************************/
acpi_status acpi_os_execute(acpi_execute_type type,
acpi_osd_exec_callback function, void *context)
{
acpi_status status = AE_OK;
struct acpi_os_dpc *dpc;
struct workqueue_struct *queue;
int ret;
ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
"Scheduling function [%p(%p)] for deferred execution.\n",
function, context));
if (type == OSL_DEBUGGER_MAIN_THREAD) {
ret = acpi_debugger_create_thread(function, context);
if (ret) {
pr_err("Call to kthread_create() failed.\n");
status = AE_ERROR;
}
goto out_thread;
}
/*
* Allocate/initialize DPC structure. Note that this memory will be
* freed by the callee. The kernel handles the work_struct list in a
* way that allows us to also free its memory inside the callee.
* Because we may want to schedule several tasks with different
* parameters we can't use the approach some kernel code uses of
* having a static work_struct.
*/
dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
if (!dpc)
return AE_NO_MEMORY;
dpc->function = function;
dpc->context = context;
/*
* To prevent lockdep from complaining unnecessarily, make sure that
* there is a different static lockdep key for each workqueue by using
* INIT_WORK() for each of them separately.
*/
if (type == OSL_NOTIFY_HANDLER) {
queue = kacpi_notify_wq;
INIT_WORK(&dpc->work, acpi_os_execute_deferred);
} else if (type == OSL_GPE_HANDLER) {
queue = kacpid_wq;
INIT_WORK(&dpc->work, acpi_os_execute_deferred);
} else {
pr_err("Unsupported os_execute type %d.\n", type);
status = AE_ERROR;
}
if (ACPI_FAILURE(status))
goto err_workqueue;
/*
* On some machines, a software-initiated SMI causes corruption unless
* the SMI runs on CPU 0. An SMI can be initiated by any AML, but
* typically it's done in GPE-related methods that are run via
* workqueues, so we can avoid the known corruption cases by always
* queueing on CPU 0.
*/
ret = queue_work_on(0, queue, &dpc->work);
if (!ret) {
printk(KERN_ERR PREFIX
"Call to queue_work() failed.\n");
status = AE_ERROR;
}
err_workqueue:
if (ACPI_FAILURE(status))
kfree(dpc);
out_thread:
return status;
}
EXPORT_SYMBOL(acpi_os_execute);
void acpi_os_wait_events_complete(void)
{
/*
* Make sure the GPE handler or the fixed event handler is not used
* on another CPU after removal.
*/
if (acpi_sci_irq_valid())
synchronize_hardirq(acpi_sci_irq);
flush_workqueue(kacpid_wq);
flush_workqueue(kacpi_notify_wq);
}
EXPORT_SYMBOL(acpi_os_wait_events_complete);
struct acpi_hp_work {
struct work_struct work;
struct acpi_device *adev;
u32 src;
};
static void acpi_hotplug_work_fn(struct work_struct *work)
{
struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
acpi_os_wait_events_complete();
acpi_device_hotplug(hpw->adev, hpw->src);
kfree(hpw);
}
acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
{
struct acpi_hp_work *hpw;
ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
"Scheduling hotplug event (%p, %u) for deferred execution.\n",
adev, src));
hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
if (!hpw)
return AE_NO_MEMORY;
INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
hpw->adev = adev;
hpw->src = src;
/*
* We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
* the hotplug code may call driver .remove() functions, which may
* invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
* these workqueues.
*/
if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
kfree(hpw);
return AE_ERROR;
}
return AE_OK;
}
bool acpi_queue_hotplug_work(struct work_struct *work)
{
return queue_work(kacpi_hotplug_wq, work);
}
acpi_status
acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
{
struct semaphore *sem = NULL;
sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
if (!sem)
return AE_NO_MEMORY;
sema_init(sem, initial_units);
*handle = (acpi_handle *) sem;
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
*handle, initial_units));
return AE_OK;
}
/*
* TODO: A better way to delete semaphores? Linux doesn't have a
* 'delete_semaphore()' function -- may result in an invalid
* pointer dereference for non-synchronized consumers. Should
* we at least check for blocked threads and signal/cancel them?
*/
acpi_status acpi_os_delete_semaphore(acpi_handle handle)
{
struct semaphore *sem = (struct semaphore *)handle;
if (!sem)
return AE_BAD_PARAMETER;
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
BUG_ON(!list_empty(&sem->wait_list));
kfree(sem);
sem = NULL;
return AE_OK;
}
/*
* TODO: Support for units > 1?
*/
acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
{
acpi_status status = AE_OK;
struct semaphore *sem = (struct semaphore *)handle;
long jiffies;
int ret = 0;
if (!acpi_os_initialized)
return AE_OK;
if (!sem || (units < 1))
return AE_BAD_PARAMETER;
if (units > 1)
return AE_SUPPORT;
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
handle, units, timeout));
if (timeout == ACPI_WAIT_FOREVER)
jiffies = MAX_SCHEDULE_TIMEOUT;
else
jiffies = msecs_to_jiffies(timeout);
ret = down_timeout(sem, jiffies);
if (ret)
status = AE_TIME;
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
"Failed to acquire semaphore[%p|%d|%d], %s",
handle, units, timeout,
acpi_format_exception(status)));
} else {
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
"Acquired semaphore[%p|%d|%d]", handle,
units, timeout));
}
return status;
}
/*
* TODO: Support for units > 1?
*/
acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
{
struct semaphore *sem = (struct semaphore *)handle;
if (!acpi_os_initialized)
return AE_OK;
if (!sem || (units < 1))
return AE_BAD_PARAMETER;
if (units > 1)
return AE_SUPPORT;
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
units));
up(sem);
return AE_OK;
}
acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
{
#ifdef ENABLE_DEBUGGER
if (acpi_in_debugger) {
u32 chars;
kdb_read(buffer, buffer_length);
/* remove the CR kdb includes */
chars = strlen(buffer) - 1;
buffer[chars] = '\0';
}
#else
int ret;
ret = acpi_debugger_read_cmd(buffer, buffer_length);
if (ret < 0)
return AE_ERROR;
if (bytes_read)
*bytes_read = ret;
#endif
return AE_OK;
}
EXPORT_SYMBOL(acpi_os_get_line);
acpi_status acpi_os_wait_command_ready(void)
{
int ret;
ret = acpi_debugger_wait_command_ready();
if (ret < 0)
return AE_ERROR;
return AE_OK;
}
acpi_status acpi_os_notify_command_complete(void)
{
int ret;
ret = acpi_debugger_notify_command_complete();
if (ret < 0)
return AE_ERROR;
return AE_OK;
}
acpi_status acpi_os_signal(u32 function, void *info)
{
switch (function) {
case ACPI_SIGNAL_FATAL:
printk(KERN_ERR PREFIX "Fatal opcode executed\n");
break;
case ACPI_SIGNAL_BREAKPOINT:
/*
* AML Breakpoint
* ACPI spec. says to treat it as a NOP unless
* you are debugging. So if/when we integrate
* AML debugger into the kernel debugger its
* hook will go here. But until then it is
* not useful to print anything on breakpoints.
*/
break;
default:
break;
}
return AE_OK;
}
static int __init acpi_os_name_setup(char *str)
{
char *p = acpi_os_name;
int count = ACPI_MAX_OVERRIDE_LEN - 1;
if (!str || !*str)
return 0;
for (; count-- && *str; str++) {
if (isalnum(*str) || *str == ' ' || *str == ':')
*p++ = *str;
else if (*str == '\'' || *str == '"')
continue;
else
break;
}
*p = 0;
return 1;
}
__setup("acpi_os_name=", acpi_os_name_setup);
/*
* Disable the auto-serialization of named objects creation methods.
*
* This feature is enabled by default. It marks the AML control methods
* that contain the opcodes to create named objects as "Serialized".
*/
static int __init acpi_no_auto_serialize_setup(char *str)
{
acpi_gbl_auto_serialize_methods = FALSE;
pr_info("ACPI: auto-serialization disabled\n");
return 1;
}
__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
/* Check of resource interference between native drivers and ACPI
* OperationRegions (SystemIO and System Memory only).
* IO ports and memory declared in ACPI might be used by the ACPI subsystem
* in arbitrary AML code and can interfere with legacy drivers.
* acpi_enforce_resources= can be set to:
*
* - strict (default) (2)
* -> further driver trying to access the resources will not load
* - lax (1)
* -> further driver trying to access the resources will load, but you
* get a system message that something might go wrong...
*
* - no (0)
* -> ACPI Operation Region resources will not be registered
*
*/
#define ENFORCE_RESOURCES_STRICT 2
#define ENFORCE_RESOURCES_LAX 1
#define ENFORCE_RESOURCES_NO 0
static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
static int __init acpi_enforce_resources_setup(char *str)
{
if (str == NULL || *str == '\0')
return 0;
if (!strcmp("strict", str))
acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
else if (!strcmp("lax", str))
acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
else if (!strcmp("no", str))
acpi_enforce_resources = ENFORCE_RESOURCES_NO;
return 1;
}
__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
/* Check for resource conflicts between ACPI OperationRegions and native
* drivers */
int acpi_check_resource_conflict(const struct resource *res)
{
acpi_adr_space_type space_id;
acpi_size length;
u8 warn = 0;
int clash = 0;
if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
return 0;
if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
return 0;
if (res->flags & IORESOURCE_IO)
space_id = ACPI_ADR_SPACE_SYSTEM_IO;
else
space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
length = resource_size(res);
if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
warn = 1;
clash = acpi_check_address_range(space_id, res->start, length, warn);
if (clash) {
if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
printk(KERN_NOTICE "ACPI: This conflict may"
" cause random problems and system"
" instability\n");
printk(KERN_INFO "ACPI: If an ACPI driver is available"
" for this device, you should use it instead of"
" the native driver\n");
}
if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
return -EBUSY;
}
return 0;
}
EXPORT_SYMBOL(acpi_check_resource_conflict);
int acpi_check_region(resource_size_t start, resource_size_t n,
const char *name)
{
struct resource res = {
.start = start,
.end = start + n - 1,
.name = name,
.flags = IORESOURCE_IO,
};
return acpi_check_resource_conflict(&res);
}
EXPORT_SYMBOL(acpi_check_region);
static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
void *_res, void **return_value)
{
struct acpi_mem_space_context **mem_ctx;
union acpi_operand_object *handler_obj;
union acpi_operand_object *region_obj2;
union acpi_operand_object *region_obj;
struct resource *res = _res;
acpi_status status;
region_obj = acpi_ns_get_attached_object(handle);
if (!region_obj)
return AE_OK;
handler_obj = region_obj->region.handler;
if (!handler_obj)
return AE_OK;
if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
return AE_OK;
if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
return AE_OK;
region_obj2 = acpi_ns_get_secondary_object(region_obj);
if (!region_obj2)
return AE_OK;
mem_ctx = (void *)&region_obj2->extra.region_context;
if (!(mem_ctx[0]->address >= res->start &&
mem_ctx[0]->address < res->end))
return AE_OK;
status = handler_obj->address_space.setup(region_obj,
ACPI_REGION_DEACTIVATE,
NULL, (void **)mem_ctx);
if (ACPI_SUCCESS(status))
region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
return status;
}
/**
* acpi_release_memory - Release any mappings done to a memory region
* @handle: Handle to namespace node
* @res: Memory resource
* @level: A level that terminates the search
*
* Walks through @handle and unmaps all SystemMemory Operation Regions that
* overlap with @res and that have already been activated (mapped).
*
* This is a helper that allows drivers to place special requirements on memory
* region that may overlap with operation regions, primarily allowing them to
* safely map the region as non-cached memory.
*
* The unmapped Operation Regions will be automatically remapped next time they
* are called, so the drivers do not need to do anything else.
*/
acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
u32 level)
{
if (!(res->flags & IORESOURCE_MEM))
return AE_TYPE;
return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
acpi_deactivate_mem_region, NULL, res, NULL);
}
EXPORT_SYMBOL_GPL(acpi_release_memory);
/*
* Let drivers know whether the resource checks are effective
*/
int acpi_resources_are_enforced(void)
{
return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
}
EXPORT_SYMBOL(acpi_resources_are_enforced);
/*
* Deallocate the memory for a spinlock.
*/
void acpi_os_delete_lock(acpi_spinlock handle)
{
ACPI_FREE(handle);
}
/*
* Acquire a spinlock.
*
* handle is a pointer to the spinlock_t.
*/
acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
{
acpi_cpu_flags flags;
spin_lock_irqsave(lockp, flags);
return flags;
}
/*
* Release a spinlock. See above.
*/
void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
{
spin_unlock_irqrestore(lockp, flags);
}
#ifndef ACPI_USE_LOCAL_CACHE
/*******************************************************************************
*
* FUNCTION: acpi_os_create_cache
*
* PARAMETERS: name - Ascii name for the cache
* size - Size of each cached object
* depth - Maximum depth of the cache (in objects) <ignored>
* cache - Where the new cache object is returned
*
* RETURN: status
*
* DESCRIPTION: Create a cache object
*
******************************************************************************/
acpi_status
acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
{
*cache = kmem_cache_create(name, size, 0, 0, NULL);
if (*cache == NULL)
return AE_ERROR;
else
return AE_OK;
}
/*******************************************************************************
*
* FUNCTION: acpi_os_purge_cache
*
* PARAMETERS: Cache - Handle to cache object
*
* RETURN: Status
*
* DESCRIPTION: Free all objects within the requested cache.
*
******************************************************************************/
acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
{
kmem_cache_shrink(cache);
return (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: acpi_os_delete_cache
*
* PARAMETERS: Cache - Handle to cache object
*
* RETURN: Status
*
* DESCRIPTION: Free all objects within the requested cache and delete the
* cache object.
*
******************************************************************************/
acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
{
kmem_cache_destroy(cache);
return (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: acpi_os_release_object
*
* PARAMETERS: Cache - Handle to cache object
* Object - The object to be released
*
* RETURN: None
*
* DESCRIPTION: Release an object to the specified cache. If cache is full,
* the object is deleted.
*
******************************************************************************/
acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
{
kmem_cache_free(cache, object);
return (AE_OK);
}
#endif
static int __init acpi_no_static_ssdt_setup(char *s)
{
acpi_gbl_disable_ssdt_table_install = TRUE;
pr_info("ACPI: static SSDT installation disabled\n");
return 0;
}
early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
static int __init acpi_disable_return_repair(char *s)
{
printk(KERN_NOTICE PREFIX
"ACPI: Predefined validation mechanism disabled\n");
acpi_gbl_disable_auto_repair = TRUE;
return 1;
}
__setup("acpica_no_return_repair", acpi_disable_return_repair);
acpi_status __init acpi_os_initialize(void)
{
acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
/*
* Use acpi_os_map_generic_address to pre-map the reset
* register if it's in system memory.
*/
int rv;
rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
}
acpi_os_initialized = true;
return AE_OK;
}
acpi_status __init acpi_os_initialize1(void)
{
kacpid_wq = alloc_workqueue("kacpid", 0, 1);
kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
BUG_ON(!kacpid_wq);
BUG_ON(!kacpi_notify_wq);
BUG_ON(!kacpi_hotplug_wq);
acpi_osi_init();
return AE_OK;
}
acpi_status acpi_os_terminate(void)
{
if (acpi_irq_handler) {
acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
acpi_irq_handler);
}
acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
destroy_workqueue(kacpid_wq);
destroy_workqueue(kacpi_notify_wq);
destroy_workqueue(kacpi_hotplug_wq);
return AE_OK;
}
acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
u32 pm1b_control)
{
int rc = 0;
if (__acpi_os_prepare_sleep)
rc = __acpi_os_prepare_sleep(sleep_state,
pm1a_control, pm1b_control);
if (rc < 0)
return AE_ERROR;
else if (rc > 0)
return AE_CTRL_TERMINATE;
return AE_OK;
}
void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
u32 pm1a_ctrl, u32 pm1b_ctrl))
{
__acpi_os_prepare_sleep = func;
}
#if (ACPI_REDUCED_HARDWARE)
acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
u32 val_b)
{
int rc = 0;
if (__acpi_os_prepare_extended_sleep)
rc = __acpi_os_prepare_extended_sleep(sleep_state,
val_a, val_b);
if (rc < 0)
return AE_ERROR;
else if (rc > 0)
return AE_CTRL_TERMINATE;
return AE_OK;
}
#else
acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
u32 val_b)
{
return AE_OK;
}
#endif
void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
u32 val_a, u32 val_b))
{
__acpi_os_prepare_extended_sleep = func;
}
acpi_status acpi_os_enter_sleep(u8 sleep_state,
u32 reg_a_value, u32 reg_b_value)
{
acpi_status status;
if (acpi_gbl_reduced_hardware)
status = acpi_os_prepare_extended_sleep(sleep_state,
reg_a_value,
reg_b_value);
else
status = acpi_os_prepare_sleep(sleep_state,
reg_a_value, reg_b_value);
return status;
}