blob: 89ac2f9ae6dd8219cf24d70b5f046c9ff9d255a5 [file] [log] [blame]
/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <rdma/uverbs_ioctl.h>
#include "iw_cxgb4.h"
static int db_delay_usecs = 1;
module_param(db_delay_usecs, int, 0644);
MODULE_PARM_DESC(db_delay_usecs, "Usecs to delay awaiting db fifo to drain");
static int ocqp_support = 1;
module_param(ocqp_support, int, 0644);
MODULE_PARM_DESC(ocqp_support, "Support on-chip SQs (default=1)");
int db_fc_threshold = 1000;
module_param(db_fc_threshold, int, 0644);
MODULE_PARM_DESC(db_fc_threshold,
"QP count/threshold that triggers"
" automatic db flow control mode (default = 1000)");
int db_coalescing_threshold;
module_param(db_coalescing_threshold, int, 0644);
MODULE_PARM_DESC(db_coalescing_threshold,
"QP count/threshold that triggers"
" disabling db coalescing (default = 0)");
static int max_fr_immd = T4_MAX_FR_IMMD;
module_param(max_fr_immd, int, 0644);
MODULE_PARM_DESC(max_fr_immd, "fastreg threshold for using DSGL instead of immediate");
static int alloc_ird(struct c4iw_dev *dev, u32 ird)
{
int ret = 0;
xa_lock_irq(&dev->qps);
if (ird <= dev->avail_ird)
dev->avail_ird -= ird;
else
ret = -ENOMEM;
xa_unlock_irq(&dev->qps);
if (ret)
dev_warn(&dev->rdev.lldi.pdev->dev,
"device IRD resources exhausted\n");
return ret;
}
static void free_ird(struct c4iw_dev *dev, int ird)
{
xa_lock_irq(&dev->qps);
dev->avail_ird += ird;
xa_unlock_irq(&dev->qps);
}
static void set_state(struct c4iw_qp *qhp, enum c4iw_qp_state state)
{
unsigned long flag;
spin_lock_irqsave(&qhp->lock, flag);
qhp->attr.state = state;
spin_unlock_irqrestore(&qhp->lock, flag);
}
static void dealloc_oc_sq(struct c4iw_rdev *rdev, struct t4_sq *sq)
{
c4iw_ocqp_pool_free(rdev, sq->dma_addr, sq->memsize);
}
static void dealloc_host_sq(struct c4iw_rdev *rdev, struct t4_sq *sq)
{
dma_free_coherent(&(rdev->lldi.pdev->dev), sq->memsize, sq->queue,
dma_unmap_addr(sq, mapping));
}
static void dealloc_sq(struct c4iw_rdev *rdev, struct t4_sq *sq)
{
if (t4_sq_onchip(sq))
dealloc_oc_sq(rdev, sq);
else
dealloc_host_sq(rdev, sq);
}
static int alloc_oc_sq(struct c4iw_rdev *rdev, struct t4_sq *sq)
{
if (!ocqp_support || !ocqp_supported(&rdev->lldi))
return -ENOSYS;
sq->dma_addr = c4iw_ocqp_pool_alloc(rdev, sq->memsize);
if (!sq->dma_addr)
return -ENOMEM;
sq->phys_addr = rdev->oc_mw_pa + sq->dma_addr -
rdev->lldi.vr->ocq.start;
sq->queue = (__force union t4_wr *)(rdev->oc_mw_kva + sq->dma_addr -
rdev->lldi.vr->ocq.start);
sq->flags |= T4_SQ_ONCHIP;
return 0;
}
static int alloc_host_sq(struct c4iw_rdev *rdev, struct t4_sq *sq)
{
sq->queue = dma_alloc_coherent(&(rdev->lldi.pdev->dev), sq->memsize,
&(sq->dma_addr), GFP_KERNEL);
if (!sq->queue)
return -ENOMEM;
sq->phys_addr = virt_to_phys(sq->queue);
dma_unmap_addr_set(sq, mapping, sq->dma_addr);
return 0;
}
static int alloc_sq(struct c4iw_rdev *rdev, struct t4_sq *sq, int user)
{
int ret = -ENOSYS;
if (user)
ret = alloc_oc_sq(rdev, sq);
if (ret)
ret = alloc_host_sq(rdev, sq);
return ret;
}
static int destroy_qp(struct c4iw_rdev *rdev, struct t4_wq *wq,
struct c4iw_dev_ucontext *uctx, int has_rq)
{
/*
* uP clears EQ contexts when the connection exits rdma mode,
* so no need to post a RESET WR for these EQs.
*/
dealloc_sq(rdev, &wq->sq);
kfree(wq->sq.sw_sq);
c4iw_put_qpid(rdev, wq->sq.qid, uctx);
if (has_rq) {
dma_free_coherent(&rdev->lldi.pdev->dev,
wq->rq.memsize, wq->rq.queue,
dma_unmap_addr(&wq->rq, mapping));
c4iw_rqtpool_free(rdev, wq->rq.rqt_hwaddr, wq->rq.rqt_size);
kfree(wq->rq.sw_rq);
c4iw_put_qpid(rdev, wq->rq.qid, uctx);
}
return 0;
}
/*
* Determine the BAR2 virtual address and qid. If pbar2_pa is not NULL,
* then this is a user mapping so compute the page-aligned physical address
* for mapping.
*/
void __iomem *c4iw_bar2_addrs(struct c4iw_rdev *rdev, unsigned int qid,
enum cxgb4_bar2_qtype qtype,
unsigned int *pbar2_qid, u64 *pbar2_pa)
{
u64 bar2_qoffset;
int ret;
ret = cxgb4_bar2_sge_qregs(rdev->lldi.ports[0], qid, qtype,
pbar2_pa ? 1 : 0,
&bar2_qoffset, pbar2_qid);
if (ret)
return NULL;
if (pbar2_pa)
*pbar2_pa = (rdev->bar2_pa + bar2_qoffset) & PAGE_MASK;
if (is_t4(rdev->lldi.adapter_type))
return NULL;
return rdev->bar2_kva + bar2_qoffset;
}
static int create_qp(struct c4iw_rdev *rdev, struct t4_wq *wq,
struct t4_cq *rcq, struct t4_cq *scq,
struct c4iw_dev_ucontext *uctx,
struct c4iw_wr_wait *wr_waitp,
int need_rq)
{
int user = (uctx != &rdev->uctx);
struct fw_ri_res_wr *res_wr;
struct fw_ri_res *res;
int wr_len;
struct sk_buff *skb;
int ret = 0;
int eqsize;
wq->sq.qid = c4iw_get_qpid(rdev, uctx);
if (!wq->sq.qid)
return -ENOMEM;
if (need_rq) {
wq->rq.qid = c4iw_get_qpid(rdev, uctx);
if (!wq->rq.qid) {
ret = -ENOMEM;
goto free_sq_qid;
}
}
if (!user) {
wq->sq.sw_sq = kcalloc(wq->sq.size, sizeof(*wq->sq.sw_sq),
GFP_KERNEL);
if (!wq->sq.sw_sq) {
ret = -ENOMEM;
goto free_rq_qid;//FIXME
}
if (need_rq) {
wq->rq.sw_rq = kcalloc(wq->rq.size,
sizeof(*wq->rq.sw_rq),
GFP_KERNEL);
if (!wq->rq.sw_rq) {
ret = -ENOMEM;
goto free_sw_sq;
}
}
}
if (need_rq) {
/*
* RQT must be a power of 2 and at least 16 deep.
*/
wq->rq.rqt_size =
roundup_pow_of_two(max_t(u16, wq->rq.size, 16));
wq->rq.rqt_hwaddr = c4iw_rqtpool_alloc(rdev, wq->rq.rqt_size);
if (!wq->rq.rqt_hwaddr) {
ret = -ENOMEM;
goto free_sw_rq;
}
}
ret = alloc_sq(rdev, &wq->sq, user);
if (ret)
goto free_hwaddr;
memset(wq->sq.queue, 0, wq->sq.memsize);
dma_unmap_addr_set(&wq->sq, mapping, wq->sq.dma_addr);
if (need_rq) {
wq->rq.queue = dma_alloc_coherent(&rdev->lldi.pdev->dev,
wq->rq.memsize,
&wq->rq.dma_addr,
GFP_KERNEL);
if (!wq->rq.queue) {
ret = -ENOMEM;
goto free_sq;
}
pr_debug("sq base va 0x%p pa 0x%llx rq base va 0x%p pa 0x%llx\n",
wq->sq.queue,
(unsigned long long)virt_to_phys(wq->sq.queue),
wq->rq.queue,
(unsigned long long)virt_to_phys(wq->rq.queue));
dma_unmap_addr_set(&wq->rq, mapping, wq->rq.dma_addr);
}
wq->db = rdev->lldi.db_reg;
wq->sq.bar2_va = c4iw_bar2_addrs(rdev, wq->sq.qid,
CXGB4_BAR2_QTYPE_EGRESS,
&wq->sq.bar2_qid,
user ? &wq->sq.bar2_pa : NULL);
if (need_rq)
wq->rq.bar2_va = c4iw_bar2_addrs(rdev, wq->rq.qid,
CXGB4_BAR2_QTYPE_EGRESS,
&wq->rq.bar2_qid,
user ? &wq->rq.bar2_pa : NULL);
/*
* User mode must have bar2 access.
*/
if (user && (!wq->sq.bar2_pa || (need_rq && !wq->rq.bar2_pa))) {
pr_warn("%s: sqid %u or rqid %u not in BAR2 range\n",
pci_name(rdev->lldi.pdev), wq->sq.qid, wq->rq.qid);
goto free_dma;
}
wq->rdev = rdev;
wq->rq.msn = 1;
/* build fw_ri_res_wr */
wr_len = sizeof(*res_wr) + 2 * sizeof(*res);
if (need_rq)
wr_len += sizeof(*res);
skb = alloc_skb(wr_len, GFP_KERNEL);
if (!skb) {
ret = -ENOMEM;
goto free_dma;
}
set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
res_wr = __skb_put_zero(skb, wr_len);
res_wr->op_nres = cpu_to_be32(
FW_WR_OP_V(FW_RI_RES_WR) |
FW_RI_RES_WR_NRES_V(need_rq ? 2 : 1) |
FW_WR_COMPL_F);
res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
res_wr->cookie = (uintptr_t)wr_waitp;
res = res_wr->res;
res->u.sqrq.restype = FW_RI_RES_TYPE_SQ;
res->u.sqrq.op = FW_RI_RES_OP_WRITE;
/*
* eqsize is the number of 64B entries plus the status page size.
*/
eqsize = wq->sq.size * T4_SQ_NUM_SLOTS +
rdev->hw_queue.t4_eq_status_entries;
res->u.sqrq.fetchszm_to_iqid = cpu_to_be32(
FW_RI_RES_WR_HOSTFCMODE_V(0) | /* no host cidx updates */
FW_RI_RES_WR_CPRIO_V(0) | /* don't keep in chip cache */
FW_RI_RES_WR_PCIECHN_V(0) | /* set by uP at ri_init time */
(t4_sq_onchip(&wq->sq) ? FW_RI_RES_WR_ONCHIP_F : 0) |
FW_RI_RES_WR_IQID_V(scq->cqid));
res->u.sqrq.dcaen_to_eqsize = cpu_to_be32(
FW_RI_RES_WR_DCAEN_V(0) |
FW_RI_RES_WR_DCACPU_V(0) |
FW_RI_RES_WR_FBMIN_V(2) |
(t4_sq_onchip(&wq->sq) ? FW_RI_RES_WR_FBMAX_V(2) :
FW_RI_RES_WR_FBMAX_V(3)) |
FW_RI_RES_WR_CIDXFTHRESHO_V(0) |
FW_RI_RES_WR_CIDXFTHRESH_V(0) |
FW_RI_RES_WR_EQSIZE_V(eqsize));
res->u.sqrq.eqid = cpu_to_be32(wq->sq.qid);
res->u.sqrq.eqaddr = cpu_to_be64(wq->sq.dma_addr);
if (need_rq) {
res++;
res->u.sqrq.restype = FW_RI_RES_TYPE_RQ;
res->u.sqrq.op = FW_RI_RES_OP_WRITE;
/*
* eqsize is the number of 64B entries plus the status page size
*/
eqsize = wq->rq.size * T4_RQ_NUM_SLOTS +
rdev->hw_queue.t4_eq_status_entries;
res->u.sqrq.fetchszm_to_iqid =
/* no host cidx updates */
cpu_to_be32(FW_RI_RES_WR_HOSTFCMODE_V(0) |
/* don't keep in chip cache */
FW_RI_RES_WR_CPRIO_V(0) |
/* set by uP at ri_init time */
FW_RI_RES_WR_PCIECHN_V(0) |
FW_RI_RES_WR_IQID_V(rcq->cqid));
res->u.sqrq.dcaen_to_eqsize =
cpu_to_be32(FW_RI_RES_WR_DCAEN_V(0) |
FW_RI_RES_WR_DCACPU_V(0) |
FW_RI_RES_WR_FBMIN_V(2) |
FW_RI_RES_WR_FBMAX_V(3) |
FW_RI_RES_WR_CIDXFTHRESHO_V(0) |
FW_RI_RES_WR_CIDXFTHRESH_V(0) |
FW_RI_RES_WR_EQSIZE_V(eqsize));
res->u.sqrq.eqid = cpu_to_be32(wq->rq.qid);
res->u.sqrq.eqaddr = cpu_to_be64(wq->rq.dma_addr);
}
c4iw_init_wr_wait(wr_waitp);
ret = c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, wq->sq.qid, __func__);
if (ret)
goto free_dma;
pr_debug("sqid 0x%x rqid 0x%x kdb 0x%p sq_bar2_addr %p rq_bar2_addr %p\n",
wq->sq.qid, wq->rq.qid, wq->db,
wq->sq.bar2_va, wq->rq.bar2_va);
return 0;
free_dma:
if (need_rq)
dma_free_coherent(&rdev->lldi.pdev->dev,
wq->rq.memsize, wq->rq.queue,
dma_unmap_addr(&wq->rq, mapping));
free_sq:
dealloc_sq(rdev, &wq->sq);
free_hwaddr:
if (need_rq)
c4iw_rqtpool_free(rdev, wq->rq.rqt_hwaddr, wq->rq.rqt_size);
free_sw_rq:
if (need_rq)
kfree(wq->rq.sw_rq);
free_sw_sq:
kfree(wq->sq.sw_sq);
free_rq_qid:
if (need_rq)
c4iw_put_qpid(rdev, wq->rq.qid, uctx);
free_sq_qid:
c4iw_put_qpid(rdev, wq->sq.qid, uctx);
return ret;
}
static int build_immd(struct t4_sq *sq, struct fw_ri_immd *immdp,
const struct ib_send_wr *wr, int max, u32 *plenp)
{
u8 *dstp, *srcp;
u32 plen = 0;
int i;
int rem, len;
dstp = (u8 *)immdp->data;
for (i = 0; i < wr->num_sge; i++) {
if ((plen + wr->sg_list[i].length) > max)
return -EMSGSIZE;
srcp = (u8 *)(unsigned long)wr->sg_list[i].addr;
plen += wr->sg_list[i].length;
rem = wr->sg_list[i].length;
while (rem) {
if (dstp == (u8 *)&sq->queue[sq->size])
dstp = (u8 *)sq->queue;
if (rem <= (u8 *)&sq->queue[sq->size] - dstp)
len = rem;
else
len = (u8 *)&sq->queue[sq->size] - dstp;
memcpy(dstp, srcp, len);
dstp += len;
srcp += len;
rem -= len;
}
}
len = roundup(plen + sizeof(*immdp), 16) - (plen + sizeof(*immdp));
if (len)
memset(dstp, 0, len);
immdp->op = FW_RI_DATA_IMMD;
immdp->r1 = 0;
immdp->r2 = 0;
immdp->immdlen = cpu_to_be32(plen);
*plenp = plen;
return 0;
}
static int build_isgl(__be64 *queue_start, __be64 *queue_end,
struct fw_ri_isgl *isglp, struct ib_sge *sg_list,
int num_sge, u32 *plenp)
{
int i;
u32 plen = 0;
__be64 *flitp;
if ((__be64 *)isglp == queue_end)
isglp = (struct fw_ri_isgl *)queue_start;
flitp = (__be64 *)isglp->sge;
for (i = 0; i < num_sge; i++) {
if ((plen + sg_list[i].length) < plen)
return -EMSGSIZE;
plen += sg_list[i].length;
*flitp = cpu_to_be64(((u64)sg_list[i].lkey << 32) |
sg_list[i].length);
if (++flitp == queue_end)
flitp = queue_start;
*flitp = cpu_to_be64(sg_list[i].addr);
if (++flitp == queue_end)
flitp = queue_start;
}
*flitp = (__force __be64)0;
isglp->op = FW_RI_DATA_ISGL;
isglp->r1 = 0;
isglp->nsge = cpu_to_be16(num_sge);
isglp->r2 = 0;
if (plenp)
*plenp = plen;
return 0;
}
static int build_rdma_send(struct t4_sq *sq, union t4_wr *wqe,
const struct ib_send_wr *wr, u8 *len16)
{
u32 plen;
int size;
int ret;
if (wr->num_sge > T4_MAX_SEND_SGE)
return -EINVAL;
switch (wr->opcode) {
case IB_WR_SEND:
if (wr->send_flags & IB_SEND_SOLICITED)
wqe->send.sendop_pkd = cpu_to_be32(
FW_RI_SEND_WR_SENDOP_V(FW_RI_SEND_WITH_SE));
else
wqe->send.sendop_pkd = cpu_to_be32(
FW_RI_SEND_WR_SENDOP_V(FW_RI_SEND));
wqe->send.stag_inv = 0;
break;
case IB_WR_SEND_WITH_INV:
if (wr->send_flags & IB_SEND_SOLICITED)
wqe->send.sendop_pkd = cpu_to_be32(
FW_RI_SEND_WR_SENDOP_V(FW_RI_SEND_WITH_SE_INV));
else
wqe->send.sendop_pkd = cpu_to_be32(
FW_RI_SEND_WR_SENDOP_V(FW_RI_SEND_WITH_INV));
wqe->send.stag_inv = cpu_to_be32(wr->ex.invalidate_rkey);
break;
default:
return -EINVAL;
}
wqe->send.r3 = 0;
wqe->send.r4 = 0;
plen = 0;
if (wr->num_sge) {
if (wr->send_flags & IB_SEND_INLINE) {
ret = build_immd(sq, wqe->send.u.immd_src, wr,
T4_MAX_SEND_INLINE, &plen);
if (ret)
return ret;
size = sizeof(wqe->send) + sizeof(struct fw_ri_immd) +
plen;
} else {
ret = build_isgl((__be64 *)sq->queue,
(__be64 *)&sq->queue[sq->size],
wqe->send.u.isgl_src,
wr->sg_list, wr->num_sge, &plen);
if (ret)
return ret;
size = sizeof(wqe->send) + sizeof(struct fw_ri_isgl) +
wr->num_sge * sizeof(struct fw_ri_sge);
}
} else {
wqe->send.u.immd_src[0].op = FW_RI_DATA_IMMD;
wqe->send.u.immd_src[0].r1 = 0;
wqe->send.u.immd_src[0].r2 = 0;
wqe->send.u.immd_src[0].immdlen = 0;
size = sizeof(wqe->send) + sizeof(struct fw_ri_immd);
plen = 0;
}
*len16 = DIV_ROUND_UP(size, 16);
wqe->send.plen = cpu_to_be32(plen);
return 0;
}
static int build_rdma_write(struct t4_sq *sq, union t4_wr *wqe,
const struct ib_send_wr *wr, u8 *len16)
{
u32 plen;
int size;
int ret;
if (wr->num_sge > T4_MAX_SEND_SGE)
return -EINVAL;
/*
* iWARP protocol supports 64 bit immediate data but rdma api
* limits it to 32bit.
*/
if (wr->opcode == IB_WR_RDMA_WRITE_WITH_IMM)
wqe->write.iw_imm_data.ib_imm_data.imm_data32 = wr->ex.imm_data;
else
wqe->write.iw_imm_data.ib_imm_data.imm_data32 = 0;
wqe->write.stag_sink = cpu_to_be32(rdma_wr(wr)->rkey);
wqe->write.to_sink = cpu_to_be64(rdma_wr(wr)->remote_addr);
if (wr->num_sge) {
if (wr->send_flags & IB_SEND_INLINE) {
ret = build_immd(sq, wqe->write.u.immd_src, wr,
T4_MAX_WRITE_INLINE, &plen);
if (ret)
return ret;
size = sizeof(wqe->write) + sizeof(struct fw_ri_immd) +
plen;
} else {
ret = build_isgl((__be64 *)sq->queue,
(__be64 *)&sq->queue[sq->size],
wqe->write.u.isgl_src,
wr->sg_list, wr->num_sge, &plen);
if (ret)
return ret;
size = sizeof(wqe->write) + sizeof(struct fw_ri_isgl) +
wr->num_sge * sizeof(struct fw_ri_sge);
}
} else {
wqe->write.u.immd_src[0].op = FW_RI_DATA_IMMD;
wqe->write.u.immd_src[0].r1 = 0;
wqe->write.u.immd_src[0].r2 = 0;
wqe->write.u.immd_src[0].immdlen = 0;
size = sizeof(wqe->write) + sizeof(struct fw_ri_immd);
plen = 0;
}
*len16 = DIV_ROUND_UP(size, 16);
wqe->write.plen = cpu_to_be32(plen);
return 0;
}
static void build_immd_cmpl(struct t4_sq *sq, struct fw_ri_immd_cmpl *immdp,
struct ib_send_wr *wr)
{
memcpy((u8 *)immdp->data, (u8 *)(uintptr_t)wr->sg_list->addr, 16);
memset(immdp->r1, 0, 6);
immdp->op = FW_RI_DATA_IMMD;
immdp->immdlen = 16;
}
static void build_rdma_write_cmpl(struct t4_sq *sq,
struct fw_ri_rdma_write_cmpl_wr *wcwr,
const struct ib_send_wr *wr, u8 *len16)
{
u32 plen;
int size;
/*
* This code assumes the struct fields preceding the write isgl
* fit in one 64B WR slot. This is because the WQE is built
* directly in the dma queue, and wrapping is only handled
* by the code buildling sgls. IE the "fixed part" of the wr
* structs must all fit in 64B. The WQE build code should probably be
* redesigned to avoid this restriction, but for now just add
* the BUILD_BUG_ON() to catch if this WQE struct gets too big.
*/
BUILD_BUG_ON(offsetof(struct fw_ri_rdma_write_cmpl_wr, u) > 64);
wcwr->stag_sink = cpu_to_be32(rdma_wr(wr)->rkey);
wcwr->to_sink = cpu_to_be64(rdma_wr(wr)->remote_addr);
if (wr->next->opcode == IB_WR_SEND)
wcwr->stag_inv = 0;
else
wcwr->stag_inv = cpu_to_be32(wr->next->ex.invalidate_rkey);
wcwr->r2 = 0;
wcwr->r3 = 0;
/* SEND_INV SGL */
if (wr->next->send_flags & IB_SEND_INLINE)
build_immd_cmpl(sq, &wcwr->u_cmpl.immd_src, wr->next);
else
build_isgl((__be64 *)sq->queue, (__be64 *)&sq->queue[sq->size],
&wcwr->u_cmpl.isgl_src, wr->next->sg_list, 1, NULL);
/* WRITE SGL */
build_isgl((__be64 *)sq->queue, (__be64 *)&sq->queue[sq->size],
wcwr->u.isgl_src, wr->sg_list, wr->num_sge, &plen);
size = sizeof(*wcwr) + sizeof(struct fw_ri_isgl) +
wr->num_sge * sizeof(struct fw_ri_sge);
wcwr->plen = cpu_to_be32(plen);
*len16 = DIV_ROUND_UP(size, 16);
}
static int build_rdma_read(union t4_wr *wqe, const struct ib_send_wr *wr,
u8 *len16)
{
if (wr->num_sge > 1)
return -EINVAL;
if (wr->num_sge && wr->sg_list[0].length) {
wqe->read.stag_src = cpu_to_be32(rdma_wr(wr)->rkey);
wqe->read.to_src_hi = cpu_to_be32((u32)(rdma_wr(wr)->remote_addr
>> 32));
wqe->read.to_src_lo = cpu_to_be32((u32)rdma_wr(wr)->remote_addr);
wqe->read.stag_sink = cpu_to_be32(wr->sg_list[0].lkey);
wqe->read.plen = cpu_to_be32(wr->sg_list[0].length);
wqe->read.to_sink_hi = cpu_to_be32((u32)(wr->sg_list[0].addr
>> 32));
wqe->read.to_sink_lo = cpu_to_be32((u32)(wr->sg_list[0].addr));
} else {
wqe->read.stag_src = cpu_to_be32(2);
wqe->read.to_src_hi = 0;
wqe->read.to_src_lo = 0;
wqe->read.stag_sink = cpu_to_be32(2);
wqe->read.plen = 0;
wqe->read.to_sink_hi = 0;
wqe->read.to_sink_lo = 0;
}
wqe->read.r2 = 0;
wqe->read.r5 = 0;
*len16 = DIV_ROUND_UP(sizeof(wqe->read), 16);
return 0;
}
static void post_write_cmpl(struct c4iw_qp *qhp, const struct ib_send_wr *wr)
{
bool send_signaled = (wr->next->send_flags & IB_SEND_SIGNALED) ||
qhp->sq_sig_all;
bool write_signaled = (wr->send_flags & IB_SEND_SIGNALED) ||
qhp->sq_sig_all;
struct t4_swsqe *swsqe;
union t4_wr *wqe;
u16 write_wrid;
u8 len16;
u16 idx;
/*
* The sw_sq entries still look like a WRITE and a SEND and consume
* 2 slots. The FW WR, however, will be a single uber-WR.
*/
wqe = (union t4_wr *)((u8 *)qhp->wq.sq.queue +
qhp->wq.sq.wq_pidx * T4_EQ_ENTRY_SIZE);
build_rdma_write_cmpl(&qhp->wq.sq, &wqe->write_cmpl, wr, &len16);
/* WRITE swsqe */
swsqe = &qhp->wq.sq.sw_sq[qhp->wq.sq.pidx];
swsqe->opcode = FW_RI_RDMA_WRITE;
swsqe->idx = qhp->wq.sq.pidx;
swsqe->complete = 0;
swsqe->signaled = write_signaled;
swsqe->flushed = 0;
swsqe->wr_id = wr->wr_id;
if (c4iw_wr_log) {
swsqe->sge_ts =
cxgb4_read_sge_timestamp(qhp->rhp->rdev.lldi.ports[0]);
swsqe->host_time = ktime_get();
}
write_wrid = qhp->wq.sq.pidx;
/* just bump the sw_sq */
qhp->wq.sq.in_use++;
if (++qhp->wq.sq.pidx == qhp->wq.sq.size)
qhp->wq.sq.pidx = 0;
/* SEND_WITH_INV swsqe */
swsqe = &qhp->wq.sq.sw_sq[qhp->wq.sq.pidx];
if (wr->next->opcode == IB_WR_SEND)
swsqe->opcode = FW_RI_SEND;
else
swsqe->opcode = FW_RI_SEND_WITH_INV;
swsqe->idx = qhp->wq.sq.pidx;
swsqe->complete = 0;
swsqe->signaled = send_signaled;
swsqe->flushed = 0;
swsqe->wr_id = wr->next->wr_id;
if (c4iw_wr_log) {
swsqe->sge_ts =
cxgb4_read_sge_timestamp(qhp->rhp->rdev.lldi.ports[0]);
swsqe->host_time = ktime_get();
}
wqe->write_cmpl.flags_send = send_signaled ? FW_RI_COMPLETION_FLAG : 0;
wqe->write_cmpl.wrid_send = qhp->wq.sq.pidx;
init_wr_hdr(wqe, write_wrid, FW_RI_RDMA_WRITE_CMPL_WR,
write_signaled ? FW_RI_COMPLETION_FLAG : 0, len16);
t4_sq_produce(&qhp->wq, len16);
idx = DIV_ROUND_UP(len16 * 16, T4_EQ_ENTRY_SIZE);
t4_ring_sq_db(&qhp->wq, idx, wqe);
}
static int build_rdma_recv(struct c4iw_qp *qhp, union t4_recv_wr *wqe,
const struct ib_recv_wr *wr, u8 *len16)
{
int ret;
ret = build_isgl((__be64 *)qhp->wq.rq.queue,
(__be64 *)&qhp->wq.rq.queue[qhp->wq.rq.size],
&wqe->recv.isgl, wr->sg_list, wr->num_sge, NULL);
if (ret)
return ret;
*len16 = DIV_ROUND_UP(
sizeof(wqe->recv) + wr->num_sge * sizeof(struct fw_ri_sge), 16);
return 0;
}
static int build_srq_recv(union t4_recv_wr *wqe, const struct ib_recv_wr *wr,
u8 *len16)
{
int ret;
ret = build_isgl((__be64 *)wqe, (__be64 *)(wqe + 1),
&wqe->recv.isgl, wr->sg_list, wr->num_sge, NULL);
if (ret)
return ret;
*len16 = DIV_ROUND_UP(sizeof(wqe->recv) +
wr->num_sge * sizeof(struct fw_ri_sge), 16);
return 0;
}
static void build_tpte_memreg(struct fw_ri_fr_nsmr_tpte_wr *fr,
const struct ib_reg_wr *wr, struct c4iw_mr *mhp,
u8 *len16)
{
__be64 *p = (__be64 *)fr->pbl;
fr->r2 = cpu_to_be32(0);
fr->stag = cpu_to_be32(mhp->ibmr.rkey);
fr->tpte.valid_to_pdid = cpu_to_be32(FW_RI_TPTE_VALID_F |
FW_RI_TPTE_STAGKEY_V((mhp->ibmr.rkey & FW_RI_TPTE_STAGKEY_M)) |
FW_RI_TPTE_STAGSTATE_V(1) |
FW_RI_TPTE_STAGTYPE_V(FW_RI_STAG_NSMR) |
FW_RI_TPTE_PDID_V(mhp->attr.pdid));
fr->tpte.locread_to_qpid = cpu_to_be32(
FW_RI_TPTE_PERM_V(c4iw_ib_to_tpt_access(wr->access)) |
FW_RI_TPTE_ADDRTYPE_V(FW_RI_VA_BASED_TO) |
FW_RI_TPTE_PS_V(ilog2(wr->mr->page_size) - 12));
fr->tpte.nosnoop_pbladdr = cpu_to_be32(FW_RI_TPTE_PBLADDR_V(
PBL_OFF(&mhp->rhp->rdev, mhp->attr.pbl_addr)>>3));
fr->tpte.dca_mwbcnt_pstag = cpu_to_be32(0);
fr->tpte.len_hi = cpu_to_be32(0);
fr->tpte.len_lo = cpu_to_be32(mhp->ibmr.length);
fr->tpte.va_hi = cpu_to_be32(mhp->ibmr.iova >> 32);
fr->tpte.va_lo_fbo = cpu_to_be32(mhp->ibmr.iova & 0xffffffff);
p[0] = cpu_to_be64((u64)mhp->mpl[0]);
p[1] = cpu_to_be64((u64)mhp->mpl[1]);
*len16 = DIV_ROUND_UP(sizeof(*fr), 16);
}
static int build_memreg(struct t4_sq *sq, union t4_wr *wqe,
const struct ib_reg_wr *wr, struct c4iw_mr *mhp,
u8 *len16, bool dsgl_supported)
{
struct fw_ri_immd *imdp;
__be64 *p;
int i;
int pbllen = roundup(mhp->mpl_len * sizeof(u64), 32);
int rem;
if (mhp->mpl_len > t4_max_fr_depth(dsgl_supported && use_dsgl))
return -EINVAL;
wqe->fr.qpbinde_to_dcacpu = 0;
wqe->fr.pgsz_shift = ilog2(wr->mr->page_size) - 12;
wqe->fr.addr_type = FW_RI_VA_BASED_TO;
wqe->fr.mem_perms = c4iw_ib_to_tpt_access(wr->access);
wqe->fr.len_hi = 0;
wqe->fr.len_lo = cpu_to_be32(mhp->ibmr.length);
wqe->fr.stag = cpu_to_be32(wr->key);
wqe->fr.va_hi = cpu_to_be32(mhp->ibmr.iova >> 32);
wqe->fr.va_lo_fbo = cpu_to_be32(mhp->ibmr.iova &
0xffffffff);
if (dsgl_supported && use_dsgl && (pbllen > max_fr_immd)) {
struct fw_ri_dsgl *sglp;
for (i = 0; i < mhp->mpl_len; i++)
mhp->mpl[i] = (__force u64)cpu_to_be64((u64)mhp->mpl[i]);
sglp = (struct fw_ri_dsgl *)(&wqe->fr + 1);
sglp->op = FW_RI_DATA_DSGL;
sglp->r1 = 0;
sglp->nsge = cpu_to_be16(1);
sglp->addr0 = cpu_to_be64(mhp->mpl_addr);
sglp->len0 = cpu_to_be32(pbllen);
*len16 = DIV_ROUND_UP(sizeof(wqe->fr) + sizeof(*sglp), 16);
} else {
imdp = (struct fw_ri_immd *)(&wqe->fr + 1);
imdp->op = FW_RI_DATA_IMMD;
imdp->r1 = 0;
imdp->r2 = 0;
imdp->immdlen = cpu_to_be32(pbllen);
p = (__be64 *)(imdp + 1);
rem = pbllen;
for (i = 0; i < mhp->mpl_len; i++) {
*p = cpu_to_be64((u64)mhp->mpl[i]);
rem -= sizeof(*p);
if (++p == (__be64 *)&sq->queue[sq->size])
p = (__be64 *)sq->queue;
}
while (rem) {
*p = 0;
rem -= sizeof(*p);
if (++p == (__be64 *)&sq->queue[sq->size])
p = (__be64 *)sq->queue;
}
*len16 = DIV_ROUND_UP(sizeof(wqe->fr) + sizeof(*imdp)
+ pbllen, 16);
}
return 0;
}
static int build_inv_stag(union t4_wr *wqe, const struct ib_send_wr *wr,
u8 *len16)
{
wqe->inv.stag_inv = cpu_to_be32(wr->ex.invalidate_rkey);
wqe->inv.r2 = 0;
*len16 = DIV_ROUND_UP(sizeof(wqe->inv), 16);
return 0;
}
void c4iw_qp_add_ref(struct ib_qp *qp)
{
pr_debug("ib_qp %p\n", qp);
refcount_inc(&to_c4iw_qp(qp)->qp_refcnt);
}
void c4iw_qp_rem_ref(struct ib_qp *qp)
{
pr_debug("ib_qp %p\n", qp);
if (refcount_dec_and_test(&to_c4iw_qp(qp)->qp_refcnt))
complete(&to_c4iw_qp(qp)->qp_rel_comp);
}
static void add_to_fc_list(struct list_head *head, struct list_head *entry)
{
if (list_empty(entry))
list_add_tail(entry, head);
}
static int ring_kernel_sq_db(struct c4iw_qp *qhp, u16 inc)
{
unsigned long flags;
xa_lock_irqsave(&qhp->rhp->qps, flags);
spin_lock(&qhp->lock);
if (qhp->rhp->db_state == NORMAL)
t4_ring_sq_db(&qhp->wq, inc, NULL);
else {
add_to_fc_list(&qhp->rhp->db_fc_list, &qhp->db_fc_entry);
qhp->wq.sq.wq_pidx_inc += inc;
}
spin_unlock(&qhp->lock);
xa_unlock_irqrestore(&qhp->rhp->qps, flags);
return 0;
}
static int ring_kernel_rq_db(struct c4iw_qp *qhp, u16 inc)
{
unsigned long flags;
xa_lock_irqsave(&qhp->rhp->qps, flags);
spin_lock(&qhp->lock);
if (qhp->rhp->db_state == NORMAL)
t4_ring_rq_db(&qhp->wq, inc, NULL);
else {
add_to_fc_list(&qhp->rhp->db_fc_list, &qhp->db_fc_entry);
qhp->wq.rq.wq_pidx_inc += inc;
}
spin_unlock(&qhp->lock);
xa_unlock_irqrestore(&qhp->rhp->qps, flags);
return 0;
}
static int ib_to_fw_opcode(int ib_opcode)
{
int opcode;
switch (ib_opcode) {
case IB_WR_SEND_WITH_INV:
opcode = FW_RI_SEND_WITH_INV;
break;
case IB_WR_SEND:
opcode = FW_RI_SEND;
break;
case IB_WR_RDMA_WRITE:
opcode = FW_RI_RDMA_WRITE;
break;
case IB_WR_RDMA_WRITE_WITH_IMM:
opcode = FW_RI_WRITE_IMMEDIATE;
break;
case IB_WR_RDMA_READ:
case IB_WR_RDMA_READ_WITH_INV:
opcode = FW_RI_READ_REQ;
break;
case IB_WR_REG_MR:
opcode = FW_RI_FAST_REGISTER;
break;
case IB_WR_LOCAL_INV:
opcode = FW_RI_LOCAL_INV;
break;
default:
opcode = -EINVAL;
}
return opcode;
}
static int complete_sq_drain_wr(struct c4iw_qp *qhp,
const struct ib_send_wr *wr)
{
struct t4_cqe cqe = {};
struct c4iw_cq *schp;
unsigned long flag;
struct t4_cq *cq;
int opcode;
schp = to_c4iw_cq(qhp->ibqp.send_cq);
cq = &schp->cq;
opcode = ib_to_fw_opcode(wr->opcode);
if (opcode < 0)
return opcode;
cqe.u.drain_cookie = wr->wr_id;
cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) |
CQE_OPCODE_V(opcode) |
CQE_TYPE_V(1) |
CQE_SWCQE_V(1) |
CQE_DRAIN_V(1) |
CQE_QPID_V(qhp->wq.sq.qid));
spin_lock_irqsave(&schp->lock, flag);
cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen));
cq->sw_queue[cq->sw_pidx] = cqe;
t4_swcq_produce(cq);
spin_unlock_irqrestore(&schp->lock, flag);
if (t4_clear_cq_armed(&schp->cq)) {
spin_lock_irqsave(&schp->comp_handler_lock, flag);
(*schp->ibcq.comp_handler)(&schp->ibcq,
schp->ibcq.cq_context);
spin_unlock_irqrestore(&schp->comp_handler_lock, flag);
}
return 0;
}
static int complete_sq_drain_wrs(struct c4iw_qp *qhp,
const struct ib_send_wr *wr,
const struct ib_send_wr **bad_wr)
{
int ret = 0;
while (wr) {
ret = complete_sq_drain_wr(qhp, wr);
if (ret) {
*bad_wr = wr;
break;
}
wr = wr->next;
}
return ret;
}
static void complete_rq_drain_wr(struct c4iw_qp *qhp,
const struct ib_recv_wr *wr)
{
struct t4_cqe cqe = {};
struct c4iw_cq *rchp;
unsigned long flag;
struct t4_cq *cq;
rchp = to_c4iw_cq(qhp->ibqp.recv_cq);
cq = &rchp->cq;
cqe.u.drain_cookie = wr->wr_id;
cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) |
CQE_OPCODE_V(FW_RI_SEND) |
CQE_TYPE_V(0) |
CQE_SWCQE_V(1) |
CQE_DRAIN_V(1) |
CQE_QPID_V(qhp->wq.sq.qid));
spin_lock_irqsave(&rchp->lock, flag);
cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen));
cq->sw_queue[cq->sw_pidx] = cqe;
t4_swcq_produce(cq);
spin_unlock_irqrestore(&rchp->lock, flag);
if (t4_clear_cq_armed(&rchp->cq)) {
spin_lock_irqsave(&rchp->comp_handler_lock, flag);
(*rchp->ibcq.comp_handler)(&rchp->ibcq,
rchp->ibcq.cq_context);
spin_unlock_irqrestore(&rchp->comp_handler_lock, flag);
}
}
static void complete_rq_drain_wrs(struct c4iw_qp *qhp,
const struct ib_recv_wr *wr)
{
while (wr) {
complete_rq_drain_wr(qhp, wr);
wr = wr->next;
}
}
int c4iw_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
const struct ib_send_wr **bad_wr)
{
int err = 0;
u8 len16 = 0;
enum fw_wr_opcodes fw_opcode = 0;
enum fw_ri_wr_flags fw_flags;
struct c4iw_qp *qhp;
struct c4iw_dev *rhp;
union t4_wr *wqe = NULL;
u32 num_wrs;
struct t4_swsqe *swsqe;
unsigned long flag;
u16 idx = 0;
qhp = to_c4iw_qp(ibqp);
rhp = qhp->rhp;
spin_lock_irqsave(&qhp->lock, flag);
/*
* If the qp has been flushed, then just insert a special
* drain cqe.
*/
if (qhp->wq.flushed) {
spin_unlock_irqrestore(&qhp->lock, flag);
err = complete_sq_drain_wrs(qhp, wr, bad_wr);
return err;
}
num_wrs = t4_sq_avail(&qhp->wq);
if (num_wrs == 0) {
spin_unlock_irqrestore(&qhp->lock, flag);
*bad_wr = wr;
return -ENOMEM;
}
/*
* Fastpath for NVMe-oF target WRITE + SEND_WITH_INV wr chain which is
* the response for small NVMEe-oF READ requests. If the chain is
* exactly a WRITE->SEND_WITH_INV or a WRITE->SEND and the sgl depths
* and lengths meet the requirements of the fw_ri_write_cmpl_wr work
* request, then build and post the write_cmpl WR. If any of the tests
* below are not true, then we continue on with the tradtional WRITE
* and SEND WRs.
*/
if (qhp->rhp->rdev.lldi.write_cmpl_support &&
CHELSIO_CHIP_VERSION(qhp->rhp->rdev.lldi.adapter_type) >=
CHELSIO_T5 &&
wr && wr->next && !wr->next->next &&
wr->opcode == IB_WR_RDMA_WRITE &&
wr->sg_list[0].length && wr->num_sge <= T4_WRITE_CMPL_MAX_SGL &&
(wr->next->opcode == IB_WR_SEND ||
wr->next->opcode == IB_WR_SEND_WITH_INV) &&
wr->next->sg_list[0].length == T4_WRITE_CMPL_MAX_CQE &&
wr->next->num_sge == 1 && num_wrs >= 2) {
post_write_cmpl(qhp, wr);
spin_unlock_irqrestore(&qhp->lock, flag);
return 0;
}
while (wr) {
if (num_wrs == 0) {
err = -ENOMEM;
*bad_wr = wr;
break;
}
wqe = (union t4_wr *)((u8 *)qhp->wq.sq.queue +
qhp->wq.sq.wq_pidx * T4_EQ_ENTRY_SIZE);
fw_flags = 0;
if (wr->send_flags & IB_SEND_SOLICITED)
fw_flags |= FW_RI_SOLICITED_EVENT_FLAG;
if (wr->send_flags & IB_SEND_SIGNALED || qhp->sq_sig_all)
fw_flags |= FW_RI_COMPLETION_FLAG;
swsqe = &qhp->wq.sq.sw_sq[qhp->wq.sq.pidx];
switch (wr->opcode) {
case IB_WR_SEND_WITH_INV:
case IB_WR_SEND:
if (wr->send_flags & IB_SEND_FENCE)
fw_flags |= FW_RI_READ_FENCE_FLAG;
fw_opcode = FW_RI_SEND_WR;
if (wr->opcode == IB_WR_SEND)
swsqe->opcode = FW_RI_SEND;
else
swsqe->opcode = FW_RI_SEND_WITH_INV;
err = build_rdma_send(&qhp->wq.sq, wqe, wr, &len16);
break;
case IB_WR_RDMA_WRITE_WITH_IMM:
if (unlikely(!rhp->rdev.lldi.write_w_imm_support)) {
err = -EINVAL;
break;
}
fw_flags |= FW_RI_RDMA_WRITE_WITH_IMMEDIATE;
/*FALLTHROUGH*/
case IB_WR_RDMA_WRITE:
fw_opcode = FW_RI_RDMA_WRITE_WR;
swsqe->opcode = FW_RI_RDMA_WRITE;
err = build_rdma_write(&qhp->wq.sq, wqe, wr, &len16);
break;
case IB_WR_RDMA_READ:
case IB_WR_RDMA_READ_WITH_INV:
fw_opcode = FW_RI_RDMA_READ_WR;
swsqe->opcode = FW_RI_READ_REQ;
if (wr->opcode == IB_WR_RDMA_READ_WITH_INV) {
c4iw_invalidate_mr(rhp, wr->sg_list[0].lkey);
fw_flags = FW_RI_RDMA_READ_INVALIDATE;
} else {
fw_flags = 0;
}
err = build_rdma_read(wqe, wr, &len16);
if (err)
break;
swsqe->read_len = wr->sg_list[0].length;
if (!qhp->wq.sq.oldest_read)
qhp->wq.sq.oldest_read = swsqe;
break;
case IB_WR_REG_MR: {
struct c4iw_mr *mhp = to_c4iw_mr(reg_wr(wr)->mr);
swsqe->opcode = FW_RI_FAST_REGISTER;
if (rhp->rdev.lldi.fr_nsmr_tpte_wr_support &&
!mhp->attr.state && mhp->mpl_len <= 2) {
fw_opcode = FW_RI_FR_NSMR_TPTE_WR;
build_tpte_memreg(&wqe->fr_tpte, reg_wr(wr),
mhp, &len16);
} else {
fw_opcode = FW_RI_FR_NSMR_WR;
err = build_memreg(&qhp->wq.sq, wqe, reg_wr(wr),
mhp, &len16,
rhp->rdev.lldi.ulptx_memwrite_dsgl);
if (err)
break;
}
mhp->attr.state = 1;
break;
}
case IB_WR_LOCAL_INV:
if (wr->send_flags & IB_SEND_FENCE)
fw_flags |= FW_RI_LOCAL_FENCE_FLAG;
fw_opcode = FW_RI_INV_LSTAG_WR;
swsqe->opcode = FW_RI_LOCAL_INV;
err = build_inv_stag(wqe, wr, &len16);
c4iw_invalidate_mr(rhp, wr->ex.invalidate_rkey);
break;
default:
pr_warn("%s post of type=%d TBD!\n", __func__,
wr->opcode);
err = -EINVAL;
}
if (err) {
*bad_wr = wr;
break;
}
swsqe->idx = qhp->wq.sq.pidx;
swsqe->complete = 0;
swsqe->signaled = (wr->send_flags & IB_SEND_SIGNALED) ||
qhp->sq_sig_all;
swsqe->flushed = 0;
swsqe->wr_id = wr->wr_id;
if (c4iw_wr_log) {
swsqe->sge_ts = cxgb4_read_sge_timestamp(
rhp->rdev.lldi.ports[0]);
swsqe->host_time = ktime_get();
}
init_wr_hdr(wqe, qhp->wq.sq.pidx, fw_opcode, fw_flags, len16);
pr_debug("cookie 0x%llx pidx 0x%x opcode 0x%x read_len %u\n",
(unsigned long long)wr->wr_id, qhp->wq.sq.pidx,
swsqe->opcode, swsqe->read_len);
wr = wr->next;
num_wrs--;
t4_sq_produce(&qhp->wq, len16);
idx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
}
if (!rhp->rdev.status_page->db_off) {
t4_ring_sq_db(&qhp->wq, idx, wqe);
spin_unlock_irqrestore(&qhp->lock, flag);
} else {
spin_unlock_irqrestore(&qhp->lock, flag);
ring_kernel_sq_db(qhp, idx);
}
return err;
}
int c4iw_post_receive(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
const struct ib_recv_wr **bad_wr)
{
int err = 0;
struct c4iw_qp *qhp;
union t4_recv_wr *wqe = NULL;
u32 num_wrs;
u8 len16 = 0;
unsigned long flag;
u16 idx = 0;
qhp = to_c4iw_qp(ibqp);
spin_lock_irqsave(&qhp->lock, flag);
/*
* If the qp has been flushed, then just insert a special
* drain cqe.
*/
if (qhp->wq.flushed) {
spin_unlock_irqrestore(&qhp->lock, flag);
complete_rq_drain_wrs(qhp, wr);
return err;
}
num_wrs = t4_rq_avail(&qhp->wq);
if (num_wrs == 0) {
spin_unlock_irqrestore(&qhp->lock, flag);
*bad_wr = wr;
return -ENOMEM;
}
while (wr) {
if (wr->num_sge > T4_MAX_RECV_SGE) {
err = -EINVAL;
*bad_wr = wr;
break;
}
wqe = (union t4_recv_wr *)((u8 *)qhp->wq.rq.queue +
qhp->wq.rq.wq_pidx *
T4_EQ_ENTRY_SIZE);
if (num_wrs)
err = build_rdma_recv(qhp, wqe, wr, &len16);
else
err = -ENOMEM;
if (err) {
*bad_wr = wr;
break;
}
qhp->wq.rq.sw_rq[qhp->wq.rq.pidx].wr_id = wr->wr_id;
if (c4iw_wr_log) {
qhp->wq.rq.sw_rq[qhp->wq.rq.pidx].sge_ts =
cxgb4_read_sge_timestamp(
qhp->rhp->rdev.lldi.ports[0]);
qhp->wq.rq.sw_rq[qhp->wq.rq.pidx].host_time =
ktime_get();
}
wqe->recv.opcode = FW_RI_RECV_WR;
wqe->recv.r1 = 0;
wqe->recv.wrid = qhp->wq.rq.pidx;
wqe->recv.r2[0] = 0;
wqe->recv.r2[1] = 0;
wqe->recv.r2[2] = 0;
wqe->recv.len16 = len16;
pr_debug("cookie 0x%llx pidx %u\n",
(unsigned long long)wr->wr_id, qhp->wq.rq.pidx);
t4_rq_produce(&qhp->wq, len16);
idx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
wr = wr->next;
num_wrs--;
}
if (!qhp->rhp->rdev.status_page->db_off) {
t4_ring_rq_db(&qhp->wq, idx, wqe);
spin_unlock_irqrestore(&qhp->lock, flag);
} else {
spin_unlock_irqrestore(&qhp->lock, flag);
ring_kernel_rq_db(qhp, idx);
}
return err;
}
static void defer_srq_wr(struct t4_srq *srq, union t4_recv_wr *wqe,
u64 wr_id, u8 len16)
{
struct t4_srq_pending_wr *pwr = &srq->pending_wrs[srq->pending_pidx];
pr_debug("%s cidx %u pidx %u wq_pidx %u in_use %u ooo_count %u wr_id 0x%llx pending_cidx %u pending_pidx %u pending_in_use %u\n",
__func__, srq->cidx, srq->pidx, srq->wq_pidx,
srq->in_use, srq->ooo_count,
(unsigned long long)wr_id, srq->pending_cidx,
srq->pending_pidx, srq->pending_in_use);
pwr->wr_id = wr_id;
pwr->len16 = len16;
memcpy(&pwr->wqe, wqe, len16 * 16);
t4_srq_produce_pending_wr(srq);
}
int c4iw_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
const struct ib_recv_wr **bad_wr)
{
union t4_recv_wr *wqe, lwqe;
struct c4iw_srq *srq;
unsigned long flag;
u8 len16 = 0;
u16 idx = 0;
int err = 0;
u32 num_wrs;
srq = to_c4iw_srq(ibsrq);
spin_lock_irqsave(&srq->lock, flag);
num_wrs = t4_srq_avail(&srq->wq);
if (num_wrs == 0) {
spin_unlock_irqrestore(&srq->lock, flag);
return -ENOMEM;
}
while (wr) {
if (wr->num_sge > T4_MAX_RECV_SGE) {
err = -EINVAL;
*bad_wr = wr;
break;
}
wqe = &lwqe;
if (num_wrs)
err = build_srq_recv(wqe, wr, &len16);
else
err = -ENOMEM;
if (err) {
*bad_wr = wr;
break;
}
wqe->recv.opcode = FW_RI_RECV_WR;
wqe->recv.r1 = 0;
wqe->recv.wrid = srq->wq.pidx;
wqe->recv.r2[0] = 0;
wqe->recv.r2[1] = 0;
wqe->recv.r2[2] = 0;
wqe->recv.len16 = len16;
if (srq->wq.ooo_count ||
srq->wq.pending_in_use ||
srq->wq.sw_rq[srq->wq.pidx].valid) {
defer_srq_wr(&srq->wq, wqe, wr->wr_id, len16);
} else {
srq->wq.sw_rq[srq->wq.pidx].wr_id = wr->wr_id;
srq->wq.sw_rq[srq->wq.pidx].valid = 1;
c4iw_copy_wr_to_srq(&srq->wq, wqe, len16);
pr_debug("%s cidx %u pidx %u wq_pidx %u in_use %u wr_id 0x%llx\n",
__func__, srq->wq.cidx,
srq->wq.pidx, srq->wq.wq_pidx,
srq->wq.in_use,
(unsigned long long)wr->wr_id);
t4_srq_produce(&srq->wq, len16);
idx += DIV_ROUND_UP(len16 * 16, T4_EQ_ENTRY_SIZE);
}
wr = wr->next;
num_wrs--;
}
if (idx)
t4_ring_srq_db(&srq->wq, idx, len16, wqe);
spin_unlock_irqrestore(&srq->lock, flag);
return err;
}
static inline void build_term_codes(struct t4_cqe *err_cqe, u8 *layer_type,
u8 *ecode)
{
int status;
int tagged;
int opcode;
int rqtype;
int send_inv;
if (!err_cqe) {
*layer_type = LAYER_RDMAP|DDP_LOCAL_CATA;
*ecode = 0;
return;
}
status = CQE_STATUS(err_cqe);
opcode = CQE_OPCODE(err_cqe);
rqtype = RQ_TYPE(err_cqe);
send_inv = (opcode == FW_RI_SEND_WITH_INV) ||
(opcode == FW_RI_SEND_WITH_SE_INV);
tagged = (opcode == FW_RI_RDMA_WRITE) ||
(rqtype && (opcode == FW_RI_READ_RESP));
switch (status) {
case T4_ERR_STAG:
if (send_inv) {
*layer_type = LAYER_RDMAP|RDMAP_REMOTE_OP;
*ecode = RDMAP_CANT_INV_STAG;
} else {
*layer_type = LAYER_RDMAP|RDMAP_REMOTE_PROT;
*ecode = RDMAP_INV_STAG;
}
break;
case T4_ERR_PDID:
*layer_type = LAYER_RDMAP|RDMAP_REMOTE_PROT;
if ((opcode == FW_RI_SEND_WITH_INV) ||
(opcode == FW_RI_SEND_WITH_SE_INV))
*ecode = RDMAP_CANT_INV_STAG;
else
*ecode = RDMAP_STAG_NOT_ASSOC;
break;
case T4_ERR_QPID:
*layer_type = LAYER_RDMAP|RDMAP_REMOTE_PROT;
*ecode = RDMAP_STAG_NOT_ASSOC;
break;
case T4_ERR_ACCESS:
*layer_type = LAYER_RDMAP|RDMAP_REMOTE_PROT;
*ecode = RDMAP_ACC_VIOL;
break;
case T4_ERR_WRAP:
*layer_type = LAYER_RDMAP|RDMAP_REMOTE_PROT;
*ecode = RDMAP_TO_WRAP;
break;
case T4_ERR_BOUND:
if (tagged) {
*layer_type = LAYER_DDP|DDP_TAGGED_ERR;
*ecode = DDPT_BASE_BOUNDS;
} else {
*layer_type = LAYER_RDMAP|RDMAP_REMOTE_PROT;
*ecode = RDMAP_BASE_BOUNDS;
}
break;
case T4_ERR_INVALIDATE_SHARED_MR:
case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND:
*layer_type = LAYER_RDMAP|RDMAP_REMOTE_OP;
*ecode = RDMAP_CANT_INV_STAG;
break;
case T4_ERR_ECC:
case T4_ERR_ECC_PSTAG:
case T4_ERR_INTERNAL_ERR:
*layer_type = LAYER_RDMAP|RDMAP_LOCAL_CATA;
*ecode = 0;
break;
case T4_ERR_OUT_OF_RQE:
*layer_type = LAYER_DDP|DDP_UNTAGGED_ERR;
*ecode = DDPU_INV_MSN_NOBUF;
break;
case T4_ERR_PBL_ADDR_BOUND:
*layer_type = LAYER_DDP|DDP_TAGGED_ERR;
*ecode = DDPT_BASE_BOUNDS;
break;
case T4_ERR_CRC:
*layer_type = LAYER_MPA|DDP_LLP;
*ecode = MPA_CRC_ERR;
break;
case T4_ERR_MARKER:
*layer_type = LAYER_MPA|DDP_LLP;
*ecode = MPA_MARKER_ERR;
break;
case T4_ERR_PDU_LEN_ERR:
*layer_type = LAYER_DDP|DDP_UNTAGGED_ERR;
*ecode = DDPU_MSG_TOOBIG;
break;
case T4_ERR_DDP_VERSION:
if (tagged) {
*layer_type = LAYER_DDP|DDP_TAGGED_ERR;
*ecode = DDPT_INV_VERS;
} else {
*layer_type = LAYER_DDP|DDP_UNTAGGED_ERR;
*ecode = DDPU_INV_VERS;
}
break;
case T4_ERR_RDMA_VERSION:
*layer_type = LAYER_RDMAP|RDMAP_REMOTE_OP;
*ecode = RDMAP_INV_VERS;
break;
case T4_ERR_OPCODE:
*layer_type = LAYER_RDMAP|RDMAP_REMOTE_OP;
*ecode = RDMAP_INV_OPCODE;
break;
case T4_ERR_DDP_QUEUE_NUM:
*layer_type = LAYER_DDP|DDP_UNTAGGED_ERR;
*ecode = DDPU_INV_QN;
break;
case T4_ERR_MSN:
case T4_ERR_MSN_GAP:
case T4_ERR_MSN_RANGE:
case T4_ERR_IRD_OVERFLOW:
*layer_type = LAYER_DDP|DDP_UNTAGGED_ERR;
*ecode = DDPU_INV_MSN_RANGE;
break;
case T4_ERR_TBIT:
*layer_type = LAYER_DDP|DDP_LOCAL_CATA;
*ecode = 0;
break;
case T4_ERR_MO:
*layer_type = LAYER_DDP|DDP_UNTAGGED_ERR;
*ecode = DDPU_INV_MO;
break;
default:
*layer_type = LAYER_RDMAP|DDP_LOCAL_CATA;
*ecode = 0;
break;
}
}
static void post_terminate(struct c4iw_qp *qhp, struct t4_cqe *err_cqe,
gfp_t gfp)
{
struct fw_ri_wr *wqe;
struct sk_buff *skb;
struct terminate_message *term;
pr_debug("qhp %p qid 0x%x tid %u\n", qhp, qhp->wq.sq.qid,
qhp->ep->hwtid);
skb = skb_dequeue(&qhp->ep->com.ep_skb_list);
if (WARN_ON(!skb))
return;
set_wr_txq(skb, CPL_PRIORITY_DATA, qhp->ep->txq_idx);
wqe = __skb_put_zero(skb, sizeof(*wqe));
wqe->op_compl = cpu_to_be32(FW_WR_OP_V(FW_RI_INIT_WR));
wqe->flowid_len16 = cpu_to_be32(
FW_WR_FLOWID_V(qhp->ep->hwtid) |
FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*wqe), 16)));
wqe->u.terminate.type = FW_RI_TYPE_TERMINATE;
wqe->u.terminate.immdlen = cpu_to_be32(sizeof(*term));
term = (struct terminate_message *)wqe->u.terminate.termmsg;
if (qhp->attr.layer_etype == (LAYER_MPA|DDP_LLP)) {
term->layer_etype = qhp->attr.layer_etype;
term->ecode = qhp->attr.ecode;
} else
build_term_codes(err_cqe, &term->layer_etype, &term->ecode);
c4iw_ofld_send(&qhp->rhp->rdev, skb);
}
/*
* Assumes qhp lock is held.
*/
static void __flush_qp(struct c4iw_qp *qhp, struct c4iw_cq *rchp,
struct c4iw_cq *schp)
{
int count;
int rq_flushed = 0, sq_flushed;
unsigned long flag;
pr_debug("qhp %p rchp %p schp %p\n", qhp, rchp, schp);
/* locking hierarchy: cqs lock first, then qp lock. */
spin_lock_irqsave(&rchp->lock, flag);
if (schp != rchp)
spin_lock(&schp->lock);
spin_lock(&qhp->lock);
if (qhp->wq.flushed) {
spin_unlock(&qhp->lock);
if (schp != rchp)
spin_unlock(&schp->lock);
spin_unlock_irqrestore(&rchp->lock, flag);
return;
}
qhp->wq.flushed = 1;
t4_set_wq_in_error(&qhp->wq, 0);
c4iw_flush_hw_cq(rchp, qhp);
if (!qhp->srq) {
c4iw_count_rcqes(&rchp->cq, &qhp->wq, &count);
rq_flushed = c4iw_flush_rq(&qhp->wq, &rchp->cq, count);
}
if (schp != rchp)
c4iw_flush_hw_cq(schp, qhp);
sq_flushed = c4iw_flush_sq(qhp);
spin_unlock(&qhp->lock);
if (schp != rchp)
spin_unlock(&schp->lock);
spin_unlock_irqrestore(&rchp->lock, flag);
if (schp == rchp) {
if ((rq_flushed || sq_flushed) &&
t4_clear_cq_armed(&rchp->cq)) {
spin_lock_irqsave(&rchp->comp_handler_lock, flag);
(*rchp->ibcq.comp_handler)(&rchp->ibcq,
rchp->ibcq.cq_context);
spin_unlock_irqrestore(&rchp->comp_handler_lock, flag);
}
} else {
if (rq_flushed && t4_clear_cq_armed(&rchp->cq)) {
spin_lock_irqsave(&rchp->comp_handler_lock, flag);
(*rchp->ibcq.comp_handler)(&rchp->ibcq,
rchp->ibcq.cq_context);
spin_unlock_irqrestore(&rchp->comp_handler_lock, flag);
}
if (sq_flushed && t4_clear_cq_armed(&schp->cq)) {
spin_lock_irqsave(&schp->comp_handler_lock, flag);
(*schp->ibcq.comp_handler)(&schp->ibcq,
schp->ibcq.cq_context);
spin_unlock_irqrestore(&schp->comp_handler_lock, flag);
}
}
}
static void flush_qp(struct c4iw_qp *qhp)
{
struct c4iw_cq *rchp, *schp;
unsigned long flag;
rchp = to_c4iw_cq(qhp->ibqp.recv_cq);
schp = to_c4iw_cq(qhp->ibqp.send_cq);
if (qhp->ibqp.uobject) {
/* for user qps, qhp->wq.flushed is protected by qhp->mutex */
if (qhp->wq.flushed)
return;
qhp->wq.flushed = 1;
t4_set_wq_in_error(&qhp->wq, 0);
t4_set_cq_in_error(&rchp->cq);
spin_lock_irqsave(&rchp->comp_handler_lock, flag);
(*rchp->ibcq.comp_handler)(&rchp->ibcq, rchp->ibcq.cq_context);
spin_unlock_irqrestore(&rchp->comp_handler_lock, flag);
if (schp != rchp) {
t4_set_cq_in_error(&schp->cq);
spin_lock_irqsave(&schp->comp_handler_lock, flag);
(*schp->ibcq.comp_handler)(&schp->ibcq,
schp->ibcq.cq_context);
spin_unlock_irqrestore(&schp->comp_handler_lock, flag);
}
return;
}
__flush_qp(qhp, rchp, schp);
}
static int rdma_fini(struct c4iw_dev *rhp, struct c4iw_qp *qhp,
struct c4iw_ep *ep)
{
struct fw_ri_wr *wqe;
int ret;
struct sk_buff *skb;
pr_debug("qhp %p qid 0x%x tid %u\n", qhp, qhp->wq.sq.qid, ep->hwtid);
skb = skb_dequeue(&ep->com.ep_skb_list);
if (WARN_ON(!skb))
return -ENOMEM;
set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
wqe = __skb_put_zero(skb, sizeof(*wqe));
wqe->op_compl = cpu_to_be32(
FW_WR_OP_V(FW_RI_INIT_WR) |
FW_WR_COMPL_F);
wqe->flowid_len16 = cpu_to_be32(
FW_WR_FLOWID_V(ep->hwtid) |
FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*wqe), 16)));
wqe->cookie = (uintptr_t)ep->com.wr_waitp;
wqe->u.fini.type = FW_RI_TYPE_FINI;
ret = c4iw_ref_send_wait(&rhp->rdev, skb, ep->com.wr_waitp,
qhp->ep->hwtid, qhp->wq.sq.qid, __func__);
pr_debug("ret %d\n", ret);
return ret;
}
static void build_rtr_msg(u8 p2p_type, struct fw_ri_init *init)
{
pr_debug("p2p_type = %d\n", p2p_type);
memset(&init->u, 0, sizeof(init->u));
switch (p2p_type) {
case FW_RI_INIT_P2PTYPE_RDMA_WRITE:
init->u.write.opcode = FW_RI_RDMA_WRITE_WR;
init->u.write.stag_sink = cpu_to_be32(1);
init->u.write.to_sink = cpu_to_be64(1);
init->u.write.u.immd_src[0].op = FW_RI_DATA_IMMD;
init->u.write.len16 = DIV_ROUND_UP(
sizeof(init->u.write) + sizeof(struct fw_ri_immd), 16);
break;
case FW_RI_INIT_P2PTYPE_READ_REQ:
init->u.write.opcode = FW_RI_RDMA_READ_WR;
init->u.read.stag_src = cpu_to_be32(1);
init->u.read.to_src_lo = cpu_to_be32(1);
init->u.read.stag_sink = cpu_to_be32(1);
init->u.read.to_sink_lo = cpu_to_be32(1);
init->u.read.len16 = DIV_ROUND_UP(sizeof(init->u.read), 16);
break;
}
}
static int rdma_init(struct c4iw_dev *rhp, struct c4iw_qp *qhp)
{
struct fw_ri_wr *wqe;
int ret;
struct sk_buff *skb;
pr_debug("qhp %p qid 0x%x tid %u ird %u ord %u\n", qhp,
qhp->wq.sq.qid, qhp->ep->hwtid, qhp->ep->ird, qhp->ep->ord);
skb = alloc_skb(sizeof(*wqe), GFP_KERNEL);
if (!skb) {
ret = -ENOMEM;
goto out;
}
ret = alloc_ird(rhp, qhp->attr.max_ird);
if (ret) {
qhp->attr.max_ird = 0;
kfree_skb(skb);
goto out;
}
set_wr_txq(skb, CPL_PRIORITY_DATA, qhp->ep->txq_idx);
wqe = __skb_put_zero(skb, sizeof(*wqe));
wqe->op_compl = cpu_to_be32(
FW_WR_OP_V(FW_RI_INIT_WR) |
FW_WR_COMPL_F);
wqe->flowid_len16 = cpu_to_be32(
FW_WR_FLOWID_V(qhp->ep->hwtid) |
FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*wqe), 16)));
wqe->cookie = (uintptr_t)qhp->ep->com.wr_waitp;
wqe->u.init.type = FW_RI_TYPE_INIT;
wqe->u.init.mpareqbit_p2ptype =
FW_RI_WR_MPAREQBIT_V(qhp->attr.mpa_attr.initiator) |
FW_RI_WR_P2PTYPE_V(qhp->attr.mpa_attr.p2p_type);
wqe->u.init.mpa_attrs = FW_RI_MPA_IETF_ENABLE;
if (qhp->attr.mpa_attr.recv_marker_enabled)
wqe->u.init.mpa_attrs |= FW_RI_MPA_RX_MARKER_ENABLE;
if (qhp->attr.mpa_attr.xmit_marker_enabled)
wqe->u.init.mpa_attrs |= FW_RI_MPA_TX_MARKER_ENABLE;
if (qhp->attr.mpa_attr.crc_enabled)
wqe->u.init.mpa_attrs |= FW_RI_MPA_CRC_ENABLE;
wqe->u.init.qp_caps = FW_RI_QP_RDMA_READ_ENABLE |
FW_RI_QP_RDMA_WRITE_ENABLE |
FW_RI_QP_BIND_ENABLE;
if (!qhp->ibqp.uobject)
wqe->u.init.qp_caps |= FW_RI_QP_FAST_REGISTER_ENABLE |
FW_RI_QP_STAG0_ENABLE;
wqe->u.init.nrqe = cpu_to_be16(t4_rqes_posted(&qhp->wq));
wqe->u.init.pdid = cpu_to_be32(qhp->attr.pd);
wqe->u.init.qpid = cpu_to_be32(qhp->wq.sq.qid);
wqe->u.init.sq_eqid = cpu_to_be32(qhp->wq.sq.qid);
if (qhp->srq) {
wqe->u.init.rq_eqid = cpu_to_be32(FW_RI_INIT_RQEQID_SRQ |
qhp->srq->idx);
} else {
wqe->u.init.rq_eqid = cpu_to_be32(qhp->wq.rq.qid);
wqe->u.init.hwrqsize = cpu_to_be32(qhp->wq.rq.rqt_size);
wqe->u.init.hwrqaddr = cpu_to_be32(qhp->wq.rq.rqt_hwaddr -
rhp->rdev.lldi.vr->rq.start);
}
wqe->u.init.scqid = cpu_to_be32(qhp->attr.scq);
wqe->u.init.rcqid = cpu_to_be32(qhp->attr.rcq);
wqe->u.init.ord_max = cpu_to_be32(qhp->attr.max_ord);
wqe->u.init.ird_max = cpu_to_be32(qhp->attr.max_ird);
wqe->u.init.iss = cpu_to_be32(qhp->ep->snd_seq);
wqe->u.init.irs = cpu_to_be32(qhp->ep->rcv_seq);
if (qhp->attr.mpa_attr.initiator)
build_rtr_msg(qhp->attr.mpa_attr.p2p_type, &wqe->u.init);
ret = c4iw_ref_send_wait(&rhp->rdev, skb, qhp->ep->com.wr_waitp,
qhp->ep->hwtid, qhp->wq.sq.qid, __func__);
if (!ret)
goto out;
free_ird(rhp, qhp->attr.max_ird);
out:
pr_debug("ret %d\n", ret);
return ret;
}
int c4iw_modify_qp(struct c4iw_dev *rhp, struct c4iw_qp *qhp,
enum c4iw_qp_attr_mask mask,
struct c4iw_qp_attributes *attrs,
int internal)
{
int ret = 0;
struct c4iw_qp_attributes newattr = qhp->attr;
int disconnect = 0;
int terminate = 0;
int abort = 0;
int free = 0;
struct c4iw_ep *ep = NULL;
pr_debug("qhp %p sqid 0x%x rqid 0x%x ep %p state %d -> %d\n",
qhp, qhp->wq.sq.qid, qhp->wq.rq.qid, qhp->ep, qhp->attr.state,
(mask & C4IW_QP_ATTR_NEXT_STATE) ? attrs->next_state : -1);
mutex_lock(&qhp->mutex);
/* Process attr changes if in IDLE */
if (mask & C4IW_QP_ATTR_VALID_MODIFY) {
if (qhp->attr.state != C4IW_QP_STATE_IDLE) {
ret = -EIO;
goto out;
}
if (mask & C4IW_QP_ATTR_ENABLE_RDMA_READ)
newattr.enable_rdma_read = attrs->enable_rdma_read;
if (mask & C4IW_QP_ATTR_ENABLE_RDMA_WRITE)
newattr.enable_rdma_write = attrs->enable_rdma_write;
if (mask & C4IW_QP_ATTR_ENABLE_RDMA_BIND)
newattr.enable_bind = attrs->enable_bind;
if (mask & C4IW_QP_ATTR_MAX_ORD) {
if (attrs->max_ord > c4iw_max_read_depth) {
ret = -EINVAL;
goto out;
}
newattr.max_ord = attrs->max_ord;
}
if (mask & C4IW_QP_ATTR_MAX_IRD) {
if (attrs->max_ird > cur_max_read_depth(rhp)) {
ret = -EINVAL;
goto out;
}
newattr.max_ird = attrs->max_ird;
}
qhp->attr = newattr;
}
if (mask & C4IW_QP_ATTR_SQ_DB) {
ret = ring_kernel_sq_db(qhp, attrs->sq_db_inc);
goto out;
}
if (mask & C4IW_QP_ATTR_RQ_DB) {
ret = ring_kernel_rq_db(qhp, attrs->rq_db_inc);
goto out;
}
if (!(mask & C4IW_QP_ATTR_NEXT_STATE))
goto out;
if (qhp->attr.state == attrs->next_state)
goto out;
switch (qhp->attr.state) {
case C4IW_QP_STATE_IDLE:
switch (attrs->next_state) {
case C4IW_QP_STATE_RTS:
if (!(mask & C4IW_QP_ATTR_LLP_STREAM_HANDLE)) {
ret = -EINVAL;
goto out;
}
if (!(mask & C4IW_QP_ATTR_MPA_ATTR)) {
ret = -EINVAL;
goto out;
}
qhp->attr.mpa_attr = attrs->mpa_attr;
qhp->attr.llp_stream_handle = attrs->llp_stream_handle;
qhp->ep = qhp->attr.llp_stream_handle;
set_state(qhp, C4IW_QP_STATE_RTS);
/*
* Ref the endpoint here and deref when we
* disassociate the endpoint from the QP. This
* happens in CLOSING->IDLE transition or *->ERROR
* transition.
*/
c4iw_get_ep(&qhp->ep->com);
ret = rdma_init(rhp, qhp);
if (ret)
goto err;
break;
case C4IW_QP_STATE_ERROR:
set_state(qhp, C4IW_QP_STATE_ERROR);
flush_qp(qhp);
break;
default:
ret = -EINVAL;
goto out;
}
break;
case C4IW_QP_STATE_RTS:
switch (attrs->next_state) {
case C4IW_QP_STATE_CLOSING:
t4_set_wq_in_error(&qhp->wq, 0);
set_state(qhp, C4IW_QP_STATE_CLOSING);
ep = qhp->ep;
if (!internal) {
abort = 0;
disconnect = 1;
c4iw_get_ep(&qhp->ep->com);
}
ret = rdma_fini(rhp, qhp, ep);
if (ret)
goto err;
break;
case C4IW_QP_STATE_TERMINATE:
t4_set_wq_in_error(&qhp->wq, 0);
set_state(qhp, C4IW_QP_STATE_TERMINATE);
qhp->attr.layer_etype = attrs->layer_etype;
qhp->attr.ecode = attrs->ecode;
ep = qhp->ep;
if (!internal) {
c4iw_get_ep(&ep->com);
terminate = 1;
disconnect = 1;
} else {
terminate = qhp->attr.send_term;
ret = rdma_fini(rhp, qhp, ep);
if (ret)
goto err;
}
break;
case C4IW_QP_STATE_ERROR:
t4_set_wq_in_error(&qhp->wq, 0);
set_state(qhp, C4IW_QP_STATE_ERROR);
if (!internal) {
abort = 1;
disconnect = 1;
ep = qhp->ep;
c4iw_get_ep(&qhp->ep->com);
}
goto err;
break;
default:
ret = -EINVAL;
goto out;
}
break;
case C4IW_QP_STATE_CLOSING:
/*
* Allow kernel users to move to ERROR for qp draining.
*/
if (!internal && (qhp->ibqp.uobject || attrs->next_state !=
C4IW_QP_STATE_ERROR)) {
ret = -EINVAL;
goto out;
}
switch (attrs->next_state) {
case C4IW_QP_STATE_IDLE:
flush_qp(qhp);
set_state(qhp, C4IW_QP_STATE_IDLE);
qhp->attr.llp_stream_handle = NULL;
c4iw_put_ep(&qhp->ep->com);
qhp->ep = NULL;
wake_up(&qhp->wait);
break;
case C4IW_QP_STATE_ERROR:
goto err;
default:
ret = -EINVAL;
goto err;
}
break;
case C4IW_QP_STATE_ERROR:
if (attrs->next_state != C4IW_QP_STATE_IDLE) {
ret = -EINVAL;
goto out;
}
if (!t4_sq_empty(&qhp->wq) || !t4_rq_empty(&qhp->wq)) {
ret = -EINVAL;
goto out;
}
set_state(qhp, C4IW_QP_STATE_IDLE);
break;
case C4IW_QP_STATE_TERMINATE:
if (!internal) {
ret = -EINVAL;
goto out;
}
goto err;
break;
default:
pr_err("%s in a bad state %d\n", __func__, qhp->attr.state);
ret = -EINVAL;
goto err;
break;
}
goto out;
err:
pr_debug("disassociating ep %p qpid 0x%x\n", qhp->ep,
qhp->wq.sq.qid);
/* disassociate the LLP connection */
qhp->attr.llp_stream_handle = NULL;
if (!ep)
ep = qhp->ep;
qhp->ep = NULL;
set_state(qhp, C4IW_QP_STATE_ERROR);
free = 1;
abort = 1;
flush_qp(qhp);
wake_up(&qhp->wait);
out:
mutex_unlock(&qhp->mutex);
if (terminate)
post_terminate(qhp, NULL, internal ? GFP_ATOMIC : GFP_KERNEL);
/*
* If disconnect is 1, then we need to initiate a disconnect
* on the EP. This can be a normal close (RTS->CLOSING) or
* an abnormal close (RTS/CLOSING->ERROR).
*/
if (disconnect) {
c4iw_ep_disconnect(ep, abort, internal ? GFP_ATOMIC :
GFP_KERNEL);
c4iw_put_ep(&ep->com);
}
/*
* If free is 1, then we've disassociated the EP from the QP
* and we need to dereference the EP.
*/
if (free)
c4iw_put_ep(&ep->com);
pr_debug("exit state %d\n", qhp->attr.state);
return ret;
}
int c4iw_destroy_qp(struct ib_qp *ib_qp, struct ib_udata *udata)
{
struct c4iw_dev *rhp;
struct c4iw_qp *qhp;
struct c4iw_ucontext *ucontext;
struct c4iw_qp_attributes attrs;
qhp = to_c4iw_qp(ib_qp);
rhp = qhp->rhp;
ucontext = qhp->ucontext;
attrs.next_state = C4IW_QP_STATE_ERROR;
if (qhp->attr.state == C4IW_QP_STATE_TERMINATE)
c4iw_modify_qp(rhp, qhp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
else
c4iw_modify_qp(rhp, qhp, C4IW_QP_ATTR_NEXT_STATE, &attrs, 0);
wait_event(qhp->wait, !qhp->ep);
xa_lock_irq(&rhp->qps);
__xa_erase(&rhp->qps, qhp->wq.sq.qid);
if (!list_empty(&qhp->db_fc_entry))
list_del_init(&qhp->db_fc_entry);
xa_unlock_irq(&rhp->qps);
free_ird(rhp, qhp->attr.max_ird);
c4iw_qp_rem_ref(ib_qp);
wait_for_completion(&qhp->qp_rel_comp);
pr_debug("ib_qp %p qpid 0x%0x\n", ib_qp, qhp->wq.sq.qid);
pr_debug("qhp %p ucontext %p\n", qhp, ucontext);
destroy_qp(&rhp->rdev, &qhp->wq,
ucontext ? &ucontext->uctx : &rhp->rdev.uctx, !qhp->srq);
c4iw_put_wr_wait(qhp->wr_waitp);
kfree(qhp);
return 0;
}
struct ib_qp *c4iw_create_qp(struct ib_pd *pd, struct ib_qp_init_attr *attrs,
struct ib_udata *udata)
{
struct c4iw_dev *rhp;
struct c4iw_qp *qhp;
struct c4iw_pd *php;
struct c4iw_cq *schp;
struct c4iw_cq *rchp;
struct c4iw_create_qp_resp uresp;
unsigned int sqsize, rqsize = 0;
struct c4iw_ucontext *ucontext = rdma_udata_to_drv_context(
udata, struct c4iw_ucontext, ibucontext);
int ret;
struct c4iw_mm_entry *sq_key_mm, *rq_key_mm = NULL, *sq_db_key_mm;
struct c4iw_mm_entry *rq_db_key_mm = NULL, *ma_sync_key_mm = NULL;
pr_debug("ib_pd %p\n", pd);
if (attrs->qp_type != IB_QPT_RC)
return ERR_PTR(-EINVAL);
php = to_c4iw_pd(pd);
rhp = php->rhp;
schp = get_chp(rhp, ((struct c4iw_cq *)attrs->send_cq)->cq.cqid);
rchp = get_chp(rhp, ((struct c4iw_cq *)attrs->recv_cq)->cq.cqid);
if (!schp || !rchp)
return ERR_PTR(-EINVAL);
if (attrs->cap.max_inline_data > T4_MAX_SEND_INLINE)
return ERR_PTR(-EINVAL);
if (!attrs->srq) {
if (attrs->cap.max_recv_wr > rhp->rdev.hw_queue.t4_max_rq_size)
return ERR_PTR(-E2BIG);
rqsize = attrs->cap.max_recv_wr + 1;
if (rqsize < 8)
rqsize = 8;
}
if (attrs->cap.max_send_wr > rhp->rdev.hw_queue.t4_max_sq_size)
return ERR_PTR(-E2BIG);
sqsize = attrs->cap.max_send_wr + 1;
if (sqsize < 8)
sqsize = 8;
qhp = kzalloc(sizeof(*qhp), GFP_KERNEL);
if (!qhp)
return ERR_PTR(-ENOMEM);
qhp->wr_waitp = c4iw_alloc_wr_wait(GFP_KERNEL);
if (!qhp->wr_waitp) {
ret = -ENOMEM;
goto err_free_qhp;
}
qhp->wq.sq.size = sqsize;
qhp->wq.sq.memsize =
(sqsize + rhp->rdev.hw_queue.t4_eq_status_entries) *
sizeof(*qhp->wq.sq.queue) + 16 * sizeof(__be64);
qhp->wq.sq.flush_cidx = -1;
if (!attrs->srq) {
qhp->wq.rq.size = rqsize;
qhp->wq.rq.memsize =
(rqsize + rhp->rdev.hw_queue.t4_eq_status_entries) *
sizeof(*qhp->wq.rq.queue);
}
if (ucontext) {
qhp->wq.sq.memsize = roundup(qhp->wq.sq.memsize, PAGE_SIZE);
if (!attrs->srq)
qhp->wq.rq.memsize =
roundup(qhp->wq.rq.memsize, PAGE_SIZE);
}
ret = create_qp(&rhp->rdev, &qhp->wq, &schp->cq, &rchp->cq,
ucontext ? &ucontext->uctx : &rhp->rdev.uctx,
qhp->wr_waitp, !attrs->srq);
if (ret)
goto err_free_wr_wait;
attrs->cap.max_recv_wr = rqsize - 1;
attrs->cap.max_send_wr = sqsize - 1;
attrs->cap.max_inline_data = T4_MAX_SEND_INLINE;
qhp->rhp = rhp;
qhp->attr.pd = php->pdid;
qhp->attr.scq = ((struct c4iw_cq *) attrs->send_cq)->cq.cqid;
qhp->attr.rcq = ((struct c4iw_cq *) attrs->recv_cq)->cq.cqid;
qhp->attr.sq_num_entries = attrs->cap.max_send_wr;
qhp->attr.sq_max_sges = attrs->cap.max_send_sge;
qhp->attr.sq_max_sges_rdma_write = attrs->cap.max_send_sge;
if (!attrs->srq) {
qhp->attr.rq_num_entries = attrs->cap.max_recv_wr;
qhp->attr.rq_max_sges = attrs->cap.max_recv_sge;
}
qhp->attr.state = C4IW_QP_STATE_IDLE;
qhp->attr.next_state = C4IW_QP_STATE_IDLE;
qhp->attr.enable_rdma_read = 1;
qhp->attr.enable_rdma_write = 1;
qhp->attr.enable_bind = 1;
qhp->attr.max_ord = 0;
qhp->attr.max_ird = 0;
qhp->sq_sig_all = attrs->sq_sig_type == IB_SIGNAL_ALL_WR;
spin_lock_init(&qhp->lock);
mutex_init(&qhp->mutex);
init_waitqueue_head(&qhp->wait);
init_completion(&qhp->qp_rel_comp);
refcount_set(&qhp->qp_refcnt, 1);
ret = xa_insert_irq(&rhp->qps, qhp->wq.sq.qid, qhp, GFP_KERNEL);
if (ret)
goto err_destroy_qp;
if (udata && ucontext) {
sq_key_mm = kmalloc(sizeof(*sq_key_mm), GFP_KERNEL);
if (!sq_key_mm) {
ret = -ENOMEM;
goto err_remove_handle;
}
if (!attrs->srq) {
rq_key_mm = kmalloc(sizeof(*rq_key_mm), GFP_KERNEL);
if (!rq_key_mm) {
ret = -ENOMEM;
goto err_free_sq_key;
}
}
sq_db_key_mm = kmalloc(sizeof(*sq_db_key_mm), GFP_KERNEL);
if (!sq_db_key_mm) {
ret = -ENOMEM;
goto err_free_rq_key;
}
if (!attrs->srq) {
rq_db_key_mm =
kmalloc(sizeof(*rq_db_key_mm), GFP_KERNEL);
if (!rq_db_key_mm) {
ret = -ENOMEM;
goto err_free_sq_db_key;
}
}
memset(&uresp, 0, sizeof(uresp));
if (t4_sq_onchip(&qhp->wq.sq)) {
ma_sync_key_mm = kmalloc(sizeof(*ma_sync_key_mm),
GFP_KERNEL);
if (!ma_sync_key_mm) {
ret = -ENOMEM;
goto err_free_rq_db_key;
}
uresp.flags = C4IW_QPF_ONCHIP;
}
if (rhp->rdev.lldi.write_w_imm_support)
uresp.flags |= C4IW_QPF_WRITE_W_IMM;
uresp.qid_mask = rhp->rdev.qpmask;
uresp.sqid = qhp->wq.sq.qid;
uresp.sq_size = qhp->wq.sq.size;
uresp.sq_memsize = qhp->wq.sq.memsize;
if (!attrs->srq) {
uresp.rqid = qhp->wq.rq.qid;
uresp.rq_size = qhp->wq.rq.size;
uresp.rq_memsize = qhp->wq.rq.memsize;
}
spin_lock(&ucontext->mmap_lock);
if (ma_sync_key_mm) {
uresp.ma_sync_key = ucontext->key;
ucontext->key += PAGE_SIZE;
}
uresp.sq_key = ucontext->key;
ucontext->key += PAGE_SIZE;
if (!attrs->srq) {
uresp.rq_key = ucontext->key;
ucontext->key += PAGE_SIZE;
}
uresp.sq_db_gts_key = ucontext->key;
ucontext->key += PAGE_SIZE;
if (!attrs->srq) {
uresp.rq_db_gts_key = ucontext->key;
ucontext->key += PAGE_SIZE;
}
spin_unlock(&ucontext->mmap_lock);
ret = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
if (ret)
goto err_free_ma_sync_key;
sq_key_mm->key = uresp.sq_key;
sq_key_mm->addr = qhp->wq.sq.phys_addr;
sq_key_mm->len = PAGE_ALIGN(qhp->wq.sq.memsize);
insert_mmap(ucontext, sq_key_mm);
if (!attrs->srq) {
rq_key_mm->key = uresp.rq_key;
rq_key_mm->addr = virt_to_phys(qhp->wq.rq.queue);
rq_key_mm->len = PAGE_ALIGN(qhp->wq.rq.memsize);
insert_mmap(ucontext, rq_key_mm);
}
sq_db_key_mm->key = uresp.sq_db_gts_key;
sq_db_key_mm->addr = (u64)(unsigned long)qhp->wq.sq.bar2_pa;
sq_db_key_mm->len = PAGE_SIZE;
insert_mmap(ucontext, sq_db_key_mm);
if (!attrs->srq) {
rq_db_key_mm->key = uresp.rq_db_gts_key;
rq_db_key_mm->addr =
(u64)(unsigned long)qhp->wq.rq.bar2_pa;
rq_db_key_mm->len = PAGE_SIZE;
insert_mmap(ucontext, rq_db_key_mm);
}
if (ma_sync_key_mm) {
ma_sync_key_mm->key = uresp.ma_sync_key;
ma_sync_key_mm->addr =
(pci_resource_start(rhp->rdev.lldi.pdev, 0) +
PCIE_MA_SYNC_A) & PAGE_MASK;
ma_sync_key_mm->len = PAGE_SIZE;
insert_mmap(ucontext, ma_sync_key_mm);
}
qhp->ucontext = ucontext;
}
if (!attrs->srq) {
qhp->wq.qp_errp =
&qhp->wq.rq.queue[qhp->wq.rq.size].status.qp_err;
} else {
qhp->wq.qp_errp =
&qhp->wq.sq.queue[qhp->wq.sq.size].status.qp_err;
qhp->wq.srqidxp =
&qhp->wq.sq.queue[qhp->wq.sq.size].status.srqidx;
}
qhp->ibqp.qp_num = qhp->wq.sq.qid;
if (attrs->srq)
qhp->srq = to_c4iw_srq(attrs->srq);
INIT_LIST_HEAD(&qhp->db_fc_entry);
pr_debug("sq id %u size %u memsize %zu num_entries %u rq id %u size %u memsize %zu num_entries %u\n",
qhp->wq.sq.qid, qhp->wq.sq.size, qhp->wq.sq.memsize,
attrs->cap.max_send_wr, qhp->wq.rq.qid, qhp->wq.rq.size,
qhp->wq.rq.memsize, attrs->cap.max_recv_wr);
return &qhp->ibqp;
err_free_ma_sync_key:
kfree(ma_sync_key_mm);
err_free_rq_db_key:
if (!attrs->srq)
kfree(rq_db_key_mm);
err_free_sq_db_key:
kfree(sq_db_key_mm);
err_free_rq_key:
if (!attrs->srq)
kfree(rq_key_mm);
err_free_sq_key:
kfree(sq_key_mm);
err_remove_handle:
xa_erase_irq(&rhp->qps, qhp->wq.sq.qid);
err_destroy_qp:
destroy_qp(&rhp->rdev, &qhp->wq,
ucontext ? &ucontext->uctx : &rhp->rdev.uctx, !attrs->srq);
err_free_wr_wait:
c4iw_put_wr_wait(qhp->wr_waitp);
err_free_qhp:
kfree(qhp);
return ERR_PTR(ret);
}
int c4iw_ib_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata)
{
struct c4iw_dev *rhp;
struct c4iw_qp *qhp;
enum c4iw_qp_attr_mask mask = 0;
struct c4iw_qp_attributes attrs = {};
pr_debug("ib_qp %p\n", ibqp);
/* iwarp does not support the RTR state */
if ((attr_mask & IB_QP_STATE) && (attr->qp_state == IB_QPS_RTR))
attr_mask &= ~IB_QP_STATE;
/* Make sure we still have something left to do */
if (!attr_mask)
return 0;
qhp = to_c4iw_qp(ibqp);
rhp = qhp->rhp;
attrs.next_state = c4iw_convert_state(attr->qp_state);
attrs.enable_rdma_read = (attr->qp_access_flags &
IB_ACCESS_REMOTE_READ) ? 1 : 0;
attrs.enable_rdma_write = (attr->qp_access_flags &
IB_ACCESS_REMOTE_WRITE) ? 1 : 0;
attrs.enable_bind = (attr->qp_access_flags & IB_ACCESS_MW_BIND) ? 1 : 0;
mask |= (attr_mask & IB_QP_STATE) ? C4IW_QP_ATTR_NEXT_STATE : 0;
mask |= (attr_mask & IB_QP_ACCESS_FLAGS) ?
(C4IW_QP_ATTR_ENABLE_RDMA_READ |
C4IW_QP_ATTR_ENABLE_RDMA_WRITE |
C4IW_QP_ATTR_ENABLE_RDMA_BIND) : 0;
/*
* Use SQ_PSN and RQ_PSN to pass in IDX_INC values for
* ringing the queue db when we're in DB_FULL mode.
* Only allow this on T4 devices.
*/
attrs.sq_db_inc = attr->sq_psn;
attrs.rq_db_inc = attr->rq_psn;
mask |= (attr_mask & IB_QP_SQ_PSN) ? C4IW_QP_ATTR_SQ_DB : 0;
mask |= (attr_mask & IB_QP_RQ_PSN) ? C4IW_QP_ATTR_RQ_DB : 0;
if (!is_t4(to_c4iw_qp(ibqp)->rhp->rdev.lldi.adapter_type) &&
(mask & (C4IW_QP_ATTR_SQ_DB|C4IW_QP_ATTR_RQ_DB)))
return -EINVAL;
return c4iw_modify_qp(rhp, qhp, mask, &attrs, 0);
}
struct ib_qp *c4iw_get_qp(struct ib_device *dev, int qpn)
{
pr_debug("ib_dev %p qpn 0x%x\n", dev, qpn);
return (struct ib_qp *)get_qhp(to_c4iw_dev(dev), qpn);
}
void c4iw_dispatch_srq_limit_reached_event(struct c4iw_srq *srq)
{
struct ib_event event = {};
event.device = &srq->rhp->ibdev;
event.element.srq = &srq->ibsrq;
event.event = IB_EVENT_SRQ_LIMIT_REACHED;
ib_dispatch_event(&event);
}
int c4iw_modify_srq(struct ib_srq *ib_srq, struct ib_srq_attr *attr,
enum ib_srq_attr_mask srq_attr_mask,
struct ib_udata *udata)
{
struct c4iw_srq *srq = to_c4iw_srq(ib_srq);
int ret = 0;
/*
* XXX 0 mask == a SW interrupt for srq_limit reached...
*/
if (udata && !srq_attr_mask) {
c4iw_dispatch_srq_limit_reached_event(srq);
goto out;
}
/* no support for this yet */
if (srq_attr_mask & IB_SRQ_MAX_WR) {
ret = -EINVAL;
goto out;
}
if (!udata && (srq_attr_mask & IB_SRQ_LIMIT)) {
srq->armed = true;
srq->srq_limit = attr->srq_limit;
}
out:
return ret;
}
int c4iw_ib_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask, struct ib_qp_init_attr *init_attr)
{
struct c4iw_qp *qhp = to_c4iw_qp(ibqp);
memset(attr, 0, sizeof(*attr));
memset(init_attr, 0, sizeof(*init_attr));
attr->qp_state = to_ib_qp_state(qhp->attr.state);
init_attr->cap.max_send_wr = qhp->attr.sq_num_entries;
init_attr->cap.max_recv_wr = qhp->attr.rq_num_entries;
init_attr->cap.max_send_sge = qhp->attr.sq_max_sges;
init_attr->cap.max_recv_sge = qhp->attr.sq_max_sges;
init_attr->cap.max_inline_data = T4_MAX_SEND_INLINE;
init_attr->sq_sig_type = qhp->sq_sig_all ? IB_SIGNAL_ALL_WR : 0;
return 0;
}
static void free_srq_queue(struct c4iw_srq *srq, struct c4iw_dev_ucontext *uctx,
struct c4iw_wr_wait *wr_waitp)
{
struct c4iw_rdev *rdev = &srq->rhp->rdev;
struct sk_buff *skb = srq->destroy_skb;
struct t4_srq *wq = &srq->wq;
struct fw_ri_res_wr *res_wr;