blob: 136918f82dda0f1996635ca2dafca66ecbf1c5e3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
NxtWave Communications - NXT6000 demodulator driver
Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <media/dvb_frontend.h>
#include "nxt6000_priv.h"
#include "nxt6000.h"
struct nxt6000_state {
struct i2c_adapter* i2c;
/* configuration settings */
const struct nxt6000_config* config;
struct dvb_frontend frontend;
};
static int debug;
#define dprintk(fmt, arg...) do { \
if (debug) \
printk(KERN_DEBUG pr_fmt("%s: " fmt), \
__func__, ##arg); \
} while (0)
static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
{
u8 buf[] = { reg, data };
struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
int ret;
if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);
return (ret != 1) ? -EIO : 0;
}
static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msgs[] = {
{.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
{.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
};
ret = i2c_transfer(state->i2c, msgs, 2);
if (ret != 2)
dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);
return b1[0];
}
static void nxt6000_reset(struct nxt6000_state* state)
{
u8 val;
val = nxt6000_readreg(state, OFDM_COR_CTL);
nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
}
static int nxt6000_set_bandwidth(struct nxt6000_state *state, u32 bandwidth)
{
u16 nominal_rate;
int result;
switch (bandwidth) {
case 6000000:
nominal_rate = 0x55B7;
break;
case 7000000:
nominal_rate = 0x6400;
break;
case 8000000:
nominal_rate = 0x7249;
break;
default:
return -EINVAL;
}
if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
return result;
return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
}
static int nxt6000_set_guard_interval(struct nxt6000_state *state,
enum fe_guard_interval guard_interval)
{
switch (guard_interval) {
case GUARD_INTERVAL_1_32:
return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
case GUARD_INTERVAL_1_16:
return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
case GUARD_INTERVAL_AUTO:
case GUARD_INTERVAL_1_8:
return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
case GUARD_INTERVAL_1_4:
return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
default:
return -EINVAL;
}
}
static int nxt6000_set_inversion(struct nxt6000_state *state,
enum fe_spectral_inversion inversion)
{
switch (inversion) {
case INVERSION_OFF:
return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);
case INVERSION_ON:
return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);
default:
return -EINVAL;
}
}
static int
nxt6000_set_transmission_mode(struct nxt6000_state *state,
enum fe_transmit_mode transmission_mode)
{
int result;
switch (transmission_mode) {
case TRANSMISSION_MODE_2K:
if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
return result;
return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
case TRANSMISSION_MODE_8K:
case TRANSMISSION_MODE_AUTO:
if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
return result;
return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
default:
return -EINVAL;
}
}
static void nxt6000_setup(struct dvb_frontend* fe)
{
struct nxt6000_state* state = fe->demodulator_priv;
nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
nxt6000_writereg(state, VIT_BERTIME_2, 0x00); // BER Timer = 0x000200 * 256 = 131072 bits
nxt6000_writereg(state, VIT_BERTIME_1, 0x02); //
nxt6000_writereg(state, VIT_BERTIME_0, 0x00); //
nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts
nxt6000_writereg(state, VIT_COR_CTL, 0x82); // Enable BER measurement
nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 );
nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
nxt6000_writereg(state, CAS_FREQ, 0xBB); /* CHECKME */
nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
nxt6000_writereg(state, DIAG_CONFIG, TB_SET);
if (state->config->clock_inversion)
nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
else
nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);
nxt6000_writereg(state, TS_FORMAT, 0);
}
static void nxt6000_dump_status(struct nxt6000_state *state)
{
u8 val;
#if 0
pr_info("RS_COR_STAT: 0x%02X\n",
nxt6000_readreg(fe, RS_COR_STAT));
pr_info("VIT_SYNC_STATUS: 0x%02X\n",
nxt6000_readreg(fe, VIT_SYNC_STATUS));
pr_info("OFDM_COR_STAT: 0x%02X\n",
nxt6000_readreg(fe, OFDM_COR_STAT));
pr_info("OFDM_SYR_STAT: 0x%02X\n",
nxt6000_readreg(fe, OFDM_SYR_STAT));
pr_info("OFDM_TPS_RCVD_1: 0x%02X\n",
nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
pr_info("OFDM_TPS_RCVD_2: 0x%02X\n",
nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
pr_info("OFDM_TPS_RCVD_3: 0x%02X\n",
nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
pr_info("OFDM_TPS_RCVD_4: 0x%02X\n",
nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
pr_info("OFDM_TPS_RESERVED_1: 0x%02X\n",
nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
pr_info("OFDM_TPS_RESERVED_2: 0x%02X\n",
nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
#endif
pr_info("NXT6000 status:");
val = nxt6000_readreg(state, RS_COR_STAT);
pr_cont(" DATA DESCR LOCK: %d,", val & 0x01);
pr_cont(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
val = nxt6000_readreg(state, VIT_SYNC_STATUS);
pr_cont(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
switch ((val >> 4) & 0x07) {
case 0x00:
pr_cont(" VITERBI CODERATE: 1/2,");
break;
case 0x01:
pr_cont(" VITERBI CODERATE: 2/3,");
break;
case 0x02:
pr_cont(" VITERBI CODERATE: 3/4,");
break;
case 0x03:
pr_cont(" VITERBI CODERATE: 5/6,");
break;
case 0x04:
pr_cont(" VITERBI CODERATE: 7/8,");
break;
default:
pr_cont(" VITERBI CODERATE: Reserved,");
}
val = nxt6000_readreg(state, OFDM_COR_STAT);
pr_cont(" CHCTrack: %d,", (val >> 7) & 0x01);
pr_cont(" TPSLock: %d,", (val >> 6) & 0x01);
pr_cont(" SYRLock: %d,", (val >> 5) & 0x01);
pr_cont(" AGCLock: %d,", (val >> 4) & 0x01);
switch (val & 0x0F) {
case 0x00:
pr_cont(" CoreState: IDLE,");
break;
case 0x02:
pr_cont(" CoreState: WAIT_AGC,");
break;
case 0x03:
pr_cont(" CoreState: WAIT_SYR,");
break;
case 0x04:
pr_cont(" CoreState: WAIT_PPM,");
break;
case 0x01:
pr_cont(" CoreState: WAIT_TRL,");
break;
case 0x05:
pr_cont(" CoreState: WAIT_TPS,");
break;
case 0x06:
pr_cont(" CoreState: MONITOR_TPS,");
break;
default:
pr_cont(" CoreState: Reserved,");
}
val = nxt6000_readreg(state, OFDM_SYR_STAT);
pr_cont(" SYRLock: %d,", (val >> 4) & 0x01);
pr_cont(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
switch ((val >> 4) & 0x03) {
case 0x00:
pr_cont(" SYRGuard: 1/32,");
break;
case 0x01:
pr_cont(" SYRGuard: 1/16,");
break;
case 0x02:
pr_cont(" SYRGuard: 1/8,");
break;
case 0x03:
pr_cont(" SYRGuard: 1/4,");
break;
}
val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);
switch ((val >> 4) & 0x07) {
case 0x00:
pr_cont(" TPSLP: 1/2,");
break;
case 0x01:
pr_cont(" TPSLP: 2/3,");
break;
case 0x02:
pr_cont(" TPSLP: 3/4,");
break;
case 0x03:
pr_cont(" TPSLP: 5/6,");
break;
case 0x04:
pr_cont(" TPSLP: 7/8,");
break;
default:
pr_cont(" TPSLP: Reserved,");
}
switch (val & 0x07) {
case 0x00:
pr_cont(" TPSHP: 1/2,");
break;
case 0x01:
pr_cont(" TPSHP: 2/3,");
break;
case 0x02:
pr_cont(" TPSHP: 3/4,");
break;
case 0x03:
pr_cont(" TPSHP: 5/6,");
break;
case 0x04:
pr_cont(" TPSHP: 7/8,");
break;
default:
pr_cont(" TPSHP: Reserved,");
}
val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);
pr_cont(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
switch ((val >> 4) & 0x03) {
case 0x00:
pr_cont(" TPSGuard: 1/32,");
break;
case 0x01:
pr_cont(" TPSGuard: 1/16,");
break;
case 0x02:
pr_cont(" TPSGuard: 1/8,");
break;
case 0x03:
pr_cont(" TPSGuard: 1/4,");
break;
}
/* Strange magic required to gain access to RF_AGC_STATUS */
nxt6000_readreg(state, RF_AGC_VAL_1);
val = nxt6000_readreg(state, RF_AGC_STATUS);
val = nxt6000_readreg(state, RF_AGC_STATUS);
pr_cont(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
pr_cont("\n");
}
static int nxt6000_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
u8 core_status;
struct nxt6000_state* state = fe->demodulator_priv;
*status = 0;
core_status = nxt6000_readreg(state, OFDM_COR_STAT);
if (core_status & AGCLOCKED)
*status |= FE_HAS_SIGNAL;
if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
*status |= FE_HAS_CARRIER;
if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
*status |= FE_HAS_VITERBI;
if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
*status |= FE_HAS_SYNC;
if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
*status |= FE_HAS_LOCK;
if (debug)
nxt6000_dump_status(state);
return 0;
}
static int nxt6000_init(struct dvb_frontend* fe)
{
struct nxt6000_state* state = fe->demodulator_priv;
nxt6000_reset(state);
nxt6000_setup(fe);
return 0;
}
static int nxt6000_set_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct nxt6000_state* state = fe->demodulator_priv;
int result;
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
}
result = nxt6000_set_bandwidth(state, p->bandwidth_hz);
if (result < 0)
return result;
result = nxt6000_set_guard_interval(state, p->guard_interval);
if (result < 0)
return result;
result = nxt6000_set_transmission_mode(state, p->transmission_mode);
if (result < 0)
return result;
result = nxt6000_set_inversion(state, p->inversion);
if (result < 0)
return result;
msleep(500);
return 0;
}
static void nxt6000_release(struct dvb_frontend* fe)
{
struct nxt6000_state* state = fe->demodulator_priv;
kfree(state);
}
static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr)
{
struct nxt6000_state* state = fe->demodulator_priv;
*snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8;
return 0;
}
static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct nxt6000_state* state = fe->demodulator_priv;
nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 );
*ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) |
nxt6000_readreg( state, VIT_BER_0 );
nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts
return 0;
}
static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
{
struct nxt6000_state* state = fe->demodulator_priv;
*signal_strength = (short) (511 -
(nxt6000_readreg(state, AGC_GAIN_1) +
((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8)));
return 0;
}
static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 500;
return 0;
}
static int nxt6000_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
{
struct nxt6000_state* state = fe->demodulator_priv;
if (enable) {
return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01);
} else {
return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00);
}
}
static const struct dvb_frontend_ops nxt6000_ops;
struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config,
struct i2c_adapter* i2c)
{
struct nxt6000_state* state = NULL;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
if (state == NULL) goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
/* check if the demod is there */
if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
return NULL;
}
static const struct dvb_frontend_ops nxt6000_ops = {
.delsys = { SYS_DVBT },
.info = {
.name = "NxtWave NXT6000 DVB-T",
.frequency_min_hz = 0,
.frequency_max_hz = 863250 * kHz,
.frequency_stepsize_hz = 62500,
/*.frequency_tolerance = *//* FIXME: 12% of SR */
.symbol_rate_min = 0, /* FIXME */
.symbol_rate_max = 9360000, /* FIXME */
.symbol_rate_tolerance = 4000,
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_HIERARCHY_AUTO,
},
.release = nxt6000_release,
.init = nxt6000_init,
.i2c_gate_ctrl = nxt6000_i2c_gate_ctrl,
.get_tune_settings = nxt6000_fe_get_tune_settings,
.set_frontend = nxt6000_set_frontend,
.read_status = nxt6000_read_status,
.read_ber = nxt6000_read_ber,
.read_signal_strength = nxt6000_read_signal_strength,
.read_snr = nxt6000_read_snr,
};
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
MODULE_AUTHOR("Florian Schirmer");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(nxt6000_attach);