blob: d3af7bca26f5d52cc5f121734dbef9da63233cc2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* ImgTec IR Hardware Decoder found in PowerDown Controller.
*
* Copyright 2010-2014 Imagination Technologies Ltd.
*
* This ties into the input subsystem using the RC-core. Protocol support is
* provided in separate modules which provide the parameters and scancode
* translation functions to set up the hardware decoder and interpret the
* resulting input.
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/timer.h>
#include <media/rc-core.h>
#include "img-ir.h"
/* Decoders lock (only modified to preprocess them) */
static DEFINE_SPINLOCK(img_ir_decoders_lock);
static bool img_ir_decoders_preprocessed;
static struct img_ir_decoder *img_ir_decoders[] = {
#ifdef CONFIG_IR_IMG_NEC
&img_ir_nec,
#endif
#ifdef CONFIG_IR_IMG_JVC
&img_ir_jvc,
#endif
#ifdef CONFIG_IR_IMG_SONY
&img_ir_sony,
#endif
#ifdef CONFIG_IR_IMG_SHARP
&img_ir_sharp,
#endif
#ifdef CONFIG_IR_IMG_SANYO
&img_ir_sanyo,
#endif
#ifdef CONFIG_IR_IMG_RC5
&img_ir_rc5,
#endif
#ifdef CONFIG_IR_IMG_RC6
&img_ir_rc6,
#endif
NULL
};
#define IMG_IR_F_FILTER BIT(RC_FILTER_NORMAL) /* enable filtering */
#define IMG_IR_F_WAKE BIT(RC_FILTER_WAKEUP) /* enable waking */
/* code type quirks */
#define IMG_IR_QUIRK_CODE_BROKEN 0x1 /* Decode is broken */
#define IMG_IR_QUIRK_CODE_LEN_INCR 0x2 /* Bit length needs increment */
/*
* The decoder generates rapid interrupts without actually having
* received any new data after an incomplete IR code is decoded.
*/
#define IMG_IR_QUIRK_CODE_IRQ 0x4
/* functions for preprocessing timings, ensuring max is set */
static void img_ir_timing_preprocess(struct img_ir_timing_range *range,
unsigned int unit)
{
if (range->max < range->min)
range->max = range->min;
if (unit) {
/* multiply by unit and convert to microseconds */
range->min = (range->min*unit)/1000;
range->max = (range->max*unit + 999)/1000; /* round up */
}
}
static void img_ir_symbol_timing_preprocess(struct img_ir_symbol_timing *timing,
unsigned int unit)
{
img_ir_timing_preprocess(&timing->pulse, unit);
img_ir_timing_preprocess(&timing->space, unit);
}
static void img_ir_timings_preprocess(struct img_ir_timings *timings,
unsigned int unit)
{
img_ir_symbol_timing_preprocess(&timings->ldr, unit);
img_ir_symbol_timing_preprocess(&timings->s00, unit);
img_ir_symbol_timing_preprocess(&timings->s01, unit);
img_ir_symbol_timing_preprocess(&timings->s10, unit);
img_ir_symbol_timing_preprocess(&timings->s11, unit);
/* default s10 and s11 to s00 and s01 if no leader */
if (unit)
/* multiply by unit and convert to microseconds (round up) */
timings->ft.ft_min = (timings->ft.ft_min*unit + 999)/1000;
}
/* functions for filling empty fields with defaults */
static void img_ir_timing_defaults(struct img_ir_timing_range *range,
struct img_ir_timing_range *defaults)
{
if (!range->min)
range->min = defaults->min;
if (!range->max)
range->max = defaults->max;
}
static void img_ir_symbol_timing_defaults(struct img_ir_symbol_timing *timing,
struct img_ir_symbol_timing *defaults)
{
img_ir_timing_defaults(&timing->pulse, &defaults->pulse);
img_ir_timing_defaults(&timing->space, &defaults->space);
}
static void img_ir_timings_defaults(struct img_ir_timings *timings,
struct img_ir_timings *defaults)
{
img_ir_symbol_timing_defaults(&timings->ldr, &defaults->ldr);
img_ir_symbol_timing_defaults(&timings->s00, &defaults->s00);
img_ir_symbol_timing_defaults(&timings->s01, &defaults->s01);
img_ir_symbol_timing_defaults(&timings->s10, &defaults->s10);
img_ir_symbol_timing_defaults(&timings->s11, &defaults->s11);
if (!timings->ft.ft_min)
timings->ft.ft_min = defaults->ft.ft_min;
}
/* functions for converting timings to register values */
/**
* img_ir_control() - Convert control struct to control register value.
* @control: Control data
*
* Returns: The control register value equivalent of @control.
*/
static u32 img_ir_control(const struct img_ir_control *control)
{
u32 ctrl = control->code_type << IMG_IR_CODETYPE_SHIFT;
if (control->decoden)
ctrl |= IMG_IR_DECODEN;
if (control->hdrtog)
ctrl |= IMG_IR_HDRTOG;
if (control->ldrdec)
ctrl |= IMG_IR_LDRDEC;
if (control->decodinpol)
ctrl |= IMG_IR_DECODINPOL;
if (control->bitorien)
ctrl |= IMG_IR_BITORIEN;
if (control->d1validsel)
ctrl |= IMG_IR_D1VALIDSEL;
if (control->bitinv)
ctrl |= IMG_IR_BITINV;
if (control->decodend2)
ctrl |= IMG_IR_DECODEND2;
if (control->bitoriend2)
ctrl |= IMG_IR_BITORIEND2;
if (control->bitinvd2)
ctrl |= IMG_IR_BITINVD2;
return ctrl;
}
/**
* img_ir_timing_range_convert() - Convert microsecond range.
* @out: Output timing range in clock cycles with a shift.
* @in: Input timing range in microseconds.
* @tolerance: Tolerance as a fraction of 128 (roughly percent).
* @clock_hz: IR clock rate in Hz.
* @shift: Shift of output units.
*
* Converts min and max from microseconds to IR clock cycles, applies a
* tolerance, and shifts for the register, rounding in the right direction.
* Note that in and out can safely be the same object.
*/
static void img_ir_timing_range_convert(struct img_ir_timing_range *out,
const struct img_ir_timing_range *in,
unsigned int tolerance,
unsigned long clock_hz,
unsigned int shift)
{
unsigned int min = in->min;
unsigned int max = in->max;
/* add a tolerance */
min = min - (min*tolerance >> 7);
max = max + (max*tolerance >> 7);
/* convert from microseconds into clock cycles */
min = min*clock_hz / 1000000;
max = (max*clock_hz + 999999) / 1000000; /* round up */
/* apply shift and copy to output */
out->min = min >> shift;
out->max = (max + ((1 << shift) - 1)) >> shift; /* round up */
}
/**
* img_ir_symbol_timing() - Convert symbol timing struct to register value.
* @timing: Symbol timing data
* @tolerance: Timing tolerance where 0-128 represents 0-100%
* @clock_hz: Frequency of source clock in Hz
* @pd_shift: Shift to apply to symbol period
* @w_shift: Shift to apply to symbol width
*
* Returns: Symbol timing register value based on arguments.
*/
static u32 img_ir_symbol_timing(const struct img_ir_symbol_timing *timing,
unsigned int tolerance,
unsigned long clock_hz,
unsigned int pd_shift,
unsigned int w_shift)
{
struct img_ir_timing_range hw_pulse, hw_period;
/* we calculate period in hw_period, then convert in place */
hw_period.min = timing->pulse.min + timing->space.min;
hw_period.max = timing->pulse.max + timing->space.max;
img_ir_timing_range_convert(&hw_period, &hw_period,
tolerance, clock_hz, pd_shift);
img_ir_timing_range_convert(&hw_pulse, &timing->pulse,
tolerance, clock_hz, w_shift);
/* construct register value */
return (hw_period.max << IMG_IR_PD_MAX_SHIFT) |
(hw_period.min << IMG_IR_PD_MIN_SHIFT) |
(hw_pulse.max << IMG_IR_W_MAX_SHIFT) |
(hw_pulse.min << IMG_IR_W_MIN_SHIFT);
}
/**
* img_ir_free_timing() - Convert free time timing struct to register value.
* @timing: Free symbol timing data
* @clock_hz: Source clock frequency in Hz
*
* Returns: Free symbol timing register value.
*/
static u32 img_ir_free_timing(const struct img_ir_free_timing *timing,
unsigned long clock_hz)
{
unsigned int minlen, maxlen, ft_min;
/* minlen is only 5 bits, and round minlen to multiple of 2 */
if (timing->minlen < 30)
minlen = timing->minlen & -2;
else
minlen = 30;
/* maxlen has maximum value of 48, and round maxlen to multiple of 2 */
if (timing->maxlen < 48)
maxlen = (timing->maxlen + 1) & -2;
else
maxlen = 48;
/* convert and shift ft_min, rounding upwards */
ft_min = (timing->ft_min*clock_hz + 999999) / 1000000;
ft_min = (ft_min + 7) >> 3;
/* construct register value */
return (maxlen << IMG_IR_MAXLEN_SHIFT) |
(minlen << IMG_IR_MINLEN_SHIFT) |
(ft_min << IMG_IR_FT_MIN_SHIFT);
}
/**
* img_ir_free_timing_dynamic() - Update free time register value.
* @st_ft: Static free time register value from img_ir_free_timing.
* @filter: Current filter which may additionally restrict min/max len.
*
* Returns: Updated free time register value based on the current filter.
*/
static u32 img_ir_free_timing_dynamic(u32 st_ft, struct img_ir_filter *filter)
{
unsigned int minlen, maxlen, newminlen, newmaxlen;
/* round minlen, maxlen to multiple of 2 */
newminlen = filter->minlen & -2;
newmaxlen = (filter->maxlen + 1) & -2;
/* extract min/max len from register */
minlen = (st_ft & IMG_IR_MINLEN) >> IMG_IR_MINLEN_SHIFT;
maxlen = (st_ft & IMG_IR_MAXLEN) >> IMG_IR_MAXLEN_SHIFT;
/* if the new values are more restrictive, update the register value */
if (newminlen > minlen) {
st_ft &= ~IMG_IR_MINLEN;
st_ft |= newminlen << IMG_IR_MINLEN_SHIFT;
}
if (newmaxlen < maxlen) {
st_ft &= ~IMG_IR_MAXLEN;
st_ft |= newmaxlen << IMG_IR_MAXLEN_SHIFT;
}
return st_ft;
}
/**
* img_ir_timings_convert() - Convert timings to register values
* @regs: Output timing register values
* @timings: Input timing data
* @tolerance: Timing tolerance where 0-128 represents 0-100%
* @clock_hz: Source clock frequency in Hz
*/
static void img_ir_timings_convert(struct img_ir_timing_regvals *regs,
const struct img_ir_timings *timings,
unsigned int tolerance,
unsigned int clock_hz)
{
/* leader symbol timings are divided by 16 */
regs->ldr = img_ir_symbol_timing(&timings->ldr, tolerance, clock_hz,
4, 4);
/* other symbol timings, pd fields only are divided by 2 */
regs->s00 = img_ir_symbol_timing(&timings->s00, tolerance, clock_hz,
1, 0);
regs->s01 = img_ir_symbol_timing(&timings->s01, tolerance, clock_hz,
1, 0);
regs->s10 = img_ir_symbol_timing(&timings->s10, tolerance, clock_hz,
1, 0);
regs->s11 = img_ir_symbol_timing(&timings->s11, tolerance, clock_hz,
1, 0);
regs->ft = img_ir_free_timing(&timings->ft, clock_hz);
}
/**
* img_ir_decoder_preprocess() - Preprocess timings in decoder.
* @decoder: Decoder to be preprocessed.
*
* Ensures that the symbol timing ranges are valid with respect to ordering, and
* does some fixed conversion on them.
*/
static void img_ir_decoder_preprocess(struct img_ir_decoder *decoder)
{
/* default tolerance */
if (!decoder->tolerance)
decoder->tolerance = 10; /* percent */
/* and convert tolerance to fraction out of 128 */
decoder->tolerance = decoder->tolerance * 128 / 100;
/* fill in implicit fields */
img_ir_timings_preprocess(&decoder->timings, decoder->unit);
/* do the same for repeat timings if applicable */
if (decoder->repeat) {
img_ir_timings_preprocess(&decoder->rtimings, decoder->unit);
img_ir_timings_defaults(&decoder->rtimings, &decoder->timings);
}
}
/**
* img_ir_decoder_convert() - Generate internal timings in decoder.
* @decoder: Decoder to be converted to internal timings.
* @reg_timings: Timing register values.
* @clock_hz: IR clock rate in Hz.
*
* Fills out the repeat timings and timing register values for a specific clock
* rate.
*/
static void img_ir_decoder_convert(const struct img_ir_decoder *decoder,
struct img_ir_reg_timings *reg_timings,
unsigned int clock_hz)
{
/* calculate control value */
reg_timings->ctrl = img_ir_control(&decoder->control);
/* fill in implicit fields and calculate register values */
img_ir_timings_convert(&reg_timings->timings, &decoder->timings,
decoder->tolerance, clock_hz);
/* do the same for repeat timings if applicable */
if (decoder->repeat)
img_ir_timings_convert(&reg_timings->rtimings,
&decoder->rtimings, decoder->tolerance,
clock_hz);
}
/**
* img_ir_write_timings() - Write timings to the hardware now
* @priv: IR private data
* @regs: Timing register values to write
* @type: RC filter type (RC_FILTER_*)
*
* Write timing register values @regs to the hardware, taking into account the
* current filter which may impose restrictions on the length of the expected
* data.
*/
static void img_ir_write_timings(struct img_ir_priv *priv,
struct img_ir_timing_regvals *regs,
enum rc_filter_type type)
{
struct img_ir_priv_hw *hw = &priv->hw;
/* filter may be more restrictive to minlen, maxlen */
u32 ft = regs->ft;
if (hw->flags & BIT(type))
ft = img_ir_free_timing_dynamic(regs->ft, &hw->filters[type]);
/* write to registers */
img_ir_write(priv, IMG_IR_LEAD_SYMB_TIMING, regs->ldr);
img_ir_write(priv, IMG_IR_S00_SYMB_TIMING, regs->s00);
img_ir_write(priv, IMG_IR_S01_SYMB_TIMING, regs->s01);
img_ir_write(priv, IMG_IR_S10_SYMB_TIMING, regs->s10);
img_ir_write(priv, IMG_IR_S11_SYMB_TIMING, regs->s11);
img_ir_write(priv, IMG_IR_FREE_SYMB_TIMING, ft);
dev_dbg(priv->dev, "timings: ldr=%#x, s=[%#x, %#x, %#x, %#x], ft=%#x\n",
regs->ldr, regs->s00, regs->s01, regs->s10, regs->s11, ft);
}
static void img_ir_write_filter(struct img_ir_priv *priv,
struct img_ir_filter *filter)
{
if (filter) {
dev_dbg(priv->dev, "IR filter=%016llx & %016llx\n",
(unsigned long long)filter->data,
(unsigned long long)filter->mask);
img_ir_write(priv, IMG_IR_IRQ_MSG_DATA_LW, (u32)filter->data);
img_ir_write(priv, IMG_IR_IRQ_MSG_DATA_UP, (u32)(filter->data
>> 32));
img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_LW, (u32)filter->mask);
img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_UP, (u32)(filter->mask
>> 32));
} else {
dev_dbg(priv->dev, "IR clearing filter\n");
img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_LW, 0);
img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_UP, 0);
}
}
/* caller must have lock */
static void _img_ir_set_filter(struct img_ir_priv *priv,
struct img_ir_filter *filter)
{
struct img_ir_priv_hw *hw = &priv->hw;
u32 irq_en, irq_on;
irq_en = img_ir_read(priv, IMG_IR_IRQ_ENABLE);
if (filter) {
/* Only use the match interrupt */
hw->filters[RC_FILTER_NORMAL] = *filter;
hw->flags |= IMG_IR_F_FILTER;
irq_on = IMG_IR_IRQ_DATA_MATCH;
irq_en &= ~(IMG_IR_IRQ_DATA_VALID | IMG_IR_IRQ_DATA2_VALID);
} else {
/* Only use the valid interrupt */
hw->flags &= ~IMG_IR_F_FILTER;
irq_en &= ~IMG_IR_IRQ_DATA_MATCH;
irq_on = IMG_IR_IRQ_DATA_VALID | IMG_IR_IRQ_DATA2_VALID;
}
irq_en |= irq_on;
img_ir_write_filter(priv, filter);
/* clear any interrupts we're enabling so we don't handle old ones */
img_ir_write(priv, IMG_IR_IRQ_CLEAR, irq_on);
img_ir_write(priv, IMG_IR_IRQ_ENABLE, irq_en);
}
/* caller must have lock */
static void _img_ir_set_wake_filter(struct img_ir_priv *priv,
struct img_ir_filter *filter)
{
struct img_ir_priv_hw *hw = &priv->hw;
if (filter) {
/* Enable wake, and copy filter for later */
hw->filters[RC_FILTER_WAKEUP] = *filter;
hw->flags |= IMG_IR_F_WAKE;
} else {
/* Disable wake */
hw->flags &= ~IMG_IR_F_WAKE;
}
}
/* Callback for setting scancode filter */
static int img_ir_set_filter(struct rc_dev *dev, enum rc_filter_type type,
struct rc_scancode_filter *sc_filter)
{
struct img_ir_priv *priv = dev->priv;
struct img_ir_priv_hw *hw = &priv->hw;
struct img_ir_filter filter, *filter_ptr = &filter;
int ret = 0;
dev_dbg(priv->dev, "IR scancode %sfilter=%08x & %08x\n",
type == RC_FILTER_WAKEUP ? "wake " : "",
sc_filter->data,
sc_filter->mask);
spin_lock_irq(&priv->lock);
/* filtering can always be disabled */
if (!sc_filter->mask) {
filter_ptr = NULL;
goto set_unlock;
}
/* current decoder must support scancode filtering */
if (!hw->decoder || !hw->decoder->filter) {
ret = -EINVAL;
goto unlock;
}
/* convert scancode filter to raw filter */
filter.minlen = 0;
filter.maxlen = ~0;
if (type == RC_FILTER_NORMAL) {
/* guess scancode from protocol */
ret = hw->decoder->filter(sc_filter, &filter,
dev->enabled_protocols);
} else {
/* for wakeup user provided exact protocol variant */
ret = hw->decoder->filter(sc_filter, &filter,
1ULL << dev->wakeup_protocol);
}
if (ret)
goto unlock;
dev_dbg(priv->dev, "IR raw %sfilter=%016llx & %016llx\n",
type == RC_FILTER_WAKEUP ? "wake " : "",
(unsigned long long)filter.data,
(unsigned long long)filter.mask);
set_unlock:
/* apply raw filters */
switch (type) {
case RC_FILTER_NORMAL:
_img_ir_set_filter(priv, filter_ptr);
break;
case RC_FILTER_WAKEUP:
_img_ir_set_wake_filter(priv, filter_ptr);
break;
default:
ret = -EINVAL;
}
unlock:
spin_unlock_irq(&priv->lock);
return ret;
}
static int img_ir_set_normal_filter(struct rc_dev *dev,
struct rc_scancode_filter *sc_filter)
{
return img_ir_set_filter(dev, RC_FILTER_NORMAL, sc_filter);
}
static int img_ir_set_wakeup_filter(struct rc_dev *dev,
struct rc_scancode_filter *sc_filter)
{
return img_ir_set_filter(dev, RC_FILTER_WAKEUP, sc_filter);
}
/**
* img_ir_set_decoder() - Set the current decoder.
* @priv: IR private data.
* @decoder: Decoder to use with immediate effect.
* @proto: Protocol bitmap (or 0 to use decoder->type).
*/
static void img_ir_set_decoder(struct img_ir_priv *priv,
const struct img_ir_decoder *decoder,
u64 proto)
{
struct img_ir_priv_hw *hw = &priv->hw;
struct rc_dev *rdev = hw->rdev;
u32 ir_status, irq_en;
spin_lock_irq(&priv->lock);
/*
* First record that the protocol is being stopped so that the end timer
* isn't restarted while we're trying to stop it.
*/
hw->stopping = true;
/*
* Release the lock to stop the end timer, since the end timer handler
* acquires the lock and we don't want to deadlock waiting for it.
*/
spin_unlock_irq(&priv->lock);
del_timer_sync(&hw->end_timer);
del_timer_sync(&hw->suspend_timer);
spin_lock_irq(&priv->lock);
hw->stopping = false;
/* switch off and disable interrupts */
img_ir_write(priv, IMG_IR_CONTROL, 0);
irq_en = img_ir_read(priv, IMG_IR_IRQ_ENABLE);
img_ir_write(priv, IMG_IR_IRQ_ENABLE, irq_en & IMG_IR_IRQ_EDGE);
img_ir_write(priv, IMG_IR_IRQ_CLEAR, IMG_IR_IRQ_ALL & ~IMG_IR_IRQ_EDGE);
/* ack any data already detected */
ir_status = img_ir_read(priv, IMG_IR_STATUS);
if (ir_status & (IMG_IR_RXDVAL | IMG_IR_RXDVALD2)) {
ir_status &= ~(IMG_IR_RXDVAL | IMG_IR_RXDVALD2);
img_ir_write(priv, IMG_IR_STATUS, ir_status);
}
/* always read data to clear buffer if IR wakes the device */
img_ir_read(priv, IMG_IR_DATA_LW);
img_ir_read(priv, IMG_IR_DATA_UP);
/* switch back to normal mode */
hw->mode = IMG_IR_M_NORMAL;
/* clear the wakeup scancode filter */
rdev->scancode_wakeup_filter.data = 0;
rdev->scancode_wakeup_filter.mask = 0;
rdev->wakeup_protocol = RC_PROTO_UNKNOWN;
/* clear raw filters */
_img_ir_set_filter(priv, NULL);
_img_ir_set_wake_filter(priv, NULL);
/* clear the enabled protocols */
hw->enabled_protocols = 0;
/* switch decoder */
hw->decoder = decoder;
if (!decoder)
goto unlock;
/* set the enabled protocols */
if (!proto)
proto = decoder->type;
hw->enabled_protocols = proto;
/* write the new timings */
img_ir_decoder_convert(decoder, &hw->reg_timings, hw->clk_hz);
img_ir_write_timings(priv, &hw->reg_timings.timings, RC_FILTER_NORMAL);
/* set up and enable */
img_ir_write(priv, IMG_IR_CONTROL, hw->reg_timings.ctrl);
unlock:
spin_unlock_irq(&priv->lock);
}
/**
* img_ir_decoder_compatable() - Find whether a decoder will work with a device.
* @priv: IR private data.
* @dec: Decoder to check.
*
* Returns: true if @dec is compatible with the device @priv refers to.
*/
static bool img_ir_decoder_compatible(struct img_ir_priv *priv,
const struct img_ir_decoder *dec)
{
unsigned int ct;
/* don't accept decoders using code types which aren't supported */
ct = dec->control.code_type;
if (priv->hw.ct_quirks[ct] & IMG_IR_QUIRK_CODE_BROKEN)
return false;
return true;
}
/**
* img_ir_allowed_protos() - Get allowed protocols from global decoder list.
* @priv: IR private data.
*
* Returns: Mask of protocols supported by the device @priv refers to.
*/
static u64 img_ir_allowed_protos(struct img_ir_priv *priv)
{
u64 protos = 0;
struct img_ir_decoder **decp;
for (decp = img_ir_decoders; *decp; ++decp) {
const struct img_ir_decoder *dec = *decp;
if (img_ir_decoder_compatible(priv, dec))
protos |= dec->type;
}
return protos;
}
/* Callback for changing protocol using sysfs */
static int img_ir_change_protocol(struct rc_dev *dev, u64 *ir_type)
{
struct img_ir_priv *priv = dev->priv;
struct img_ir_priv_hw *hw = &priv->hw;
struct rc_dev *rdev = hw->rdev;
struct img_ir_decoder **decp;
u64 wakeup_protocols;
if (!*ir_type) {
/* disable all protocols */
img_ir_set_decoder(priv, NULL, 0);
goto success;
}
for (decp = img_ir_decoders; *decp; ++decp) {
const struct img_ir_decoder *dec = *decp;
if (!img_ir_decoder_compatible(priv, dec))
continue;
if (*ir_type & dec->type) {
*ir_type &= dec->type;
img_ir_set_decoder(priv, dec, *ir_type);
goto success;
}
}
return -EINVAL;
success:
/*
* Only allow matching wakeup protocols for now, and only if filtering
* is supported.
*/
wakeup_protocols = *ir_type;
if (!hw->decoder || !hw->decoder->filter)
wakeup_protocols = 0;
rdev->allowed_wakeup_protocols = wakeup_protocols;
return 0;
}
/* Changes ir-core protocol device attribute */
static void img_ir_set_protocol(struct img_ir_priv *priv, u64 proto)
{
struct rc_dev *rdev = priv->hw.rdev;
mutex_lock(&rdev->lock);
rdev->enabled_protocols = proto;
rdev->allowed_wakeup_protocols = proto;
mutex_unlock(&rdev->lock);
}
/* Set up IR decoders */
static void img_ir_init_decoders(void)
{
struct img_ir_decoder **decp;
spin_lock(&img_ir_decoders_lock);
if (!img_ir_decoders_preprocessed) {
for (decp = img_ir_decoders; *decp; ++decp)
img_ir_decoder_preprocess(*decp);
img_ir_decoders_preprocessed = true;
}
spin_unlock(&img_ir_decoders_lock);
}
#ifdef CONFIG_PM_SLEEP
/**
* img_ir_enable_wake() - Switch to wake mode.
* @priv: IR private data.
*
* Returns: non-zero if the IR can wake the system.
*/
static int img_ir_enable_wake(struct img_ir_priv *priv)
{
struct img_ir_priv_hw *hw = &priv->hw;
int ret = 0;
spin_lock_irq(&priv->lock);
if (hw->flags & IMG_IR_F_WAKE) {
/* interrupt only on a match */
hw->suspend_irqen = img_ir_read(priv, IMG_IR_IRQ_ENABLE);
img_ir_write(priv, IMG_IR_IRQ_ENABLE, IMG_IR_IRQ_DATA_MATCH);
img_ir_write_filter(priv, &hw->filters[RC_FILTER_WAKEUP]);
img_ir_write_timings(priv, &hw->reg_timings.timings,
RC_FILTER_WAKEUP);
hw->mode = IMG_IR_M_WAKE;
ret = 1;
}
spin_unlock_irq(&priv->lock);
return ret;
}
/**
* img_ir_disable_wake() - Switch out of wake mode.
* @priv: IR private data
*
* Returns: 1 if the hardware should be allowed to wake from a sleep state.
* 0 otherwise.
*/
static int img_ir_disable_wake(struct img_ir_priv *priv)
{
struct img_ir_priv_hw *hw = &priv->hw;
int ret = 0;
spin_lock_irq(&priv->lock);
if (hw->flags & IMG_IR_F_WAKE) {
/* restore normal filtering */
if (hw->flags & IMG_IR_F_FILTER) {
img_ir_write(priv, IMG_IR_IRQ_ENABLE,
(hw->suspend_irqen & IMG_IR_IRQ_EDGE) |
IMG_IR_IRQ_DATA_MATCH);
img_ir_write_filter(priv,
&hw->filters[RC_FILTER_NORMAL]);
} else {
img_ir_write(priv, IMG_IR_IRQ_ENABLE,
(hw->suspend_irqen & IMG_IR_IRQ_EDGE) |
IMG_IR_IRQ_DATA_VALID |
IMG_IR_IRQ_DATA2_VALID);
img_ir_write_filter(priv, NULL);
}
img_ir_write_timings(priv, &hw->reg_timings.timings,
RC_FILTER_NORMAL);
hw->mode = IMG_IR_M_NORMAL;
ret = 1;
}
spin_unlock_irq(&priv->lock);
return ret;
}
#endif /* CONFIG_PM_SLEEP */
/* lock must be held */
static void img_ir_begin_repeat(struct img_ir_priv *priv)
{
struct img_ir_priv_hw *hw = &priv->hw;
if (hw->mode == IMG_IR_M_NORMAL) {
/* switch to repeat timings */
img_ir_write(priv, IMG_IR_CONTROL, 0);
hw->mode = IMG_IR_M_REPEATING;
img_ir_write_timings(priv, &hw->reg_timings.rtimings,
RC_FILTER_NORMAL);
img_ir_write(priv, IMG_IR_CONTROL, hw->reg_timings.ctrl);
}
}
/* lock must be held */
static void img_ir_end_repeat(struct img_ir_priv *priv)
{
struct img_ir_priv_hw *hw = &priv->hw;
if (hw->mode == IMG_IR_M_REPEATING) {
/* switch to normal timings */
img_ir_write(priv, IMG_IR_CONTROL, 0);
hw->mode = IMG_IR_M_NORMAL;
img_ir_write_timings(priv, &hw->reg_timings.timings,
RC_FILTER_NORMAL);
img_ir_write(priv, IMG_IR_CONTROL, hw->reg_timings.ctrl);
}
}
/* lock must be held */
static void img_ir_handle_data(struct img_ir_priv *priv, u32 len, u64 raw)
{
struct img_ir_priv_hw *hw = &priv->hw;
const struct img_ir_decoder *dec = hw->decoder;
int ret = IMG_IR_SCANCODE;
struct img_ir_scancode_req request;
request.protocol = RC_PROTO_UNKNOWN;
request.toggle = 0;
if (dec->scancode)
ret = dec->scancode(len, raw, hw->enabled_protocols, &request);
else if (len >= 32)
request.scancode = (u32)raw;
else if (len < 32)
request.scancode = (u32)raw & ((1 << len)-1);
dev_dbg(priv->dev, "data (%u bits) = %#llx\n",
len, (unsigned long long)raw);
if (ret == IMG_IR_SCANCODE) {
dev_dbg(priv->dev, "decoded scan code %#x, toggle %u\n",
request.scancode, request.toggle);
rc_keydown(hw->rdev, request.protocol, request.scancode,
request.toggle);
img_ir_end_repeat(priv);
} else if (ret == IMG_IR_REPEATCODE) {
if (hw->mode == IMG_IR_M_REPEATING) {
dev_dbg(priv->dev, "decoded repeat code\n");
rc_repeat(hw->rdev);
} else {
dev_dbg(priv->dev, "decoded unexpected repeat code, ignoring\n");
}
} else {
dev_dbg(priv->dev, "decode failed (%d)\n", ret);
return;
}
/* we mustn't update the end timer while trying to stop it */
if (dec->repeat && !hw->stopping) {
unsigned long interval;
img_ir_begin_repeat(priv);
/* update timer, but allowing for 1/8th tolerance */
interval = dec->repeat + (dec->repeat >> 3);
mod_timer(&hw->end_timer,
jiffies + msecs_to_jiffies(interval));
}
}
/* timer function to end waiting for repeat. */
static void img_ir_end_timer(struct timer_list *t)
{
struct img_ir_priv *priv = from_timer(priv, t, hw.end_timer);
spin_lock_irq(&priv->lock);
img_ir_end_repeat(priv);
spin_unlock_irq(&priv->lock);
}
/*
* Timer function to re-enable the current protocol after it had been
* cleared when invalid interrupts were generated due to a quirk in the
* img-ir decoder.
*/
static void img_ir_suspend_timer(struct timer_list *t)
{
struct img_ir_priv *priv = from_timer(priv, t, hw.suspend_timer);
spin_lock_irq(&priv->lock);
/*
* Don't overwrite enabled valid/match IRQs if they have already been
* changed by e.g. a filter change.
*/
if ((priv->hw.quirk_suspend_irq & IMG_IR_IRQ_EDGE) ==
img_ir_read(priv, IMG_IR_IRQ_ENABLE))
img_ir_write(priv, IMG_IR_IRQ_ENABLE,
priv->hw.quirk_suspend_irq);
/* enable */
img_ir_write(priv, IMG_IR_CONTROL, priv->hw.reg_timings.ctrl);
spin_unlock_irq(&priv->lock);
}
#ifdef CONFIG_COMMON_CLK
static void img_ir_change_frequency(struct img_ir_priv *priv,
struct clk_notifier_data *change)
{
struct img_ir_priv_hw *hw = &priv->hw;
dev_dbg(priv->dev, "clk changed %lu HZ -> %lu HZ\n",
change->old_rate, change->new_rate);
spin_lock_irq(&priv->lock);
if (hw->clk_hz == change->new_rate)
goto unlock;
hw->clk_hz = change->new_rate;
/* refresh current timings */
if (hw->decoder) {
img_ir_decoder_convert(hw->decoder, &hw->reg_timings,
hw->clk_hz);
switch (hw->mode) {
case IMG_IR_M_NORMAL:
img_ir_write_timings(priv, &hw->reg_timings.timings,
RC_FILTER_NORMAL);
break;
case IMG_IR_M_REPEATING:
img_ir_write_timings(priv, &hw->reg_timings.rtimings,
RC_FILTER_NORMAL);
break;
#ifdef CONFIG_PM_SLEEP
case IMG_IR_M_WAKE:
img_ir_write_timings(priv, &hw->reg_timings.timings,
RC_FILTER_WAKEUP);
break;
#endif
}
}
unlock:
spin_unlock_irq(&priv->lock);
}
static int img_ir_clk_notify(struct notifier_block *self, unsigned long action,
void *data)
{
struct img_ir_priv *priv = container_of(self, struct img_ir_priv,
hw.clk_nb);
switch (action) {
case POST_RATE_CHANGE:
img_ir_change_frequency(priv, data);
break;
default:
break;
}
return NOTIFY_OK;
}
#endif /* CONFIG_COMMON_CLK */
/* called with priv->lock held */
void img_ir_isr_hw(struct img_ir_priv *priv, u32 irq_status)
{
struct img_ir_priv_hw *hw = &priv->hw;
u32 ir_status, len, lw, up;
unsigned int ct;
/* use the current decoder */
if (!hw->decoder)
return;
ct = hw->decoder->control.code_type;
ir_status = img_ir_read(priv, IMG_IR_STATUS);
if (!(ir_status & (IMG_IR_RXDVAL | IMG_IR_RXDVALD2))) {
if (!(priv->hw.ct_quirks[ct] & IMG_IR_QUIRK_CODE_IRQ) ||
hw->stopping)
return;
/*
* The below functionality is added as a work around to stop
* multiple Interrupts generated when an incomplete IR code is
* received by the decoder.
* The decoder generates rapid interrupts without actually
* having received any new data. After a single interrupt it's
* expected to clear up, but instead multiple interrupts are
* rapidly generated. only way to get out of this loop is to
* reset the control register after a short delay.
*/
img_ir_write(priv, IMG_IR_CONTROL, 0);
hw->quirk_suspend_irq = img_ir_read(priv, IMG_IR_IRQ_ENABLE);
img_ir_write(priv, IMG_IR_IRQ_ENABLE,
hw->quirk_suspend_irq & IMG_IR_IRQ_EDGE);
/* Timer activated to re-enable the protocol. */
mod_timer(&hw->suspend_timer,
jiffies + msecs_to_jiffies(5));
return;
}
ir_status &= ~(IMG_IR_RXDVAL | IMG_IR_RXDVALD2);
img_ir_write(priv, IMG_IR_STATUS, ir_status);
len = (ir_status & IMG_IR_RXDLEN) >> IMG_IR_RXDLEN_SHIFT;
/* some versions report wrong length for certain code types */
if (hw->ct_quirks[ct] & IMG_IR_QUIRK_CODE_LEN_INCR)
++len;
lw = img_ir_read(priv, IMG_IR_DATA_LW);
up = img_ir_read(priv, IMG_IR_DATA_UP);
img_ir_handle_data(priv, len, (u64)up << 32 | lw);
}
void img_ir_setup_hw(struct img_ir_priv *priv)
{
struct img_ir_decoder **decp;
if (!priv->hw.rdev)
return;
/* Use the first available decoder (or disable stuff if NULL) */
for (decp = img_ir_decoders; *decp; ++decp) {
const struct img_ir_decoder *dec = *decp;
if (img_ir_decoder_compatible(priv, dec)) {
img_ir_set_protocol(priv, dec->type);
img_ir_set_decoder(priv, dec, 0);
return;
}
}
img_ir_set_decoder(priv, NULL, 0);
}
/**
* img_ir_probe_hw_caps() - Probe capabilities of the hardware.
* @priv: IR private data.
*/
static void img_ir_probe_hw_caps(struct img_ir_priv *priv)
{
struct img_ir_priv_hw *hw = &priv->hw;
/*
* When a version of the block becomes available without these quirks,
* they'll have to depend on the core revision.
*/
hw->ct_quirks[IMG_IR_CODETYPE_PULSELEN]
|= IMG_IR_QUIRK_CODE_LEN_INCR;
hw->ct_quirks[IMG_IR_CODETYPE_BIPHASE]
|= IMG_IR_QUIRK_CODE_IRQ;
hw->ct_quirks[IMG_IR_CODETYPE_2BITPULSEPOS]
|= IMG_IR_QUIRK_CODE_BROKEN;
}
int img_ir_probe_hw(struct img_ir_priv *priv)
{
struct img_ir_priv_hw *hw = &priv->hw;
struct rc_dev *rdev;
int error;
/* Ensure hardware decoders have been preprocessed */
img_ir_init_decoders();
/* Probe hardware capabilities */
img_ir_probe_hw_caps(priv);
/* Set up the end timer */
timer_setup(&hw->end_timer, img_ir_end_timer, 0);
timer_setup(&hw->suspend_timer, img_ir_suspend_timer, 0);
/* Register a clock notifier */
if (!IS_ERR(priv->clk)) {
hw->clk_hz = clk_get_rate(priv->clk);
#ifdef CONFIG_COMMON_CLK
hw->clk_nb.notifier_call = img_ir_clk_notify;
error = clk_notifier_register(priv->clk, &hw->clk_nb);
if (error)
dev_warn(priv->dev,
"failed to register clock notifier\n");
#endif
} else {
hw->clk_hz = 32768;
}
/* Allocate hardware decoder */
hw->rdev = rdev = rc_allocate_device(RC_DRIVER_SCANCODE);
if (!rdev) {
dev_err(priv->dev, "cannot allocate input device\n");
error = -ENOMEM;
goto err_alloc_rc;
}
rdev->priv = priv;
rdev->map_name = RC_MAP_EMPTY;
rdev->allowed_protocols = img_ir_allowed_protos(priv);
rdev->device_name = "IMG Infrared Decoder";
rdev->s_filter = img_ir_set_normal_filter;
rdev->s_wakeup_filter = img_ir_set_wakeup_filter;
/* Register hardware decoder */
error = rc_register_device(rdev);
if (error) {
dev_err(priv->dev, "failed to register IR input device\n");
goto err_register_rc;
}
/*
* Set this after rc_register_device as no protocols have been
* registered yet.
*/
rdev->change_protocol = img_ir_change_protocol;
device_init_wakeup(priv->dev, 1);
return 0;
err_register_rc:
img_ir_set_decoder(priv, NULL, 0);
hw->rdev = NULL;
rc_free_device(rdev);
err_alloc_rc:
#ifdef CONFIG_COMMON_CLK
if (!IS_ERR(priv->clk))
clk_notifier_unregister(priv->clk, &hw->clk_nb);
#endif
return error;
}
void img_ir_remove_hw(struct img_ir_priv *priv)
{
struct img_ir_priv_hw *hw = &priv->hw;
struct rc_dev *rdev = hw->rdev;
if (!rdev)
return;
img_ir_set_decoder(priv, NULL, 0);
hw->rdev = NULL;
rc_unregister_device(rdev);
#ifdef CONFIG_COMMON_CLK
if (!IS_ERR(priv->clk))
clk_notifier_unregister(priv->clk, &hw->clk_nb);
#endif
}
#ifdef CONFIG_PM_SLEEP
int img_ir_suspend(struct device *dev)
{
struct img_ir_priv *priv = dev_get_drvdata(dev);
if (device_may_wakeup(dev) && img_ir_enable_wake(priv))
enable_irq_wake(priv->irq);
return 0;
}
int img_ir_resume(struct device *dev)
{
struct img_ir_priv *priv = dev_get_drvdata(dev);
if (device_may_wakeup(dev) && img_ir_disable_wake(priv))
disable_irq_wake(priv->irq);
return 0;
}
#endif /* CONFIG_PM_SLEEP */