blob: 71bbaa56bdb5b40f9909dd6ca842934326409b67 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Xilinx SDFEC
*
* Copyright (C) 2019 Xilinx, Inc.
*
* Description:
* This driver is developed for SDFEC16 (Soft Decision FEC 16nm)
* IP. It exposes a char device which supports file operations
* like open(), close() and ioctl().
*/
#include <linux/miscdevice.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/compat.h>
#include <linux/highmem.h>
#include <uapi/misc/xilinx_sdfec.h>
#define DEV_NAME_LEN 12
static DEFINE_IDA(dev_nrs);
/* Xilinx SDFEC Register Map */
/* CODE_WRI_PROTECT Register */
#define XSDFEC_CODE_WR_PROTECT_ADDR (0x4)
/* ACTIVE Register */
#define XSDFEC_ACTIVE_ADDR (0x8)
#define XSDFEC_IS_ACTIVITY_SET (0x1)
/* AXIS_WIDTH Register */
#define XSDFEC_AXIS_WIDTH_ADDR (0xC)
#define XSDFEC_AXIS_DOUT_WORDS_LSB (5)
#define XSDFEC_AXIS_DOUT_WIDTH_LSB (3)
#define XSDFEC_AXIS_DIN_WORDS_LSB (2)
#define XSDFEC_AXIS_DIN_WIDTH_LSB (0)
/* AXIS_ENABLE Register */
#define XSDFEC_AXIS_ENABLE_ADDR (0x10)
#define XSDFEC_AXIS_OUT_ENABLE_MASK (0x38)
#define XSDFEC_AXIS_IN_ENABLE_MASK (0x7)
#define XSDFEC_AXIS_ENABLE_MASK \
(XSDFEC_AXIS_OUT_ENABLE_MASK | XSDFEC_AXIS_IN_ENABLE_MASK)
/* FEC_CODE Register */
#define XSDFEC_FEC_CODE_ADDR (0x14)
/* ORDER Register Map */
#define XSDFEC_ORDER_ADDR (0x18)
/* Interrupt Status Register */
#define XSDFEC_ISR_ADDR (0x1C)
/* Interrupt Status Register Bit Mask */
#define XSDFEC_ISR_MASK (0x3F)
/* Write Only - Interrupt Enable Register */
#define XSDFEC_IER_ADDR (0x20)
/* Write Only - Interrupt Disable Register */
#define XSDFEC_IDR_ADDR (0x24)
/* Read Only - Interrupt Mask Register */
#define XSDFEC_IMR_ADDR (0x28)
/* ECC Interrupt Status Register */
#define XSDFEC_ECC_ISR_ADDR (0x2C)
/* Single Bit Errors */
#define XSDFEC_ECC_ISR_SBE_MASK (0x7FF)
/* PL Initialize Single Bit Errors */
#define XSDFEC_PL_INIT_ECC_ISR_SBE_MASK (0x3C00000)
/* Multi Bit Errors */
#define XSDFEC_ECC_ISR_MBE_MASK (0x3FF800)
/* PL Initialize Multi Bit Errors */
#define XSDFEC_PL_INIT_ECC_ISR_MBE_MASK (0x3C000000)
/* Multi Bit Error to Event Shift */
#define XSDFEC_ECC_ISR_MBE_TO_EVENT_SHIFT (11)
/* PL Initialize Multi Bit Error to Event Shift */
#define XSDFEC_PL_INIT_ECC_ISR_MBE_TO_EVENT_SHIFT (4)
/* ECC Interrupt Status Bit Mask */
#define XSDFEC_ECC_ISR_MASK (XSDFEC_ECC_ISR_SBE_MASK | XSDFEC_ECC_ISR_MBE_MASK)
/* ECC Interrupt Status PL Initialize Bit Mask */
#define XSDFEC_PL_INIT_ECC_ISR_MASK \
(XSDFEC_PL_INIT_ECC_ISR_SBE_MASK | XSDFEC_PL_INIT_ECC_ISR_MBE_MASK)
/* ECC Interrupt Status All Bit Mask */
#define XSDFEC_ALL_ECC_ISR_MASK \
(XSDFEC_ECC_ISR_MASK | XSDFEC_PL_INIT_ECC_ISR_MASK)
/* ECC Interrupt Status Single Bit Errors Mask */
#define XSDFEC_ALL_ECC_ISR_SBE_MASK \
(XSDFEC_ECC_ISR_SBE_MASK | XSDFEC_PL_INIT_ECC_ISR_SBE_MASK)
/* ECC Interrupt Status Multi Bit Errors Mask */
#define XSDFEC_ALL_ECC_ISR_MBE_MASK \
(XSDFEC_ECC_ISR_MBE_MASK | XSDFEC_PL_INIT_ECC_ISR_MBE_MASK)
/* Write Only - ECC Interrupt Enable Register */
#define XSDFEC_ECC_IER_ADDR (0x30)
/* Write Only - ECC Interrupt Disable Register */
#define XSDFEC_ECC_IDR_ADDR (0x34)
/* Read Only - ECC Interrupt Mask Register */
#define XSDFEC_ECC_IMR_ADDR (0x38)
/* BYPASS Register */
#define XSDFEC_BYPASS_ADDR (0x3C)
/* Turbo Code Register */
#define XSDFEC_TURBO_ADDR (0x100)
#define XSDFEC_TURBO_SCALE_MASK (0xFFF)
#define XSDFEC_TURBO_SCALE_BIT_POS (8)
#define XSDFEC_TURBO_SCALE_MAX (15)
/* REG0 Register */
#define XSDFEC_LDPC_CODE_REG0_ADDR_BASE (0x2000)
#define XSDFEC_LDPC_CODE_REG0_ADDR_HIGH (0x27F0)
#define XSDFEC_REG0_N_MIN (4)
#define XSDFEC_REG0_N_MAX (32768)
#define XSDFEC_REG0_N_MUL_P (256)
#define XSDFEC_REG0_N_LSB (0)
#define XSDFEC_REG0_K_MIN (2)
#define XSDFEC_REG0_K_MAX (32766)
#define XSDFEC_REG0_K_MUL_P (256)
#define XSDFEC_REG0_K_LSB (16)
/* REG1 Register */
#define XSDFEC_LDPC_CODE_REG1_ADDR_BASE (0x2004)
#define XSDFEC_LDPC_CODE_REG1_ADDR_HIGH (0x27f4)
#define XSDFEC_REG1_PSIZE_MIN (2)
#define XSDFEC_REG1_PSIZE_MAX (512)
#define XSDFEC_REG1_NO_PACKING_MASK (0x400)
#define XSDFEC_REG1_NO_PACKING_LSB (10)
#define XSDFEC_REG1_NM_MASK (0xFF800)
#define XSDFEC_REG1_NM_LSB (11)
#define XSDFEC_REG1_BYPASS_MASK (0x100000)
/* REG2 Register */
#define XSDFEC_LDPC_CODE_REG2_ADDR_BASE (0x2008)
#define XSDFEC_LDPC_CODE_REG2_ADDR_HIGH (0x27f8)
#define XSDFEC_REG2_NLAYERS_MIN (1)
#define XSDFEC_REG2_NLAYERS_MAX (256)
#define XSDFEC_REG2_NNMQC_MASK (0xFFE00)
#define XSDFEC_REG2_NMQC_LSB (9)
#define XSDFEC_REG2_NORM_TYPE_MASK (0x100000)
#define XSDFEC_REG2_NORM_TYPE_LSB (20)
#define XSDFEC_REG2_SPECIAL_QC_MASK (0x200000)
#define XSDFEC_REG2_SPEICAL_QC_LSB (21)
#define XSDFEC_REG2_NO_FINAL_PARITY_MASK (0x400000)
#define XSDFEC_REG2_NO_FINAL_PARITY_LSB (22)
#define XSDFEC_REG2_MAX_SCHEDULE_MASK (0x1800000)
#define XSDFEC_REG2_MAX_SCHEDULE_LSB (23)
/* REG3 Register */
#define XSDFEC_LDPC_CODE_REG3_ADDR_BASE (0x200C)
#define XSDFEC_LDPC_CODE_REG3_ADDR_HIGH (0x27FC)
#define XSDFEC_REG3_LA_OFF_LSB (8)
#define XSDFEC_REG3_QC_OFF_LSB (16)
#define XSDFEC_LDPC_REG_JUMP (0x10)
#define XSDFEC_REG_WIDTH_JUMP (4)
/* The maximum number of pinned pages */
#define MAX_NUM_PAGES ((XSDFEC_QC_TABLE_DEPTH / PAGE_SIZE) + 1)
/**
* struct xsdfec_clks - For managing SD-FEC clocks
* @core_clk: Main processing clock for core
* @axi_clk: AXI4-Lite memory-mapped clock
* @din_words_clk: DIN Words AXI4-Stream Slave clock
* @din_clk: DIN AXI4-Stream Slave clock
* @dout_clk: DOUT Words AXI4-Stream Slave clock
* @dout_words_clk: DOUT AXI4-Stream Slave clock
* @ctrl_clk: Control AXI4-Stream Slave clock
* @status_clk: Status AXI4-Stream Slave clock
*/
struct xsdfec_clks {
struct clk *core_clk;
struct clk *axi_clk;
struct clk *din_words_clk;
struct clk *din_clk;
struct clk *dout_clk;
struct clk *dout_words_clk;
struct clk *ctrl_clk;
struct clk *status_clk;
};
/**
* struct xsdfec_dev - Driver data for SDFEC
* @miscdev: Misc device handle
* @clks: Clocks managed by the SDFEC driver
* @waitq: Driver wait queue
* @config: Configuration of the SDFEC device
* @dev_name: Device name
* @flags: spinlock flags
* @regs: device physical base address
* @dev: pointer to device struct
* @state: State of the SDFEC device
* @error_data_lock: Error counter and states spinlock
* @dev_id: Device ID
* @isr_err_count: Count of ISR errors
* @cecc_count: Count of Correctable ECC errors (SBE)
* @uecc_count: Count of Uncorrectable ECC errors (MBE)
* @irq: IRQ number
* @state_updated: indicates State updated by interrupt handler
* @stats_updated: indicates Stats updated by interrupt handler
* @intr_enabled: indicates IRQ enabled
*
* This structure contains necessary state for SDFEC driver to operate
*/
struct xsdfec_dev {
struct miscdevice miscdev;
struct xsdfec_clks clks;
wait_queue_head_t waitq;
struct xsdfec_config config;
char dev_name[DEV_NAME_LEN];
unsigned long flags;
void __iomem *regs;
struct device *dev;
enum xsdfec_state state;
/* Spinlock to protect state_updated and stats_updated */
spinlock_t error_data_lock;
int dev_id;
u32 isr_err_count;
u32 cecc_count;
u32 uecc_count;
int irq;
bool state_updated;
bool stats_updated;
bool intr_enabled;
};
static inline void xsdfec_regwrite(struct xsdfec_dev *xsdfec, u32 addr,
u32 value)
{
dev_dbg(xsdfec->dev, "Writing 0x%x to offset 0x%x", value, addr);
iowrite32(value, xsdfec->regs + addr);
}
static inline u32 xsdfec_regread(struct xsdfec_dev *xsdfec, u32 addr)
{
u32 rval;
rval = ioread32(xsdfec->regs + addr);
dev_dbg(xsdfec->dev, "Read value = 0x%x from offset 0x%x", rval, addr);
return rval;
}
static void update_bool_config_from_reg(struct xsdfec_dev *xsdfec,
u32 reg_offset, u32 bit_num,
char *config_value)
{
u32 reg_val;
u32 bit_mask = 1 << bit_num;
reg_val = xsdfec_regread(xsdfec, reg_offset);
*config_value = (reg_val & bit_mask) > 0;
}
static void update_config_from_hw(struct xsdfec_dev *xsdfec)
{
u32 reg_value;
bool sdfec_started;
/* Update the Order */
reg_value = xsdfec_regread(xsdfec, XSDFEC_ORDER_ADDR);
xsdfec->config.order = reg_value;
update_bool_config_from_reg(xsdfec, XSDFEC_BYPASS_ADDR,
0, /* Bit Number, maybe change to mask */
&xsdfec->config.bypass);
update_bool_config_from_reg(xsdfec, XSDFEC_CODE_WR_PROTECT_ADDR,
0, /* Bit Number */
&xsdfec->config.code_wr_protect);
reg_value = xsdfec_regread(xsdfec, XSDFEC_IMR_ADDR);
xsdfec->config.irq.enable_isr = (reg_value & XSDFEC_ISR_MASK) > 0;
reg_value = xsdfec_regread(xsdfec, XSDFEC_ECC_IMR_ADDR);
xsdfec->config.irq.enable_ecc_isr =
(reg_value & XSDFEC_ECC_ISR_MASK) > 0;
reg_value = xsdfec_regread(xsdfec, XSDFEC_AXIS_ENABLE_ADDR);
sdfec_started = (reg_value & XSDFEC_AXIS_IN_ENABLE_MASK) > 0;
if (sdfec_started)
xsdfec->state = XSDFEC_STARTED;
else
xsdfec->state = XSDFEC_STOPPED;
}
static int xsdfec_get_status(struct xsdfec_dev *xsdfec, void __user *arg)
{
struct xsdfec_status status;
int err;
memset(&status, 0, sizeof(status));
spin_lock_irqsave(&xsdfec->error_data_lock, xsdfec->flags);
status.state = xsdfec->state;
xsdfec->state_updated = false;
spin_unlock_irqrestore(&xsdfec->error_data_lock, xsdfec->flags);
status.activity = (xsdfec_regread(xsdfec, XSDFEC_ACTIVE_ADDR) &
XSDFEC_IS_ACTIVITY_SET);
err = copy_to_user(arg, &status, sizeof(status));
if (err)
err = -EFAULT;
return err;
}
static int xsdfec_get_config(struct xsdfec_dev *xsdfec, void __user *arg)
{
int err;
err = copy_to_user(arg, &xsdfec->config, sizeof(xsdfec->config));
if (err)
err = -EFAULT;
return err;
}
static int xsdfec_isr_enable(struct xsdfec_dev *xsdfec, bool enable)
{
u32 mask_read;
if (enable) {
/* Enable */
xsdfec_regwrite(xsdfec, XSDFEC_IER_ADDR, XSDFEC_ISR_MASK);
mask_read = xsdfec_regread(xsdfec, XSDFEC_IMR_ADDR);
if (mask_read & XSDFEC_ISR_MASK) {
dev_dbg(xsdfec->dev,
"SDFEC enabling irq with IER failed");
return -EIO;
}
} else {
/* Disable */
xsdfec_regwrite(xsdfec, XSDFEC_IDR_ADDR, XSDFEC_ISR_MASK);
mask_read = xsdfec_regread(xsdfec, XSDFEC_IMR_ADDR);
if ((mask_read & XSDFEC_ISR_MASK) != XSDFEC_ISR_MASK) {
dev_dbg(xsdfec->dev,
"SDFEC disabling irq with IDR failed");
return -EIO;
}
}
return 0;
}
static int xsdfec_ecc_isr_enable(struct xsdfec_dev *xsdfec, bool enable)
{
u32 mask_read;
if (enable) {
/* Enable */
xsdfec_regwrite(xsdfec, XSDFEC_ECC_IER_ADDR,
XSDFEC_ALL_ECC_ISR_MASK);
mask_read = xsdfec_regread(xsdfec, XSDFEC_ECC_IMR_ADDR);
if (mask_read & XSDFEC_ALL_ECC_ISR_MASK) {
dev_dbg(xsdfec->dev,
"SDFEC enabling ECC irq with ECC IER failed");
return -EIO;
}
} else {
/* Disable */
xsdfec_regwrite(xsdfec, XSDFEC_ECC_IDR_ADDR,
XSDFEC_ALL_ECC_ISR_MASK);
mask_read = xsdfec_regread(xsdfec, XSDFEC_ECC_IMR_ADDR);
if (!(((mask_read & XSDFEC_ALL_ECC_ISR_MASK) ==
XSDFEC_ECC_ISR_MASK) ||
((mask_read & XSDFEC_ALL_ECC_ISR_MASK) ==
XSDFEC_PL_INIT_ECC_ISR_MASK))) {
dev_dbg(xsdfec->dev,
"SDFEC disable ECC irq with ECC IDR failed");
return -EIO;
}
}
return 0;
}
static int xsdfec_set_irq(struct xsdfec_dev *xsdfec, void __user *arg)
{
struct xsdfec_irq irq;
int err;
int isr_err;
int ecc_err;
err = copy_from_user(&irq, arg, sizeof(irq));
if (err)
return -EFAULT;
/* Setup tlast related IRQ */
isr_err = xsdfec_isr_enable(xsdfec, irq.enable_isr);
if (!isr_err)
xsdfec->config.irq.enable_isr = irq.enable_isr;
/* Setup ECC related IRQ */
ecc_err = xsdfec_ecc_isr_enable(xsdfec, irq.enable_ecc_isr);
if (!ecc_err)
xsdfec->config.irq.enable_ecc_isr = irq.enable_ecc_isr;
if (isr_err < 0 || ecc_err < 0)
err = -EIO;
return err;
}
static int xsdfec_set_turbo(struct xsdfec_dev *xsdfec, void __user *arg)
{
struct xsdfec_turbo turbo;
int err;
u32 turbo_write;
err = copy_from_user(&turbo, arg, sizeof(turbo));
if (err)
return -EFAULT;
if (turbo.alg >= XSDFEC_TURBO_ALG_MAX)
return -EINVAL;
if (turbo.scale > XSDFEC_TURBO_SCALE_MAX)
return -EINVAL;
/* Check to see what device tree says about the FEC codes */
if (xsdfec->config.code == XSDFEC_LDPC_CODE)
return -EIO;
turbo_write = ((turbo.scale & XSDFEC_TURBO_SCALE_MASK)
<< XSDFEC_TURBO_SCALE_BIT_POS) |
turbo.alg;
xsdfec_regwrite(xsdfec, XSDFEC_TURBO_ADDR, turbo_write);
return err;
}
static int xsdfec_get_turbo(struct xsdfec_dev *xsdfec, void __user *arg)
{
u32 reg_value;
struct xsdfec_turbo turbo_params;
int err;
if (xsdfec->config.code == XSDFEC_LDPC_CODE)
return -EIO;
memset(&turbo_params, 0, sizeof(turbo_params));
reg_value = xsdfec_regread(xsdfec, XSDFEC_TURBO_ADDR);
turbo_params.scale = (reg_value & XSDFEC_TURBO_SCALE_MASK) >>
XSDFEC_TURBO_SCALE_BIT_POS;
turbo_params.alg = reg_value & 0x1;
err = copy_to_user(arg, &turbo_params, sizeof(turbo_params));
if (err)
err = -EFAULT;
return err;
}
static int xsdfec_reg0_write(struct xsdfec_dev *xsdfec, u32 n, u32 k, u32 psize,
u32 offset)
{
u32 wdata;
if (n < XSDFEC_REG0_N_MIN || n > XSDFEC_REG0_N_MAX || psize == 0 ||
(n > XSDFEC_REG0_N_MUL_P * psize) || n <= k || ((n % psize) != 0)) {
dev_dbg(xsdfec->dev, "N value is not in range");
return -EINVAL;
}
n <<= XSDFEC_REG0_N_LSB;
if (k < XSDFEC_REG0_K_MIN || k > XSDFEC_REG0_K_MAX ||
(k > XSDFEC_REG0_K_MUL_P * psize) || ((k % psize) != 0)) {
dev_dbg(xsdfec->dev, "K value is not in range");
return -EINVAL;
}
k = k << XSDFEC_REG0_K_LSB;
wdata = k | n;
if (XSDFEC_LDPC_CODE_REG0_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP) >
XSDFEC_LDPC_CODE_REG0_ADDR_HIGH) {
dev_dbg(xsdfec->dev, "Writing outside of LDPC reg0 space 0x%x",
XSDFEC_LDPC_CODE_REG0_ADDR_BASE +
(offset * XSDFEC_LDPC_REG_JUMP));
return -EINVAL;
}
xsdfec_regwrite(xsdfec,
XSDFEC_LDPC_CODE_REG0_ADDR_BASE +
(offset * XSDFEC_LDPC_REG_JUMP),
wdata);
return 0;
}
static int xsdfec_reg1_write(struct xsdfec_dev *xsdfec, u32 psize,
u32 no_packing, u32 nm, u32 offset)
{
u32 wdata;
if (psize < XSDFEC_REG1_PSIZE_MIN || psize > XSDFEC_REG1_PSIZE_MAX) {
dev_dbg(xsdfec->dev, "Psize is not in range");
return -EINVAL;
}
if (no_packing != 0 && no_packing != 1)
dev_dbg(xsdfec->dev, "No-packing bit register invalid");
no_packing = ((no_packing << XSDFEC_REG1_NO_PACKING_LSB) &
XSDFEC_REG1_NO_PACKING_MASK);
if (nm & ~(XSDFEC_REG1_NM_MASK >> XSDFEC_REG1_NM_LSB))
dev_dbg(xsdfec->dev, "NM is beyond 10 bits");
nm = (nm << XSDFEC_REG1_NM_LSB) & XSDFEC_REG1_NM_MASK;
wdata = nm | no_packing | psize;
if (XSDFEC_LDPC_CODE_REG1_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP) >
XSDFEC_LDPC_CODE_REG1_ADDR_HIGH) {
dev_dbg(xsdfec->dev, "Writing outside of LDPC reg1 space 0x%x",
XSDFEC_LDPC_CODE_REG1_ADDR_BASE +
(offset * XSDFEC_LDPC_REG_JUMP));
return -EINVAL;
}
xsdfec_regwrite(xsdfec,
XSDFEC_LDPC_CODE_REG1_ADDR_BASE +
(offset * XSDFEC_LDPC_REG_JUMP),
wdata);
return 0;
}
static int xsdfec_reg2_write(struct xsdfec_dev *xsdfec, u32 nlayers, u32 nmqc,
u32 norm_type, u32 special_qc, u32 no_final_parity,
u32 max_schedule, u32 offset)
{
u32 wdata;
if (nlayers < XSDFEC_REG2_NLAYERS_MIN ||
nlayers > XSDFEC_REG2_NLAYERS_MAX) {
dev_dbg(xsdfec->dev, "Nlayers is not in range");
return -EINVAL;
}
if (nmqc & ~(XSDFEC_REG2_NNMQC_MASK >> XSDFEC_REG2_NMQC_LSB))
dev_dbg(xsdfec->dev, "NMQC exceeds 11 bits");
nmqc = (nmqc << XSDFEC_REG2_NMQC_LSB) & XSDFEC_REG2_NNMQC_MASK;
if (norm_type > 1)
dev_dbg(xsdfec->dev, "Norm type is invalid");
norm_type = ((norm_type << XSDFEC_REG2_NORM_TYPE_LSB) &
XSDFEC_REG2_NORM_TYPE_MASK);
if (special_qc > 1)
dev_dbg(xsdfec->dev, "Special QC in invalid");
special_qc = ((special_qc << XSDFEC_REG2_SPEICAL_QC_LSB) &
XSDFEC_REG2_SPECIAL_QC_MASK);
if (no_final_parity > 1)
dev_dbg(xsdfec->dev, "No final parity check invalid");
no_final_parity =
((no_final_parity << XSDFEC_REG2_NO_FINAL_PARITY_LSB) &
XSDFEC_REG2_NO_FINAL_PARITY_MASK);
if (max_schedule &
~(XSDFEC_REG2_MAX_SCHEDULE_MASK >> XSDFEC_REG2_MAX_SCHEDULE_LSB))
dev_dbg(xsdfec->dev, "Max Schedule exceeds 2 bits");
max_schedule = ((max_schedule << XSDFEC_REG2_MAX_SCHEDULE_LSB) &
XSDFEC_REG2_MAX_SCHEDULE_MASK);
wdata = (max_schedule | no_final_parity | special_qc | norm_type |
nmqc | nlayers);
if (XSDFEC_LDPC_CODE_REG2_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP) >
XSDFEC_LDPC_CODE_REG2_ADDR_HIGH) {
dev_dbg(xsdfec->dev, "Writing outside of LDPC reg2 space 0x%x",
XSDFEC_LDPC_CODE_REG2_ADDR_BASE +
(offset * XSDFEC_LDPC_REG_JUMP));
return -EINVAL;
}
xsdfec_regwrite(xsdfec,
XSDFEC_LDPC_CODE_REG2_ADDR_BASE +
(offset * XSDFEC_LDPC_REG_JUMP),
wdata);
return 0;
}
static int xsdfec_reg3_write(struct xsdfec_dev *xsdfec, u8 sc_off, u8 la_off,
u16 qc_off, u32 offset)
{
u32 wdata;
wdata = ((qc_off << XSDFEC_REG3_QC_OFF_LSB) |
(la_off << XSDFEC_REG3_LA_OFF_LSB) | sc_off);
if (XSDFEC_LDPC_CODE_REG3_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP) >
XSDFEC_LDPC_CODE_REG3_ADDR_HIGH) {
dev_dbg(xsdfec->dev, "Writing outside of LDPC reg3 space 0x%x",
XSDFEC_LDPC_CODE_REG3_ADDR_BASE +
(offset * XSDFEC_LDPC_REG_JUMP));
return -EINVAL;
}
xsdfec_regwrite(xsdfec,
XSDFEC_LDPC_CODE_REG3_ADDR_BASE +
(offset * XSDFEC_LDPC_REG_JUMP),
wdata);
return 0;
}
static int xsdfec_table_write(struct xsdfec_dev *xsdfec, u32 offset,
u32 *src_ptr, u32 len, const u32 base_addr,
const u32 depth)
{
u32 reg = 0;
u32 res;
u32 n, i;
u32 *addr = NULL;
struct page *page[MAX_NUM_PAGES];
/*
* Writes that go beyond the length of
* Shared Scale(SC) table should fail
*/
if (offset > depth / XSDFEC_REG_WIDTH_JUMP ||
len > depth / XSDFEC_REG_WIDTH_JUMP ||
offset + len > depth / XSDFEC_REG_WIDTH_JUMP) {
dev_dbg(xsdfec->dev, "Write exceeds SC table length");
return -EINVAL;
}
n = (len * XSDFEC_REG_WIDTH_JUMP) / PAGE_SIZE;
if ((len * XSDFEC_REG_WIDTH_JUMP) % PAGE_SIZE)
n += 1;
res = get_user_pages_fast((unsigned long)src_ptr, n, 0, page);
if (res < n) {
for (i = 0; i < res; i++)
put_page(page[i]);
return -EINVAL;
}
for (i = 0; i < n; i++) {
addr = kmap(page[i]);
do {
xsdfec_regwrite(xsdfec,
base_addr + ((offset + reg) *
XSDFEC_REG_WIDTH_JUMP),
addr[reg]);
reg++;
} while ((reg < len) &&
((reg * XSDFEC_REG_WIDTH_JUMP) % PAGE_SIZE));
put_page(page[i]);
}
return reg;
}
static int xsdfec_add_ldpc(struct xsdfec_dev *xsdfec, void __user *arg)
{
struct xsdfec_ldpc_params *ldpc;
int ret, n;
ldpc = kzalloc(sizeof(*ldpc), GFP_KERNEL);
if (!ldpc)
return -ENOMEM;
if (copy_from_user(ldpc, arg, sizeof(*ldpc))) {
ret = -EFAULT;
goto err_out;
}
if (xsdfec->config.code == XSDFEC_TURBO_CODE) {
ret = -EIO;
goto err_out;
}
/* Verify Device has not started */
if (xsdfec->state == XSDFEC_STARTED) {
ret = -EIO;
goto err_out;
}
if (xsdfec->config.code_wr_protect) {
ret = -EIO;
goto err_out;
}
/* Write Reg 0 */
ret = xsdfec_reg0_write(xsdfec, ldpc->n, ldpc->k, ldpc->psize,
ldpc->code_id);
if (ret)
goto err_out;
/* Write Reg 1 */
ret = xsdfec_reg1_write(xsdfec, ldpc->psize, ldpc->no_packing, ldpc->nm,
ldpc->code_id);
if (ret)
goto err_out;
/* Write Reg 2 */
ret = xsdfec_reg2_write(xsdfec, ldpc->nlayers, ldpc->nmqc,
ldpc->norm_type, ldpc->special_qc,
ldpc->no_final_parity, ldpc->max_schedule,
ldpc->code_id);
if (ret)
goto err_out;
/* Write Reg 3 */
ret = xsdfec_reg3_write(xsdfec, ldpc->sc_off, ldpc->la_off,
ldpc->qc_off, ldpc->code_id);
if (ret)
goto err_out;
/* Write Shared Codes */
n = ldpc->nlayers / 4;
if (ldpc->nlayers % 4)
n++;
ret = xsdfec_table_write(xsdfec, ldpc->sc_off, ldpc->sc_table, n,
XSDFEC_LDPC_SC_TABLE_ADDR_BASE,
XSDFEC_SC_TABLE_DEPTH);
if (ret < 0)
goto err_out;
ret = xsdfec_table_write(xsdfec, 4 * ldpc->la_off, ldpc->la_table,
ldpc->nlayers, XSDFEC_LDPC_LA_TABLE_ADDR_BASE,
XSDFEC_LA_TABLE_DEPTH);
if (ret < 0)
goto err_out;
ret = xsdfec_table_write(xsdfec, 4 * ldpc->qc_off, ldpc->qc_table,
ldpc->nqc, XSDFEC_LDPC_QC_TABLE_ADDR_BASE,
XSDFEC_QC_TABLE_DEPTH);
if (ret > 0)
ret = 0;
err_out:
kfree(ldpc);
return ret;
}
static int xsdfec_set_order(struct xsdfec_dev *xsdfec, void __user *arg)
{
bool order_invalid;
enum xsdfec_order order;
int err;
err = get_user(order, (enum xsdfec_order __user *)arg);
if (err)
return -EFAULT;
order_invalid = (order != XSDFEC_MAINTAIN_ORDER) &&
(order != XSDFEC_OUT_OF_ORDER);
if (order_invalid)
return -EINVAL;
/* Verify Device has not started */
if (xsdfec->state == XSDFEC_STARTED)
return -EIO;
xsdfec_regwrite(xsdfec, XSDFEC_ORDER_ADDR, order);
xsdfec->config.order = order;
return 0;
}
static int xsdfec_set_bypass(struct xsdfec_dev *xsdfec, bool __user *arg)
{
bool bypass;
int err;
err = get_user(bypass, arg);
if (err)
return -EFAULT;
/* Verify Device has not started */
if (xsdfec->state == XSDFEC_STARTED)
return -EIO;
if (bypass)
xsdfec_regwrite(xsdfec, XSDFEC_BYPASS_ADDR, 1);
else
xsdfec_regwrite(xsdfec, XSDFEC_BYPASS_ADDR, 0);
xsdfec->config.bypass = bypass;
return 0;
}
static int xsdfec_is_active(struct xsdfec_dev *xsdfec, bool __user *arg)
{
u32 reg_value;
bool is_active;
int err;
reg_value = xsdfec_regread(xsdfec, XSDFEC_ACTIVE_ADDR);
/* using a double ! operator instead of casting */
is_active = !!(reg_value & XSDFEC_IS_ACTIVITY_SET);
err = put_user(is_active, arg);
if (err)
return -EFAULT;
return err;
}
static u32
xsdfec_translate_axis_width_cfg_val(enum xsdfec_axis_width axis_width_cfg)
{
u32 axis_width_field = 0;
switch (axis_width_cfg) {
case XSDFEC_1x128b:
axis_width_field = 0;
break;
case XSDFEC_2x128b:
axis_width_field = 1;
break;
case XSDFEC_4x128b:
axis_width_field = 2;
break;
}
return axis_width_field;
}
static u32 xsdfec_translate_axis_words_cfg_val(enum xsdfec_axis_word_include
axis_word_inc_cfg)
{
u32 axis_words_field = 0;
if (axis_word_inc_cfg == XSDFEC_FIXED_VALUE ||
axis_word_inc_cfg == XSDFEC_IN_BLOCK)
axis_words_field = 0;
else if (axis_word_inc_cfg == XSDFEC_PER_AXI_TRANSACTION)
axis_words_field = 1;
return axis_words_field;
}
static int xsdfec_cfg_axi_streams(struct xsdfec_dev *xsdfec)
{
u32 reg_value;
u32 dout_words_field;
u32 dout_width_field;
u32 din_words_field;
u32 din_width_field;
struct xsdfec_config *config = &xsdfec->config;
/* translate config info to register values */
dout_words_field =
xsdfec_translate_axis_words_cfg_val(config->dout_word_include);
dout_width_field =
xsdfec_translate_axis_width_cfg_val(config->dout_width);
din_words_field =
xsdfec_translate_axis_words_cfg_val(config->din_word_include);
din_width_field =
xsdfec_translate_axis_width_cfg_val(config->din_width);
reg_value = dout_words_field << XSDFEC_AXIS_DOUT_WORDS_LSB;
reg_value |= dout_width_field << XSDFEC_AXIS_DOUT_WIDTH_LSB;
reg_value |= din_words_field << XSDFEC_AXIS_DIN_WORDS_LSB;
reg_value |= din_width_field << XSDFEC_AXIS_DIN_WIDTH_LSB;
xsdfec_regwrite(xsdfec, XSDFEC_AXIS_WIDTH_ADDR, reg_value);
return 0;
}
static int xsdfec_dev_open(struct inode *iptr, struct file *fptr)
{
return 0;
}
static int xsdfec_dev_release(struct inode *iptr, struct file *fptr)
{
return 0;
}
static int xsdfec_start(struct xsdfec_dev *xsdfec)
{
u32 regread;
regread = xsdfec_regread(xsdfec, XSDFEC_FEC_CODE_ADDR);
regread &= 0x1;
if (regread != xsdfec->config.code) {
dev_dbg(xsdfec->dev,
"%s SDFEC HW code does not match driver code, reg %d, code %d",
__func__, regread, xsdfec->config.code);
return -EINVAL;
}
/* Set AXIS enable */
xsdfec_regwrite(xsdfec, XSDFEC_AXIS_ENABLE_ADDR,
XSDFEC_AXIS_ENABLE_MASK);
/* Done */
xsdfec->state = XSDFEC_STARTED;
return 0;
}
static int xsdfec_stop(struct xsdfec_dev *xsdfec)
{
u32 regread;
if (xsdfec->state != XSDFEC_STARTED)
dev_dbg(xsdfec->dev, "Device not started correctly");
/* Disable AXIS_ENABLE Input interfaces only */
regread = xsdfec_regread(xsdfec, XSDFEC_AXIS_ENABLE_ADDR);
regread &= (~XSDFEC_AXIS_IN_ENABLE_MASK);
xsdfec_regwrite(xsdfec, XSDFEC_AXIS_ENABLE_ADDR, regread);
/* Stop */
xsdfec->state = XSDFEC_STOPPED;
return 0;
}
static int xsdfec_clear_stats(struct xsdfec_dev *xsdfec)
{
spin_lock_irqsave(&xsdfec->error_data_lock, xsdfec->flags);
xsdfec->isr_err_count = 0;
xsdfec->uecc_count = 0;
xsdfec->cecc_count = 0;
spin_unlock_irqrestore(&xsdfec->error_data_lock, xsdfec->flags);
return 0;
}
static int xsdfec_get_stats(struct xsdfec_dev *xsdfec, void __user *arg)
{
int err;
struct xsdfec_stats user_stats;
spin_lock_irqsave(&xsdfec->error_data_lock, xsdfec->flags);
user_stats.isr_err_count = xsdfec->isr_err_count;
user_stats.cecc_count = xsdfec->cecc_count;
user_stats.uecc_count = xsdfec->uecc_count;
xsdfec->stats_updated = false;
spin_unlock_irqrestore(&xsdfec->error_data_lock, xsdfec->flags);
err = copy_to_user(arg, &user_stats, sizeof(user_stats));
if (err)
err = -EFAULT;
return err;
}
static int xsdfec_set_default_config(struct xsdfec_dev *xsdfec)
{
/* Ensure registers are aligned with core configuration */
xsdfec_regwrite(xsdfec, XSDFEC_FEC_CODE_ADDR, xsdfec->config.code);
xsdfec_cfg_axi_streams(xsdfec);
update_config_from_hw(xsdfec);
return 0;
}
static long xsdfec_dev_ioctl(struct file *fptr, unsigned int cmd,
unsigned long data)
{
struct xsdfec_dev *xsdfec;
void __user *arg = NULL;
int rval = -EINVAL;
xsdfec = container_of(fptr->private_data, struct xsdfec_dev, miscdev);
/* In failed state allow only reset and get status IOCTLs */
if (xsdfec->state == XSDFEC_NEEDS_RESET &&
(cmd != XSDFEC_SET_DEFAULT_CONFIG && cmd != XSDFEC_GET_STATUS &&
cmd != XSDFEC_GET_STATS && cmd != XSDFEC_CLEAR_STATS)) {
return -EPERM;
}
if (_IOC_TYPE(cmd) != XSDFEC_MAGIC)
return -ENOTTY;
/* check if ioctl argument is present and valid */
if (_IOC_DIR(cmd) != _IOC_NONE) {
arg = (void __user *)data;
if (!arg)
return rval;
}
switch (cmd) {
case XSDFEC_START_DEV:
rval = xsdfec_start(xsdfec);
break;
case XSDFEC_STOP_DEV:
rval = xsdfec_stop(xsdfec);
break;
case XSDFEC_CLEAR_STATS:
rval = xsdfec_clear_stats(xsdfec);
break;
case XSDFEC_GET_STATS:
rval = xsdfec_get_stats(xsdfec, arg);
break;
case XSDFEC_GET_STATUS:
rval = xsdfec_get_status(xsdfec, arg);
break;
case XSDFEC_GET_CONFIG:
rval = xsdfec_get_config(xsdfec, arg);
break;
case XSDFEC_SET_DEFAULT_CONFIG:
rval = xsdfec_set_default_config(xsdfec);
break;
case XSDFEC_SET_IRQ:
rval = xsdfec_set_irq(xsdfec, arg);
break;
case XSDFEC_SET_TURBO:
rval = xsdfec_set_turbo(xsdfec, arg);
break;
case XSDFEC_GET_TURBO:
rval = xsdfec_get_turbo(xsdfec, arg);
break;
case XSDFEC_ADD_LDPC_CODE_PARAMS:
rval = xsdfec_add_ldpc(xsdfec, arg);
break;
case XSDFEC_SET_ORDER:
rval = xsdfec_set_order(xsdfec, arg);
break;
case XSDFEC_SET_BYPASS:
rval = xsdfec_set_bypass(xsdfec, arg);
break;
case XSDFEC_IS_ACTIVE:
rval = xsdfec_is_active(xsdfec, (bool __user *)arg);
break;
default:
/* Should not get here */
break;
}
return rval;
}
#ifdef CONFIG_COMPAT
static long xsdfec_dev_compat_ioctl(struct file *file, unsigned int cmd,
unsigned long data)
{
return xsdfec_dev_ioctl(file, cmd, (unsigned long)compat_ptr(data));
}
#endif
static __poll_t xsdfec_poll(struct file *file, poll_table *wait)
{
__poll_t mask = 0;
struct xsdfec_dev *xsdfec;
xsdfec = container_of(file->private_data, struct xsdfec_dev, miscdev);
if (!xsdfec)
return EPOLLNVAL | EPOLLHUP;
poll_wait(file, &xsdfec->waitq, wait);
/* XSDFEC ISR detected an error */
spin_lock_irqsave(&xsdfec->error_data_lock, xsdfec->flags);
if (xsdfec->state_updated)
mask |= EPOLLIN | EPOLLPRI;
if (xsdfec->stats_updated)
mask |= EPOLLIN | EPOLLRDNORM;
spin_unlock_irqrestore(&xsdfec->error_data_lock, xsdfec->flags);
return mask;
}
static const struct file_operations xsdfec_fops = {
.owner = THIS_MODULE,
.open = xsdfec_dev_open,
.release = xsdfec_dev_release,
.unlocked_ioctl = xsdfec_dev_ioctl,
.poll = xsdfec_poll,
#ifdef CONFIG_COMPAT
.compat_ioctl = xsdfec_dev_compat_ioctl,
#endif
};
static int xsdfec_parse_of(struct xsdfec_dev *xsdfec)
{
struct device *dev = xsdfec->dev;
struct device_node *node = dev->of_node;
int rval;
const char *fec_code;
u32 din_width;
u32 din_word_include;
u32 dout_width;
u32 dout_word_include;
rval = of_property_read_string(node, "xlnx,sdfec-code", &fec_code);
if (rval < 0)
return rval;
if (!strcasecmp(fec_code, "ldpc"))
xsdfec->config.code = XSDFEC_LDPC_CODE;
else if (!strcasecmp(fec_code, "turbo"))
xsdfec->config.code = XSDFEC_TURBO_CODE;
else
return -EINVAL;
rval = of_property_read_u32(node, "xlnx,sdfec-din-words",
&din_word_include);
if (rval < 0)
return rval;
if (din_word_include < XSDFEC_AXIS_WORDS_INCLUDE_MAX)
xsdfec->config.din_word_include = din_word_include;
else
return -EINVAL;
rval = of_property_read_u32(node, "xlnx,sdfec-din-width", &din_width);
if (rval < 0)
return rval;
switch (din_width) {
/* Fall through and set for valid values */
case XSDFEC_1x128b:
case XSDFEC_2x128b:
case XSDFEC_4x128b:
xsdfec->config.din_width = din_width;
break;
default:
return -EINVAL;
}
rval = of_property_read_u32(node, "xlnx,sdfec-dout-words",
&dout_word_include);
if (rval < 0)
return rval;
if (dout_word_include < XSDFEC_AXIS_WORDS_INCLUDE_MAX)
xsdfec->config.dout_word_include = dout_word_include;
else
return -EINVAL;
rval = of_property_read_u32(node, "xlnx,sdfec-dout-width", &dout_width);
if (rval < 0)
return rval;
switch (dout_width) {
/* Fall through and set for valid values */
case XSDFEC_1x128b:
case XSDFEC_2x128b:
case XSDFEC_4x128b:
xsdfec->config.dout_width = dout_width;
break;
default:
return -EINVAL;
}
/* Write LDPC to CODE Register */
xsdfec_regwrite(xsdfec, XSDFEC_FEC_CODE_ADDR, xsdfec->config.code);
xsdfec_cfg_axi_streams(xsdfec);
return 0;
}
static irqreturn_t xsdfec_irq_thread(int irq, void *dev_id)
{
struct xsdfec_dev *xsdfec = dev_id;
irqreturn_t ret = IRQ_HANDLED;
u32 ecc_err;
u32 isr_err;
u32 uecc_count;
u32 cecc_count;
u32 isr_err_count;
u32 aecc_count;
u32 tmp;
WARN_ON(xsdfec->irq != irq);
/* Mask Interrupts */
xsdfec_isr_enable(xsdfec, false);
xsdfec_ecc_isr_enable(xsdfec, false);
/* Read ISR */
ecc_err = xsdfec_regread(xsdfec, XSDFEC_ECC_ISR_ADDR);
isr_err = xsdfec_regread(xsdfec, XSDFEC_ISR_ADDR);
/* Clear the interrupts */
xsdfec_regwrite(xsdfec, XSDFEC_ECC_ISR_ADDR, ecc_err);
xsdfec_regwrite(xsdfec, XSDFEC_ISR_ADDR, isr_err);
tmp = ecc_err & XSDFEC_ALL_ECC_ISR_MBE_MASK;
/* Count uncorrectable 2-bit errors */
uecc_count = hweight32(tmp);
/* Count all ECC errors */
aecc_count = hweight32(ecc_err);
/* Number of correctable 1-bit ECC error */
cecc_count = aecc_count - 2 * uecc_count;
/* Count ISR errors */
isr_err_count = hweight32(isr_err);
dev_dbg(xsdfec->dev, "tmp=%x, uecc=%x, aecc=%x, cecc=%x, isr=%x", tmp,
uecc_count, aecc_count, cecc_count, isr_err_count);
dev_dbg(xsdfec->dev, "uecc=%x, cecc=%x, isr=%x", xsdfec->uecc_count,
xsdfec->cecc_count, xsdfec->isr_err_count);
spin_lock_irqsave(&xsdfec->error_data_lock, xsdfec->flags);
/* Add new errors to a 2-bits counter */
if (uecc_count)
xsdfec->uecc_count += uecc_count;
/* Add new errors to a 1-bits counter */
if (cecc_count)
xsdfec->cecc_count += cecc_count;
/* Add new errors to a ISR counter */
if (isr_err_count)
xsdfec->isr_err_count += isr_err_count;
/* Update state/stats flag */
if (uecc_count) {
if (ecc_err & XSDFEC_ECC_ISR_MBE_MASK)
xsdfec->state = XSDFEC_NEEDS_RESET;
else if (ecc_err & XSDFEC_PL_INIT_ECC_ISR_MBE_MASK)
xsdfec->state = XSDFEC_PL_RECONFIGURE;
xsdfec->stats_updated = true;
xsdfec->state_updated = true;
}
if (cecc_count)
xsdfec->stats_updated = true;
if (isr_err_count) {
xsdfec->state = XSDFEC_NEEDS_RESET;
xsdfec->stats_updated = true;
xsdfec->state_updated = true;
}
spin_unlock_irqrestore(&xsdfec->error_data_lock, xsdfec->flags);
dev_dbg(xsdfec->dev, "state=%x, stats=%x", xsdfec->state_updated,
xsdfec->stats_updated);
/* Enable another polling */
if (xsdfec->state_updated || xsdfec->stats_updated)
wake_up_interruptible(&xsdfec->waitq);
else
ret = IRQ_NONE;
/* Unmask Interrupts */
xsdfec_isr_enable(xsdfec, true);
xsdfec_ecc_isr_enable(xsdfec, true);
return ret;
}
static int xsdfec_clk_init(struct platform_device *pdev,
struct xsdfec_clks *clks)
{
int err;
clks->core_clk = devm_clk_get(&pdev->dev, "core_clk");
if (IS_ERR(clks->core_clk)) {
dev_err(&pdev->dev, "failed to get core_clk");
return PTR_ERR(clks->core_clk);
}
clks->axi_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
if (IS_ERR(clks->axi_clk)) {
dev_err(&pdev->dev, "failed to get axi_clk");
return PTR_ERR(clks->axi_clk);
}
clks->din_words_clk = devm_clk_get(&pdev->dev, "s_axis_din_words_aclk");
if (IS_ERR(clks->din_words_clk)) {
if (PTR_ERR(clks->din_words_clk) != -ENOENT) {
err = PTR_ERR(clks->din_words_clk);
return err;
}
clks->din_words_clk = NULL;
}
clks->din_clk = devm_clk_get(&pdev->dev, "s_axis_din_aclk");
if (IS_ERR(clks->din_clk)) {
if (PTR_ERR(clks->din_clk) != -ENOENT) {
err = PTR_ERR(clks->din_clk);
return err;
}
clks->din_clk = NULL;
}
clks->dout_clk = devm_clk_get(&pdev->dev, "m_axis_dout_aclk");
if (IS_ERR(clks->dout_clk)) {
if (PTR_ERR(clks->dout_clk) != -ENOENT) {
err = PTR_ERR(clks->dout_clk);
return err;
}
clks->dout_clk = NULL;
}
clks->dout_words_clk =
devm_clk_get(&pdev->dev, "s_axis_dout_words_aclk");
if (IS_ERR(clks->dout_words_clk)) {
if (PTR_ERR(clks->dout_words_clk) != -ENOENT) {
err = PTR_ERR(clks->dout_words_clk);
return err;
}
clks->dout_words_clk = NULL;
}
clks->ctrl_clk = devm_clk_get(&pdev->dev, "s_axis_ctrl_aclk");
if (IS_ERR(clks->ctrl_clk)) {
if (PTR_ERR(clks->ctrl_clk) != -ENOENT) {
err = PTR_ERR(clks->ctrl_clk);
return err;
}
clks->ctrl_clk = NULL;
}
clks->status_clk = devm_clk_get(&pdev->dev, "m_axis_status_aclk");
if (IS_ERR(clks->status_clk)) {
if (PTR_ERR(clks->status_clk) != -ENOENT) {
err = PTR_ERR(clks->status_clk);
return err;
}
clks->status_clk = NULL;
}
err = clk_prepare_enable(clks->core_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable core_clk (%d)", err);
return err;
}
err = clk_prepare_enable(clks->axi_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable axi_clk (%d)", err);
goto err_disable_core_clk;
}
err = clk_prepare_enable(clks->din_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable din_clk (%d)", err);
goto err_disable_axi_clk;
}
err = clk_prepare_enable(clks->din_words_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable din_words_clk (%d)", err);
goto err_disable_din_clk;
}
err = clk_prepare_enable(clks->dout_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable dout_clk (%d)", err);
goto err_disable_din_words_clk;
}
err = clk_prepare_enable(clks->dout_words_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable dout_words_clk (%d)",
err);
goto err_disable_dout_clk;
}
err = clk_prepare_enable(clks->ctrl_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable ctrl_clk (%d)", err);
goto err_disable_dout_words_clk;
}
err = clk_prepare_enable(clks->status_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable status_clk (%d)\n", err);
goto err_disable_ctrl_clk;
}
return err;
err_disable_ctrl_clk:
clk_disable_unprepare(clks->ctrl_clk);
err_disable_dout_words_clk:
clk_disable_unprepare(clks->dout_words_clk);
err_disable_dout_clk:
clk_disable_unprepare(clks->dout_clk);
err_disable_din_words_clk:
clk_disable_unprepare(clks->din_words_clk);
err_disable_din_clk:
clk_disable_unprepare(clks->din_clk);
err_disable_axi_clk:
clk_disable_unprepare(clks->axi_clk);
err_disable_core_clk:
clk_disable_unprepare(clks->core_clk);
return err;
}
static void xsdfec_disable_all_clks(struct xsdfec_clks *clks)
{
clk_disable_unprepare(clks->status_clk);
clk_disable_unprepare(clks->ctrl_clk);
clk_disable_unprepare(clks->dout_words_clk);
clk_disable_unprepare(clks->dout_clk);
clk_disable_unprepare(clks->din_words_clk);
clk_disable_unprepare(clks->din_clk);
clk_disable_unprepare(clks->core_clk);
clk_disable_unprepare(clks->axi_clk);
}
static int xsdfec_probe(struct platform_device *pdev)
{
struct xsdfec_dev *xsdfec;
struct device *dev;
struct resource *res;
int err;
bool irq_enabled = true;
xsdfec = devm_kzalloc(&pdev->dev, sizeof(*xsdfec), GFP_KERNEL);
if (!xsdfec)
return -ENOMEM;
xsdfec->dev = &pdev->dev;
spin_lock_init(&xsdfec->error_data_lock);
err = xsdfec_clk_init(pdev, &xsdfec->clks);
if (err)
return err;
dev = xsdfec->dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
xsdfec->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(xsdfec->regs)) {
err = PTR_ERR(xsdfec->regs);
goto err_xsdfec_dev;
}
xsdfec->irq = platform_get_irq(pdev, 0);
if (xsdfec->irq < 0) {
dev_dbg(dev, "platform_get_irq failed");
irq_enabled = false;
}
err = xsdfec_parse_of(xsdfec);
if (err < 0)
goto err_xsdfec_dev;
update_config_from_hw(xsdfec);
/* Save driver private data */
platform_set_drvdata(pdev, xsdfec);
if (irq_enabled) {
init_waitqueue_head(&xsdfec->waitq);
/* Register IRQ thread */
err = devm_request_threaded_irq(dev, xsdfec->irq, NULL,
xsdfec_irq_thread, IRQF_ONESHOT,
"xilinx-sdfec16", xsdfec);
if (err < 0) {
dev_err(dev, "unable to request IRQ%d", xsdfec->irq);
goto err_xsdfec_dev;
}
}
err = ida_alloc(&dev_nrs, GFP_KERNEL);
if (err < 0)
goto err_xsdfec_dev;
xsdfec->dev_id = err;
snprintf(xsdfec->dev_name, DEV_NAME_LEN, "xsdfec%d", xsdfec->dev_id);
xsdfec->miscdev.minor = MISC_DYNAMIC_MINOR;
xsdfec->miscdev.name = xsdfec->dev_name;
xsdfec->miscdev.fops = &xsdfec_fops;
xsdfec->miscdev.parent = dev;
err = misc_register(&xsdfec->miscdev);
if (err) {
dev_err(dev, "error:%d. Unable to register device", err);
goto err_xsdfec_ida;
}
return 0;
err_xsdfec_ida:
ida_free(&dev_nrs, xsdfec->dev_id);
err_xsdfec_dev:
xsdfec_disable_all_clks(&xsdfec->clks);
return err;
}
static int xsdfec_remove(struct platform_device *pdev)
{
struct xsdfec_dev *xsdfec;
xsdfec = platform_get_drvdata(pdev);
misc_deregister(&xsdfec->miscdev);
ida_free(&dev_nrs, xsdfec->dev_id);
xsdfec_disable_all_clks(&xsdfec->clks);
return 0;
}
static const struct of_device_id xsdfec_of_match[] = {
{
.compatible = "xlnx,sd-fec-1.1",
},
{ /* end of table */ }
};
MODULE_DEVICE_TABLE(of, xsdfec_of_match);
static struct platform_driver xsdfec_driver = {
.driver = {
.name = "xilinx-sdfec",
.of_match_table = xsdfec_of_match,
},
.probe = xsdfec_probe,
.remove = xsdfec_remove,
};
static int __init xsdfec_init(void)
{
int err;
err = platform_driver_register(&xsdfec_driver);
if (err < 0) {
pr_err("%s Unabled to register SDFEC driver", __func__);
return err;
}
return 0;
}
static void __exit xsdfec_exit(void)
{
platform_driver_unregister(&xsdfec_driver);
}
module_init(xsdfec_init);
module_exit(xsdfec_exit);
MODULE_AUTHOR("Xilinx, Inc");
MODULE_DESCRIPTION("Xilinx SD-FEC16 Driver");
MODULE_LICENSE("GPL");