blob: 757f4daa7181a915c711a16794dced0e9bbf3011 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
//
// Copyright (C) 2011-2012 Freescale Semiconductor, Inc.
#include <linux/init.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_wakeirq.h>
#include <linux/rtc.h>
#include <linux/clk.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#define SNVS_LPREGISTER_OFFSET 0x34
/* These register offsets are relative to LP (Low Power) range */
#define SNVS_LPCR 0x04
#define SNVS_LPSR 0x18
#define SNVS_LPSRTCMR 0x1c
#define SNVS_LPSRTCLR 0x20
#define SNVS_LPTAR 0x24
#define SNVS_LPPGDR 0x30
#define SNVS_LPCR_SRTC_ENV (1 << 0)
#define SNVS_LPCR_LPTA_EN (1 << 1)
#define SNVS_LPCR_LPWUI_EN (1 << 3)
#define SNVS_LPSR_LPTA (1 << 0)
#define SNVS_LPPGDR_INIT 0x41736166
#define CNTR_TO_SECS_SH 15
struct snvs_rtc_data {
struct rtc_device *rtc;
struct regmap *regmap;
int offset;
int irq;
struct clk *clk;
};
/* Read 64 bit timer register, which could be in inconsistent state */
static u64 rtc_read_lpsrt(struct snvs_rtc_data *data)
{
u32 msb, lsb;
regmap_read(data->regmap, data->offset + SNVS_LPSRTCMR, &msb);
regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &lsb);
return (u64)msb << 32 | lsb;
}
/* Read the secure real time counter, taking care to deal with the cases of the
* counter updating while being read.
*/
static u32 rtc_read_lp_counter(struct snvs_rtc_data *data)
{
u64 read1, read2;
unsigned int timeout = 100;
/* As expected, the registers might update between the read of the LSB
* reg and the MSB reg. It's also possible that one register might be
* in partially modified state as well.
*/
read1 = rtc_read_lpsrt(data);
do {
read2 = read1;
read1 = rtc_read_lpsrt(data);
} while (read1 != read2 && --timeout);
if (!timeout)
dev_err(&data->rtc->dev, "Timeout trying to get valid LPSRT Counter read\n");
/* Convert 47-bit counter to 32-bit raw second count */
return (u32) (read1 >> CNTR_TO_SECS_SH);
}
/* Just read the lsb from the counter, dealing with inconsistent state */
static int rtc_read_lp_counter_lsb(struct snvs_rtc_data *data, u32 *lsb)
{
u32 count1, count2;
unsigned int timeout = 100;
regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &count1);
do {
count2 = count1;
regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &count1);
} while (count1 != count2 && --timeout);
if (!timeout) {
dev_err(&data->rtc->dev, "Timeout trying to get valid LPSRT Counter read\n");
return -ETIMEDOUT;
}
*lsb = count1;
return 0;
}
static int rtc_write_sync_lp(struct snvs_rtc_data *data)
{
u32 count1, count2;
u32 elapsed;
unsigned int timeout = 1000;
int ret;
ret = rtc_read_lp_counter_lsb(data, &count1);
if (ret)
return ret;
/* Wait for 3 CKIL cycles, about 61.0-91.5 µs */
do {
ret = rtc_read_lp_counter_lsb(data, &count2);
if (ret)
return ret;
elapsed = count2 - count1; /* wrap around _is_ handled! */
} while (elapsed < 3 && --timeout);
if (!timeout) {
dev_err(&data->rtc->dev, "Timeout waiting for LPSRT Counter to change\n");
return -ETIMEDOUT;
}
return 0;
}
static int snvs_rtc_enable(struct snvs_rtc_data *data, bool enable)
{
int timeout = 1000;
u32 lpcr;
regmap_update_bits(data->regmap, data->offset + SNVS_LPCR, SNVS_LPCR_SRTC_ENV,
enable ? SNVS_LPCR_SRTC_ENV : 0);
while (--timeout) {
regmap_read(data->regmap, data->offset + SNVS_LPCR, &lpcr);
if (enable) {
if (lpcr & SNVS_LPCR_SRTC_ENV)
break;
} else {
if (!(lpcr & SNVS_LPCR_SRTC_ENV))
break;
}
}
if (!timeout)
return -ETIMEDOUT;
return 0;
}
static int snvs_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
unsigned long time = rtc_read_lp_counter(data);
rtc_time64_to_tm(time, tm);
return 0;
}
static int snvs_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
unsigned long time = rtc_tm_to_time64(tm);
int ret;
/* Disable RTC first */
ret = snvs_rtc_enable(data, false);
if (ret)
return ret;
/* Write 32-bit time to 47-bit timer, leaving 15 LSBs blank */
regmap_write(data->regmap, data->offset + SNVS_LPSRTCLR, time << CNTR_TO_SECS_SH);
regmap_write(data->regmap, data->offset + SNVS_LPSRTCMR, time >> (32 - CNTR_TO_SECS_SH));
/* Enable RTC again */
ret = snvs_rtc_enable(data, true);
return ret;
}
static int snvs_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
u32 lptar, lpsr;
regmap_read(data->regmap, data->offset + SNVS_LPTAR, &lptar);
rtc_time64_to_tm(lptar, &alrm->time);
regmap_read(data->regmap, data->offset + SNVS_LPSR, &lpsr);
alrm->pending = (lpsr & SNVS_LPSR_LPTA) ? 1 : 0;
return 0;
}
static int snvs_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
regmap_update_bits(data->regmap, data->offset + SNVS_LPCR,
(SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN),
enable ? (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN) : 0);
return rtc_write_sync_lp(data);
}
static int snvs_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
unsigned long time = rtc_tm_to_time64(&alrm->time);
int ret;
regmap_update_bits(data->regmap, data->offset + SNVS_LPCR, SNVS_LPCR_LPTA_EN, 0);
ret = rtc_write_sync_lp(data);
if (ret)
return ret;
regmap_write(data->regmap, data->offset + SNVS_LPTAR, time);
/* Clear alarm interrupt status bit */
regmap_write(data->regmap, data->offset + SNVS_LPSR, SNVS_LPSR_LPTA);
return snvs_rtc_alarm_irq_enable(dev, alrm->enabled);
}
static const struct rtc_class_ops snvs_rtc_ops = {
.read_time = snvs_rtc_read_time,
.set_time = snvs_rtc_set_time,
.read_alarm = snvs_rtc_read_alarm,
.set_alarm = snvs_rtc_set_alarm,
.alarm_irq_enable = snvs_rtc_alarm_irq_enable,
};
static irqreturn_t snvs_rtc_irq_handler(int irq, void *dev_id)
{
struct device *dev = dev_id;
struct snvs_rtc_data *data = dev_get_drvdata(dev);
u32 lpsr;
u32 events = 0;
if (data->clk)
clk_enable(data->clk);
regmap_read(data->regmap, data->offset + SNVS_LPSR, &lpsr);
if (lpsr & SNVS_LPSR_LPTA) {
events |= (RTC_AF | RTC_IRQF);
/* RTC alarm should be one-shot */
snvs_rtc_alarm_irq_enable(dev, 0);
rtc_update_irq(data->rtc, 1, events);
}
/* clear interrupt status */
regmap_write(data->regmap, data->offset + SNVS_LPSR, lpsr);
if (data->clk)
clk_disable(data->clk);
return events ? IRQ_HANDLED : IRQ_NONE;
}
static const struct regmap_config snvs_rtc_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
};
static int snvs_rtc_probe(struct platform_device *pdev)
{
struct snvs_rtc_data *data;
int ret;
void __iomem *mmio;
data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->rtc = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(data->rtc))
return PTR_ERR(data->rtc);
data->regmap = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "regmap");
if (IS_ERR(data->regmap)) {
dev_warn(&pdev->dev, "snvs rtc: you use old dts file, please update it\n");
mmio = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(mmio))
return PTR_ERR(mmio);
data->regmap = devm_regmap_init_mmio(&pdev->dev, mmio, &snvs_rtc_config);
} else {
data->offset = SNVS_LPREGISTER_OFFSET;
of_property_read_u32(pdev->dev.of_node, "offset", &data->offset);
}
if (IS_ERR(data->regmap)) {
dev_err(&pdev->dev, "Can't find snvs syscon\n");
return -ENODEV;
}
data->irq = platform_get_irq(pdev, 0);
if (data->irq < 0)
return data->irq;
data->clk = devm_clk_get(&pdev->dev, "snvs-rtc");
if (IS_ERR(data->clk)) {
data->clk = NULL;
} else {
ret = clk_prepare_enable(data->clk);
if (ret) {
dev_err(&pdev->dev,
"Could not prepare or enable the snvs clock\n");
return ret;
}
}
platform_set_drvdata(pdev, data);
/* Initialize glitch detect */
regmap_write(data->regmap, data->offset + SNVS_LPPGDR, SNVS_LPPGDR_INIT);
/* Clear interrupt status */
regmap_write(data->regmap, data->offset + SNVS_LPSR, 0xffffffff);
/* Enable RTC */
ret = snvs_rtc_enable(data, true);
if (ret) {
dev_err(&pdev->dev, "failed to enable rtc %d\n", ret);
goto error_rtc_device_register;
}
device_init_wakeup(&pdev->dev, true);
ret = dev_pm_set_wake_irq(&pdev->dev, data->irq);
if (ret)
dev_err(&pdev->dev, "failed to enable irq wake\n");
ret = devm_request_irq(&pdev->dev, data->irq, snvs_rtc_irq_handler,
IRQF_SHARED, "rtc alarm", &pdev->dev);
if (ret) {
dev_err(&pdev->dev, "failed to request irq %d: %d\n",
data->irq, ret);
goto error_rtc_device_register;
}
data->rtc->ops = &snvs_rtc_ops;
data->rtc->range_max = U32_MAX;
ret = rtc_register_device(data->rtc);
if (ret) {
dev_err(&pdev->dev, "failed to register rtc: %d\n", ret);
goto error_rtc_device_register;
}
return 0;
error_rtc_device_register:
if (data->clk)
clk_disable_unprepare(data->clk);
return ret;
}
static int __maybe_unused snvs_rtc_suspend_noirq(struct device *dev)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
if (data->clk)
clk_disable_unprepare(data->clk);
return 0;
}
static int __maybe_unused snvs_rtc_resume_noirq(struct device *dev)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
if (data->clk)
return clk_prepare_enable(data->clk);
return 0;
}
static const struct dev_pm_ops snvs_rtc_pm_ops = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(snvs_rtc_suspend_noirq, snvs_rtc_resume_noirq)
};
static const struct of_device_id snvs_dt_ids[] = {
{ .compatible = "fsl,sec-v4.0-mon-rtc-lp", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, snvs_dt_ids);
static struct platform_driver snvs_rtc_driver = {
.driver = {
.name = "snvs_rtc",
.pm = &snvs_rtc_pm_ops,
.of_match_table = snvs_dt_ids,
},
.probe = snvs_rtc_probe,
};
module_platform_driver(snvs_rtc_driver);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("Freescale SNVS RTC Driver");
MODULE_LICENSE("GPL");