blob: e2f0b58e5dfd710c6dc9898e363a7acd0abadfd1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
** hp100.c
** HP CASCADE Architecture Driver for 100VG-AnyLan Network Adapters
**
** $Id: hp100.c,v 1.58 2001/09/24 18:03:01 perex Exp perex $
**
** Based on the HP100 driver written by Jaroslav Kysela <perex@jcu.cz>
** Extended for new busmaster capable chipsets by
** Siegfried "Frieder" Loeffler (dg1sek) <floeff@mathematik.uni-stuttgart.de>
**
** Maintained by: Jaroslav Kysela <perex@perex.cz>
**
** This driver has only been tested with
** -- HP J2585B 10/100 Mbit/s PCI Busmaster
** -- HP J2585A 10/100 Mbit/s PCI
** -- HP J2970A 10 Mbit/s PCI Combo 10base-T/BNC
** -- HP J2973A 10 Mbit/s PCI 10base-T
** -- HP J2573 10/100 ISA
** -- Compex ReadyLink ENET100-VG4 10/100 Mbit/s PCI / EISA
** -- Compex FreedomLine 100/VG 10/100 Mbit/s ISA / EISA / PCI
**
** but it should also work with the other CASCADE based adapters.
**
** TODO:
** - J2573 seems to hang sometimes when in shared memory mode.
** - Mode for Priority TX
** - Check PCI registers, performance might be improved?
** - To reduce interrupt load in busmaster, one could switch off
** the interrupts that are used to refill the queues whenever the
** queues are filled up to more than a certain threshold.
** - some updates for EISA version of card
**
**
**
** 1.57c -> 1.58
** - used indent to change coding-style
** - added KTI DP-200 EISA ID
** - ioremap is also used for low (<1MB) memory (multi-architecture support)
**
** 1.57b -> 1.57c - Arnaldo Carvalho de Melo <acme@conectiva.com.br>
** - release resources on failure in init_module
**
** 1.57 -> 1.57b - Jean II
** - fix spinlocks, SMP is now working !
**
** 1.56 -> 1.57
** - updates for new PCI interface for 2.1 kernels
**
** 1.55 -> 1.56
** - removed printk in misc. interrupt and update statistics to allow
** monitoring of card status
** - timing changes in xmit routines, relogin to 100VG hub added when
** driver does reset
** - included fix for Compex FreedomLine PCI adapter
**
** 1.54 -> 1.55
** - fixed bad initialization in init_module
** - added Compex FreedomLine adapter
** - some fixes in card initialization
**
** 1.53 -> 1.54
** - added hardware multicast filter support (doesn't work)
** - little changes in hp100_sense_lan routine
** - added support for Coax and AUI (J2970)
** - fix for multiple cards and hp100_mode parameter (insmod)
** - fix for shared IRQ
**
** 1.52 -> 1.53
** - fixed bug in multicast support
**
*/
#define HP100_DEFAULT_PRIORITY_TX 0
#undef HP100_DEBUG
#undef HP100_DEBUG_B /* Trace */
#undef HP100_DEBUG_BM /* Debug busmaster code (PDL stuff) */
#undef HP100_DEBUG_TRAINING /* Debug login-to-hub procedure */
#undef HP100_DEBUG_TX
#undef HP100_DEBUG_IRQ
#undef HP100_DEBUG_RX
#undef HP100_MULTICAST_FILTER /* Need to be debugged... */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/eisa.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/spinlock.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/jiffies.h>
#include <asm/io.h>
#include "hp100.h"
/*
* defines
*/
#define HP100_BUS_ISA 0
#define HP100_BUS_EISA 1
#define HP100_BUS_PCI 2
#define HP100_REGION_SIZE 0x20 /* for ioports */
#define HP100_SIG_LEN 8 /* same as EISA_SIG_LEN */
#define HP100_MAX_PACKET_SIZE (1536+4)
#define HP100_MIN_PACKET_SIZE 60
#ifndef HP100_DEFAULT_RX_RATIO
/* default - 75% onboard memory on the card are used for RX packets */
#define HP100_DEFAULT_RX_RATIO 75
#endif
#ifndef HP100_DEFAULT_PRIORITY_TX
/* default - don't enable transmit outgoing packets as priority */
#define HP100_DEFAULT_PRIORITY_TX 0
#endif
/*
* structures
*/
struct hp100_private {
spinlock_t lock;
char id[HP100_SIG_LEN];
u_short chip;
u_short soft_model;
u_int memory_size;
u_int virt_memory_size;
u_short rx_ratio; /* 1 - 99 */
u_short priority_tx; /* != 0 - priority tx */
u_short mode; /* PIO, Shared Mem or Busmaster */
u_char bus;
struct pci_dev *pci_dev;
short mem_mapped; /* memory mapped access */
void __iomem *mem_ptr_virt; /* virtual memory mapped area, maybe NULL */
unsigned long mem_ptr_phys; /* physical memory mapped area */
short lan_type; /* 10Mb/s, 100Mb/s or -1 (error) */
int hub_status; /* was login to hub successful? */
u_char mac1_mode;
u_char mac2_mode;
u_char hash_bytes[8];
/* Rings for busmaster mode: */
hp100_ring_t *rxrhead; /* Head (oldest) index into rxring */
hp100_ring_t *rxrtail; /* Tail (newest) index into rxring */
hp100_ring_t *txrhead; /* Head (oldest) index into txring */
hp100_ring_t *txrtail; /* Tail (newest) index into txring */
hp100_ring_t rxring[MAX_RX_PDL];
hp100_ring_t txring[MAX_TX_PDL];
u_int *page_vaddr_algn; /* Aligned virtual address of allocated page */
u_long whatever_offset; /* Offset to bus/phys/dma address */
int rxrcommit; /* # Rx PDLs committed to adapter */
int txrcommit; /* # Tx PDLs committed to adapter */
};
/*
* variables
*/
#ifdef CONFIG_ISA
static const char *hp100_isa_tbl[] = {
"HWPF150", /* HP J2573 rev A */
"HWP1950", /* HP J2573 */
};
#endif
static const struct eisa_device_id hp100_eisa_tbl[] = {
{ "HWPF180" }, /* HP J2577 rev A */
{ "HWP1920" }, /* HP 27248B */
{ "HWP1940" }, /* HP J2577 */
{ "HWP1990" }, /* HP J2577 */
{ "CPX0301" }, /* ReadyLink ENET100-VG4 */
{ "CPX0401" }, /* FreedomLine 100/VG */
{ "" } /* Mandatory final entry ! */
};
MODULE_DEVICE_TABLE(eisa, hp100_eisa_tbl);
static const struct pci_device_id hp100_pci_tbl[] = {
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_J2585A, PCI_ANY_ID, PCI_ANY_ID,},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_J2585B, PCI_ANY_ID, PCI_ANY_ID,},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_J2970A, PCI_ANY_ID, PCI_ANY_ID,},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_J2973A, PCI_ANY_ID, PCI_ANY_ID,},
{PCI_VENDOR_ID_COMPEX, PCI_DEVICE_ID_COMPEX_ENET100VG4, PCI_ANY_ID, PCI_ANY_ID,},
{PCI_VENDOR_ID_COMPEX2, PCI_DEVICE_ID_COMPEX2_100VG, PCI_ANY_ID, PCI_ANY_ID,},
/* {PCI_VENDOR_ID_KTI, PCI_DEVICE_ID_KTI_DP200, PCI_ANY_ID, PCI_ANY_ID }, */
{} /* Terminating entry */
};
MODULE_DEVICE_TABLE(pci, hp100_pci_tbl);
static int hp100_rx_ratio = HP100_DEFAULT_RX_RATIO;
static int hp100_priority_tx = HP100_DEFAULT_PRIORITY_TX;
static int hp100_mode = 1;
module_param(hp100_rx_ratio, int, 0);
module_param(hp100_priority_tx, int, 0);
module_param(hp100_mode, int, 0);
/*
* prototypes
*/
static int hp100_probe1(struct net_device *dev, int ioaddr, u_char bus,
struct pci_dev *pci_dev);
static int hp100_open(struct net_device *dev);
static int hp100_close(struct net_device *dev);
static netdev_tx_t hp100_start_xmit(struct sk_buff *skb,
struct net_device *dev);
static netdev_tx_t hp100_start_xmit_bm(struct sk_buff *skb,
struct net_device *dev);
static void hp100_rx(struct net_device *dev);
static struct net_device_stats *hp100_get_stats(struct net_device *dev);
static void hp100_misc_interrupt(struct net_device *dev);
static void hp100_update_stats(struct net_device *dev);
static void hp100_clear_stats(struct hp100_private *lp, int ioaddr);
static void hp100_set_multicast_list(struct net_device *dev);
static irqreturn_t hp100_interrupt(int irq, void *dev_id);
static void hp100_start_interface(struct net_device *dev);
static void hp100_stop_interface(struct net_device *dev);
static void hp100_load_eeprom(struct net_device *dev, u_short ioaddr);
static int hp100_sense_lan(struct net_device *dev);
static int hp100_login_to_vg_hub(struct net_device *dev,
u_short force_relogin);
static int hp100_down_vg_link(struct net_device *dev);
static void hp100_cascade_reset(struct net_device *dev, u_short enable);
static void hp100_BM_shutdown(struct net_device *dev);
static void hp100_mmuinit(struct net_device *dev);
static void hp100_init_pdls(struct net_device *dev);
static int hp100_init_rxpdl(struct net_device *dev,
register hp100_ring_t * ringptr,
register u_int * pdlptr);
static int hp100_init_txpdl(struct net_device *dev,
register hp100_ring_t * ringptr,
register u_int * pdlptr);
static void hp100_rxfill(struct net_device *dev);
static void hp100_hwinit(struct net_device *dev);
static void hp100_clean_txring(struct net_device *dev);
#ifdef HP100_DEBUG
static void hp100_RegisterDump(struct net_device *dev);
#endif
/* Conversion to new PCI API :
* Convert an address in a kernel buffer to a bus/phys/dma address.
* This work *only* for memory fragments part of lp->page_vaddr,
* because it was properly DMA allocated via pci_alloc_consistent(),
* so we just need to "retrieve" the original mapping to bus/phys/dma
* address - Jean II */
static inline dma_addr_t virt_to_whatever(struct net_device *dev, u32 * ptr)
{
struct hp100_private *lp = netdev_priv(dev);
return ((u_long) ptr) + lp->whatever_offset;
}
static inline u_int pdl_map_data(struct hp100_private *lp, void *data)
{
return pci_map_single(lp->pci_dev, data,
MAX_ETHER_SIZE, PCI_DMA_FROMDEVICE);
}
/* TODO: This function should not really be needed in a good design... */
static void wait(void)
{
mdelay(1);
}
/*
* probe functions
* These functions should - if possible - avoid doing write operations
* since this could cause problems when the card is not installed.
*/
/*
* Read board id and convert to string.
* Effectively same code as decode_eisa_sig
*/
static const char *hp100_read_id(int ioaddr)
{
int i;
static char str[HP100_SIG_LEN];
unsigned char sig[4], sum;
unsigned short rev;
hp100_page(ID_MAC_ADDR);
sum = 0;
for (i = 0; i < 4; i++) {
sig[i] = hp100_inb(BOARD_ID + i);
sum += sig[i];
}
sum += hp100_inb(BOARD_ID + i);
if (sum != 0xff)
return NULL; /* bad checksum */
str[0] = ((sig[0] >> 2) & 0x1f) + ('A' - 1);
str[1] = (((sig[0] & 3) << 3) | (sig[1] >> 5)) + ('A' - 1);
str[2] = (sig[1] & 0x1f) + ('A' - 1);
rev = (sig[2] << 8) | sig[3];
sprintf(str + 3, "%04X", rev);
return str;
}
#ifdef CONFIG_ISA
static __init int hp100_isa_probe1(struct net_device *dev, int ioaddr)
{
const char *sig;
int i;
if (!request_region(ioaddr, HP100_REGION_SIZE, "hp100"))
goto err;
if (hp100_inw(HW_ID) != HP100_HW_ID_CASCADE) {
release_region(ioaddr, HP100_REGION_SIZE);
goto err;
}
sig = hp100_read_id(ioaddr);
release_region(ioaddr, HP100_REGION_SIZE);
if (sig == NULL)
goto err;
i = match_string(hp100_isa_tbl, ARRAY_SIZE(hp100_isa_tbl), sig);
if (i < 0)
goto err;
return hp100_probe1(dev, ioaddr, HP100_BUS_ISA, NULL);
err:
return -ENODEV;
}
/*
* Probe for ISA board.
* EISA and PCI are handled by device infrastructure.
*/
static int __init hp100_isa_probe(struct net_device *dev, int addr)
{
int err = -ENODEV;
/* Probe for a specific ISA address */
if (addr > 0xff && addr < 0x400)
err = hp100_isa_probe1(dev, addr);
else if (addr != 0)
err = -ENXIO;
else {
/* Probe all ISA possible port regions */
for (addr = 0x100; addr < 0x400; addr += 0x20) {
err = hp100_isa_probe1(dev, addr);
if (!err)
break;
}
}
return err;
}
#endif /* CONFIG_ISA */
#if !defined(MODULE) && defined(CONFIG_ISA)
struct net_device * __init hp100_probe(int unit)
{
struct net_device *dev = alloc_etherdev(sizeof(struct hp100_private));
int err;
if (!dev)
return ERR_PTR(-ENODEV);
#ifdef HP100_DEBUG_B
hp100_outw(0x4200, TRACE);
printk("hp100: %s: probe\n", dev->name);
#endif
if (unit >= 0) {
sprintf(dev->name, "eth%d", unit);
netdev_boot_setup_check(dev);
}
err = hp100_isa_probe(dev, dev->base_addr);
if (err)
goto out;
return dev;
out:
free_netdev(dev);
return ERR_PTR(err);
}
#endif /* !MODULE && CONFIG_ISA */
static const struct net_device_ops hp100_bm_netdev_ops = {
.ndo_open = hp100_open,
.ndo_stop = hp100_close,
.ndo_start_xmit = hp100_start_xmit_bm,
.ndo_get_stats = hp100_get_stats,
.ndo_set_rx_mode = hp100_set_multicast_list,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
static const struct net_device_ops hp100_netdev_ops = {
.ndo_open = hp100_open,
.ndo_stop = hp100_close,
.ndo_start_xmit = hp100_start_xmit,
.ndo_get_stats = hp100_get_stats,
.ndo_set_rx_mode = hp100_set_multicast_list,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
static int hp100_probe1(struct net_device *dev, int ioaddr, u_char bus,
struct pci_dev *pci_dev)
{
int i;
int err = -ENODEV;
const char *eid;
u_int chip;
u_char uc;
u_int memory_size = 0, virt_memory_size = 0;
u_short local_mode, lsw;
short mem_mapped;
unsigned long mem_ptr_phys;
void __iomem *mem_ptr_virt;
struct hp100_private *lp;
#ifdef HP100_DEBUG_B
hp100_outw(0x4201, TRACE);
printk("hp100: %s: probe1\n", dev->name);
#endif
/* memory region for programmed i/o */
if (!request_region(ioaddr, HP100_REGION_SIZE, "hp100"))
goto out1;
if (hp100_inw(HW_ID) != HP100_HW_ID_CASCADE)
goto out2;
chip = hp100_inw(PAGING) & HP100_CHIPID_MASK;
#ifdef HP100_DEBUG
if (chip == HP100_CHIPID_SHASTA)
printk("hp100: %s: Shasta Chip detected. (This is a pre 802.12 chip)\n", dev->name);
else if (chip == HP100_CHIPID_RAINIER)
printk("hp100: %s: Rainier Chip detected. (This is a pre 802.12 chip)\n", dev->name);
else if (chip == HP100_CHIPID_LASSEN)
printk("hp100: %s: Lassen Chip detected.\n", dev->name);
else
printk("hp100: %s: Warning: Unknown CASCADE chip (id=0x%.4x).\n", dev->name, chip);
#endif
dev->base_addr = ioaddr;
eid = hp100_read_id(ioaddr);
if (eid == NULL) { /* bad checksum? */
printk(KERN_WARNING "%s: bad ID checksum at base port 0x%x\n",
__func__, ioaddr);
goto out2;
}
hp100_page(ID_MAC_ADDR);
for (i = uc = 0; i < 7; i++)
uc += hp100_inb(LAN_ADDR + i);
if (uc != 0xff) {
printk(KERN_WARNING
"%s: bad lan address checksum at port 0x%x)\n",
__func__, ioaddr);
err = -EIO;
goto out2;
}
/* Make sure, that all registers are correctly updated... */
hp100_load_eeprom(dev, ioaddr);
wait();
/*
* Determine driver operation mode
*
* Use the variable "hp100_mode" upon insmod or as kernel parameter to
* force driver modes:
* hp100_mode=1 -> default, use busmaster mode if configured.
* hp100_mode=2 -> enable shared memory mode
* hp100_mode=3 -> force use of i/o mapped mode.
* hp100_mode=4 -> same as 1, but re-set the enable bit on the card.
*/
/*
* LSW values:
* 0x2278 -> J2585B, PnP shared memory mode
* 0x2270 -> J2585B, shared memory mode, 0xdc000
* 0xa23c -> J2585B, I/O mapped mode
* 0x2240 -> EISA COMPEX, BusMaster (Shasta Chip)
* 0x2220 -> EISA HP, I/O (Shasta Chip)
* 0x2260 -> EISA HP, BusMaster (Shasta Chip)
*/
#if 0
local_mode = 0x2270;
hp100_outw(0xfefe, OPTION_LSW);
hp100_outw(local_mode | HP100_SET_LB | HP100_SET_HB, OPTION_LSW);
#endif
/* hp100_mode value maybe used in future by another card */
local_mode = hp100_mode;
if (local_mode < 1 || local_mode > 4)
local_mode = 1; /* default */
#ifdef HP100_DEBUG
printk("hp100: %s: original LSW = 0x%x\n", dev->name,
hp100_inw(OPTION_LSW));
#endif
if (local_mode == 3) {
hp100_outw(HP100_MEM_EN | HP100_RESET_LB, OPTION_LSW);
hp100_outw(HP100_IO_EN | HP100_SET_LB, OPTION_LSW);
hp100_outw(HP100_BM_WRITE | HP100_BM_READ | HP100_RESET_HB, OPTION_LSW);
printk("hp100: IO mapped mode forced.\n");
} else if (local_mode == 2) {
hp100_outw(HP100_MEM_EN | HP100_SET_LB, OPTION_LSW);
hp100_outw(HP100_IO_EN | HP100_SET_LB, OPTION_LSW);
hp100_outw(HP100_BM_WRITE | HP100_BM_READ | HP100_RESET_HB, OPTION_LSW);
printk("hp100: Shared memory mode requested.\n");
} else if (local_mode == 4) {
if (chip == HP100_CHIPID_LASSEN) {
hp100_outw(HP100_BM_WRITE | HP100_BM_READ | HP100_SET_HB, OPTION_LSW);
hp100_outw(HP100_IO_EN | HP100_MEM_EN | HP100_RESET_LB, OPTION_LSW);
printk("hp100: Busmaster mode requested.\n");
}
local_mode = 1;
}
if (local_mode == 1) { /* default behaviour */
lsw = hp100_inw(OPTION_LSW);
if ((lsw & HP100_IO_EN) && (~lsw & HP100_MEM_EN) &&
(~lsw & (HP100_BM_WRITE | HP100_BM_READ))) {
#ifdef HP100_DEBUG
printk("hp100: %s: IO_EN bit is set on card.\n", dev->name);
#endif
local_mode = 3;
} else if (chip == HP100_CHIPID_LASSEN &&
(lsw & (HP100_BM_WRITE | HP100_BM_READ)) == (HP100_BM_WRITE | HP100_BM_READ)) {
/* Conversion to new PCI API :
* I don't have the doc, but I assume that the card
* can map the full 32bit address space.
* Also, we can have EISA Busmaster cards (not tested),
* so beware !!! - Jean II */
if((bus == HP100_BUS_PCI) &&
(pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32)))) {
/* Gracefully fallback to shared memory */
goto busmasterfail;
}
printk("hp100: Busmaster mode enabled.\n");
hp100_outw(HP100_MEM_EN | HP100_IO_EN | HP100_RESET_LB, OPTION_LSW);
} else {
busmasterfail:
#ifdef HP100_DEBUG
printk("hp100: %s: Card not configured for BM or BM not supported with this card.\n", dev->name);
printk("hp100: %s: Trying shared memory mode.\n", dev->name);
#endif
/* In this case, try shared memory mode */
local_mode = 2;
hp100_outw(HP100_MEM_EN | HP100_SET_LB, OPTION_LSW);
/* hp100_outw(HP100_IO_EN|HP100_RESET_LB, OPTION_LSW); */
}
}
#ifdef HP100_DEBUG
printk("hp100: %s: new LSW = 0x%x\n", dev->name, hp100_inw(OPTION_LSW));
#endif
/* Check for shared memory on the card, eventually remap it */
hp100_page(HW_MAP);
mem_mapped = ((hp100_inw(OPTION_LSW) & (HP100_MEM_EN)) != 0);
mem_ptr_phys = 0UL;
mem_ptr_virt = NULL;
memory_size = (8192 << ((hp100_inb(SRAM) >> 5) & 0x07));
virt_memory_size = 0;
/* For memory mapped or busmaster mode, we want the memory address */
if (mem_mapped || (local_mode == 1)) {
mem_ptr_phys = (hp100_inw(MEM_MAP_LSW) | (hp100_inw(MEM_MAP_MSW) << 16));
mem_ptr_phys &= ~0x1fff; /* 8k alignment */
if (bus == HP100_BUS_ISA && (mem_ptr_phys & ~0xfffff) != 0) {
printk("hp100: Can only use programmed i/o mode.\n");
mem_ptr_phys = 0;
mem_mapped = 0;
local_mode = 3; /* Use programmed i/o */
}
/* We do not need access to shared memory in busmaster mode */
/* However in slave mode we need to remap high (>1GB) card memory */
if (local_mode != 1) { /* = not busmaster */
/* We try with smaller memory sizes, if ioremap fails */
for (virt_memory_size = memory_size; virt_memory_size > 16383; virt_memory_size >>= 1) {
if ((mem_ptr_virt = ioremap((u_long) mem_ptr_phys, virt_memory_size)) == NULL) {
#ifdef HP100_DEBUG
printk("hp100: %s: ioremap for 0x%x bytes high PCI memory at 0x%lx failed\n", dev->name, virt_memory_size, mem_ptr_phys);
#endif
} else {
#ifdef HP100_DEBUG
printk("hp100: %s: remapped 0x%x bytes high PCI memory at 0x%lx to %p.\n", dev->name, virt_memory_size, mem_ptr_phys, mem_ptr_virt);
#endif
break;
}
}
if (mem_ptr_virt == NULL) { /* all ioremap tries failed */
printk("hp100: Failed to ioremap the PCI card memory. Will have to use i/o mapped mode.\n");
local_mode = 3;
virt_memory_size = 0;
}
}
}
if (local_mode == 3) { /* io mapped forced */
mem_mapped = 0;
mem_ptr_phys = 0;
mem_ptr_virt = NULL;
printk("hp100: Using (slow) programmed i/o mode.\n");
}
/* Initialise the "private" data structure for this card. */
lp = netdev_priv(dev);
spin_lock_init(&lp->lock);
strlcpy(lp->id, eid, HP100_SIG_LEN);
lp->chip = chip;
lp->mode = local_mode;
lp->bus = bus;
lp->pci_dev = pci_dev;
lp->priority_tx = hp100_priority_tx;
lp->rx_ratio = hp100_rx_ratio;
lp->mem_ptr_phys = mem_ptr_phys;
lp->mem_ptr_virt = mem_ptr_virt;
hp100_page(ID_MAC_ADDR);
lp->soft_model = hp100_inb(SOFT_MODEL);
lp->mac1_mode = HP100_MAC1MODE3;
lp->mac2_mode = HP100_MAC2MODE3;
memset(&lp->hash_bytes, 0x00, 8);
dev->base_addr = ioaddr;
lp->memory_size = memory_size;
lp->virt_memory_size = virt_memory_size;
lp->rx_ratio = hp100_rx_ratio; /* can be conf'd with insmod */
if (lp->mode == 1) /* busmaster */
dev->netdev_ops = &hp100_bm_netdev_ops;
else
dev->netdev_ops = &hp100_netdev_ops;
/* Ask the card for which IRQ line it is configured */
if (bus == HP100_BUS_PCI) {
dev->irq = pci_dev->irq;
} else {
hp100_page(HW_MAP);
dev->irq = hp100_inb(IRQ_CHANNEL) & HP100_IRQMASK;
if (dev->irq == 2)
dev->irq = 9;
}
if (lp->mode == 1) /* busmaster */
dev->dma = 4;
/* Ask the card for its MAC address and store it for later use. */
hp100_page(ID_MAC_ADDR);
for (i = uc = 0; i < 6; i++)
dev->dev_addr[i] = hp100_inb(LAN_ADDR + i);
/* Reset statistics (counters) */
hp100_clear_stats(lp, ioaddr);
/* If busmaster mode is wanted, a dma-capable memory area is needed for
* the rx and tx PDLs
* PCI cards can access the whole PC memory. Therefore GFP_DMA is not
* needed for the allocation of the memory area.
*/
/* TODO: We do not need this with old cards, where PDLs are stored
* in the cards shared memory area. But currently, busmaster has been
* implemented/tested only with the lassen chip anyway... */
if (lp->mode == 1) { /* busmaster */
dma_addr_t page_baddr;
/* Get physically continuous memory for TX & RX PDLs */
/* Conversion to new PCI API :
* Pages are always aligned and zeroed, no need to it ourself.
* Doc says should be OK for EISA bus as well - Jean II */
lp->page_vaddr_algn = pci_alloc_consistent(lp->pci_dev, MAX_RINGSIZE, &page_baddr);
if (!lp->page_vaddr_algn) {
err = -ENOMEM;
goto out_mem_ptr;
}
lp->whatever_offset = ((u_long) page_baddr) - ((u_long) lp->page_vaddr_algn);
#ifdef HP100_DEBUG_BM
printk("hp100: %s: Reserved DMA memory from 0x%x to 0x%x\n", dev->name, (u_int) lp->page_vaddr_algn, (u_int) lp->page_vaddr_algn + MAX_RINGSIZE);
#endif
lp->rxrcommit = lp->txrcommit = 0;
lp->rxrhead = lp->rxrtail = &(lp->rxring[0]);
lp->txrhead = lp->txrtail = &(lp->txring[0]);
}
/* Initialise the card. */
/* (I'm not really sure if it's a good idea to do this during probing, but
* like this it's assured that the lan connection type can be sensed
* correctly)
*/
hp100_hwinit(dev);
/* Try to find out which kind of LAN the card is connected to. */
lp->lan_type = hp100_sense_lan(dev);
/* Print out a message what about what we think we have probed. */
printk("hp100: at 0x%x, IRQ %d, ", ioaddr, dev->irq);
switch (bus) {
case HP100_BUS_EISA:
printk("EISA");
break;
case HP100_BUS_PCI:
printk("PCI");
break;
default:
printk("ISA");
break;
}
printk(" bus, %dk SRAM (rx/tx %d%%).\n", lp->memory_size >> 10, lp->rx_ratio);
if (lp->mode == 2) { /* memory mapped */
printk("hp100: Memory area at 0x%lx-0x%lx", mem_ptr_phys,
(mem_ptr_phys + (mem_ptr_phys > 0x100000 ? (u_long) lp->memory_size : 16 * 1024)) - 1);
if (mem_ptr_virt)
printk(" (virtual base %p)", mem_ptr_virt);
printk(".\n");
/* Set for info when doing ifconfig */
dev->mem_start = mem_ptr_phys;
dev->mem_end = mem_ptr_phys + lp->memory_size;
}
printk("hp100: ");
if (lp->lan_type != HP100_LAN_ERR)
printk("Adapter is attached to ");
switch (lp->lan_type) {
case HP100_LAN_100:
printk("100Mb/s Voice Grade AnyLAN network.\n");
break;
case HP100_LAN_10:
printk("10Mb/s network (10baseT).\n");
break;
case HP100_LAN_COAX:
printk("10Mb/s network (coax).\n");
break;
default:
printk("Warning! Link down.\n");
}
err = register_netdev(dev);
if (err)
goto out3;
return 0;
out3:
if (local_mode == 1)
pci_free_consistent(lp->pci_dev, MAX_RINGSIZE + 0x0f,
lp->page_vaddr_algn,
virt_to_whatever(dev, lp->page_vaddr_algn));
out_mem_ptr:
if (mem_ptr_virt)
iounmap(mem_ptr_virt);
out2:
release_region(ioaddr, HP100_REGION_SIZE);
out1:
return err;
}
/* This procedure puts the card into a stable init state */
static void hp100_hwinit(struct net_device *dev)
{
int ioaddr = dev->base_addr;
struct hp100_private *lp = netdev_priv(dev);
#ifdef HP100_DEBUG_B
hp100_outw(0x4202, TRACE);
printk("hp100: %s: hwinit\n", dev->name);
#endif
/* Initialise the card. -------------------------------------------- */
/* Clear all pending Ints and disable Ints */
hp100_page(PERFORMANCE);
hp100_outw(0xfefe, IRQ_MASK); /* mask off all ints */
hp100_outw(0xffff, IRQ_STATUS); /* clear all pending ints */
hp100_outw(HP100_INT_EN | HP100_RESET_LB, OPTION_LSW);
hp100_outw(HP100_TRI_INT | HP100_SET_HB, OPTION_LSW);
if (lp->mode == 1) {
hp100_BM_shutdown(dev); /* disables BM, puts cascade in reset */
wait();
} else {
hp100_outw(HP100_INT_EN | HP100_RESET_LB, OPTION_LSW);
hp100_cascade_reset(dev, 1);
hp100_page(MAC_CTRL);
hp100_andb(~(HP100_RX_EN | HP100_TX_EN), MAC_CFG_1);
}
/* Initiate EEPROM reload */
hp100_load_eeprom(dev, 0);
wait();
/* Go into reset again. */
hp100_cascade_reset(dev, 1);
/* Set Option Registers to a safe state */
hp100_outw(HP100_DEBUG_EN |
HP100_RX_HDR |
HP100_EE_EN |
HP100_BM_WRITE |
HP100_BM_READ | HP100_RESET_HB |
HP100_FAKE_INT |
HP100_INT_EN |
HP100_MEM_EN |
HP100_IO_EN | HP100_RESET_LB, OPTION_LSW);
hp100_outw(HP100_TRI_INT |
HP100_MMAP_DIS | HP100_SET_HB, OPTION_LSW);
hp100_outb(HP100_PRIORITY_TX |
HP100_ADV_NXT_PKT |
HP100_TX_CMD | HP100_RESET_LB, OPTION_MSW);
/* TODO: Configure MMU for Ram Test. */
/* TODO: Ram Test. */
/* Re-check if adapter is still at same i/o location */
/* (If the base i/o in eeprom has been changed but the */
/* registers had not been changed, a reload of the eeprom */
/* would move the adapter to the address stored in eeprom */
/* TODO: Code to implement. */
/* Until here it was code from HWdiscover procedure. */
/* Next comes code from mmuinit procedure of SCO BM driver which is
* called from HWconfigure in the SCO driver. */
/* Initialise MMU, eventually switch on Busmaster Mode, initialise
* multicast filter...
*/
hp100_mmuinit(dev);
/* We don't turn the interrupts on here - this is done by start_interface. */
wait(); /* TODO: Do we really need this? */
/* Enable Hardware (e.g. unreset) */
hp100_cascade_reset(dev, 0);
/* ------- initialisation complete ----------- */
/* Finally try to log in the Hub if there may be a VG connection. */
if ((lp->lan_type == HP100_LAN_100) || (lp->lan_type == HP100_LAN_ERR))
hp100_login_to_vg_hub(dev, 0); /* relogin */
}
/*
* mmuinit - Reinitialise Cascade MMU and MAC settings.
* Note: Must already be in reset and leaves card in reset.
*/
static void hp100_mmuinit(struct net_device *dev)
{
int ioaddr = dev->base_addr;
struct hp100_private *lp = netdev_priv(dev);
int i;
#ifdef HP100_DEBUG_B
hp100_outw(0x4203, TRACE);
printk("hp100: %s: mmuinit\n", dev->name);
#endif
#ifdef HP100_DEBUG
if (0 != (hp100_inw(OPTION_LSW) & HP100_HW_RST)) {
printk("hp100: %s: Not in reset when entering mmuinit. Fix me.\n", dev->name);
return;
}
#endif
/* Make sure IRQs are masked off and ack'ed. */
hp100_page(PERFORMANCE);
hp100_outw(0xfefe, IRQ_MASK); /* mask off all ints */
hp100_outw(0xffff, IRQ_STATUS); /* ack IRQ */
/*
* Enable Hardware
* - Clear Debug En, Rx Hdr Pipe, EE En, I/O En, Fake Int and Intr En
* - Set Tri-State Int, Bus Master Rd/Wr, and Mem Map Disable
* - Clear Priority, Advance Pkt and Xmit Cmd
*/
hp100_outw(HP100_DEBUG_EN |
HP100_RX_HDR |
HP100_EE_EN | HP100_RESET_HB |
HP100_IO_EN |
HP100_FAKE_INT |
HP100_INT_EN | HP100_RESET_LB, OPTION_LSW);
hp100_outw(HP100_TRI_INT | HP100_SET_HB, OPTION_LSW);
if (lp->mode == 1) { /* busmaster */
hp100_outw(HP100_BM_WRITE |
HP100_BM_READ |
HP100_MMAP_DIS | HP100_SET_HB, OPTION_LSW);
} else if (lp->mode == 2) { /* memory mapped */
hp100_outw(HP100_BM_WRITE |
HP100_BM_READ | HP100_RESET_HB, OPTION_LSW);
hp100_outw(HP100_MMAP_DIS | HP100_RESET_HB, OPTION_LSW);
hp100_outw(HP100_MEM_EN | HP100_SET_LB, OPTION_LSW);
hp100_outw(HP100_IO_EN | HP100_SET_LB, OPTION_LSW);
} else if (lp->mode == 3) { /* i/o mapped mode */
hp100_outw(HP100_MMAP_DIS | HP100_SET_HB |
HP100_IO_EN | HP100_SET_LB, OPTION_LSW);
}
hp100_page(HW_MAP);
hp100_outb(0, EARLYRXCFG);
hp100_outw(0, EARLYTXCFG);
/*
* Enable Bus Master mode
*/
if (lp->mode == 1) { /* busmaster */
/* Experimental: Set some PCI configuration bits */
hp100_page(HW_MAP);
hp100_andb(~HP100_PDL_USE3, MODECTRL1); /* BM engine read maximum */
hp100_andb(~HP100_TX_DUALQ, MODECTRL1); /* No Queue for Priority TX */
/* PCI Bus failures should result in a Misc. Interrupt */
hp100_orb(HP100_EN_BUS_FAIL, MODECTRL2);
hp100_outw(HP100_BM_READ | HP100_BM_WRITE | HP100_SET_HB, OPTION_LSW);
hp100_page(HW_MAP);
/* Use Burst Mode and switch on PAGE_CK */
hp100_orb(HP100_BM_BURST_RD | HP100_BM_BURST_WR, BM);
if ((lp->chip == HP100_CHIPID_RAINIER) || (lp->chip == HP100_CHIPID_SHASTA))
hp100_orb(HP100_BM_PAGE_CK, BM);
hp100_orb(HP100_BM_MASTER, BM);
} else { /* not busmaster */
hp100_page(HW_MAP);
hp100_andb(~HP100_BM_MASTER, BM);
}
/*
* Divide card memory into regions for Rx, Tx and, if non-ETR chip, PDLs
*/
hp100_page(MMU_CFG);
if (lp->mode == 1) { /* only needed for Busmaster */
int xmit_stop, recv_stop;
if ((lp->chip == HP100_CHIPID_RAINIER) ||
(lp->chip == HP100_CHIPID_SHASTA)) {
int pdl_stop;
/*
* Each pdl is 508 bytes long. (63 frags * 4 bytes for address and
* 4 bytes for header). We will leave NUM_RXPDLS * 508 (rounded
* to the next higher 1k boundary) bytes for the rx-pdl's
* Note: For non-etr chips the transmit stop register must be
* programmed on a 1k boundary, i.e. bits 9:0 must be zero.
*/
pdl_stop = lp->memory_size;
xmit_stop = (pdl_stop - 508 * (MAX_RX_PDL) - 16) & ~(0x03ff);
recv_stop = (xmit_stop * (lp->rx_ratio) / 100) & ~(0x03ff);
hp100_outw((pdl_stop >> 4) - 1, PDL_MEM_STOP);
#ifdef HP100_DEBUG_BM
printk("hp100: %s: PDL_STOP = 0x%x\n", dev->name, pdl_stop);
#endif
} else {
/* ETR chip (Lassen) in busmaster mode */
xmit_stop = (lp->memory_size) - 1;
recv_stop = ((lp->memory_size * lp->rx_ratio) / 100) & ~(0x03ff);
}
hp100_outw(xmit_stop >> 4, TX_MEM_STOP);
hp100_outw(recv_stop >> 4, RX_MEM_STOP);
#ifdef HP100_DEBUG_BM
printk("hp100: %s: TX_STOP = 0x%x\n", dev->name, xmit_stop >> 4);
printk("hp100: %s: RX_STOP = 0x%x\n", dev->name, recv_stop >> 4);
#endif
} else {
/* Slave modes (memory mapped and programmed io) */
hp100_outw((((lp->memory_size * lp->rx_ratio) / 100) >> 4), RX_MEM_STOP);
hp100_outw(((lp->memory_size - 1) >> 4), TX_MEM_STOP);
#ifdef HP100_DEBUG
printk("hp100: %s: TX_MEM_STOP: 0x%x\n", dev->name, hp100_inw(TX_MEM_STOP));
printk("hp100: %s: RX_MEM_STOP: 0x%x\n", dev->name, hp100_inw(RX_MEM_STOP));
#endif
}
/* Write MAC address into page 1 */
hp100_page(MAC_ADDRESS);
for (i = 0; i < 6; i++)
hp100_outb(dev->dev_addr[i], MAC_ADDR + i);
/* Zero the multicast hash registers */
for (i = 0; i < 8; i++)
hp100_outb(0x0, HASH_BYTE0 + i);
/* Set up MAC defaults */
hp100_page(MAC_CTRL);
/* Go to LAN Page and zero all filter bits */
/* Zero accept error, accept multicast, accept broadcast and accept */
/* all directed packet bits */
hp100_andb(~(HP100_RX_EN |
HP100_TX_EN |
HP100_ACC_ERRORED |
HP100_ACC_MC |
HP100_ACC_BC | HP100_ACC_PHY), MAC_CFG_1);
hp100_outb(0x00, MAC_CFG_2);
/* Zero the frame format bit. This works around a training bug in the */
/* new hubs. */
hp100_outb(0x00, VG_LAN_CFG_2); /* (use 802.3) */
if (lp->priority_tx)
hp100_outb(HP100_PRIORITY_TX | HP100_SET_LB, OPTION_MSW);
else
hp100_outb(HP100_PRIORITY_TX | HP100_RESET_LB, OPTION_MSW);
hp100_outb(HP100_ADV_NXT_PKT |
HP100_TX_CMD | HP100_RESET_LB, OPTION_MSW);
/* If busmaster, initialize the PDLs */
if (lp->mode == 1)
hp100_init_pdls(dev);
/* Go to performance page and initialize isr and imr registers */
hp100_page(PERFORMANCE);
hp100_outw(0xfefe, IRQ_MASK); /* mask off all ints */
hp100_outw(0xffff, IRQ_STATUS); /* ack IRQ */
}
/*
* open/close functions
*/
static int hp100_open(struct net_device *dev)
{
struct hp100_private *lp = netdev_priv(dev);
#ifdef HP100_DEBUG_B
int ioaddr = dev->base_addr;
#endif
#ifdef HP100_DEBUG_B
hp100_outw(0x4204, TRACE);
printk("hp100: %s: open\n", dev->name);
#endif
/* New: if bus is PCI or EISA, interrupts might be shared interrupts */
if (request_irq(dev->irq, hp100_interrupt,
lp->bus == HP100_BUS_PCI || lp->bus ==
HP100_BUS_EISA ? IRQF_SHARED : 0,
dev->name, dev)) {
printk("hp100: %s: unable to get IRQ %d\n", dev->name, dev->irq);
return -EAGAIN;
}
netif_trans_update(dev); /* prevent tx timeout */
netif_start_queue(dev);
lp->lan_type = hp100_sense_lan(dev);
lp->mac1_mode = HP100_MAC1MODE3;
lp->mac2_mode = HP100_MAC2MODE3;
memset(&lp->hash_bytes, 0x00, 8);
hp100_stop_interface(dev);
hp100_hwinit(dev);
hp100_start_interface(dev); /* sets mac modes, enables interrupts */
return 0;
}
/* The close function is called when the interface is to be brought down */
static int hp100_close(struct net_device *dev)
{
int ioaddr = dev->base_addr;
struct hp100_private *lp = netdev_priv(dev);
#ifdef HP100_DEBUG_B
hp100_outw(0x4205, TRACE);
printk("hp100: %s: close\n", dev->name);
#endif
hp100_page(PERFORMANCE);
hp100_outw(0xfefe, IRQ_MASK); /* mask off all IRQs */
hp100_stop_interface(dev);
if (lp->lan_type == HP100_LAN_100)
lp->hub_status = hp100_login_to_vg_hub(dev, 0);
netif_stop_queue(dev);
free_irq(dev->irq, dev);
#ifdef HP100_DEBUG
printk("hp100: %s: close LSW = 0x%x\n", dev->name,
hp100_inw(OPTION_LSW));
#endif
return 0;
}
/*
* Configure the PDL Rx rings and LAN
*/
static void hp100_init_pdls(struct net_device *dev)
{
struct hp100_private *lp = netdev_priv(dev);
hp100_ring_t *ringptr;
u_int *pageptr; /* Warning : increment by 4 - Jean II */
int i;
#ifdef HP100_DEBUG_B
int ioaddr = dev->base_addr;
#endif
#ifdef HP100_DEBUG_B
hp100_outw(0x4206, TRACE);
printk("hp100: %s: init pdls\n", dev->name);
#endif
if (!lp->page_vaddr_algn)
printk("hp100: %s: Warning: lp->page_vaddr_algn not initialised!\n", dev->name);
else {
/* pageptr shall point into the DMA accessible memory region */
/* we use this pointer to status the upper limit of allocated */
/* memory in the allocated page. */
/* note: align the pointers to the pci cache line size */
memset(lp->page_vaddr_algn, 0, MAX_RINGSIZE); /* Zero Rx/Tx ring page */
pageptr = lp->page_vaddr_algn;
lp->rxrcommit = 0;
ringptr = lp->rxrhead = lp->rxrtail = &(lp->rxring[0]);
/* Initialise Rx Ring */
for (i = MAX_RX_PDL - 1; i >= 0; i--) {
lp->rxring[i].next = ringptr;
ringptr = &(lp->rxring[i]);
pageptr += hp100_init_rxpdl(dev, ringptr, pageptr);
}
/* Initialise Tx Ring */
lp->txrcommit = 0;
ringptr = lp->txrhead = lp->txrtail = &(lp->txring[0]);
for (i = MAX_TX_PDL - 1; i >= 0; i--) {
lp->txring[i].next = ringptr;
ringptr = &(lp->txring[i]);
pageptr += hp100_init_txpdl(dev, ringptr, pageptr);
}
}
}
/* These functions "format" the entries in the pdl structure */
/* They return how much memory the fragments need. */
static int hp100_init_rxpdl(struct net_device *dev,
register hp100_ring_t * ringptr,
register u32 * pdlptr)
{
/* pdlptr is starting address for this pdl */
if (0 != (((unsigned long) pdlptr) & 0xf))
printk("hp100: %s: Init rxpdl: Unaligned pdlptr 0x%lx.\n",
dev->name, (unsigned long) pdlptr);
ringptr->pdl = pdlptr + 1;
ringptr->pdl_paddr = virt_to_whatever(dev, pdlptr + 1);
ringptr->skb = NULL;
/*
* Write address and length of first PDL Fragment (which is used for
* storing the RX-Header
* We use the 4 bytes _before_ the PDH in the pdl memory area to
* store this information. (PDH is at offset 0x04)
*/
/* Note that pdlptr+1 and not pdlptr is the pointer to the PDH */
*(pdlptr + 2) = (u_int) virt_to_whatever(dev, pdlptr); /* Address Frag 1 */
*(pdlptr + 3) = 4; /* Length Frag 1 */
return roundup(MAX_RX_FRAG * 2 + 2, 4);
}
static int hp100_init_txpdl(struct net_device *dev,
register hp100_ring_t * ringptr,
register u32 * pdlptr)
{
if (0 != (((unsigned long) pdlptr) & 0xf))
printk("hp100: %s: Init txpdl: Unaligned pdlptr 0x%lx.\n", dev->name, (unsigned long) pdlptr);
ringptr->pdl = pdlptr; /* +1; */
ringptr->pdl_paddr = virt_to_whatever(dev, pdlptr); /* +1 */
ringptr->skb = NULL;
return roundup(MAX_TX_FRAG * 2 + 2, 4);
}
/*
* hp100_build_rx_pdl allocates an skb_buff of maximum size plus two bytes
* for possible odd word alignment rounding up to next dword and set PDL
* address for fragment#2
* Returns: 0 if unable to allocate skb_buff
* 1 if successful
*/
static int hp100_build_rx_pdl(hp100_ring_t * ringptr,
struct net_device *dev)
{
#ifdef HP100_DEBUG_B
int ioaddr = dev->base_addr;
#endif
#ifdef HP100_DEBUG_BM
u_int *p;
#endif
#ifdef HP100_DEBUG_B
hp100_outw(0x4207, TRACE);
printk("hp100: %s: build rx pdl\n", dev->name);
#endif
/* Allocate skb buffer of maximum size */
/* Note: This depends on the alloc_skb functions allocating more
* space than requested, i.e. aligning to 16bytes */
ringptr->skb = netdev_alloc_skb(dev, roundup(MAX_ETHER_SIZE + 2, 4));
if (NULL != ringptr->skb) {
/*
* Reserve 2 bytes at the head of the buffer to land the IP header
* on a long word boundary (According to the Network Driver section
* in the Linux KHG, this should help to increase performance.)
*/
skb_reserve(ringptr->skb, 2);
ringptr->skb->data = skb_put(ringptr->skb, MAX_ETHER_SIZE);
/* ringptr->pdl points to the beginning of the PDL, i.e. the PDH */
/* Note: 1st Fragment is used for the 4 byte packet status
* (receive header). Its PDL entries are set up by init_rxpdl. So
* here we only have to set up the PDL fragment entries for the data
* part. Those 4 bytes will be stored in the DMA memory region
* directly before the PDL.
*/
#ifdef HP100_DEBUG_BM
printk("hp100: %s: build_rx_pdl: PDH@0x%x, skb->data (len %d) at 0x%x\n",
dev->name, (u_int) ringptr->pdl,
roundup(MAX_ETHER_SIZE + 2, 4),
(unsigned int) ringptr->skb->data);
#endif
/* Conversion to new PCI API : map skbuf data to PCI bus.
* Doc says it's OK for EISA as well - Jean II */
ringptr->pdl[0] = 0x00020000; /* Write PDH */
ringptr->pdl[3] = pdl_map_data(netdev_priv(dev),
ringptr->skb->data);
ringptr->pdl[4] = MAX_ETHER_SIZE; /* Length of Data */
#ifdef HP100_DEBUG_BM
for (p = (ringptr->pdl); p < (ringptr->pdl + 5); p++)
printk("hp100: %s: Adr 0x%.8x = 0x%.8x\n", dev->name, (u_int) p, (u_int) * p);
#endif
return 1;
}
/* else: */
/* alloc_skb failed (no memory) -> still can receive the header
* fragment into PDL memory. make PDL safe by clearing msgptr and
* making the PDL only 1 fragment (i.e. the 4 byte packet status)
*/
#ifdef HP100_DEBUG_BM
printk("hp100: %s: build_rx_pdl: PDH@0x%x, No space for skb.\n", dev->name, (u_int) ringptr->pdl);
#endif
ringptr->pdl[0] = 0x00010000; /* PDH: Count=1 Fragment */
return 0;
}
/*
* hp100_rxfill - attempt to fill the Rx Ring will empty skb's
*
* Makes assumption that skb's are always contiguous memory areas and
* therefore PDLs contain only 2 physical fragments.
* - While the number of Rx PDLs with buffers is less than maximum
* a. Get a maximum packet size skb
* b. Put the physical address of the buffer into the PDL.
* c. Output physical address of PDL to adapter.
*/
static void hp100_rxfill(struct net_device *dev)
{
int ioaddr = dev->base_addr;
struct hp100_private *lp = netdev_priv(dev);
hp100_ring_t *ringptr;
#ifdef HP100_DEBUG_B
hp100_outw(0x4208, TRACE);
printk("hp100: %s: rxfill\n", dev->name);
#endif
hp100_page(PERFORMANCE);
while (lp->rxrcommit < MAX_RX_PDL) {
/*
** Attempt to get a buffer and build a Rx PDL.
*/
ringptr = lp->rxrtail;
if (0 == hp100_build_rx_pdl(ringptr, dev)) {
return; /* None available, return */
}
/* Hand this PDL over to the card */
/* Note: This needs performance page selected! */
#ifdef HP100_DEBUG_BM
printk("hp100: %s: rxfill: Hand to card: pdl #%d @0x%x phys:0x%x, buffer: 0x%x\n",
dev->name, lp->rxrcommit, (u_int) ringptr->pdl,
(u_int) ringptr->pdl_paddr, (u_int) ringptr->pdl[3]);
#endif
hp100_outl((u32) ringptr->pdl_paddr, RX_PDA);
lp->rxrcommit += 1;
lp->rxrtail = ringptr->next;
}
}
/*
* BM_shutdown - shutdown bus mastering and leave chip in reset state
*/
static void hp100_BM_shutdown(struct net_device *dev)
{
int ioaddr = dev->base_addr;
struct hp100_private *lp = netdev_priv(dev);
unsigned long time;
#ifdef HP100_DEBUG_B
hp100_outw(0x4209, TRACE);
printk("hp100: %s: bm shutdown\n", dev->name);
#endif
hp100_page(PERFORMANCE);
hp100_outw(0xfefe, IRQ_MASK); /* mask off all ints */
hp100_outw(0xffff, IRQ_STATUS); /* Ack all ints */
/* Ensure Interrupts are off */
hp100_outw(HP100_INT_EN | HP100_RESET_LB, OPTION_LSW);
/* Disable all MAC activity */
hp100_page(MAC_CTRL);
hp100_andb(~(HP100_RX_EN | HP100_TX_EN), MAC_CFG_1); /* stop rx/tx */
/* If cascade MMU is not already in reset */
if (0 != (hp100_inw(OPTION_LSW) & HP100_HW_RST)) {
/* Wait 1.3ms (10Mb max packet time) to ensure MAC is idle so
* MMU pointers will not be reset out from underneath
*/
hp100_page(MAC_CTRL);
for (time = 0; time < 5000; time++) {
if ((hp100_inb(MAC_CFG_1) & (HP100_TX_IDLE | HP100_RX_IDLE)) == (HP100_TX_IDLE | HP100_RX_IDLE))
break;
}
/* Shutdown algorithm depends on the generation of Cascade */
if (lp->chip == HP100_CHIPID_LASSEN) { /* ETR shutdown/reset */
/* Disable Busmaster mode and wait for bit to go to zero. */
hp100_page(HW_MAP);
hp100_andb(~HP100_BM_MASTER, BM);
/* 100 ms timeout */
for (time = 0; time < 32000; time++) {
if (0 == (hp100_inb(BM) & HP100_BM_MASTER))
break;
}
} else { /* Shasta or Rainier Shutdown/Reset */
/* To ensure all bus master inloading activity has ceased,
* wait for no Rx PDAs or no Rx packets on card.
*/
hp100_page(PERFORMANCE);
/* 100 ms timeout */
for (time = 0; time < 10000; time++) {
/* RX_PDL: PDLs not executed. */
/* RX_PKT_CNT: RX'd packets on card. */
if ((hp100_inb(RX_PDL) == 0) && (hp100_inb(RX_PKT_CNT) == 0))
break;
}
if (time >= 10000)
printk("hp100: %s: BM shutdown error.\n", dev->name);
/* To ensure all bus master outloading activity has ceased,
* wait until the Tx PDA count goes to zero or no more Tx space
* available in the Tx region of the card.
*/
/* 100 ms timeout */
for (time = 0; time < 10000; time++) {
if ((0 == hp100_inb(TX_PKT_CNT)) &&
(0 != (hp100_inb(TX_MEM_FREE) & HP100_AUTO_COMPARE)))
break;
}
/* Disable Busmaster mode */
hp100_page(HW_MAP);
hp100_andb(~HP100_BM_MASTER, BM);
} /* end of shutdown procedure for non-etr parts */
hp100_cascade_reset(dev, 1);
}
hp100_page(PERFORMANCE);
/* hp100_outw( HP100_BM_READ | HP100_BM_WRITE | HP100_RESET_HB, OPTION_LSW ); */
/* Busmaster mode should be shut down now. */
}
static int hp100_check_lan(struct net_device *dev)
{
struct hp100_private *lp = netdev_priv(dev);
if (lp->lan_type < 0) { /* no LAN type detected yet? */
hp100_stop_interface(dev);
if ((lp->lan_type = hp100_sense_lan(dev)) < 0) {
printk("hp100: %s: no connection found - check wire\n", dev->name);
hp100_start_interface(dev); /* 10Mb/s RX packets maybe handled */
return -EIO;
}
if (lp->lan_type == HP100_LAN_100)
lp->hub_status = hp100_login_to_vg_hub(dev, 0); /* relogin */
hp100_start_interface(dev);
}
return 0;
}
/*
* transmit functions
*/
/* tx function for busmaster mode */
static netdev_tx_t hp100_start_xmit_bm(struct sk_buff *skb,
struct net_device *dev)
{
unsigned long flags;
int i, ok_flag;
int ioaddr = dev->base_addr;
struct hp100_private *lp = netdev_priv(dev);
hp100_ring_t *ringptr;
#ifdef HP100_DEBUG_B
hp100_outw(0x4210, TRACE);
printk("hp100: %s: start_xmit_bm\n", dev->name);
#endif
if (skb->len <= 0)
goto drop;
if (lp->chip == HP100_CHIPID_SHASTA && skb_padto(skb, ETH_ZLEN))
return NETDEV_TX_OK;
/* Get Tx ring tail pointer */
if (lp->txrtail->next == lp->txrhead) {
/* No memory. */
#ifdef HP100_DEBUG
printk("hp100: %s: start_xmit_bm: No TX PDL available.\n", dev->name);
#endif
/* not waited long enough since last tx? */
if (time_before(jiffies, dev_trans_start(dev) + HZ))
goto drop;
if (hp100_check_lan(dev))
goto drop;
if (lp->lan_type == HP100_LAN_100 && lp->hub_status < 0) {
/* we have a 100Mb/s adapter but it isn't connected to hub */
printk("hp100: %s: login to 100Mb/s hub retry\n", dev->name);
hp100_stop_interface(dev);
lp->hub_status = hp100_login_to_vg_hub(dev, 0);
hp100_start_interface(dev);
} else {
spin_lock_irqsave(&lp->lock, flags);
hp100_ints_off(); /* Useful ? Jean II */
i = hp100_sense_lan(dev);
hp100_ints_on();
spin_unlock_irqrestore(&lp->lock, flags);
if (i == HP100_LAN_ERR)
printk("hp100: %s: link down detected\n", dev->name);
else if (lp->lan_type != i) { /* cable change! */
/* it's very hard - all network settings must be changed!!! */
printk("hp100: %s: cable change 10Mb/s <-> 100Mb/s detected\n", dev->name);
lp->lan_type = i;
hp100_stop_interface(dev);
if (lp->lan_type == HP100_LAN_100)
lp->hub_status = hp100_login_to_vg_hub(dev, 0);
hp100_start_interface(dev);
} else {
printk("hp100: %s: interface reset\n", dev->name);
hp100_stop_interface(dev);
if (lp->lan_type == HP100_LAN_100)
lp->hub_status = hp100_login_to_vg_hub(dev, 0);
hp100_start_interface(dev);
}
}
goto drop;
}
/*
* we have to turn int's off before modifying this, otherwise
* a tx_pdl_cleanup could occur at the same time
*/
spin_lock_irqsave(&lp->lock, flags);
ringptr = lp->txrtail;
lp->txrtail = ringptr->next;
/* Check whether packet has minimal packet size */
ok_flag = skb->len >= HP100_MIN_PACKET_SIZE;
i = ok_flag ? skb->len : HP100_MIN_PACKET_SIZE;
ringptr->skb = skb;
ringptr->pdl[0] = ((1 << 16) | i); /* PDH: 1 Fragment & length */
if (lp->chip == HP100_CHIPID_SHASTA) {
/* TODO:Could someone who has the EISA card please check if this works? */
ringptr->pdl[2] = i;
} else { /* Lassen */
/* In the PDL, don't use the padded size but the real packet size: */
ringptr->pdl[2] = skb->len; /* 1st Frag: Length of frag */
}
/* Conversion to new PCI API : map skbuf data to PCI bus.
* Doc says it's OK for EISA as well - Jean II */
ringptr->pdl[1] = ((u32) pci_map_single(lp->pci_dev, skb->data, ringptr->pdl[2], PCI_DMA_TODEVICE)); /* 1st Frag: Adr. of data */
/* Hand this PDL to the card. */
hp100_outl(ringptr->pdl_paddr, TX_PDA_L); /* Low Prio. Queue */
lp->txrcommit++;
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
spin_unlock_irqrestore(&lp->lock, flags);
return NETDEV_TX_OK;
drop:
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
/* clean_txring checks if packets have been sent by the card by reading
* the TX_PDL register from the performance page and comparing it to the
* number of committed packets. It then frees the skb's of the packets that
* obviously have been sent to the network.
*
* Needs the PERFORMANCE page selected.
*/
static void hp100_clean_txring(struct net_device *dev)
{
struct hp100_private *lp = netdev_priv(dev);
int ioaddr = dev->base_addr;
int donecount;
#ifdef HP100_DEBUG_B
hp100_outw(0x4211, TRACE);
printk("hp100: %s: clean txring\n", dev->name);
#endif
/* How many PDLs have been transmitted? */
donecount = (lp->txrcommit) - hp100_inb(TX_PDL);
#ifdef HP100_DEBUG
if (donecount > MAX_TX_PDL)
printk("hp100: %s: Warning: More PDLs transmitted than committed to card???\n", dev->name);
#endif
for (; 0 != donecount; donecount--) {
#ifdef HP100_DEBUG_BM
printk("hp100: %s: Free skb: data @0x%.8x txrcommit=0x%x TXPDL=0x%x, done=0x%x\n",
dev->name, (u_int) lp->txrhead->skb->data,
lp->txrcommit, hp100_inb(TX_PDL), donecount);
#endif
/* Conversion to new PCI API : NOP */
pci_unmap_single(lp->pci_dev, (dma_addr_t) lp->txrhead->pdl[1], lp->txrhead->pdl[2], PCI_DMA_TODEVICE);
dev_consume_skb_any(lp->txrhead->skb);
lp->txrhead->skb = NULL;
lp->txrhead = lp->txrhead->next;
lp->txrcommit--;
}
}
/* tx function for slave modes */
static netdev_tx_t hp100_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
unsigned long flags;
int i, ok_flag;
int ioaddr = dev->base_addr;
u_short val;
struct hp100_private *lp = netdev_priv(dev);
#ifdef HP100_DEBUG_B
hp100_outw(0x4212, TRACE);
printk("hp100: %s: start_xmit\n", dev->name);
#endif
if (skb->len <= 0)
goto drop;
if (hp100_check_lan(dev))
goto drop;
/* If there is not enough free memory on the card... */
i = hp100_inl(TX_MEM_FREE) & 0x7fffffff;
if (!(((i / 2) - 539) > (skb->len + 16) && (hp100_inb(TX_PKT_CNT) < 255))) {
#ifdef HP100_DEBUG
printk("hp100: %s: start_xmit: tx free mem = 0x%x\n", dev->name, i);
#endif
/* not waited long enough since last failed tx try? */
if (time_before(jiffies, dev_trans_start(dev) + HZ)) {
#ifdef HP100_DEBUG
printk("hp100: %s: trans_start timing problem\n",
dev->name);
#endif
goto drop;
}
if (lp->lan_type == HP100_LAN_100 && lp->hub_status < 0) {
/* we have a 100Mb/s adapter but it isn't connected to hub */
printk("hp100: %s: login to 100Mb/s hub retry\n", dev->name);
hp100_stop_interface(dev);
lp->hub_status = hp100_login_to_vg_hub(dev, 0);
hp100_start_interface(dev);
} else {
spin_lock_irqsave(&lp->lock, flags);
hp100_ints_off(); /* Useful ? Jean II */
i = hp100_sense_lan(dev);
hp100_ints_on();
spin_unlock_irqrestore(&lp->lock, flags);
if (i == HP100_LAN_ERR)
printk("hp100: %s: link down detected\n", dev->name);
else if (lp->lan_type != i) { /* cable change! */
/* it's very hard - all network setting must be changed!!! */
printk("hp100: %s: cable change 10Mb/s <-> 100Mb/s detected\n", dev->name);
lp->lan_type = i;
hp100_stop_interface(dev);
if (lp->lan_type == HP100_LAN_100)
lp->hub_status = hp100_login_to_vg_hub(dev, 0);
hp100_start_interface(dev);
} else {
printk("hp100: %s: interface reset\n", dev->name);
hp100_stop_interface(dev);
if (lp->lan_type == HP100_LAN_100)
lp->hub_status = hp100_login_to_vg_hub(dev, 0);
hp100_start_interface(dev);
mdelay(1);
}
}
goto drop;
}
for (i = 0; i < 6000 && (hp100_inb(OPTION_MSW) & HP100_TX_CMD); i++) {
#ifdef HP100_DEBUG_TX
printk("hp100: %s: start_xmit: busy\n", dev->name);
#endif
}
spin_lock_irqsave(&lp->lock, flags);
hp100_ints_off();
val = hp100_inw(IRQ_STATUS);
/* Ack / clear the interrupt TX_COMPLETE interrupt - this interrupt is set
* when the current packet being transmitted on the wire is completed. */
hp100_outw(HP100_TX_COMPLETE, IRQ_STATUS);
#ifdef HP100_DEBUG_TX
printk("hp100: %s: start_xmit: irq_status=0x%.4x, irqmask=0x%.4x, len=%d\n",
dev->name, val, hp100_inw(IRQ_MASK), (int) skb->len);
#endif
ok_flag = skb->len >= HP100_MIN_PACKET_SIZE;
i = ok_flag ? skb->len : HP100_MIN_PACKET_SIZE;
hp100_outw(i, DATA32); /* tell card the total packet length */
hp100_outw(i, FRAGMENT_LEN); /* and first/only fragment length */
if (lp->mode == 2) { /* memory mapped */
/* Note: The J2585B needs alignment to 32bits here! */
memcpy_toio(lp->mem_ptr_virt, skb->data, (skb->len + 3) & ~3);
if (!ok_flag)
memset_io(lp->mem_ptr_virt, 0, HP100_MIN_PACKET_SIZE - skb->len);
} else { /* programmed i/o */
outsl(ioaddr + HP100_REG_DATA32, skb->data,
(skb->len + 3) >> 2);
if (!ok_flag)
for (i = (skb->len + 3) & ~3; i < HP100_MIN_PACKET_SIZE; i += 4)
hp100_outl(0, DATA32);
}
hp100_outb(HP100_TX_CMD | HP100_SET_LB, OPTION_MSW); /* send packet */
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
hp100_ints_on();
spin_unlock_irqrestore(&lp->lock, flags);
dev_consume_skb_any(skb);
#ifdef HP100_DEBUG_TX
printk("hp100: %s: start_xmit: end\n", dev->name);
#endif
return NETDEV_TX_OK;
drop:
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
/*
* Receive Function (Non-Busmaster mode)
* Called when an "Receive Packet" interrupt occurs, i.e. the receive
* packet counter is non-zero.
* For non-busmaster, this function does the whole work of transferring
* the packet to the host memory and then up to higher layers via skb
* and netif_rx.
*/
static void hp100_rx(struct net_device *dev)
{
int packets, pkt_len;
int ioaddr = dev->base_addr;
struct hp100_private *lp = netdev_priv(dev);
u_int header;
struct sk_buff *skb;
#ifdef DEBUG_B
hp100_outw(0x4213, TRACE);
printk("hp100: %s: rx\n", dev->name);
#endif
/* First get indication of received lan packet */
/* RX_PKT_CND indicates the number of packets which have been fully */
/* received onto the card but have not been fully transferred of the card */
packets = hp100_inb(RX_PKT_CNT);
#ifdef HP100_DEBUG_RX
if (packets > 1)
printk("hp100: %s: rx: waiting packets = %d\n", dev->name, packets);
#endif
while (packets-- > 0) {
/* If ADV_NXT_PKT is still set, we have to wait until the card has */
/* really advanced to the next packet. */
for (pkt_len = 0; pkt_len < 6000 && (hp100_inb(OPTION_MSW) & HP100_ADV_NXT_PKT); pkt_len++) {
#ifdef HP100_DEBUG_RX
printk ("hp100: %s: rx: busy, remaining packets = %d\n", dev->name, packets);
#endif
}
/* First we get the header, which contains information about the */
/* actual length of the received packet. */
if (lp->mode == 2) { /* memory mapped mode */
header = readl(lp->mem_ptr_virt);
} else /* programmed i/o */
header = hp100_inl(DATA32);
pkt_len = ((header & HP100_PKT_LEN_MASK) + 3) & ~3;
#ifdef HP100_DEBUG_RX
printk("hp100: %s: rx: new packet - length=%d, errors=0x%x, dest=0x%x\n",
dev->name, header & HP100_PKT_LEN_MASK,
(header >> 16) & 0xfff8, (header >> 16) & 7);
#endif
/* Now we allocate the skb and transfer the data into it. */
skb = netdev_alloc_skb(dev, pkt_len + 2);
if (skb == NULL) { /* Not enough memory->drop packet */
#ifdef HP100_DEBUG
printk("hp100: %s: rx: couldn't allocate a sk_buff of size %d\n",
dev->name, pkt_len);
#endif
dev->stats.rx_dropped++;
} else { /* skb successfully allocated */
u_char *ptr;
skb_reserve(skb,2);
/* ptr to start of the sk_buff data area */
skb_put(skb, pkt_len);
ptr = skb->data;
/* Now transfer the data from the card into that area */
if (lp->mode == 2)
memcpy_fromio(ptr, lp->mem_ptr_virt,pkt_len);
else /* io mapped */
insl(ioaddr + HP100_REG_DATA32, ptr, pkt_len >> 2);
skb->protocol = eth_type_trans(skb, dev);
#ifdef HP100_DEBUG_RX
printk("hp100: %s: rx: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
dev->name, ptr[0], ptr[1], ptr[2], ptr[3],
ptr[4], ptr[5], ptr[6], ptr[7], ptr[8],
ptr[9], ptr[10], ptr[11]);
#endif
netif_rx(skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += pkt_len;
}
/* Indicate the card that we have got the packet */
hp100_outb(HP100_ADV_NXT_PKT | HP100_SET_LB, OPTION_MSW);
switch (header & 0x00070000) {
case (HP100_MULTI_ADDR_HASH << 16):
case (HP100_MULTI_ADDR_NO_HASH << 16):
dev->stats.multicast++;
break;
}
} /* end of while(there are packets) loop */
#ifdef HP100_DEBUG_RX
printk("hp100_rx: %s: end\n", dev->name);
#endif
}
/*
* Receive Function for Busmaster Mode
*/
static void hp100_rx_bm(struct net_device *dev)
{
int ioaddr = dev->base_addr;
struct hp100_private *lp = netdev_priv(dev);
hp100_ring_t *ptr;
u_int header;
int pkt_len;
#ifdef HP100_DEBUG_B
hp100_outw(0x4214, TRACE);
printk("hp100: %s: rx_bm\n", dev->name);
#endif
#ifdef HP100_DEBUG
if (0 == lp->rxrcommit) {
printk("hp100: %s: rx_bm called although no PDLs were committed to adapter?\n", dev->name);
return;
} else
/* RX_PKT_CNT states how many PDLs are currently formatted and available to
* the cards BM engine */
if ((hp100_inw(RX_PKT_CNT) & 0x00ff) >= lp->rxrcommit) {
printk("hp100: %s: More packets received than committed? RX_PKT_CNT=0x%x, commit=0x%x\n",
dev->name, hp100_inw(RX_PKT_CNT) & 0x00ff,
lp->rxrcommit);
return;
}
#endif
while ((lp->rxrcommit > hp100_inb(RX_PDL))) {
/*
* The packet was received into the pdl pointed to by lp->rxrhead (
* the oldest pdl in the ring
*/
/* First we get the header, which contains information about the */
/* actual length of the received packet. */
ptr = lp->rxrhead;
header = *(ptr->pdl - 1);
pkt_len = (header & HP100_PKT_LEN_MASK);
/* Conversion to new PCI API : NOP */
pci_unmap_single(lp->pci_dev, (dma_addr_t) ptr->pdl[3], MAX_ETHER_SIZE, PCI_DMA_FROMDEVICE);
#ifdef HP100_DEBUG_BM
printk("hp100: %s: rx_bm: header@0x%x=0x%x length=%d, errors=0x%x, dest=0x%x\n",
dev->name, (u_int) (ptr->pdl - 1), (u_int) header,
pkt_len, (header >> 16) & 0xfff8, (header >> 16) & 7);
printk("hp100: %s: RX_PDL_COUNT:0x%x TX_PDL_COUNT:0x%x, RX_PKT_CNT=0x%x PDH=0x%x, Data@0x%x len=0x%x\n",
dev->name, hp100_inb(RX_PDL), hp100_inb(TX_PDL),
hp100_inb(RX_PKT_CNT), (u_int) * (ptr->pdl),
(u_int) * (ptr->pdl + 3), (u_int) * (ptr->pdl + 4));
#endif
if ((pkt_len >= MIN_ETHER_SIZE) &&
(pkt_len <= MAX_ETHER_SIZE)) {
if (ptr->skb == NULL) {
printk("hp100: %s: rx_bm: skb null\n", dev->name);
/* can happen if we only allocated room for the pdh due to memory shortage. */
dev->stats.rx_dropped++;
} else {
skb_trim(ptr->skb, pkt_len); /* Shorten it */
ptr->skb->protocol =
eth_type_trans(ptr->skb, dev);
netif_rx(ptr->skb); /* Up and away... */
dev->stats.rx_packets++;
dev->stats.rx_bytes += pkt_len;
}
switch (header & 0x00070000) {
case (HP100_MULTI_ADDR_HASH << 16):
case (HP100_MULTI_ADDR_NO_HASH << 16):
dev->stats.multicast++;
break;
}
} else {
#ifdef HP100_DEBUG
printk("hp100: %s: rx_bm: Received bad packet (length=%d)\n", dev->name, pkt_len);
#endif
if (ptr->skb != NULL)
dev_kfree_skb_any(ptr->skb);
dev->stats.rx_errors++;
}
lp->rxrhead = lp->rxrhead->next;
/* Allocate a new rx PDL (so lp->rxrcommit stays the same) */
if (0 == hp100_build_rx_pdl(lp->rxrtail, dev)) {
/* No space for skb, header can still be received. */
#ifdef HP100_DEBUG
printk("hp100: %s: rx_bm: No space for new PDL.\n", dev->name);
#endif
return;
} else { /* successfully allocated new PDL - put it in ringlist at tail. */
hp100_outl((u32) lp->rxrtail->pdl_paddr, RX_PDA);
lp->rxrtail = lp->rxrtail->next;
}
}
}
/*
* statistics
*/
static struct net_device_stats *hp100_get_stats(struct net_device *dev)
{
unsigned long flags;
int ioaddr = dev->base_addr;
struct hp100_private *lp = netdev_priv(dev);
#ifdef HP100_DEBUG_B
hp100_outw(0x4215, TRACE);
#endif
spin_lock_irqsave(&lp->lock, flags);
hp100_ints_off(); /* Useful ? Jean II */
hp100_update_stats(dev);
hp100_ints_on();
spin_unlock_irqrestore(&lp->lock, flags);
return &(dev->stats);
}
static void hp100_update_stats(struct net_device *dev)
{
int ioaddr = dev->base_addr;
u_short val;
#ifdef HP100_DEBUG_B
hp100_outw(0x4216, TRACE);
printk("hp100: %s: update-stats\n", dev->name);
#endif
/* Note: Statistics counters clear when read. */
hp100_page(MAC_CTRL);
val = hp100_inw(DROPPED) & 0x0fff;
dev->stats.rx_errors += val;
dev->stats.rx_over_errors += val;
val = hp100_inb(CRC);
dev->stats.rx_errors += val;
dev->stats.rx_crc_errors += val;
val = hp100_inb(ABORT);
dev->stats.tx_errors += val;
dev->stats.tx_aborted_errors += val;
hp100_page(PERFORMANCE);
}
static void hp100_misc_interrupt(struct net_device *dev)
{
#ifdef HP100_DEBUG_B
int ioaddr = dev->base_addr;
#endif
#ifdef HP100_DEBUG_B
int ioaddr = dev->base_addr;
hp100_outw(0x4216, TRACE);
printk("hp100: %s: misc_interrupt\n", dev->name);
#endif
/* Note: Statistics counters clear when read. */
dev->stats.rx_errors++;
dev->stats.tx_errors++;
}
static void hp100_clear_stats(struct hp100_private *lp, int ioaddr)
{
unsigned long flags;
#ifdef HP100_DEBUG_B
hp100_outw(0x4217, TRACE);
printk("hp100: %s: clear_stats\n", dev->name);
#endif
spin_lock_irqsave(&lp->lock, flags);
hp100_page(MAC_CTRL); /* get all statistics bytes */
hp100_inw(DROPPED);
hp100_inb(CRC);
hp100_inb(ABORT);
hp100_page(PERFORMANCE);
spin_unlock_irqrestore(&lp->lock, flags);
}
/*
* multicast setup
*/
/*
* Set or clear the multicast filter for this adapter.
*/
static void hp100_set_multicast_list(struct net_device *dev)
{
unsigned long flags;
int ioaddr = dev->base_addr;
struct hp100_private *lp = netdev_priv(dev);
#ifdef HP100_DEBUG_B
hp100_outw(0x4218, TRACE);
printk("hp100: %s: set_mc_list\n", dev->name);
#endif
spin_lock_irqsave(&lp->lock, flags);
hp100_ints_off();
hp100_page(MAC_CTRL);
hp100_andb(~(HP100_RX_EN | HP100_TX_EN), MAC_CFG_1); /* stop rx/tx */
if (dev->flags & IFF_PROMISC) {
lp->mac2_mode = HP100_MAC2MODE6; /* promiscuous mode = get all good */
lp->mac1_mode = HP100_MAC1MODE6; /* packets on the net */
memset(&lp->hash_bytes, 0xff, 8);
} else if (!netdev_mc_empty(dev) || (dev->flags & IFF_ALLMULTI)) {
lp->mac2_mode = HP100_MAC2MODE5; /* multicast mode = get packets for */
lp->mac1_mode = HP100_MAC1MODE5; /* me, broadcasts and all multicasts */
#ifdef HP100_MULTICAST_FILTER /* doesn't work!!! */
if (dev->flags & IFF_ALLMULTI) {
/* set hash filter to receive all multicast packets */
memset(&lp->hash_bytes, 0xff, 8);
} else {
int i, idx;
u_char *addrs;
struct netdev_hw_addr *ha;
memset(&lp->hash_bytes, 0x00, 8);
#ifdef HP100_DEBUG
printk("hp100: %s: computing hash filter - mc_count = %i\n",
dev->name, netdev_mc_count(dev));
#endif
netdev_for_each_mc_addr(ha, dev) {
addrs = ha->addr;
#ifdef HP100_DEBUG
printk("hp100: %s: multicast = %pM, ",
dev->name, addrs);
#endif
for (i = idx = 0; i < 6; i++) {
idx ^= *addrs++ & 0x3f;
printk(":%02x:", idx);
}
#ifdef HP100_DEBUG
printk("idx = %i\n", idx);
#endif
lp->hash_bytes[idx >> 3] |= (1 << (idx & 7));
}
}
#else
memset(&lp->hash_bytes, 0xff, 8);
#endif
} else {
lp->mac2_mode = HP100_MAC2MODE3; /* normal mode = get packets for me */
lp->mac1_mode = HP100_MAC1MODE3; /* and broadcasts */
memset(&lp->hash_bytes, 0x00, 8);
}
if (((hp100_inb(MAC_CFG_1) & 0x0f) != lp->mac1_mode) ||
(hp100_inb(MAC_CFG_2) != lp->mac2_mode)) {
int i;
hp100_outb(lp->mac2_mode, MAC_CFG_2);
hp100_andb(HP100_MAC1MODEMASK, MAC_CFG_1); /* clear mac1 mode bits */
hp100_orb(lp->mac1_mode, MAC_CFG_1); /* and set the new mode */
hp100_page(MAC_ADDRESS);
for (i = 0; i < 8; i++)
hp100_outb(lp->hash_bytes[i], HASH_BYTE0 + i);
#ifdef HP100_DEBUG
printk("hp100: %s: mac1 = 0x%x, mac2 = 0x%x, multicast hash = %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
dev->name, lp->mac1_mode, lp->mac2_mode,
lp->hash_bytes[0], lp->hash_bytes[1],
lp->hash_bytes[2], lp->hash_bytes[3],
lp->hash_bytes[4], lp->hash_bytes[5],
lp->hash_bytes[6], lp->hash_bytes[7]);
#endif
if (lp->lan_type == HP100_LAN_100) {
#ifdef HP100_DEBUG
printk("hp100: %s: 100VG MAC settings have changed - relogin.\n", dev->name);
#endif
lp->hub_status = hp100_login_to_vg_hub(dev, 1); /* force a relogin to the hub */
}
} else {
int i;
u_char old_hash_bytes[8];
hp100_page(MAC_ADDRESS);
for (i = 0; i < 8; i++)
old_hash_bytes[i] = hp100_inb(HASH_BYTE0 + i);
if (memcmp(old_hash_bytes, &lp->hash_bytes, 8)) {
for (i = 0; i < 8; i++)
hp100_outb(lp->hash_bytes[i], HASH_BYTE0 + i);
#ifdef HP100_DEBUG
printk("hp100: %s: multicast hash = %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
dev->name, lp->hash_bytes[0],
lp->hash_bytes[1], lp->hash_bytes[2],
lp->hash_bytes[3], lp->hash_bytes[4],
lp->hash_bytes[5], lp->hash_bytes[6],
lp->hash_bytes[7]);
#endif
if (lp->lan_type == HP100_LAN_100) {
#ifdef HP100_DEBUG
printk("hp100: %s: 100VG MAC settings have changed - relogin.\n", dev->name);
#endif
lp->hub_status = hp100_login_to_vg_hub(dev, 1); /* force a relogin to the hub */
}
}
}
hp100_page(MAC_CTRL);
hp100_orb(HP100_RX_EN | HP100_RX_IDLE | /* enable rx */
HP100_TX_EN | HP100_TX_IDLE, MAC_CFG_1); /* enable tx */
hp100_page(PERFORMANCE);
hp100_ints_on();
spin_unlock_irqrestore(&lp->lock, flags);
}
/*
* hardware interrupt handling
*/
static irqreturn_t hp100_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct hp100_private *lp = netdev_priv(dev);
int ioaddr;
u_int val;
if (dev == NULL)
return IRQ_NONE;
ioaddr = dev->base_addr;
spin_lock(&lp->lock);
hp100_ints_off();
#ifdef HP100_DEBUG_B
hp100_outw(0x4219, TRACE);
#endif
/* hp100_page( PERFORMANCE ); */
val = hp100_inw(IRQ_STATUS);
#ifdef HP100_DEBUG_IRQ
printk("hp100: %s: mode=%x,IRQ_STAT=0x%.4x,RXPKTCNT=0x%.2x RXPDL=0x%.2x TXPKTCNT=0x%.2x TXPDL=0x%.2x\n",
dev->name, lp->mode, (u_int) val, hp100_inb(RX_PKT_CNT),
hp100_inb(RX_PDL), hp100_inb(TX_PKT_CNT), hp100_inb(TX_PDL));
#endif
if (val == 0) { /* might be a shared interrupt */
spin_unlock(&lp->lock);
hp100_ints_on();
return IRQ_NONE;
}
/* We're only interested in those interrupts we really enabled. */
/* val &= hp100_inw( IRQ_MASK ); */
/*
* RX_PDL_FILL_COMPL is set whenever a RX_PDL has been executed. A RX_PDL
* is considered executed whenever the RX_PDL data structure is no longer
* needed.
*/
if (val & HP100_RX_PDL_FILL_COMPL) {
if (lp->mode == 1)
hp100_rx_bm(dev);
else {
printk("hp100: %s: rx_pdl_fill_compl interrupt although not busmaster?\n", dev->name);
}
}
/*
* The RX_PACKET interrupt is set, when the receive packet counter is
* non zero. We use this interrupt for receiving in slave mode. In
* busmaster mode, we use it to make sure we did not miss any rx_pdl_fill
* interrupts. If rx_pdl_fill_compl is not set and rx_packet is set, then
* we somehow have missed a rx_pdl_fill_compl interrupt.
*/
if (val & HP100_RX_PACKET) { /* Receive Packet Counter is non zero */
if (lp->mode != 1) /* non busmaster */
hp100_rx(dev);
else if (!(val & HP100_RX_PDL_FILL_COMPL)) {
/* Shouldn't happen - maybe we missed a RX_PDL_FILL Interrupt? */
hp100_rx_bm(dev);
}
}
/*
* Ack. that we have noticed the interrupt and thereby allow next one.
* Note that this is now done after the slave rx function, since first
* acknowledging and then setting ADV_NXT_PKT caused an extra interrupt
* on the J2573.
*/
hp100_outw(val, IRQ_STATUS);
/*
* RX_ERROR is set when a packet is dropped due to no memory resources on
* the card or when a RCV_ERR occurs.
* TX_ERROR is set when a TX_ABORT condition occurs in the MAC->exists
* only in the 802.3 MAC and happens when 16 collisions occur during a TX
*/
if (val & (HP100_TX_ERROR | HP100_RX_ERROR)) {
#ifdef HP100_DEBUG_IRQ
printk("hp100: %s: TX/RX Error IRQ\n", dev->name);
#endif
hp100_update_stats(dev);
if (lp->mode == 1) {
hp100_rxfill(dev);
hp100_clean_txring(dev);
}
}
/*
* RX_PDA_ZERO is set when the PDA count goes from non-zero to zero.
*/
if ((lp->mode == 1) && (val & (HP100_RX_PDA_ZERO)))
hp100_rxfill(dev);
/*
* HP100_TX_COMPLETE interrupt occurs when packet transmitted on wire
* is completed
*/
if ((lp->mode == 1) && (val & (HP100_TX_COMPLETE)))
hp100_clean_txring(dev);
/*
* MISC_ERROR is set when either the LAN link goes down or a detected
* bus error occurs.
*/
if (val & HP100_MISC_ERROR) { /* New for J2585B */
#ifdef HP100_DEBUG_IRQ
printk
("hp100: %s: Misc. Error Interrupt - Check cabling.\n",
dev->name);
#endif
if (lp->mode == 1) {
hp100_clean_txring(dev);
hp100_rxfill(dev);
}
hp100_misc_interrupt(dev);
}
spin_unlock(&lp->lock);
hp100_ints_on();
return IRQ_HANDLED;
}
/*
* some misc functions
*/
static void hp100_start_interface(struct net_device *dev)
{
unsigned long flags;
int ioaddr = dev->base_addr;
struct hp100_private *lp = netdev_priv(dev);
#ifdef HP100_DEBUG_B
hp100_outw(0x4220, TRACE);
printk("hp100: %s: hp100_start_interface\n", dev->name);
#endif
spin_lock_irqsave(&lp->lock, flags);
/* Ensure the adapter does not want to request an interrupt when */
/* enabling the IRQ line to be active on the bus (i.e. not tri-stated) */
hp100_page(PERFORMANCE);
hp100_outw(0xfefe, IRQ_MASK); /* mask off all ints */
hp100_outw(0xffff, IRQ_STATUS); /* ack all IRQs */
hp100_outw(HP100_FAKE_INT | HP100_INT_EN | HP100_RESET_LB,
OPTION_LSW);
/* Un Tri-state int. TODO: Check if shared interrupts can be realised? */
hp100_outw(HP100_TRI_INT | HP100_RESET_HB, OPTION_LSW);
if (lp->mode == 1) {
/* Make sure BM bit is set... */
hp100_page(HW_MAP);
hp100_orb(HP100_BM_MASTER, BM);
hp100_rxfill(dev);
} else if (lp->mode == 2) {
/* Enable memory mapping. Note: Don't do this when busmaster. */
hp100_outw(HP100_MMAP_DIS | HP100_RESET_HB, OPTION_LSW);
}
hp100_page(PERFORMANCE);
hp100_outw(0xfefe, IRQ_MASK); /* mask off all ints */
hp100_outw(0xffff, IRQ_STATUS); /* ack IRQ */
/* enable a few interrupts: */
if (lp->mode == 1) { /* busmaster mode */
hp100_outw(HP100_RX_PDL_FILL_COMPL |
HP100_RX_PDA_ZERO | HP100_RX_ERROR |
/* HP100_RX_PACKET | */
/* HP100_RX_EARLY_INT | */ HP100_SET_HB |
/* HP100_TX_PDA_ZERO | */
HP100_TX_COMPLETE |
/* HP100_MISC_ERROR | */
HP100_TX_ERROR | HP100_SET_LB, IRQ_MASK);
} else {
hp100_outw(HP100_RX_PACKET |
HP100_RX_ERROR | HP100_SET_HB |
HP100_TX_ERROR | HP100_SET_LB, IRQ_MASK);
}
/* Note : before hp100_set_multicast_list(), because it will play with
* spinlock itself... Jean II */
spin_unlock_irqrestore(&lp->lock, flags);
/* Enable MAC Tx and RX, set MAC modes, ... */
hp100_set_multicast_list(dev);
}
static void hp100_stop_interface(struct net_device *dev)
{
struct hp100_private *lp = netdev_priv(dev);
int ioaddr = dev->base_addr;
u_int val;
#ifdef HP100_DEBUG_B
printk("hp100: %s: hp100_stop_interface\n", dev->name);
hp100_outw(0x4221, TRACE);
#endif
if (lp->mode == 1)
hp100_BM_shutdown(dev);
else {
/* Note: MMAP_DIS will be reenabled by start_interface */
hp100_outw(HP100_INT_EN | HP100_RESET_LB |
HP100_TRI_INT | HP100_MMAP_DIS | HP100_SET_HB,
OPTION_LSW);
val = hp100_inw(OPTION_LSW);
hp100_page(MAC_CTRL);
hp100_andb(~(HP100_RX_EN | HP100_TX_EN), MAC_CFG_1);
if (!(val & HP100_HW_RST))
return; /* If reset, imm. return ... */
/* ... else: busy wait until idle */
for (val = 0; val < 6000; val++)
if ((hp100_inb(MAC_CFG_1) & (HP100_TX_IDLE | HP100_RX_IDLE)) == (HP100_TX_IDLE | HP100_RX_IDLE)) {
hp100_page(PERFORMANCE);
return;
}
printk("hp100: %s: hp100_stop_interface - timeout\n", dev->name);
hp100_page(PERFORMANCE);
}
}
static void hp100_load_eeprom(struct net_device *dev, u_short probe_ioaddr)
{
int i;
int ioaddr = probe_ioaddr > 0 ? probe_ioaddr : dev->base_addr;
#ifdef HP100_DEBUG_B
hp100_outw(0x4222, TRACE);
#endif
hp100_page(EEPROM_CTRL);
hp100_andw(~HP100_EEPROM_LOAD, EEPROM_CTRL);
hp100_orw(HP100_EEPROM_LOAD, EEPROM_CTRL);
for (i = 0; i < 10000; i++)
if (!(hp100_inb(OPTION_MSW) & HP100_EE_LOAD))
return;
printk("hp100: %s: hp100_load_eeprom - timeout\n", dev->name);
}
/* Sense connection status.
* return values: LAN_10 - Connected to 10Mbit/s network
* LAN_100 - Connected to 100Mbit/s network
* LAN_ERR - not connected or 100Mbit/s Hub down
*/
static int hp100_sense_lan(struct net_device *dev)
{
int ioaddr = dev->base_addr;
u_short val_VG, val_10;
struct hp100_private *lp = netdev_priv(dev);
#ifdef HP100_DEBUG_B
hp100_outw(0x4223, TRACE);
#endif
hp100_page(MAC_CTRL);
val_10 = hp100_inb(10_LAN_CFG_1);
val_VG = hp100_inb(VG_LAN_CFG_1);
hp100_page(PERFORMANCE);
#ifdef HP100_DEBUG
printk("hp100: %s: sense_lan: val_VG = 0x%04x, val_10 = 0x%04x\n",
dev->name, val_VG, val_10);
#endif
if (val_10 & HP100_LINK_BEAT_ST) /* 10Mb connection is active */
return HP100_LAN_10;
if (val_10 & HP100_AUI_ST) { /* have we BNC or AUI onboard? */
/*
* This can be overriden by dos utility, so if this has no effect,
* perhaps you need to download that utility from HP and set card
* back to "auto detect".
*/
val_10 |= HP100_AUI_SEL | HP100_LOW_TH;
hp100_page(MAC_CTRL);
hp100_outb(val_10, 10_LAN_CFG_1);
hp100_page(PERFORMANCE);
return HP100_LAN_COAX;
}
/* Those cards don't have a 100 Mbit connector */
if ( !strcmp(lp->id, "HWP1920") ||
(lp->pci_dev &&
lp->pci_dev->vendor == PCI_VENDOR_ID &&
(lp->pci_dev->device == PCI_DEVICE_ID_HP_J2970A ||
lp->pci_dev->device == PCI_DEVICE_ID_HP_J2973A)))
return HP100_LAN_ERR;
if (val_VG & HP100_LINK_CABLE_ST) /* Can hear the HUBs tone. */
return HP100_LAN_100;
return HP100_LAN_ERR;
}
static int hp100_down_vg_link(struct net_device *dev)
{
struct hp100_private *lp = netdev_priv(dev);
int ioaddr = dev->base_addr;
unsigned long time;
long savelan, newlan;
#ifdef HP100_DEBUG_B
hp100_outw(0x4224, TRACE);
printk("hp100: %s: down_vg_link\n", dev->name);
#endif
hp100_page(MAC_CTRL);
time = jiffies + (HZ / 4);
do {
if (hp100_inb(VG_LAN_CFG_1) & HP100_LINK_CABLE_ST)
break;
if (!in_interrupt())
schedule_timeout_interruptible(1);
} while (time_after(time, jiffies));
if (time_after_eq(jiffies, time)) /* no signal->no logout */
return 0;
/* Drop the VG Link by clearing the link up cmd and load addr. */
hp100_andb(~(HP100_LOAD_ADDR | HP100_LINK_CMD), VG_LAN_CFG_1);
hp100_orb(HP100_VG_SEL, VG_LAN_CFG_1);
/* Conditionally stall for >250ms on Link-Up Status (to go down) */
time = jiffies + (HZ / 2);
do {
if (!(hp100_inb(VG_LAN_CFG_1) & HP100_LINK_UP_ST))
break;
if (!in_interrupt())
schedule_timeout_interruptible(1);
} while (time_after(time, jiffies));
#ifdef HP100_DEBUG
if (time_after_eq(jiffies, time))
printk("hp100: %s: down_vg_link: Link does not go down?\n", dev->name);
#endif
/* To prevent condition where Rev 1 VG MAC and old hubs do not complete */
/* logout under traffic (even though all the status bits are cleared), */
/* do this workaround to get the Rev 1 MAC in its idle state */
if (lp->chip == HP100_CHIPID_LASSEN) {
/* Reset VG MAC to insure it leaves the logoff state even if */
/* the Hub is still emitting tones */
hp100_andb(~HP100_VG_RESET, VG_LAN_CFG_1);
udelay(1500); /* wait for >1ms */
hp100_orb(HP100_VG_RESET, VG_LAN_CFG_1); /* Release Reset */
udelay(1500);
}
/* New: For lassen, switch to 10 Mbps mac briefly to clear training ACK */
/* to get the VG mac to full reset. This is not req.d with later chips */
/* Note: It will take the between 1 and 2 seconds for the VG mac to be */
/* selected again! This will be left to the connect hub function to */
/* perform if desired. */
if (lp->chip == HP100_CHIPID_LASSEN) {
/* Have to write to 10 and 100VG control registers simultaneously */
savelan = newlan = hp100_inl(10_LAN_CFG_1); /* read 10+100 LAN_CFG regs */
newlan &= ~(HP100_VG_SEL << 16);
newlan |= (HP100_DOT3_MAC) << 8;
hp100_andb(~HP100_AUTO_MODE, MAC_CFG_3); /* Autosel off */
hp100_outl(newlan, 10_LAN_CFG_1);
/* Conditionally stall for 5sec on VG selected. */
time = jiffies + (HZ * 5);
do {
if (!(hp100_inb(MAC_CFG_4) & HP100_MAC_SEL_ST))
break;
if (!in_interrupt())
schedule_timeout_interruptible(1);
} while (time_after(time, jiffies));
hp100_orb(HP100_AUTO_MODE, MAC_CFG_3); /* Autosel back on */
hp100_outl(savelan, 10_LAN_CFG_1);
}
time = jiffies + (3 * HZ); /* Timeout 3s */
do {
if ((hp100_inb(VG_LAN_CFG_1) & HP100_LINK_CABLE_ST) == 0)
break;
if (!in_interrupt())
schedule_timeout_interruptible(1);
} while (time_after(time, jiffies));
if (time_before_eq(time, jiffies)) {
#ifdef HP100_DEBUG
printk("hp100: %s: down_vg_link: timeout\n", dev->name);
#endif
return -EIO;
}
time = jiffies + (2 * HZ); /* This seems to take a while.... */
do {
if (!in_interrupt())
schedule_timeout_interruptible(1);
} while (time_after(time, jiffies));
return 0;
}
static int hp100_login_to_vg_hub(struct net_device *dev, u_short force_relogin)
{
int ioaddr = dev->base_addr;
struct hp100_private *lp = netdev_priv(dev);
u_short val = 0;
unsigned long time;
int startst;
#ifdef HP100_DEBUG_B
hp100_outw(0x4225, TRACE);
printk("hp100: %s: login_to_vg_hub\n", dev->name);
#endif
/* Initiate a login sequence iff VG MAC is enabled and either Load Address
* bit is zero or the force relogin flag is set (e.g. due to MAC address or
* promiscuous mode change)
*/
hp100_page(MAC_CTRL);
startst = hp100_inb(VG_LAN_CFG_1);
if ((force_relogin == 1) || (hp100_inb(MAC_CFG_4) & HP100_MAC_SEL_ST)) {
#ifdef HP100_DEBUG_TRAINING
printk("hp100: %s: Start training\n", dev->name);
#endif
/* Ensure VG Reset bit is 1 (i.e., do not reset) */
hp100_orb(HP100_VG_RESET, VG_LAN_CFG_1);
/* If Lassen AND auto-select-mode AND VG tones were sensed on */
/* entry then temporarily put them into force 100Mbit mode */
if ((lp->chip == HP100_CHIPID_LASSEN) && (startst & HP100_LINK_CABLE_ST))
hp100_andb(~HP100_DOT3_MAC, 10_LAN_CFG_2);
/* Drop the VG link by zeroing Link Up Command and Load Address */
hp100_andb(~(HP100_LINK_CMD /* |HP100_LOAD_ADDR */ ), VG_LAN_CFG_1);
#ifdef HP100_DEBUG_TRAINING
printk("hp100: %s: Bring down the link\n", dev->name);
#endif
/* Wait for link to drop */
time = jiffies + (HZ / 10);
do {
if (!(hp100_inb(VG_LAN_CFG_1) & HP100_LINK_UP_ST))
break;
if (!in_interrupt())
schedule_timeout_interruptible(1);
} while (time_after(time, jiffies));
/* Start an addressed training and optionally request promiscuous port */
if ((dev->flags) & IFF_PROMISC) {
hp100_orb(HP100_PROM_MODE, VG_LAN_CFG_2);
if (lp->chip == HP100_CHIPID_LASSEN)
hp100_orw(HP100_MACRQ_PROMSC, TRAIN_REQUEST);
} else {
hp100_andb(~HP100_PROM_MODE, VG_LAN_CFG_2);
/* For ETR parts we need to reset the prom. bit in the training
* register, otherwise promiscious mode won't be disabled.
*/
if (lp->chip == HP100_CHIPID_LASSEN) {
hp100_andw(~HP100_MACRQ_PROMSC, TRAIN_REQUEST);
}
}
/* With ETR parts, frame format request bits can be set. */
if (lp->chip == HP100_CHIPID_LASSEN)
hp100_orb(HP100_MACRQ_FRAMEFMT_EITHER, TRAIN_REQUEST);
hp100_orb(HP100_LINK_CMD | HP100_LOAD_ADDR | HP100_VG_RESET, VG_LAN_CFG_1);
/* Note: Next wait could be omitted for Hood and earlier chips under */
/* certain circumstances */
/* TODO: check if hood/earlier and skip wait. */
/* Wait for either short timeout for VG tones or long for login */
/* Wait for the card hardware to signalise link cable status ok... */
hp100_page(MAC_CTRL);
time = jiffies + (1 * HZ); /* 1 sec timeout for cable st */
do {
if (hp100_inb(VG_LAN_CFG_1) & HP100_LINK_CABLE_ST)
break;
if (!in_interrupt())
schedule_timeout_interruptible(1);
} while (time_before(jiffies, time));
if (time_after_eq(jiffies, time)) {
#ifdef HP100_DEBUG_TRAINING
printk("hp100: %s: Link cable status not ok? Training aborted.\n", dev->name);
#endif
} else {
#ifdef HP100_DEBUG_TRAINING
printk
("hp100: %s: HUB tones detected. Trying to train.\n",
dev->name);
#endif
time = jiffies + (2 * HZ); /* again a timeout */
do {
val = hp100_inb(VG_LAN_CFG_1);
if ((val & (HP100_LINK_UP_ST))) {
#ifdef HP100_DEBUG_TRAINING
printk("hp100: %s: Passed training.\n", dev->name);
#endif
break;
}
if (!in_interrupt())
schedule_timeout_interruptible(1);
} while (time_after(time, jiffies));
}
/* If LINK_UP_ST is set, then we are logged into the hub. */
if (time_before_eq(jiffies, time) && (val & HP100_LINK_UP_ST)) {
#ifdef HP100_DEBUG_TRAINING
printk("hp100: %s: Successfully logged into the HUB.\n", dev->name);
if (lp->chip == HP100_CHIPID_LASSEN) {
val = hp100_inw(TRAIN_ALLOW);
printk("hp100: %s: Card supports 100VG MAC Version \"%s\" ",
dev->name, (hp100_inw(TRAIN_REQUEST) & HP100_CARD_MACVER) ? "802.12" : "Pre");
printk("Driver will use MAC Version \"%s\"\n", (val & HP100_HUB_MACVER) ? "802.12" : "Pre");
printk("hp100: %s: Frame format is %s.\n", dev->name, (val & HP100_MALLOW_FRAMEFMT) ? "802.5" : "802.3");
}
#endif
} else {
/* If LINK_UP_ST is not set, login was not successful */
printk("hp100: %s: Problem logging into the HUB.\n", dev->name);
if (lp->chip == HP100_CHIPID_LASSEN) {
/* Check allowed Register to find out why there is a problem. */
val = hp100_inw(TRAIN_ALLOW); /* won't work on non-ETR card */
#ifdef HP100_DEBUG_TRAINING
printk("hp100: %s: MAC Configuration requested: 0x%04x, HUB allowed: 0x%04x\n", dev->name, hp100_inw(TRAIN_REQUEST), val);
#endif
if (val & HP100_MALLOW_ACCDENIED)
printk("hp100: %s: HUB access denied.\n", dev->name);
if (val & HP100_MALLOW_CONFIGURE)
printk("hp100: %s: MAC Configuration is incompatible with the Network.\n", dev->name);
if (val & HP100_MALLOW_DUPADDR)
printk("hp100: %s: Duplicate MAC Address on the Network.\n", dev->name);
}
}
/* If we have put the chip into forced 100 Mbit mode earlier, go back */
/* to auto-select mode */
if ((lp->chip == HP100_CHIPID_LASSEN) && (startst & HP100_LINK_CABLE_ST)) {
hp100_page(MAC_CTRL);
hp100_orb(HP100_DOT3_MAC, 10_LAN_CFG_2);
}
val = hp100_inb(VG_LAN_CFG_1);
/* Clear the MISC_ERROR Interrupt, which might be generated when doing the relogin */
hp100_page(PERFORMANCE);
hp100_outw(HP100_MISC_ERROR, IRQ_STATUS);
if (val & HP100_LINK_UP_ST)
return 0; /* login was ok */
else {
printk("hp100: %s: Training failed.\n", dev->name);
hp100_down_vg_link(dev);
return -EIO;
}
}
/* no forced relogin & already link there->no training. */
return -EIO;
}
static void hp100_cascade_reset(struct net_device *dev, u_short enable)
{
int ioaddr = dev->base_addr;
struct hp100_private *lp = netdev_priv(dev);
#ifdef HP100_DEBUG_B
hp100_outw(0x4226, TRACE);
printk("hp100: %s: cascade_reset\n", dev->name);
#endif
if (enable) {
hp100_outw(HP100_HW_RST | HP100_RESET_LB, OPTION_LSW);
if (lp->chip == HP100_CHIPID_LASSEN) {
/* Lassen requires a PCI transmit fifo reset */
hp100_page(HW_MAP);
hp100_andb(~HP100_PCI_RESET, PCICTRL2);
hp100_orb(HP100_PCI_RESET, PCICTRL2);
/* Wait for min. 300 ns */
/* we can't use jiffies here, because it may be */
/* that we have disabled the timer... */
udelay(400);
hp100_andb(~HP100_PCI_RESET, PCICTRL2);
hp100_page(PERFORMANCE);
}
} else { /* bring out of reset */
hp100_outw(HP100_HW_RST | HP100_SET_LB, OPTION_LSW);
udelay(400);
hp100_page(PERFORMANCE);
}
}
#ifdef HP100_DEBUG
void hp100_RegisterDump(struct net_device *dev)
{
int ioaddr = dev->base_addr;
int Page;
int Register;
/* Dump common registers */
printk("hp100: %s: Cascade Register Dump\n", dev->name);
printk("hardware id #1: 0x%.2x\n", hp100_inb(HW_ID));
printk("hardware id #2/paging: 0x%.2x\n", hp100_inb(PAGING));
printk("option #1: 0x%.4x\n", hp100_inw(OPTION_LSW));
printk("option #2: 0x%.4x\n", hp100_inw(OPTION_MSW));
/* Dump paged registers */
for (Page = 0; Page < 8; Page++) {
/* Dump registers */
printk("page: 0x%.2x\n", Page);
outw(Page, ioaddr + 0x02);
for (Register = 0x8; Register < 0x22; Register += 2) {
/* Display Register contents except data port */
if (((Register != 0x10) && (Register != 0x12)) || (Page > 0)) {
printk("0x%.2x = 0x%.4x\n", Register, inw(ioaddr + Register));
}
}
}
hp100_page(PERFORMANCE);
}
#endif
static void cleanup_dev(struct net_device *d)
{
struct hp100_private *p = netdev_priv(d);
unregister_netdev(d);
release_region(d->base_addr, HP100_REGION_SIZE);
if (p->mode == 1) /* busmaster */
pci_free_consistent(p->pci_dev, MAX_RINGSIZE + 0x0f,
p->page_vaddr_algn,
virt_to_whatever(d, p->page_vaddr_algn));
if (p->mem_ptr_virt)
iounmap(p->mem_ptr_virt);
free_netdev(d);
}
static int hp100_eisa_probe(struct device *gendev)
{
struct net_device *dev = alloc_etherdev(sizeof(struct hp100_private));
struct eisa_device *edev = to_eisa_device(gendev);
int err;
if (!dev)
return -ENOMEM;
SET_NETDEV_DEV(dev, &edev->dev);
err = hp100_probe1(dev, edev->base_addr + 0xC38, HP100_BUS_EISA, NULL);
if (err)
goto out1;
#ifdef HP100_DEBUG
printk("hp100: %s: EISA adapter found at 0x%x\n", dev->name,
dev->base_addr);
#endif
dev_set_drvdata(gendev, dev);
return 0;
out1:
free_netdev(dev);
return err;
}
static int hp100_eisa_remove(struct device *gendev)
{
struct net_device *dev = dev_get_drvdata(gendev);
cleanup_dev(dev);
return 0;
}
static struct eisa_driver hp100_eisa_driver = {
.id_table = hp100_eisa_tbl,
.driver = {
.name = "hp100",
.probe = hp100_eisa_probe,
.remove = hp100_eisa_remove,
}
};
static int hp100_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev;
int ioaddr;
u_short pci_command;
int err;
if (pci_enable_device(pdev))
return -ENODEV;
dev = alloc_etherdev(sizeof(struct hp100_private));
if (!dev) {
err = -ENOMEM;
goto out0;
}
SET_NETDEV_DEV(dev, &pdev->dev);
pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
if (!(pci_command & PCI_COMMAND_IO)) {
#ifdef HP100_DEBUG
printk("hp100: %s: PCI I/O Bit has not been set. Setting...\n", dev->name);
#endif
pci_command |= PCI_COMMAND_IO;
pci_write_config_word(pdev, PCI_COMMAND, pci_command);
}
if (!(pci_command & PCI_COMMAND_MASTER)) {
#ifdef HP100_DEBUG
printk("hp100: %s: PCI Master Bit has not been set. Setting...\n", dev->name);
#endif
pci_command |= PCI_COMMAND_MASTER;
pci_write_config_word(pdev, PCI_COMMAND, pci_command);
}
ioaddr = pci_resource_start(pdev, 0);
err = hp100_probe1(dev, ioaddr, HP100_BUS_PCI, pdev);
if (err)
goto out1;
#ifdef HP100_DEBUG
printk("hp100: %s: PCI adapter found at 0x%x\n", dev->name, ioaddr);
#endif
pci_set_drvdata(pdev, dev);
return 0;
out1:
free_netdev(dev);
out0:
pci_disable_device(pdev);
return err;
}
static void hp100_pci_remove(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
cleanup_dev(dev);
pci_disable_device(pdev);
}
static struct pci_driver hp100_pci_driver = {
.name = "hp100",
.id_table = hp100_pci_tbl,
.probe = hp100_pci_probe,
.remove = hp100_pci_remove,
};
/*
* module section
*/
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>, "
"Siegfried \"Frieder\" Loeffler (dg1sek) <floeff@mathematik.uni-stuttgart.de>");
MODULE_DESCRIPTION("HP CASCADE Architecture Driver for 100VG-AnyLan Network Adapters");
/*
* Note: to register three isa devices, use:
* option hp100 hp100_port=0,0,0
* to register one card at io 0x280 as eth239, use:
* option hp100 hp100_port=0x280
*/
#if defined(MODULE) && defined(CONFIG_ISA)
#define HP100_DEVICES 5
/* Parameters set by insmod */
static int hp100_port[HP100_DEVICES] = { 0, [1 ... (HP100_DEVICES-1)] = -1 };
module_param_hw_array(hp100_port, int, ioport, NULL, 0);
/* List of devices */
static struct net_device *hp100_devlist[HP100_DEVICES];
static int __init hp100_isa_init(void)
{
struct net_device *dev;
int i, err, cards = 0;
/* Don't autoprobe ISA bus */
if (hp100_port[0] == 0)
return -ENODEV;
/* Loop on all possible base addresses */
for (i = 0; i < HP100_DEVICES && hp100_port[i] != -1; ++i) {
dev = alloc_etherdev(sizeof(struct hp100_private));
if (!dev) {
while (cards > 0)
cleanup_dev(hp100_devlist[--cards]);
return -ENOMEM;
}
err = hp100_isa_probe(dev, hp100_port[i]);
if (!err)
hp100_devlist[cards++] = dev;
else
free_netdev(dev);
}
return cards > 0 ? 0 : -ENODEV;
}
static void hp100_isa_cleanup(void)
{
int i;
for (i = 0; i < HP100_DEVICES; i++) {
struct net_device *dev = hp100_devlist[i];
if (dev)
cleanup_dev(dev);
}
}
#else
#define hp100_isa_init() (0)
#define hp100_isa_cleanup() do { } while(0)
#endif
static int __init hp100_module_init(void)
{
int err;
err = hp100_isa_init();
if (err && err != -ENODEV)
goto out;
err = eisa_driver_register(&hp100_eisa_driver);
if (err && err != -ENODEV)
goto out2;
err = pci_register_driver(&hp100_pci_driver);
if (err && err != -ENODEV)
goto out3;
out:
return err;
out3:
eisa_driver_unregister (&hp100_eisa_driver);
out2:
hp100_isa_cleanup();
goto out;
}
static void __exit hp100_module_exit(void)
{
hp100_isa_cleanup();
eisa_driver_unregister (&hp100_eisa_driver);
pci_unregister_driver (&hp100_pci_driver);
}
module_init(hp100_module_init)
module_exit(hp100_module_exit)