blob: 1b56fc440606679d48bd014657a5008145fbc425 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/* SCTP kernel implementation
* (C) Copyright IBM Corp. 2001, 2004
* Copyright (c) 1999-2000 Cisco, Inc.
* Copyright (c) 1999-2001 Motorola, Inc.
* Copyright (c) 2001-2003 Intel Corp.
* Copyright (c) 2001-2002 Nokia, Inc.
* Copyright (c) 2001 La Monte H.P. Yarroll
*
* This file is part of the SCTP kernel implementation
*
* These functions interface with the sockets layer to implement the
* SCTP Extensions for the Sockets API.
*
* Note that the descriptions from the specification are USER level
* functions--this file is the functions which populate the struct proto
* for SCTP which is the BOTTOM of the sockets interface.
*
* Please send any bug reports or fixes you make to the
* email address(es):
* lksctp developers <linux-sctp@vger.kernel.org>
*
* Written or modified by:
* La Monte H.P. Yarroll <piggy@acm.org>
* Narasimha Budihal <narsi@refcode.org>
* Karl Knutson <karl@athena.chicago.il.us>
* Jon Grimm <jgrimm@us.ibm.com>
* Xingang Guo <xingang.guo@intel.com>
* Daisy Chang <daisyc@us.ibm.com>
* Sridhar Samudrala <samudrala@us.ibm.com>
* Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
* Ardelle Fan <ardelle.fan@intel.com>
* Ryan Layer <rmlayer@us.ibm.com>
* Anup Pemmaiah <pemmaiah@cc.usu.edu>
* Kevin Gao <kevin.gao@intel.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <crypto/hash.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/wait.h>
#include <linux/time.h>
#include <linux/sched/signal.h>
#include <linux/ip.h>
#include <linux/capability.h>
#include <linux/fcntl.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/compat.h>
#include <linux/rhashtable.h>
#include <net/ip.h>
#include <net/icmp.h>
#include <net/route.h>
#include <net/ipv6.h>
#include <net/inet_common.h>
#include <net/busy_poll.h>
#include <linux/socket.h> /* for sa_family_t */
#include <linux/export.h>
#include <net/sock.h>
#include <net/sctp/sctp.h>
#include <net/sctp/sm.h>
#include <net/sctp/stream_sched.h>
/* Forward declarations for internal helper functions. */
static bool sctp_writeable(struct sock *sk);
static void sctp_wfree(struct sk_buff *skb);
static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
size_t msg_len);
static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
static int sctp_wait_for_accept(struct sock *sk, long timeo);
static void sctp_wait_for_close(struct sock *sk, long timeo);
static void sctp_destruct_sock(struct sock *sk);
static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
union sctp_addr *addr, int len);
static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
static int sctp_send_asconf(struct sctp_association *asoc,
struct sctp_chunk *chunk);
static int sctp_do_bind(struct sock *, union sctp_addr *, int);
static int sctp_autobind(struct sock *sk);
static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
struct sctp_association *assoc,
enum sctp_socket_type type);
static unsigned long sctp_memory_pressure;
static atomic_long_t sctp_memory_allocated;
struct percpu_counter sctp_sockets_allocated;
static void sctp_enter_memory_pressure(struct sock *sk)
{
sctp_memory_pressure = 1;
}
/* Get the sndbuf space available at the time on the association. */
static inline int sctp_wspace(struct sctp_association *asoc)
{
struct sock *sk = asoc->base.sk;
return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
: sk_stream_wspace(sk);
}
/* Increment the used sndbuf space count of the corresponding association by
* the size of the outgoing data chunk.
* Also, set the skb destructor for sndbuf accounting later.
*
* Since it is always 1-1 between chunk and skb, and also a new skb is always
* allocated for chunk bundling in sctp_packet_transmit(), we can use the
* destructor in the data chunk skb for the purpose of the sndbuf space
* tracking.
*/
static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
{
struct sctp_association *asoc = chunk->asoc;
struct sock *sk = asoc->base.sk;
/* The sndbuf space is tracked per association. */
sctp_association_hold(asoc);
if (chunk->shkey)
sctp_auth_shkey_hold(chunk->shkey);
skb_set_owner_w(chunk->skb, sk);
chunk->skb->destructor = sctp_wfree;
/* Save the chunk pointer in skb for sctp_wfree to use later. */
skb_shinfo(chunk->skb)->destructor_arg = chunk;
refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
sk_mem_charge(sk, chunk->skb->truesize);
}
static void sctp_clear_owner_w(struct sctp_chunk *chunk)
{
skb_orphan(chunk->skb);
}
static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
void (*cb)(struct sctp_chunk *))
{
struct sctp_outq *q = &asoc->outqueue;
struct sctp_transport *t;
struct sctp_chunk *chunk;
list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
list_for_each_entry(chunk, &t->transmitted, transmitted_list)
cb(chunk);
list_for_each_entry(chunk, &q->retransmit, transmitted_list)
cb(chunk);
list_for_each_entry(chunk, &q->sacked, transmitted_list)
cb(chunk);
list_for_each_entry(chunk, &q->abandoned, transmitted_list)
cb(chunk);
list_for_each_entry(chunk, &q->out_chunk_list, list)
cb(chunk);
}
static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
void (*cb)(struct sk_buff *, struct sock *))
{
struct sk_buff *skb, *tmp;
sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
cb(skb, sk);
sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
cb(skb, sk);
sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
cb(skb, sk);
}
/* Verify that this is a valid address. */
static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
int len)
{
struct sctp_af *af;
/* Verify basic sockaddr. */
af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
if (!af)
return -EINVAL;
/* Is this a valid SCTP address? */
if (!af->addr_valid(addr, sctp_sk(sk), NULL))
return -EINVAL;
if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
return -EINVAL;
return 0;
}
/* Look up the association by its id. If this is not a UDP-style
* socket, the ID field is always ignored.
*/
struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
{
struct sctp_association *asoc = NULL;
/* If this is not a UDP-style socket, assoc id should be ignored. */
if (!sctp_style(sk, UDP)) {
/* Return NULL if the socket state is not ESTABLISHED. It
* could be a TCP-style listening socket or a socket which
* hasn't yet called connect() to establish an association.
*/
if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
return NULL;
/* Get the first and the only association from the list. */
if (!list_empty(&sctp_sk(sk)->ep->asocs))
asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
struct sctp_association, asocs);
return asoc;
}
/* Otherwise this is a UDP-style socket. */
if (id <= SCTP_ALL_ASSOC)
return NULL;
spin_lock_bh(&sctp_assocs_id_lock);
asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
if (asoc && (asoc->base.sk != sk || asoc->base.dead))
asoc = NULL;
spin_unlock_bh(&sctp_assocs_id_lock);
return asoc;
}
/* Look up the transport from an address and an assoc id. If both address and
* id are specified, the associations matching the address and the id should be
* the same.
*/
static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
struct sockaddr_storage *addr,
sctp_assoc_t id)
{
struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
union sctp_addr *laddr = (union sctp_addr *)addr;
struct sctp_transport *transport;
if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
return NULL;
addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
laddr,
&transport);
if (!addr_asoc)
return NULL;
id_asoc = sctp_id2assoc(sk, id);
if (id_asoc && (id_asoc != addr_asoc))
return NULL;
sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
(union sctp_addr *)addr);
return transport;
}
/* API 3.1.2 bind() - UDP Style Syntax
* The syntax of bind() is,
*
* ret = bind(int sd, struct sockaddr *addr, int addrlen);
*
* sd - the socket descriptor returned by socket().
* addr - the address structure (struct sockaddr_in or struct
* sockaddr_in6 [RFC 2553]),
* addr_len - the size of the address structure.
*/
static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
{
int retval = 0;
lock_sock(sk);
pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
addr, addr_len);
/* Disallow binding twice. */
if (!sctp_sk(sk)->ep->base.bind_addr.port)
retval = sctp_do_bind(sk, (union sctp_addr *)addr,
addr_len);
else
retval = -EINVAL;
release_sock(sk);
return retval;
}
static int sctp_get_port_local(struct sock *, union sctp_addr *);
/* Verify this is a valid sockaddr. */
static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
union sctp_addr *addr, int len)
{
struct sctp_af *af;
/* Check minimum size. */
if (len < sizeof (struct sockaddr))
return NULL;
if (!opt->pf->af_supported(addr->sa.sa_family, opt))
return NULL;
if (addr->sa.sa_family == AF_INET6) {
if (len < SIN6_LEN_RFC2133)
return NULL;
/* V4 mapped address are really of AF_INET family */
if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
!opt->pf->af_supported(AF_INET, opt))
return NULL;
}
/* If we get this far, af is valid. */
af = sctp_get_af_specific(addr->sa.sa_family);
if (len < af->sockaddr_len)
return NULL;
return af;
}
/* Bind a local address either to an endpoint or to an association. */
static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
{
struct net *net = sock_net(sk);
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
struct sctp_bind_addr *bp = &ep->base.bind_addr;
struct sctp_af *af;
unsigned short snum;
int ret = 0;
/* Common sockaddr verification. */
af = sctp_sockaddr_af(sp, addr, len);
if (!af) {
pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
__func__, sk, addr, len);
return -EINVAL;
}
snum = ntohs(addr->v4.sin_port);
pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
__func__, sk, &addr->sa, bp->port, snum, len);
/* PF specific bind() address verification. */
if (!sp->pf->bind_verify(sp, addr))
return -EADDRNOTAVAIL;
/* We must either be unbound, or bind to the same port.
* It's OK to allow 0 ports if we are already bound.
* We'll just inhert an already bound port in this case
*/
if (bp->port) {
if (!snum)
snum = bp->port;
else if (snum != bp->port) {
pr_debug("%s: new port %d doesn't match existing port "
"%d\n", __func__, snum, bp->port);
return -EINVAL;
}
}
if (snum && inet_port_requires_bind_service(net, snum) &&
!ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
return -EACCES;
/* See if the address matches any of the addresses we may have
* already bound before checking against other endpoints.
*/
if (sctp_bind_addr_match(bp, addr, sp))
return -EINVAL;
/* Make sure we are allowed to bind here.
* The function sctp_get_port_local() does duplicate address
* detection.
*/
addr->v4.sin_port = htons(snum);
if (sctp_get_port_local(sk, addr))
return -EADDRINUSE;
/* Refresh ephemeral port. */
if (!bp->port)
bp->port = inet_sk(sk)->inet_num;
/* Add the address to the bind address list.
* Use GFP_ATOMIC since BHs will be disabled.
*/
ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
SCTP_ADDR_SRC, GFP_ATOMIC);
if (ret) {
sctp_put_port(sk);
return ret;
}
/* Copy back into socket for getsockname() use. */
inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
sp->pf->to_sk_saddr(addr, sk);
return ret;
}
/* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
*
* R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
* at any one time. If a sender, after sending an ASCONF chunk, decides
* it needs to transfer another ASCONF Chunk, it MUST wait until the
* ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
* subsequent ASCONF. Note this restriction binds each side, so at any
* time two ASCONF may be in-transit on any given association (one sent
* from each endpoint).
*/
static int sctp_send_asconf(struct sctp_association *asoc,
struct sctp_chunk *chunk)
{
int retval = 0;
/* If there is an outstanding ASCONF chunk, queue it for later
* transmission.
*/
if (asoc->addip_last_asconf) {
list_add_tail(&chunk->list, &asoc->addip_chunk_list);
goto out;
}
/* Hold the chunk until an ASCONF_ACK is received. */
sctp_chunk_hold(chunk);
retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
if (retval)
sctp_chunk_free(chunk);
else
asoc->addip_last_asconf = chunk;
out:
return retval;
}
/* Add a list of addresses as bind addresses to local endpoint or
* association.
*
* Basically run through each address specified in the addrs/addrcnt
* array/length pair, determine if it is IPv6 or IPv4 and call
* sctp_do_bind() on it.
*
* If any of them fails, then the operation will be reversed and the
* ones that were added will be removed.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
{
int cnt;
int retval = 0;
void *addr_buf;
struct sockaddr *sa_addr;
struct sctp_af *af;
pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
addrs, addrcnt);
addr_buf = addrs;
for (cnt = 0; cnt < addrcnt; cnt++) {
/* The list may contain either IPv4 or IPv6 address;
* determine the address length for walking thru the list.
*/
sa_addr = addr_buf;
af = sctp_get_af_specific(sa_addr->sa_family);
if (!af) {
retval = -EINVAL;
goto err_bindx_add;
}
retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
af->sockaddr_len);
addr_buf += af->sockaddr_len;
err_bindx_add:
if (retval < 0) {
/* Failed. Cleanup the ones that have been added */
if (cnt > 0)
sctp_bindx_rem(sk, addrs, cnt);
return retval;
}
}
return retval;
}
/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
* associations that are part of the endpoint indicating that a list of local
* addresses are added to the endpoint.
*
* If any of the addresses is already in the bind address list of the
* association, we do not send the chunk for that association. But it will not
* affect other associations.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_send_asconf_add_ip(struct sock *sk,
struct sockaddr *addrs,
int addrcnt)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *asoc;
struct sctp_bind_addr *bp;
struct sctp_chunk *chunk;
struct sctp_sockaddr_entry *laddr;
union sctp_addr *addr;
union sctp_addr saveaddr;
void *addr_buf;
struct sctp_af *af;
struct list_head *p;
int i;
int retval = 0;
sp = sctp_sk(sk);
ep = sp->ep;
if (!ep->asconf_enable)
return retval;
pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
__func__, sk, addrs, addrcnt);
list_for_each_entry(asoc, &ep->asocs, asocs) {
if (!asoc->peer.asconf_capable)
continue;
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
continue;
if (!sctp_state(asoc, ESTABLISHED))
continue;
/* Check if any address in the packed array of addresses is
* in the bind address list of the association. If so,
* do not send the asconf chunk to its peer, but continue with
* other associations.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
addr = addr_buf;
af = sctp_get_af_specific(addr->v4.sin_family);
if (!af) {
retval = -EINVAL;
goto out;
}
if (sctp_assoc_lookup_laddr(asoc, addr))
break;
addr_buf += af->sockaddr_len;
}
if (i < addrcnt)
continue;
/* Use the first valid address in bind addr list of
* association as Address Parameter of ASCONF CHUNK.
*/
bp = &asoc->base.bind_addr;
p = bp->address_list.next;
laddr = list_entry(p, struct sctp_sockaddr_entry, list);
chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
addrcnt, SCTP_PARAM_ADD_IP);
if (!chunk) {
retval = -ENOMEM;
goto out;
}
/* Add the new addresses to the bind address list with
* use_as_src set to 0.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
addr = addr_buf;
af = sctp_get_af_specific(addr->v4.sin_family);
memcpy(&saveaddr, addr, af->sockaddr_len);
retval = sctp_add_bind_addr(bp, &saveaddr,
sizeof(saveaddr),
SCTP_ADDR_NEW, GFP_ATOMIC);
addr_buf += af->sockaddr_len;
}
if (asoc->src_out_of_asoc_ok) {
struct sctp_transport *trans;
list_for_each_entry(trans,
&asoc->peer.transport_addr_list, transports) {
trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
2*asoc->pathmtu, 4380));
trans->ssthresh = asoc->peer.i.a_rwnd;
trans->rto = asoc->rto_initial;
sctp_max_rto(asoc, trans);
trans->rtt = trans->srtt = trans->rttvar = 0;
/* Clear the source and route cache */
sctp_transport_route(trans, NULL,
sctp_sk(asoc->base.sk));
}
}
retval = sctp_send_asconf(asoc, chunk);
}
out:
return retval;
}
/* Remove a list of addresses from bind addresses list. Do not remove the
* last address.
*
* Basically run through each address specified in the addrs/addrcnt
* array/length pair, determine if it is IPv6 or IPv4 and call
* sctp_del_bind() on it.
*
* If any of them fails, then the operation will be reversed and the
* ones that were removed will be added back.
*
* At least one address has to be left; if only one address is
* available, the operation will return -EBUSY.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
int cnt;
struct sctp_bind_addr *bp = &ep->base.bind_addr;
int retval = 0;
void *addr_buf;
union sctp_addr *sa_addr;
struct sctp_af *af;
pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
__func__, sk, addrs, addrcnt);
addr_buf = addrs;
for (cnt = 0; cnt < addrcnt; cnt++) {
/* If the bind address list is empty or if there is only one
* bind address, there is nothing more to be removed (we need
* at least one address here).
*/
if (list_empty(&bp->address_list) ||
(sctp_list_single_entry(&bp->address_list))) {
retval = -EBUSY;
goto err_bindx_rem;
}
sa_addr = addr_buf;
af = sctp_get_af_specific(sa_addr->sa.sa_family);
if (!af) {
retval = -EINVAL;
goto err_bindx_rem;
}
if (!af->addr_valid(sa_addr, sp, NULL)) {
retval = -EADDRNOTAVAIL;
goto err_bindx_rem;
}
if (sa_addr->v4.sin_port &&
sa_addr->v4.sin_port != htons(bp->port)) {
retval = -EINVAL;
goto err_bindx_rem;
}
if (!sa_addr->v4.sin_port)
sa_addr->v4.sin_port = htons(bp->port);
/* FIXME - There is probably a need to check if sk->sk_saddr and
* sk->sk_rcv_addr are currently set to one of the addresses to
* be removed. This is something which needs to be looked into
* when we are fixing the outstanding issues with multi-homing
* socket routing and failover schemes. Refer to comments in
* sctp_do_bind(). -daisy
*/
retval = sctp_del_bind_addr(bp, sa_addr);
addr_buf += af->sockaddr_len;
err_bindx_rem:
if (retval < 0) {
/* Failed. Add the ones that has been removed back */
if (cnt > 0)
sctp_bindx_add(sk, addrs, cnt);
return retval;
}
}
return retval;
}
/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
* the associations that are part of the endpoint indicating that a list of
* local addresses are removed from the endpoint.
*
* If any of the addresses is already in the bind address list of the
* association, we do not send the chunk for that association. But it will not
* affect other associations.
*
* Only sctp_setsockopt_bindx() is supposed to call this function.
*/
static int sctp_send_asconf_del_ip(struct sock *sk,
struct sockaddr *addrs,
int addrcnt)
{
struct sctp_sock *sp;
struct sctp_endpoint *ep;
struct sctp_association *asoc;
struct sctp_transport *transport;
struct sctp_bind_addr *bp;
struct sctp_chunk *chunk;
union sctp_addr *laddr;
void *addr_buf;
struct sctp_af *af;
struct sctp_sockaddr_entry *saddr;
int i;
int retval = 0;
int stored = 0;
chunk = NULL;
sp = sctp_sk(sk);
ep = sp->ep;
if (!ep->asconf_enable)
return retval;
pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
__func__, sk, addrs, addrcnt);
list_for_each_entry(asoc, &ep->asocs, asocs) {
if (!asoc->peer.asconf_capable)
continue;
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
continue;
if (!sctp_state(asoc, ESTABLISHED))
continue;
/* Check if any address in the packed array of addresses is
* not present in the bind address list of the association.
* If so, do not send the asconf chunk to its peer, but
* continue with other associations.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
laddr = addr_buf;
af = sctp_get_af_specific(laddr->v4.sin_family);
if (!af) {
retval = -EINVAL;
goto out;
}
if (!sctp_assoc_lookup_laddr(asoc, laddr))
break;
addr_buf += af->sockaddr_len;
}
if (i < addrcnt)
continue;
/* Find one address in the association's bind address list
* that is not in the packed array of addresses. This is to
* make sure that we do not delete all the addresses in the
* association.
*/
bp = &asoc->base.bind_addr;
laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
addrcnt, sp);
if ((laddr == NULL) && (addrcnt == 1)) {
if (asoc->asconf_addr_del_pending)
continue;
asoc->asconf_addr_del_pending =
kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
if (asoc->asconf_addr_del_pending == NULL) {
retval = -ENOMEM;
goto out;
}
asoc->asconf_addr_del_pending->sa.sa_family =
addrs->sa_family;
asoc->asconf_addr_del_pending->v4.sin_port =
htons(bp->port);
if (addrs->sa_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)addrs;
asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
} else if (addrs->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)addrs;
asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
}
pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
__func__, asoc, &asoc->asconf_addr_del_pending->sa,
asoc->asconf_addr_del_pending);
asoc->src_out_of_asoc_ok = 1;
stored = 1;
goto skip_mkasconf;
}
if (laddr == NULL)
return -EINVAL;
/* We do not need RCU protection throughout this loop
* because this is done under a socket lock from the
* setsockopt call.
*/
chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
SCTP_PARAM_DEL_IP);
if (!chunk) {
retval = -ENOMEM;
goto out;
}
skip_mkasconf:
/* Reset use_as_src flag for the addresses in the bind address
* list that are to be deleted.
*/
addr_buf = addrs;
for (i = 0; i < addrcnt; i++) {
laddr = addr_buf;
af = sctp_get_af_specific(laddr->v4.sin_family);
list_for_each_entry(saddr, &bp->address_list, list) {
if (sctp_cmp_addr_exact(&saddr->a, laddr))
saddr->state = SCTP_ADDR_DEL;
}
addr_buf += af->sockaddr_len;
}
/* Update the route and saddr entries for all the transports
* as some of the addresses in the bind address list are
* about to be deleted and cannot be used as source addresses.
*/
list_for_each_entry(transport, &asoc->peer.transport_addr_list,
transports) {
sctp_transport_route(transport, NULL,
sctp_sk(asoc->base.sk));
}
if (stored)
/* We don't need to transmit ASCONF */
continue;
retval = sctp_send_asconf(asoc, chunk);
}
out:
return retval;
}
/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
{
struct sock *sk = sctp_opt2sk(sp);
union sctp_addr *addr;
struct sctp_af *af;
/* It is safe to write port space in caller. */
addr = &addrw->a;
addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
af = sctp_get_af_specific(addr->sa.sa_family);
if (!af)
return -EINVAL;
if (sctp_verify_addr(sk, addr, af->sockaddr_len))
return -EINVAL;
if (addrw->state == SCTP_ADDR_NEW)
return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
else
return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
}
/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
*
* API 8.1
* int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
* int flags);
*
* If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
* If the sd is an IPv6 socket, the addresses passed can either be IPv4
* or IPv6 addresses.
*
* A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
* Section 3.1.2 for this usage.
*
* addrs is a pointer to an array of one or more socket addresses. Each
* address is contained in its appropriate structure (i.e. struct
* sockaddr_in or struct sockaddr_in6) the family of the address type
* must be used to distinguish the address length (note that this
* representation is termed a "packed array" of addresses). The caller
* specifies the number of addresses in the array with addrcnt.
*
* On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
* -1, and sets errno to the appropriate error code.
*
* For SCTP, the port given in each socket address must be the same, or
* sctp_bindx() will fail, setting errno to EINVAL.
*
* The flags parameter is formed from the bitwise OR of zero or more of
* the following currently defined flags:
*
* SCTP_BINDX_ADD_ADDR
*
* SCTP_BINDX_REM_ADDR
*
* SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
* association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
* addresses from the association. The two flags are mutually exclusive;
* if both are given, sctp_bindx() will fail with EINVAL. A caller may
* not remove all addresses from an association; sctp_bindx() will
* reject such an attempt with EINVAL.
*
* An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
* additional addresses with an endpoint after calling bind(). Or use
* sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
* socket is associated with so that no new association accepted will be
* associated with those addresses. If the endpoint supports dynamic
* address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
* endpoint to send the appropriate message to the peer to change the
* peers address lists.
*
* Adding and removing addresses from a connected association is
* optional functionality. Implementations that do not support this
* functionality should return EOPNOTSUPP.
*
* Basically do nothing but copying the addresses from user to kernel
* land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
* This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
* from userspace.
*
* On exit there is no need to do sockfd_put(), sys_setsockopt() does
* it.
*
* sk The sk of the socket
* addrs The pointer to the addresses in user land
* addrssize Size of the addrs buffer
* op Operation to perform (add or remove, see the flags of
* sctp_bindx)
*
* Returns 0 if ok, <0 errno code on error.
*/
static int sctp_setsockopt_bindx(struct sock *sk,
struct sockaddr __user *addrs,
int addrs_size, int op)
{
struct sockaddr *kaddrs;
int err;
int addrcnt = 0;
int walk_size = 0;
struct sockaddr *sa_addr;
void *addr_buf;
struct sctp_af *af;
pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
__func__, sk, addrs, addrs_size, op);
if (unlikely(addrs_size <= 0))
return -EINVAL;
kaddrs = memdup_user(addrs, addrs_size);
if (IS_ERR(kaddrs))
return PTR_ERR(kaddrs);
/* Walk through the addrs buffer and count the number of addresses. */
addr_buf = kaddrs;
while (walk_size < addrs_size) {
if (walk_size + sizeof(sa_family_t) > addrs_size) {
kfree(kaddrs);
return -EINVAL;
}
sa_addr = addr_buf;
af = sctp_get_af_specific(sa_addr->sa_family);
/* If the address family is not supported or if this address
* causes the address buffer to overflow return EINVAL.
*/
if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
kfree(kaddrs);
return -EINVAL;
}
addrcnt++;
addr_buf += af->sockaddr_len;
walk_size += af->sockaddr_len;
}
/* Do the work. */
switch (op) {
case SCTP_BINDX_ADD_ADDR:
/* Allow security module to validate bindx addresses. */
err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
(struct sockaddr *)kaddrs,
addrs_size);
if (err)
goto out;
err = sctp_bindx_add(sk, kaddrs, addrcnt);
if (err)
goto out;
err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
break;
case SCTP_BINDX_REM_ADDR:
err = sctp_bindx_rem(sk, kaddrs, addrcnt);
if (err)
goto out;
err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
break;
default:
err = -EINVAL;
break;
}
out:
kfree(kaddrs);
return err;
}
static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
const union sctp_addr *daddr,
const struct sctp_initmsg *init,
struct sctp_transport **tp)
{
struct sctp_association *asoc;
struct sock *sk = ep->base.sk;
struct net *net = sock_net(sk);
enum sctp_scope scope;
int err;
if (sctp_endpoint_is_peeled_off(ep, daddr))
return -EADDRNOTAVAIL;
if (!ep->base.bind_addr.port) {
if (sctp_autobind(sk))
return -EAGAIN;
} else {
if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
!ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
return -EACCES;
}
scope = sctp_scope(daddr);
asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
if (!asoc)
return -ENOMEM;
err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
if (err < 0)
goto free;
*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
if (!*tp) {
err = -ENOMEM;
goto free;
}
if (!init)
return 0;
if (init->sinit_num_ostreams) {
__u16 outcnt = init->sinit_num_ostreams;
asoc->c.sinit_num_ostreams = outcnt;
/* outcnt has been changed, need to re-init stream */
err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
if (err)
goto free;
}
if (init->sinit_max_instreams)
asoc->c.sinit_max_instreams = init->sinit_max_instreams;
if (init->sinit_max_attempts)
asoc->max_init_attempts = init->sinit_max_attempts;
if (init->sinit_max_init_timeo)
asoc->max_init_timeo =
msecs_to_jiffies(init->sinit_max_init_timeo);
return 0;
free:
sctp_association_free(asoc);
return err;
}
static int sctp_connect_add_peer(struct sctp_association *asoc,
union sctp_addr *daddr, int addr_len)
{
struct sctp_endpoint *ep = asoc->ep;
struct sctp_association *old;
struct sctp_transport *t;
int err;
err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
if (err)
return err;
old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
if (old && old != asoc)
return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
: -EALREADY;
if (sctp_endpoint_is_peeled_off(ep, daddr))
return -EADDRNOTAVAIL;
t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
if (!t)
return -ENOMEM;
return 0;
}
/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
*
* Common routine for handling connect() and sctp_connectx().
* Connect will come in with just a single address.
*/
static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
int addrs_size, int flags, sctp_assoc_t *assoc_id)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_endpoint *ep = sp->ep;
struct sctp_transport *transport;
struct sctp_association *asoc;
void *addr_buf = kaddrs;
union sctp_addr *daddr;
struct sctp_af *af;
int walk_size, err;
long timeo;
if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
(sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
return -EISCONN;
daddr = addr_buf;
af = sctp_get_af_specific(daddr->sa.sa_family);
if (!af || af->sockaddr_len > addrs_size)
return -EINVAL;
err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
if (err)
return err;
asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
if (asoc)
return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
: -EALREADY;
err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
if (err)
return err;
asoc = transport->asoc;
addr_buf += af->sockaddr_len;
walk_size = af->sockaddr_len;
while (walk_size < addrs_size) {
err = -EINVAL;
if (walk_size + sizeof(sa_family_t) > addrs_size)
goto out_free;
daddr = addr_buf;
af = sctp_get_af_specific(daddr->sa.sa_family);
if (!af || af->sockaddr_len + walk_size > addrs_size)
goto out_free;
if (asoc->peer.port != ntohs(daddr->v4.sin_port))
goto out_free;
err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
if (err)
goto out_free;
addr_buf += af->sockaddr_len;
walk_size += af->sockaddr_len;
}
/* In case the user of sctp_connectx() wants an association
* id back, assign one now.
*/
if (assoc_id) {
err = sctp_assoc_set_id(asoc, GFP_KERNEL);
if (err < 0)
goto out_free;
}
err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
if (err < 0)
goto out_free;
/* Initialize sk's dport and daddr for getpeername() */
inet_sk(sk)->inet_dport = htons(asoc->peer.port);
sp->pf->to_sk_daddr(daddr, sk);
sk->sk_err = 0;
if (assoc_id)
*assoc_id = asoc->assoc_id;
timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
return sctp_wait_for_connect(asoc, &timeo);
out_free:
pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
__func__, asoc, kaddrs, err);
sctp_association_free(asoc);
return err;
}
/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
*
* API 8.9
* int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
* sctp_assoc_t *asoc);
*
* If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
* If the sd is an IPv6 socket, the addresses passed can either be IPv4
* or IPv6 addresses.
*
* A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
* Section 3.1.2 for this usage.
*
* addrs is a pointer to an array of one or more socket addresses. Each
* address is contained in its appropriate structure (i.e. struct
* sockaddr_in or struct sockaddr_in6) the family of the address type
* must be used to distengish the address length (note that this
* representation is termed a "packed array" of addresses). The caller
* specifies the number of addresses in the array with addrcnt.
*
* On success, sctp_connectx() returns 0. It also sets the assoc_id to
* the association id of the new association. On failure, sctp_connectx()
* returns -1, and sets errno to the appropriate error code. The assoc_id
* is not touched by the kernel.
*
* For SCTP, the port given in each socket address must be the same, or
* sctp_connectx() will fail, setting errno to EINVAL.
*
* An application can use sctp_connectx to initiate an association with
* an endpoint that is multi-homed. Much like sctp_bindx() this call
* allows a caller to specify multiple addresses at which a peer can be
* reached. The way the SCTP stack uses the list of addresses to set up
* the association is implementation dependent. This function only
* specifies that the stack will try to make use of all the addresses in
* the list when needed.
*
* Note that the list of addresses passed in is only used for setting up
* the association. It does not necessarily equal the set of addresses
* the peer uses for the resulting association. If the caller wants to
* find out the set of peer addresses, it must use sctp_getpaddrs() to
* retrieve them after the association has been set up.
*
* Basically do nothing but copying the addresses from user to kernel
* land and invoking either sctp_connectx(). This is used for tunneling
* the sctp_connectx() request through sctp_setsockopt() from userspace.
*
* On exit there is no need to do sockfd_put(), sys_setsockopt() does
* it.
*
* sk The sk of the socket
* addrs The pointer to the addresses in user land
* addrssize Size of the addrs buffer
*
* Returns >=0 if ok, <0 errno code on error.
*/
static int __sctp_setsockopt_connectx(struct sock *sk,
struct sockaddr __user *addrs,
int addrs_size,
sctp_assoc_t *assoc_id)
{
struct sockaddr *kaddrs;
int err = 0, flags = 0;
pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
__func__, sk, addrs, addrs_size);
/* make sure the 1st addr's sa_family is accessible later */
if (unlikely(addrs_size < sizeof(sa_family_t)))
return -EINVAL;
kaddrs = memdup_user(addrs, addrs_size);
if (IS_ERR(kaddrs))
return PTR_ERR(kaddrs);
/* Allow security module to validate connectx addresses. */
err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
(struct sockaddr *)kaddrs,
addrs_size);
if (err)
goto out_free;
/* in-kernel sockets don't generally have a file allocated to them
* if all they do is call sock_create_kern().
*/
if (sk->sk_socket->file)
flags = sk->sk_socket->file->f_flags;
err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
out_free:
kfree(kaddrs);
return err;
}
/*
* This is an older interface. It's kept for backward compatibility
* to the option that doesn't provide association id.
*/
static int sctp_setsockopt_connectx_old(struct sock *sk,
struct sockaddr __user *addrs,
int addrs_size)
{
return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
}
/*
* New interface for the API. The since the API is done with a socket
* option, to make it simple we feed back the association id is as a return
* indication to the call. Error is always negative and association id is
* always positive.
*/
static int sctp_setsockopt_connectx(struct sock *sk,
struct sockaddr __user *addrs,
int addrs_size)
{
sctp_assoc_t assoc_id = 0;
int err = 0;
err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
if (err)
return err;
else
return assoc_id;
}
/*
* New (hopefully final) interface for the API.
* We use the sctp_getaddrs_old structure so that use-space library
* can avoid any unnecessary allocations. The only different part
* is that we store the actual length of the address buffer into the
* addrs_num structure member. That way we can re-use the existing
* code.
*/
#ifdef CONFIG_COMPAT
struct compat_sctp_getaddrs_old {
sctp_assoc_t assoc_id;
s32 addr_num;
compat_uptr_t addrs; /* struct sockaddr * */
};
#endif
static int sctp_getsockopt_connectx3(struct sock *sk, int len,
char __user *optval,
int __user *optlen)
{
struct sctp_getaddrs_old param;
sctp_assoc_t assoc_id = 0;
int err = 0;
#ifdef CONFIG_COMPAT
if (in_compat_syscall()) {
struct compat_sctp_getaddrs_old param32;
if (len < sizeof(param32))
return -EINVAL;
if (copy_from_user(&param32, optval, sizeof(param32)))
return -EFAULT;
param.assoc_id = param32.assoc_id;
param.addr_num = param32.addr_num;
param.addrs = compat_ptr(param32.addrs);
} else
#endif
{
if (len < sizeof(param))
return -EINVAL;
if (copy_from_user(&param, optval, sizeof(param)))
return -EFAULT;
}
err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
param.addrs, param.addr_num,
&assoc_id);
if (err == 0 || err == -EINPROGRESS) {
if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
return -EFAULT;
if (put_user(sizeof(assoc_id), optlen))
return -EFAULT;
}
return err;
}
/* API 3.1.4 close() - UDP Style Syntax
* Applications use close() to perform graceful shutdown (as described in
* Section 10.1 of [SCTP]) on ALL the associations currently represented
* by a UDP-style socket.
*
* The syntax is
*
* ret = close(int sd);
*
* sd - the socket descriptor of the associations to be closed.
*
* To gracefully shutdown a specific association represented by the
* UDP-style socket, an application should use the sendmsg() call,
* passing no user data, but including the appropriate flag in the
* ancillary data (see Section xxxx).
*
* If sd in the close() call is a branched-off socket representing only
* one association, the shutdown is performed on that association only.
*
* 4.1.6 close() - TCP Style Syntax
*
* Applications use close() to gracefully close down an association.
*
* The syntax is:
*
* int close(int sd);
*
* sd - the socket descriptor of the association to be closed.
*
* After an application calls close() on a socket descriptor, no further
* socket operations will succeed on that descriptor.
*
* API 7.1.4 SO_LINGER
*
* An application using the TCP-style socket can use this option to
* perform the SCTP ABORT primitive. The linger option structure is:
*
* struct linger {
* int l_onoff; // option on/off
* int l_linger; // linger time
* };
*
* To enable the option, set l_onoff to 1. If the l_linger value is set
* to 0, calling close() is the same as the ABORT primitive. If the
* value is set to a negative value, the setsockopt() call will return
* an error. If the value is set to a positive value linger_time, the
* close() can be blocked for at most linger_time ms. If the graceful
* shutdown phase does not finish during this period, close() will
* return but the graceful shutdown phase continues in the system.
*/
static void sctp_close(struct sock *sk, long timeout)
{
struct net *net = sock_net(sk);
struct sctp_endpoint *ep;
struct sctp_association *asoc;
struct list_head *pos, *temp;
unsigned int data_was_unread;
pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
sk->sk_shutdown = SHUTDOWN_MASK;
inet_sk_set_state(sk, SCTP_SS_CLOSING);
ep = sctp_sk(sk)->ep;
/* Clean up any skbs sitting on the receive queue. */
data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
/* Walk all associations on an endpoint. */
list_for_each_safe(pos, temp, &ep->asocs) {
asoc = list_entry(pos, struct sctp_association, asocs);
if (sctp_style(sk, TCP)) {
/* A closed association can still be in the list if
* it belongs to a TCP-style listening socket that is
* not yet accepted. If so, free it. If not, send an
* ABORT or SHUTDOWN based on the linger options.
*/
if (sctp_state(asoc, CLOSED)) {
sctp_association_free(asoc);
continue;
}
}
if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
!skb_queue_empty(&asoc->ulpq.reasm) ||
!skb_queue_empty(&asoc->ulpq.reasm_uo) ||
(sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
struct sctp_chunk *chunk;
chunk = sctp_make_abort_user(asoc, NULL, 0);
sctp_primitive_ABORT(net, asoc, chunk);
} else
sctp_primitive_SHUTDOWN(net, asoc, NULL);
}
/* On a TCP-style socket, block for at most linger_time if set. */
if (sctp_style(sk, TCP) && timeout)
sctp_wait_for_close(sk, timeout);
/* This will run the backlog queue. */
release_sock(sk);
/* Supposedly, no process has access to the socket, but
* the net layers still may.
* Also, sctp_destroy_sock() needs to be called with addr_wq_lock
* held and that should be grabbed before socket lock.
*/
spin_lock_bh(&net->sctp.addr_wq_lock);
bh_lock_sock_nested(sk);
/* Hold the sock, since sk_common_release() will put sock_put()
* and we have just a little more cleanup.
*/
sock_hold(sk);
sk_common_release(sk);
bh_unlock_sock(sk);
spin_unlock_bh(&net->sctp.addr_wq_lock);
sock_put(sk);
SCTP_DBG_OBJCNT_DEC(sock);
}
/* Handle EPIPE error. */
static int sctp_error(struct sock *sk, int flags, int err)
{
if (err == -EPIPE)
err = sock_error(sk) ? : -EPIPE;
if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
send_sig(SIGPIPE, current, 0);
return err;
}
/* API 3.1.3 sendmsg() - UDP Style Syntax
*
* An application uses sendmsg() and recvmsg() calls to transmit data to
* and receive data from its peer.
*
* ssize_t sendmsg(int socket, const struct msghdr *message,
* int flags);
*
* socket - the socket descriptor of the endpoint.
* message - pointer to the msghdr structure which contains a single
* user message and possibly some ancillary data.
*
* See Section 5 for complete description of the data
* structures.
*
* flags - flags sent or received with the user message, see Section
* 5 for complete description of the flags.
*
* Note: This function could use a rewrite especially when explicit
* connect support comes in.
*/
/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
static int sctp_msghdr_parse(const struct msghdr *msg,
struct sctp_cmsgs *cmsgs);
static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
struct sctp_sndrcvinfo *srinfo,
const struct msghdr *msg, size_t msg_len)
{
__u16 sflags;
int err;
if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
return -EPIPE;
if (msg_len > sk->sk_sndbuf)
return -EMSGSIZE;
memset(cmsgs, 0, sizeof(*cmsgs));
err = sctp_msghdr_parse(msg, cmsgs);
if (err) {
pr_debug("%s: msghdr parse err:%x\n", __func__, err);
return err;
}
memset(srinfo, 0, sizeof(*srinfo));
if (cmsgs->srinfo) {
srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
}
if (cmsgs->sinfo) {
srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
srinfo->sinfo_context = cmsgs->sinfo->snd_context;
srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
}
if (cmsgs->prinfo) {
srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
cmsgs->prinfo->pr_policy);
}
sflags = srinfo->sinfo_flags;
if (!sflags && msg_len)
return 0;
if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
return -EINVAL;
if (((sflags & SCTP_EOF) && msg_len > 0) ||
(!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
return -EINVAL;
if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
return -EINVAL;
return 0;
}
static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
struct sctp_cmsgs *cmsgs,
union sctp_addr *daddr,
struct sctp_transport **tp)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_association *asoc;
struct cmsghdr *cmsg;
__be32 flowinfo = 0;
struct sctp_af *af;
int err;
*tp = NULL;
if (sflags & (SCTP_EOF | SCTP_ABORT))
return -EINVAL;
if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
sctp_sstate(sk, CLOSING)))
return -EADDRNOTAVAIL;
/* Label connection socket for first association 1-to-many
* style for client sequence socket()->sendmsg(). This
* needs to be done before sctp_assoc_add_peer() as that will
* set up the initial packet that needs to account for any
* security ip options (CIPSO/CALIPSO) added to the packet.
*/
af = sctp_get_af_specific(daddr->sa.sa_family);
if (!af)
return -EINVAL;
err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
(struct sockaddr *)daddr,
af->sockaddr_len);
if (err < 0)
return err;
err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
if (err)
return err;
asoc = (*tp)->asoc;
if (!cmsgs->addrs_msg)
return 0;
if (daddr->sa.sa_family == AF_INET6)
flowinfo = daddr->v6.sin6_flowinfo;
/* sendv addr list parse */
for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
union sctp_addr _daddr;
int dlen;
if (cmsg->cmsg_level != IPPROTO_SCTP ||
(cmsg->cmsg_type != SCTP_DSTADDRV4 &&
cmsg->cmsg_type != SCTP_DSTADDRV6))
continue;
daddr = &_daddr;
memset(daddr, 0, sizeof(*daddr));
dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
if (dlen < sizeof(struct in_addr)) {
err = -EINVAL;
goto free;
}
dlen = sizeof(struct in_addr);
daddr->v4.sin_family = AF_INET;
daddr->v4.sin_port = htons(asoc->peer.port);
memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
} else {
if (dlen < sizeof(struct in6_addr)) {
err = -EINVAL;
goto free;
}
dlen = sizeof(struct in6_addr);
daddr->v6.sin6_flowinfo = flowinfo;
daddr->v6.sin6_family = AF_INET6;
daddr->v6.sin6_port = htons(asoc->peer.port);
memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
}
err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
if (err)
goto free;
}
return 0;
free:
sctp_association_free(asoc);
return err;
}
static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
__u16 sflags, struct msghdr *msg,
size_t msg_len)
{
struct sock *sk = asoc->base.sk;
struct net *net = sock_net(sk);
if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
return -EPIPE;
if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
!sctp_state(asoc, ESTABLISHED))
return 0;
if (sflags & SCTP_EOF) {
pr_debug("%s: shutting down association:%p\n", __func__, asoc);
sctp_primitive_SHUTDOWN(net, asoc, NULL);
return 0;
}
if (sflags & SCTP_ABORT) {
struct sctp_chunk *chunk;
chunk = sctp_make_abort_user(asoc, msg, msg_len);
if (!chunk)
return -ENOMEM;
pr_debug("%s: aborting association:%p\n", __func__, asoc);
sctp_primitive_ABORT(net, asoc, chunk);
iov_iter_revert(&msg->msg_iter, msg_len);
return 0;
}
return 1;
}
static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
struct msghdr *msg, size_t msg_len,
struct sctp_transport *transport,
struct sctp_sndrcvinfo *sinfo)
{
struct sock *sk = asoc->base.sk;
struct sctp_sock *sp = sctp_sk(sk);
struct net *net = sock_net(sk);
struct sctp_datamsg *datamsg;
bool wait_connect = false;
struct sctp_chunk *chunk;
long timeo;
int err;
if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
err = -EINVAL;
goto err;
}
if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
if (err)
goto err;
}
if (sp->disable_fragments && msg_len > asoc->frag_point) {
err = -EMSGSIZE;
goto err;
}
if (asoc->pmtu_pending) {
if (sp->param_flags & SPP_PMTUD_ENABLE)
sctp_assoc_sync_pmtu(asoc);
asoc->pmtu_pending = 0;
}
if (sctp_wspace(asoc) < (int)msg_len)
sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
if (sk_under_memory_pressure(sk))
sk_mem_reclaim(sk);
if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
if (err)
goto err;
}
if (sctp_state(asoc, CLOSED)) {
err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
if (err)
goto err;
if (asoc->ep->intl_enable) {
timeo = sock_sndtimeo(sk, 0);
err = sctp_wait_for_connect(asoc, &timeo);
if (err) {
err = -ESRCH;
goto err;
}
} else {
wait_connect = true;
}
pr_debug("%s: we associated primitively\n", __func__);
}
datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
if (IS_ERR(datamsg)) {
err = PTR_ERR(datamsg);
goto err;
}
asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
sctp_chunk_hold(chunk);
sctp_set_owner_w(chunk);
chunk->transport = transport;
}
err = sctp_primitive_SEND(net, asoc, datamsg);
if (err) {
sctp_datamsg_free(datamsg);
goto err;
}
pr_debug("%s: we sent primitively\n", __func__);
sctp_datamsg_put(datamsg);
if (unlikely(wait_connect)) {
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
sctp_wait_for_connect(asoc, &timeo);
}
err = msg_len;
err:
return err;
}
static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
const struct msghdr *msg,
struct sctp_cmsgs *cmsgs)
{
union sctp_addr *daddr = NULL;
int err;
if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
int len = msg->msg_namelen;
if (len > sizeof(*daddr))
len = sizeof(*daddr);
daddr = (union sctp_addr *)msg->msg_name;
err = sctp_verify_addr(sk, daddr, len);
if (err)
return ERR_PTR(err);
}
return daddr;
}
static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
struct sctp_sndrcvinfo *sinfo,
struct sctp_cmsgs *cmsgs)
{
if (!cmsgs->srinfo && !cmsgs->sinfo) {
sinfo->sinfo_stream = asoc->default_stream;
sinfo->sinfo_ppid = asoc->default_ppid;
sinfo->sinfo_context = asoc->default_context;
sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
if (!cmsgs->prinfo)
sinfo->sinfo_flags = asoc->default_flags;
}
if (!cmsgs->srinfo && !cmsgs->prinfo)
sinfo->sinfo_timetolive = asoc->default_timetolive;
if (cmsgs->authinfo) {
/* Reuse sinfo_tsn to indicate that authinfo was set and
* sinfo_ssn to save the keyid on tx path.
*/
sinfo->sinfo_tsn = 1;
sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
}
}
static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
{
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
struct sctp_transport *transport = NULL;
struct sctp_sndrcvinfo _sinfo, *sinfo;
struct sctp_association *asoc, *tmp;
struct sctp_cmsgs cmsgs;
union sctp_addr *daddr;
bool new = false;
__u16 sflags;
int err;
/* Parse and get snd_info */
err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
if (err)
goto out;
sinfo = &_sinfo;
sflags = sinfo->sinfo_flags;
/* Get daddr from msg */
daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
if (IS_ERR(daddr)) {
err = PTR_ERR(daddr);
goto out;
}
lock_sock(sk);
/* SCTP_SENDALL process */
if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
msg_len);
if (err == 0)
continue;
if (err < 0)
goto out_unlock;
sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
NULL, sinfo);
if (err < 0)
goto out_unlock;
iov_iter_revert(&msg->msg_iter, err);
}
goto out_unlock;
}
/* Get and check or create asoc */
if (daddr) {
asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
if (asoc) {
err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
msg_len);
if (err <= 0)
goto out_unlock;
} else {
err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
&transport);
if (err)
goto out_unlock;
asoc = transport->asoc;
new = true;
}
if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
transport = NULL;
} else {
asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
if (!asoc) {
err = -EPIPE;
goto out_unlock;
}
err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
if (err <= 0)
goto out_unlock;
}
/* Update snd_info with the asoc */
sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
/* Send msg to the asoc */
err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
if (err < 0 && err != -ESRCH && new)
sctp_association_free(asoc);
out_unlock:
release_sock(sk);
out:
return sctp_error(sk, msg->msg_flags, err);
}
/* This is an extended version of skb_pull() that removes the data from the
* start of a skb even when data is spread across the list of skb's in the
* frag_list. len specifies the total amount of data that needs to be removed.
* when 'len' bytes could be removed from the skb, it returns 0.
* If 'len' exceeds the total skb length, it returns the no. of bytes that
* could not be removed.
*/
static int sctp_skb_pull(struct sk_buff *skb, int len)
{
struct sk_buff *list;
int skb_len = skb_headlen(skb);
int rlen;
if (len <= skb_len) {
__skb_pull(skb, len);
return 0;
}
len -= skb_len;
__skb_pull(skb, skb_len);
skb_walk_frags(skb, list) {
rlen = sctp_skb_pull(list, len);
skb->len -= (len-rlen);
skb->data_len -= (len-rlen);
if (!rlen)
return 0;
len = rlen;
}
return len;
}
/* API 3.1.3 recvmsg() - UDP Style Syntax
*
* ssize_t recvmsg(int socket, struct msghdr *message,
* int flags);
*
* socket - the socket descriptor of the endpoint.
* message - pointer to the msghdr structure which contains a single
* user message and possibly some ancillary data.
*
* See Section 5 for complete description of the data
* structures.
*
* flags - flags sent or received with the user message, see Section
* 5 for complete description of the flags.
*/
static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
int noblock, int flags, int *addr_len)
{
struct sctp_ulpevent *event = NULL;
struct sctp_sock *sp = sctp_sk(sk);
struct sk_buff *skb, *head_skb;
int copied;
int err = 0;
int skb_len;
pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
"addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
addr_len);
lock_sock(sk);
if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
!sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
err = -ENOTCONN;
goto out;
}
skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
if (!skb)
goto out;
/* Get the total length of the skb including any skb's in the
* frag_list.
*/
skb_len = skb->len;
copied = skb_len;
if (copied > len)
copied = len;
err = skb_copy_datagram_msg(skb, 0, msg, copied);
event = sctp_skb2event(skb);
if (err)
goto out_free;
if (event->chunk && event->chunk->head_skb)
head_skb = event->chunk->head_skb;
else
head_skb = skb;
sock_recv_ts_and_drops(msg, sk, head_skb);
if (sctp_ulpevent_is_notification(event)) {
msg->msg_flags |= MSG_NOTIFICATION;
sp->pf->event_msgname(event, msg->msg_name, addr_len);
} else {
sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
}
/* Check if we allow SCTP_NXTINFO. */
if (sp->recvnxtinfo)
sctp_ulpevent_read_nxtinfo(event, msg, sk);
/* Check if we allow SCTP_RCVINFO. */
if (sp->recvrcvinfo)
sctp_ulpevent_read_rcvinfo(event, msg);
/* Check if we allow SCTP_SNDRCVINFO. */
if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
sctp_ulpevent_read_sndrcvinfo(event, msg);
err = copied;
/* If skb's length exceeds the user's buffer, update the skb and
* push it back to the receive_queue so that the next call to
* recvmsg() will return the remaining data. Don't set MSG_EOR.
*/
if (skb_len > copied) {
msg->msg_flags &= ~MSG_EOR;
if (flags & MSG_PEEK)
goto out_free;
sctp_skb_pull(skb, copied);
skb_queue_head(&sk->sk_receive_queue, skb);
/* When only partial message is copied to the user, increase
* rwnd by that amount. If all the data in the skb is read,
* rwnd is updated when the event is freed.
*/
if (!sctp_ulpevent_is_notification(event))
sctp_assoc_rwnd_increase(event->asoc, copied);
goto out;
} else if ((event->msg_flags & MSG_NOTIFICATION) ||
(event->msg_flags & MSG_EOR))
msg->msg_flags |= MSG_EOR;
else
msg->msg_flags &= ~MSG_EOR;
out_free:
if (flags & MSG_PEEK) {
/* Release the skb reference acquired after peeking the skb in
* sctp_skb_recv_datagram().
*/
kfree_skb(skb);
} else {
/* Free the event which includes releasing the reference to
* the owner of the skb, freeing the skb and updating the
* rwnd.
*/
sctp_ulpevent_free(event);
}
out:
release_sock(sk);
return err;
}
/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
*
* This option is a on/off flag. If enabled no SCTP message
* fragmentation will be performed. Instead if a message being sent
* exceeds the current PMTU size, the message will NOT be sent and
* instead a error will be indicated to the user.
*/
static int sctp_setsockopt_disable_fragments(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
int val;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
return 0;
}
static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
unsigned int optlen)
{
struct sctp_event_subscribe subscribe;
__u8 *sn_type = (__u8 *)&subscribe;
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
int i;
if (optlen > sizeof(struct sctp_event_subscribe))
return -EINVAL;
if (copy_from_user(&subscribe, optval, optlen))
return -EFAULT;
for (i = 0; i < optlen; i++)
sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
sn_type[i]);
list_for_each_entry(asoc, &sp->ep->asocs, asocs)
asoc->subscribe = sctp_sk(sk)->subscribe;
/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
* if there is no data to be sent or retransmit, the stack will
* immediately send up this notification.
*/
if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
struct sctp_ulpevent *event;
asoc = sctp_id2assoc(sk, 0);
if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
event = sctp_ulpevent_make_sender_dry_event(asoc,
GFP_USER | __GFP_NOWARN);
if (!event)
return -ENOMEM;
asoc->stream.si->enqueue_event(&asoc->ulpq, event);
}
}
return 0;
}
/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
*
* This socket option is applicable to the UDP-style socket only. When
* set it will cause associations that are idle for more than the
* specified number of seconds to automatically close. An association
* being idle is defined an association that has NOT sent or received
* user data. The special value of '0' indicates that no automatic
* close of any associations should be performed. The option expects an
* integer defining the number of seconds of idle time before an
* association is closed.
*/
static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct net *net = sock_net(sk);
/* Applicable to UDP-style socket only */
if (sctp_style(sk, TCP))
return -EOPNOTSUPP;
if (optlen != sizeof(int))
return -EINVAL;
if (copy_from_user(&sp->autoclose, optval, optlen))
return -EFAULT;
if (sp->autoclose > net->sctp.max_autoclose)
sp->autoclose = net->sctp.max_autoclose;
return 0;
}
/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
*
* Applications can enable or disable heartbeats for any peer address of
* an association, modify an address's heartbeat interval, force a
* heartbeat to be sent immediately, and adjust the address's maximum
* number of retransmissions sent before an address is considered
* unreachable. The following structure is used to access and modify an
* address's parameters:
*
* struct sctp_paddrparams {
* sctp_assoc_t spp_assoc_id;
* struct sockaddr_storage spp_address;
* uint32_t spp_hbinterval;
* uint16_t spp_pathmaxrxt;
* uint32_t spp_pathmtu;
* uint32_t spp_sackdelay;
* uint32_t spp_flags;
* uint32_t spp_ipv6_flowlabel;
* uint8_t spp_dscp;
* };
*
* spp_assoc_id - (one-to-many style socket) This is filled in the
* application, and identifies the association for
* this query.
* spp_address - This specifies which address is of interest.
* spp_hbinterval - This contains the value of the heartbeat interval,
* in milliseconds. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmaxrxt - This contains the maximum number of
* retransmissions before this address shall be
* considered unreachable. If a value of zero
* is present in this field then no changes are to
* be made to this parameter.
* spp_pathmtu - When Path MTU discovery is disabled the value
* specified here will be the "fixed" path mtu.
* Note that if the spp_address field is empty
* then all associations on this address will
* have this fixed path mtu set upon them.
*
* spp_sackdelay - When delayed sack is enabled, this value specifies
* the number of milliseconds that sacks will be delayed
* for. This value will apply to all addresses of an
* association if the spp_address field is empty. Note
* also, that if delayed sack is enabled and this
* value is set to 0, no change is made to the last
* recorded delayed sack timer value.
*
* spp_flags - These flags are used to control various features
* on an association. The flag field may contain
* zero or more of the following options.
*
* SPP_HB_ENABLE - Enable heartbeats on the
* specified address. Note that if the address
* field is empty all addresses for the association
* have heartbeats enabled upon them.
*
* SPP_HB_DISABLE - Disable heartbeats on the
* speicifed address. Note that if the address
* field is empty all addresses for the association
* will have their heartbeats disabled. Note also
* that SPP_HB_ENABLE and SPP_HB_DISABLE are
* mutually exclusive, only one of these two should
* be specified. Enabling both fields will have
* undetermined results.
*
* SPP_HB_DEMAND - Request a user initiated heartbeat
* to be made immediately.
*
* SPP_HB_TIME_IS_ZERO - Specify's that the time for
* heartbeat delayis to be set to the value of 0
* milliseconds.
*
* SPP_PMTUD_ENABLE - This field will enable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected.
*
* SPP_PMTUD_DISABLE - This field will disable PMTU
* discovery upon the specified address. Note that
* if the address feild is empty then all addresses
* on the association are effected. Not also that
* SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
* exclusive. Enabling both will have undetermined
* results.
*
* SPP_SACKDELAY_ENABLE - Setting this flag turns
* on delayed sack. The time specified in spp_sackdelay
* is used to specify the sack delay for this address. Note
* that if spp_address is empty then all addresses will
* enable delayed sack and take on the sack delay
* value specified in spp_sackdelay.
* SPP_SACKDELAY_DISABLE - Setting this flag turns
* off delayed sack. If the spp_address field is blank then
* delayed sack is disabled for the entire association. Note
* also that this field is mutually exclusive to
* SPP_SACKDELAY_ENABLE, setting both will have undefined
* results.
*
* SPP_IPV6_FLOWLABEL: Setting this flag enables the
* setting of the IPV6 flow label value. The value is
* contained in the spp_ipv6_flowlabel field.
* Upon retrieval, this flag will be set to indicate that
* the spp_ipv6_flowlabel field has a valid value returned.
* If a specific destination address is set (in the
* spp_address field), then the value returned is that of
* the address. If just an association is specified (and
* no address), then the association's default flow label
* is returned. If neither an association nor a destination
* is specified, then the socket's default flow label is
* returned. For non-IPv6 sockets, this flag will be left
* cleared.
*
* SPP_DSCP: Setting this flag enables the setting of the
* Differentiated Services Code Point (DSCP) value
* associated with either the association or a specific
* address. The value is obtained in the spp_dscp field.
* Upon retrieval, this flag will be set to indicate that
* the spp_dscp field has a valid value returned. If a
* specific destination address is set when called (in the
* spp_address field), then that specific destination
* address's DSCP value is returned. If just an association
* is specified, then the association's default DSCP is
* returned. If neither an association nor a destination is
* specified, then the socket's default DSCP is returned.
*
* spp_ipv6_flowlabel
* - This field is used in conjunction with the
* SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
* The 20 least significant bits are used for the flow
* label. This setting has precedence over any IPv6-layer
* setting.
*
* spp_dscp - This field is used in conjunction with the SPP_DSCP flag
* and contains the DSCP. The 6 most significant bits are
* used for the DSCP. This setting has precedence over any
* IPv4- or IPv6- layer setting.
*/
static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
struct sctp_transport *trans,
struct sctp_association *asoc,
struct sctp_sock *sp,
int hb_change,
int pmtud_change,
int sackdelay_change)
{
int error;
if (params->spp_flags & SPP_HB_DEMAND && trans) {
error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
trans->asoc, trans);
if (error)
return error;
}
/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
* this field is ignored. Note also that a value of zero indicates
* the current setting should be left unchanged.
*/
if (params->spp_flags & SPP_HB_ENABLE) {
/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
* set. This lets us use 0 value when this flag
* is set.
*/
if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
params->spp_hbinterval = 0;
if (params->spp_hbinterval ||
(params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
if (trans) {
trans->hbinterval =
msecs_to_jiffies(params->spp_hbinterval);
} else if (asoc) {
asoc->hbinterval =
msecs_to_jiffies(params->spp_hbinterval);
} else {
sp->hbinterval = params->spp_hbinterval;
}
}
}
if (hb_change) {
if (trans) {
trans->param_flags =
(trans->param_flags & ~SPP_HB) | hb_change;
} else if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_HB) | hb_change;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_HB) | hb_change;
}
}
/* When Path MTU discovery is disabled the value specified here will
* be the "fixed" path mtu (i.e. the value of the spp_flags field must
* include the flag SPP_PMTUD_DISABLE for this field to have any
* effect).
*/
if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
if (trans) {
trans->pathmtu = params->spp_pathmtu;
sctp_assoc_sync_pmtu(asoc);
} else if (asoc) {
sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
} else {
sp->pathmtu = params->spp_pathmtu;
}
}
if (pmtud_change) {
if (trans) {
int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
(params->spp_flags & SPP_PMTUD_ENABLE);
trans->param_flags =
(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
if (update) {
sctp_transport_pmtu(trans, sctp_opt2sk(sp));
sctp_assoc_sync_pmtu(asoc);
}
} else if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
}
}
/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
* value of this field is ignored. Note also that a value of zero
* indicates the current setting should be left unchanged.
*/
if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
if (trans) {
trans->sackdelay =
msecs_to_jiffies(params->spp_sackdelay);
} else if (asoc) {
asoc->sackdelay =
msecs_to_jiffies(params->spp_sackdelay);
} else {
sp->sackdelay = params->spp_sackdelay;
}
}
if (sackdelay_change) {
if (trans) {
trans->param_flags =
(trans->param_flags & ~SPP_SACKDELAY) |
sackdelay_change;
} else if (asoc) {
asoc->param_flags =
(asoc->param_flags & ~SPP_SACKDELAY) |
sackdelay_change;
} else {
sp->param_flags =
(sp->param_flags & ~SPP_SACKDELAY) |
sackdelay_change;
}
}
/* Note that a value of zero indicates the current setting should be
left unchanged.
*/
if (params->spp_pathmaxrxt) {
if (trans) {
trans->pathmaxrxt = params->spp_pathmaxrxt;
} else if (asoc) {
asoc->pathmaxrxt = params->spp_pathmaxrxt;
} else {
sp->pathmaxrxt = params->spp_pathmaxrxt;
}
}
if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
if (trans) {
if (trans->ipaddr.sa.sa_family == AF_INET6) {
trans->flowlabel = params->spp_ipv6_flowlabel &
SCTP_FLOWLABEL_VAL_MASK;
trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
}
} else if (asoc) {
struct sctp_transport *t;
list_for_each_entry(t, &asoc->peer.transport_addr_list,
transports) {
if (t->ipaddr.sa.sa_family != AF_INET6)
continue;
t->flowlabel = params->spp_ipv6_flowlabel &
SCTP_FLOWLABEL_VAL_MASK;
t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
}
asoc->flowlabel = params->spp_ipv6_flowlabel &
SCTP_FLOWLABEL_VAL_MASK;
asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
sp->flowlabel = params->spp_ipv6_flowlabel &
SCTP_FLOWLABEL_VAL_MASK;
sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
}
}
if (params->spp_flags & SPP_DSCP) {
if (trans) {
trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
trans->dscp |= SCTP_DSCP_SET_MASK;
} else if (asoc) {
struct sctp_transport *t;
list_for_each_entry(t, &asoc->peer.transport_addr_list,
transports) {
t->dscp = params->spp_dscp &
SCTP_DSCP_VAL_MASK;
t->dscp |= SCTP_DSCP_SET_MASK;
}
asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
asoc->dscp |= SCTP_DSCP_SET_MASK;
} else {
sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
sp->dscp |= SCTP_DSCP_SET_MASK;
}
}
return 0;
}
static int sctp_setsockopt_peer_addr_params(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_paddrparams params;
struct sctp_transport *trans = NULL;
struct sctp_association *asoc = NULL;
struct sctp_sock *sp = sctp_sk(sk);
int error;
int hb_change, pmtud_change, sackdelay_change;
if (optlen == sizeof(params)) {
if (copy_from_user(&params, optval, optlen))
return -EFAULT;
} else if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
spp_ipv6_flowlabel), 4)) {
if (copy_from_user(&params, optval, optlen))
return -EFAULT;
if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
return -EINVAL;
} else {
return -EINVAL;
}
/* Validate flags and value parameters. */
hb_change = params.spp_flags & SPP_HB;
pmtud_change = params.spp_flags & SPP_PMTUD;
sackdelay_change = params.spp_flags & SPP_SACKDELAY;
if (hb_change == SPP_HB ||
pmtud_change == SPP_PMTUD ||
sackdelay_change == SPP_SACKDELAY ||
params.spp_sackdelay > 500 ||
(params.spp_pathmtu &&
params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
return -EINVAL;
/* If an address other than INADDR_ANY is specified, and
* no transport is found, then the request is invalid.
*/
if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
trans = sctp_addr_id2transport(sk, &params.spp_address,
params.spp_assoc_id);
if (!trans)
return -EINVAL;
}
/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
* socket is a one to many style socket, and an association
* was not found, then the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.spp_assoc_id);
if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
/* Heartbeat demand can only be sent on a transport or
* association, but not a socket.
*/
if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
return -EINVAL;
/* Process parameters. */
error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
hb_change, pmtud_change,
sackdelay_change);
if (error)
return error;
/* If changes are for association, also apply parameters to each
* transport.
*/
if (!trans && asoc) {
list_for_each_entry(trans, &asoc->peer.transport_addr_list,
transports) {
sctp_apply_peer_addr_params(&params, trans, asoc, sp,
hb_change, pmtud_change,
sackdelay_change);
}
}
return 0;
}
static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
{
return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
}
static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
{
return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
}
static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
struct sctp_association *asoc)
{
struct sctp_transport *trans;
if (params->sack_delay) {
asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
asoc->param_flags =
sctp_spp_sackdelay_enable(asoc->param_flags);
}
if (params->sack_freq == 1) {
asoc->param_flags =
sctp_spp_sackdelay_disable(asoc->param_flags);
} else if (params->sack_freq > 1) {
asoc->sackfreq = params->sack_freq;
asoc->param_flags =
sctp_spp_sackdelay_enable(asoc->param_flags);
}
list_for_each_entry(trans, &asoc->peer.transport_addr_list,
transports) {
if (params->sack_delay) {
trans->sackdelay = msecs_to_jiffies(params->sack_delay);
trans->param_flags =
sctp_spp_sackdelay_enable(trans->param_flags);
}
if (params->sack_freq == 1) {
trans->param_flags =
sctp_spp_sackdelay_disable(trans->param_flags);
} else if (params->sack_freq > 1) {
trans->sackfreq = params->sack_freq;
trans->param_flags =
sctp_spp_sackdelay_enable(trans->param_flags);
}
}
}
/*
* 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
*
* This option will effect the way delayed acks are performed. This
* option allows you to get or set the delayed ack time, in
* milliseconds. It also allows changing the delayed ack frequency.
* Changing the frequency to 1 disables the delayed sack algorithm. If
* the assoc_id is 0, then this sets or gets the endpoints default
* values. If the assoc_id field is non-zero, then the set or get
* effects the specified association for the one to many model (the
* assoc_id field is ignored by the one to one model). Note that if
* sack_delay or sack_freq are 0 when setting this option, then the
* current values will remain unchanged.
*
* struct sctp_sack_info {
* sctp_assoc_t sack_assoc_id;
* uint32_t sack_delay;
* uint32_t sack_freq;
* };
*
* sack_assoc_id - This parameter, indicates which association the user
* is performing an action upon. Note that if this field's value is
* zero then the endpoints default value is changed (effecting future
* associations only).
*
* sack_delay - This parameter contains the number of milliseconds that
* the user is requesting the delayed ACK timer be set to. Note that
* this value is defined in the standard to be between 200 and 500
* milliseconds.
*
* sack_freq - This parameter contains the number of packets that must
* be received before a sack is sent without waiting for the delay
* timer to expire. The default value for this is 2, setting this
* value to 1 will disable the delayed sack algorithm.
*/
static int sctp_setsockopt_delayed_ack(struct sock *sk,
char __user *optval, unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
struct sctp_sack_info params;
if (optlen == sizeof(struct sctp_sack_info)) {
if (copy_from_user(&params, optval, optlen))
return -EFAULT;
if (params.sack_delay == 0 && params.sack_freq == 0)
return 0;
} else if (optlen == sizeof(struct sctp_assoc_value)) {
pr_warn_ratelimited(DEPRECATED
"%s (pid %d) "
"Use of struct sctp_assoc_value in delayed_ack socket option.\n"
"Use struct sctp_sack_info instead\n",
current->comm, task_pid_nr(current));
if (copy_from_user(&params, optval, optlen))
return -EFAULT;
if (params.sack_delay == 0)
params.sack_freq = 1;
else
params.sack_freq = 0;
} else
return -EINVAL;
/* Validate value parameter. */
if (params.sack_delay > 500)
return -EINVAL;
/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
* socket is a one to many style socket, and an association
* was not found, then the id was invalid.
*/
asoc = sctp_id2assoc(sk, params.sack_assoc_id);
if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
sctp_apply_asoc_delayed_ack(&params, asoc);
return 0;
}
if (sctp_style(sk, TCP))
params.sack_assoc_id = SCTP_FUTURE_ASSOC;
if (params.sack_assoc_id == SCTP_FUTURE_ASSOC ||
params.sack_assoc_id == SCTP_ALL_ASSOC) {
if (params.sack_delay) {
sp->sackdelay = params.sack_delay;
sp->param_flags =
sctp_spp_sackdelay_enable(sp->param_flags);
}
if (params.sack_freq == 1) {
sp->param_flags =
sctp_spp_sackdelay_disable(sp->param_flags);
} else if (params.sack_freq > 1) {
sp->sackfreq = params.sack_freq;
sp->param_flags =
sctp_spp_sackdelay_enable(sp->param_flags);
}
}
if (params.sack_assoc_id == SCTP_CURRENT_ASSOC ||
params.sack_assoc_id == SCTP_ALL_ASSOC)
list_for_each_entry(asoc, &sp->ep->asocs, asocs)
sctp_apply_asoc_delayed_ack(&params, asoc);
return 0;
}
/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
*
* Applications can specify protocol parameters for the default association
* initialization. The option name argument to setsockopt() and getsockopt()
* is SCTP_INITMSG.
*
* Setting initialization parameters is effective only on an unconnected
* socket (for UDP-style sockets only future associations are effected
* by the change). With TCP-style sockets, this option is inherited by
* sockets derived from a listener socket.
*/
static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
{
struct sctp_initmsg sinit;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen != sizeof(struct sctp_initmsg))
return -EINVAL;
if (copy_from_user(&sinit, optval, optlen))
return -EFAULT;
if (sinit.sinit_num_ostreams)
sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
if (sinit.sinit_max_instreams)
sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
if (sinit.sinit_max_attempts)
sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
if (sinit.sinit_max_init_timeo)
sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
return 0;
}
/*
* 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
*
* Applications that wish to use the sendto() system call may wish to
* specify a default set of parameters that would normally be supplied
* through the inclusion of ancillary data. This socket option allows
* such an application to set the default sctp_sndrcvinfo structure.
* The application that wishes to use this socket option simply passes
* in to this call the sctp_sndrcvinfo structure defined in Section
* 5.2.2) The input parameters accepted by this call include
* sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
* sinfo_timetolive. The user must provide the sinfo_assoc_id field in
* to this call if the caller is using the UDP model.
*/
static int sctp_setsockopt_default_send_param(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
struct sctp_sndrcvinfo info;
if (optlen != sizeof(info))
return -EINVAL;
if (copy_from_user(&info, optval, optlen))
return -EFAULT;
if (info.sinfo_flags &
~(SCTP_UNORDERED | SCTP_ADDR_OVER |
SCTP_ABORT | SCTP_EOF))
return -EINVAL;
asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
asoc->default_stream = info.sinfo_stream;
asoc->default_flags = info.sinfo_flags;
asoc->default_ppid = info.sinfo_ppid;
asoc->default_context = info.sinfo_context;
asoc->default_timetolive = info.sinfo_timetolive;
return 0;
}
if (sctp_style(sk, TCP))
info.sinfo_assoc_id = SCTP_FUTURE_ASSOC;
if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
sp->default_stream = info.sinfo_stream;
sp->default_flags = info.sinfo_flags;
sp->default_ppid = info.sinfo_ppid;
sp->default_context = info.sinfo_context;
sp->default_timetolive = info.sinfo_timetolive;
}
if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
asoc->default_stream = info.sinfo_stream;
asoc->default_flags = info.sinfo_flags;
asoc->default_ppid = info.sinfo_ppid;
asoc->default_context = info.sinfo_context;
asoc->default_timetolive = info.sinfo_timetolive;
}
}
return 0;
}
/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
* (SCTP_DEFAULT_SNDINFO)
*/
static int sctp_setsockopt_default_sndinfo(struct sock *sk,
char __user *optval,
unsigned int optlen)
{
struct sctp_sock *sp = sctp_sk(sk);
struct sctp_association *asoc;
struct sctp_sndinfo info;
if (optlen != sizeof(info))
return -EINVAL;
if (copy_from_user(&info, optval, optlen))
return -EFAULT;
if (info.snd_flags &
~(SCTP_UNORDERED | SCTP_ADDR_OVER |
SCTP_ABORT | SCTP_EOF))
return -EINVAL;
asoc = sctp_id2assoc(sk, info.snd_assoc_id);
if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
if (asoc) {
asoc->default_stream = info.snd_sid;
asoc->default_flags = info.snd_flags;
asoc->default_ppid = info.snd_ppid;
asoc->default_context = info.snd_context;
return 0;
}
if (sctp_style(sk, TCP))
info.snd_assoc_id = SCTP_FUTURE_ASSOC;
if (info.snd_assoc_id == SCTP_FUTURE_ASSOC ||
info.snd_assoc_id == SCTP_ALL_ASSOC) {
sp->default_stream = info.snd_sid;
sp->default_flags = info.snd_flags;
sp->default_ppid = info.snd_ppid;
sp->default_context = info.snd_context;
}
if (info.snd_assoc_id == SCTP_CURRENT_ASSOC ||
info.snd_assoc_id == SCTP_ALL_ASSOC) {
list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
asoc->default_stream = info.snd_sid;
asoc->default_flags = info.snd_flags;
asoc->default_ppid = info.snd_ppid;
asoc->default_context = info.snd_context;
}
}
return 0;
}
/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
*
* Requests that the local SCTP stack use the enclosed peer address as
* the association primary. The enclosed address must be one of the
* association peer's addresses.
*/
static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
unsigned int optlen)
{
struct sctp_prim prim;
struct sctp_transport *trans;
struct sctp_af *af;
int err;
if (optlen != sizeof(struct sctp_prim))
return -EINVAL;
if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
return -EFAULT;
/* Allow security module to validate address but need address len. */
af = sctp_get_af_specific(prim.ssp_addr.ss_family);
if (!af)
return -EINVAL;
err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
(struct sockaddr *)&prim.ssp_addr,
af->sockaddr_len);
if (err)
return err;
trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
if (!trans)
return -EINVAL;
sctp_assoc_set_primary(trans->asoc, trans);
return 0;
}
/*
* 7.1.5 SCTP_NODELAY
*
* Turn on/off any Nagle-like algorithm. This means that packets are
* generally sent as soon as possible and no unnecessary delays are
* introduced, at the cost of more packets in the network. Expects an
* integer boolean flag.
*/
static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
unsigned int optlen)
{
int val;
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
return 0;
}
/*
*
* 7.1.1 SCTP_RTOINFO
*
* The protocol parameters used to initialize and bound retransmission
* timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
* and modify these parameters.
* All parameters are time values, in milliseconds. A value of 0, when
* modifying the parameters, indicates that the current value should not
* be changed.
*
*/
static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
{
struct sctp_rtoinfo rtoinfo;
struct sctp_association *asoc;
unsigned long rto_min, rto_max;
struct sctp_sock *sp = sctp_sk(sk);
if (optlen != sizeof (struct sctp_rtoinfo))
return -EINVAL;
if (copy_from_user(&rtoinfo, optval, optlen))
return -EFAULT;
asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
/* Set the values to the specific association */
if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
sctp_style(sk, UDP))
return -EINVAL;
rto_max = rtoinfo.srto_max;
rto_min = rtoinfo.srto_min;
if (rto_max)
rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
else
rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
if (rto_min)
rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
else
rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
if (rto_min > rto_max)
return -EINVAL;
if (asoc) {
if (rtoinfo.srto_initial != 0)
asoc->rto_initial =
msecs_to_jiffies(rtoinfo.srto_initial);
asoc->rto_max = rto_max;
asoc->rto_min = rto_min;
} else {
/* If there is no association or the association-id = 0
* set the values to the endpoint.
*/
if (rtoinfo.srto_initial != 0)
sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
sp->rtoinfo.srto_max = rto_max;
sp->rtoinfo.srto_min = rto_min;