blob: 89c090d32bb2a4107a5d9ecbea0455c601ed7b97 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
/* Intel(R) Ethernet Connection E800 Series Linux Driver */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "ice.h"
#include "ice_base.h"
#include "ice_lib.h"
#include "ice_dcb_lib.h"
#include "ice_dcb_nl.h"
#define DRV_VERSION_MAJOR 0
#define DRV_VERSION_MINOR 8
#define DRV_VERSION_BUILD 2
#define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
__stringify(DRV_VERSION_MINOR) "." \
__stringify(DRV_VERSION_BUILD) "-k"
#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
const char ice_drv_ver[] = DRV_VERSION;
static const char ice_driver_string[] = DRV_SUMMARY;
static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
#define ICE_DDP_PKG_PATH "intel/ice/ddp/"
#define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION(DRV_SUMMARY);
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);
MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
static int debug = -1;
module_param(debug, int, 0644);
#ifndef CONFIG_DYNAMIC_DEBUG
MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
#else
MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
#endif /* !CONFIG_DYNAMIC_DEBUG */
static struct workqueue_struct *ice_wq;
static const struct net_device_ops ice_netdev_safe_mode_ops;
static const struct net_device_ops ice_netdev_ops;
static int ice_vsi_open(struct ice_vsi *vsi);
static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
static void ice_vsi_release_all(struct ice_pf *pf);
/**
* ice_get_tx_pending - returns number of Tx descriptors not processed
* @ring: the ring of descriptors
*/
static u16 ice_get_tx_pending(struct ice_ring *ring)
{
u16 head, tail;
head = ring->next_to_clean;
tail = ring->next_to_use;
if (head != tail)
return (head < tail) ?
tail - head : (tail + ring->count - head);
return 0;
}
/**
* ice_check_for_hang_subtask - check for and recover hung queues
* @pf: pointer to PF struct
*/
static void ice_check_for_hang_subtask(struct ice_pf *pf)
{
struct ice_vsi *vsi = NULL;
struct ice_hw *hw;
unsigned int i;
int packets;
u32 v;
ice_for_each_vsi(pf, v)
if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
vsi = pf->vsi[v];
break;
}
if (!vsi || test_bit(__ICE_DOWN, vsi->state))
return;
if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
return;
hw = &vsi->back->hw;
for (i = 0; i < vsi->num_txq; i++) {
struct ice_ring *tx_ring = vsi->tx_rings[i];
if (tx_ring && tx_ring->desc) {
/* If packet counter has not changed the queue is
* likely stalled, so force an interrupt for this
* queue.
*
* prev_pkt would be negative if there was no
* pending work.
*/
packets = tx_ring->stats.pkts & INT_MAX;
if (tx_ring->tx_stats.prev_pkt == packets) {
/* Trigger sw interrupt to revive the queue */
ice_trigger_sw_intr(hw, tx_ring->q_vector);
continue;
}
/* Memory barrier between read of packet count and call
* to ice_get_tx_pending()
*/
smp_rmb();
tx_ring->tx_stats.prev_pkt =
ice_get_tx_pending(tx_ring) ? packets : -1;
}
}
}
/**
* ice_init_mac_fltr - Set initial MAC filters
* @pf: board private structure
*
* Set initial set of MAC filters for PF VSI; configure filters for permanent
* address and broadcast address. If an error is encountered, netdevice will be
* unregistered.
*/
static int ice_init_mac_fltr(struct ice_pf *pf)
{
enum ice_status status;
u8 broadcast[ETH_ALEN];
struct ice_vsi *vsi;
vsi = ice_get_main_vsi(pf);
if (!vsi)
return -EINVAL;
/* To add a MAC filter, first add the MAC to a list and then
* pass the list to ice_add_mac.
*/
/* Add a unicast MAC filter so the VSI can get its packets */
status = ice_vsi_cfg_mac_fltr(vsi, vsi->port_info->mac.perm_addr, true);
if (status)
goto unregister;
/* VSI needs to receive broadcast traffic, so add the broadcast
* MAC address to the list as well.
*/
eth_broadcast_addr(broadcast);
status = ice_vsi_cfg_mac_fltr(vsi, broadcast, true);
if (status)
goto unregister;
return 0;
unregister:
/* We aren't useful with no MAC filters, so unregister if we
* had an error
*/
if (status && vsi->netdev->reg_state == NETREG_REGISTERED) {
dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %d. Unregistering device\n",
status);
unregister_netdev(vsi->netdev);
free_netdev(vsi->netdev);
vsi->netdev = NULL;
}
return -EIO;
}
/**
* ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
* @netdev: the net device on which the sync is happening
* @addr: MAC address to sync
*
* This is a callback function which is called by the in kernel device sync
* functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
* populates the tmp_sync_list, which is later used by ice_add_mac to add the
* MAC filters from the hardware.
*/
static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
return -EINVAL;
return 0;
}
/**
* ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
* @netdev: the net device on which the unsync is happening
* @addr: MAC address to unsync
*
* This is a callback function which is called by the in kernel device unsync
* functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
* populates the tmp_unsync_list, which is later used by ice_remove_mac to
* delete the MAC filters from the hardware.
*/
static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
return -EINVAL;
return 0;
}
/**
* ice_vsi_fltr_changed - check if filter state changed
* @vsi: VSI to be checked
*
* returns true if filter state has changed, false otherwise.
*/
static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
{
return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
}
/**
* ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
* @vsi: the VSI being configured
* @promisc_m: mask of promiscuous config bits
* @set_promisc: enable or disable promisc flag request
*
*/
static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
{
struct ice_hw *hw = &vsi->back->hw;
enum ice_status status = 0;
if (vsi->type != ICE_VSI_PF)
return 0;
if (vsi->vlan_ena) {
status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
set_promisc);
} else {
if (set_promisc)
status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
0);
else
status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
0);
}
if (status)
return -EIO;
return 0;
}
/**
* ice_vsi_sync_fltr - Update the VSI filter list to the HW
* @vsi: ptr to the VSI
*
* Push any outstanding VSI filter changes through the AdminQ.
*/
static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
{
struct device *dev = ice_pf_to_dev(vsi->back);
struct net_device *netdev = vsi->netdev;
bool promisc_forced_on = false;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
enum ice_status status = 0;
u32 changed_flags = 0;
u8 promisc_m;
int err = 0;
if (!vsi->netdev)
return -EINVAL;
while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
usleep_range(1000, 2000);
changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
vsi->current_netdev_flags = vsi->netdev->flags;
INIT_LIST_HEAD(&vsi->tmp_sync_list);
INIT_LIST_HEAD(&vsi->tmp_unsync_list);
if (ice_vsi_fltr_changed(vsi)) {
clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
/* grab the netdev's addr_list_lock */
netif_addr_lock_bh(netdev);
__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
ice_add_mac_to_unsync_list);
__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
ice_add_mac_to_unsync_list);
/* our temp lists are populated. release lock */
netif_addr_unlock_bh(netdev);
}
/* Remove MAC addresses in the unsync list */
status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
if (status) {
netdev_err(netdev, "Failed to delete MAC filters\n");
/* if we failed because of alloc failures, just bail */
if (status == ICE_ERR_NO_MEMORY) {
err = -ENOMEM;
goto out;
}
}
/* Add MAC addresses in the sync list */
status = ice_add_mac(hw, &vsi->tmp_sync_list);
ice_free_fltr_list(dev, &vsi->tmp_sync_list);
/* If filter is added successfully or already exists, do not go into
* 'if' condition and report it as error. Instead continue processing
* rest of the function.
*/
if (status && status != ICE_ERR_ALREADY_EXISTS) {
netdev_err(netdev, "Failed to add MAC filters\n");
/* If there is no more space for new umac filters, VSI
* should go into promiscuous mode. There should be some
* space reserved for promiscuous filters.
*/
if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
!test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
vsi->state)) {
promisc_forced_on = true;
netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
vsi->vsi_num);
} else {
err = -EIO;
goto out;
}
}
/* check for changes in promiscuous modes */
if (changed_flags & IFF_ALLMULTI) {
if (vsi->current_netdev_flags & IFF_ALLMULTI) {
if (vsi->vlan_ena)
promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
else
promisc_m = ICE_MCAST_PROMISC_BITS;
err = ice_cfg_promisc(vsi, promisc_m, true);
if (err) {
netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
vsi->vsi_num);
vsi->current_netdev_flags &= ~IFF_ALLMULTI;
goto out_promisc;
}
} else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
if (vsi->vlan_ena)
promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
else
promisc_m = ICE_MCAST_PROMISC_BITS;
err = ice_cfg_promisc(vsi, promisc_m, false);
if (err) {
netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
vsi->vsi_num);
vsi->current_netdev_flags |= IFF_ALLMULTI;
goto out_promisc;
}
}
}
if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
if (vsi->current_netdev_flags & IFF_PROMISC) {
/* Apply Rx filter rule to get traffic from wire */
if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
err = ice_set_dflt_vsi(pf->first_sw, vsi);
if (err && err != -EEXIST) {
netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
err, vsi->vsi_num);
vsi->current_netdev_flags &=
~IFF_PROMISC;
goto out_promisc;
}
}
} else {
/* Clear Rx filter to remove traffic from wire */
if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
err = ice_clear_dflt_vsi(pf->first_sw);
if (err) {
netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
err, vsi->vsi_num);
vsi->current_netdev_flags |=
IFF_PROMISC;
goto out_promisc;
}
}
}
}
goto exit;
out_promisc:
set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
goto exit;
out:
/* if something went wrong then set the changed flag so we try again */
set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
exit:
clear_bit(__ICE_CFG_BUSY, vsi->state);
return err;
}
/**
* ice_sync_fltr_subtask - Sync the VSI filter list with HW
* @pf: board private structure
*/
static void ice_sync_fltr_subtask(struct ice_pf *pf)
{
int v;
if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
return;
clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
ice_for_each_vsi(pf, v)
if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
ice_vsi_sync_fltr(pf->vsi[v])) {
/* come back and try again later */
set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
break;
}
}
/**
* ice_pf_dis_all_vsi - Pause all VSIs on a PF
* @pf: the PF
* @locked: is the rtnl_lock already held
*/
static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
{
int v;
ice_for_each_vsi(pf, v)
if (pf->vsi[v])
ice_dis_vsi(pf->vsi[v], locked);
}
/**
* ice_prepare_for_reset - prep for the core to reset
* @pf: board private structure
*
* Inform or close all dependent features in prep for reset.
*/
static void
ice_prepare_for_reset(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
int i;
/* already prepared for reset */
if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
return;
/* Notify VFs of impending reset */
if (ice_check_sq_alive(hw, &hw->mailboxq))
ice_vc_notify_reset(pf);
/* Disable VFs until reset is completed */
ice_for_each_vf(pf, i)
ice_set_vf_state_qs_dis(&pf->vf[i]);
/* clear SW filtering DB */
ice_clear_hw_tbls(hw);
/* disable the VSIs and their queues that are not already DOWN */
ice_pf_dis_all_vsi(pf, false);
if (hw->port_info)
ice_sched_clear_port(hw->port_info);
ice_shutdown_all_ctrlq(hw);
set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
}
/**
* ice_do_reset - Initiate one of many types of resets
* @pf: board private structure
* @reset_type: reset type requested
* before this function was called.
*/
static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
WARN_ON(in_interrupt());
ice_prepare_for_reset(pf);
/* trigger the reset */
if (ice_reset(hw, reset_type)) {
dev_err(dev, "reset %d failed\n", reset_type);
set_bit(__ICE_RESET_FAILED, pf->state);
clear_bit(__ICE_RESET_OICR_RECV, pf->state);
clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
clear_bit(__ICE_PFR_REQ, pf->state);
clear_bit(__ICE_CORER_REQ, pf->state);
clear_bit(__ICE_GLOBR_REQ, pf->state);
return;
}
/* PFR is a bit of a special case because it doesn't result in an OICR
* interrupt. So for PFR, rebuild after the reset and clear the reset-
* associated state bits.
*/
if (reset_type == ICE_RESET_PFR) {
pf->pfr_count++;
ice_rebuild(pf, reset_type);
clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
clear_bit(__ICE_PFR_REQ, pf->state);
ice_reset_all_vfs(pf, true);
}
}
/**
* ice_reset_subtask - Set up for resetting the device and driver
* @pf: board private structure
*/
static void ice_reset_subtask(struct ice_pf *pf)
{
enum ice_reset_req reset_type = ICE_RESET_INVAL;
/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
* OICR interrupt. The OICR handler (ice_misc_intr) determines what type
* of reset is pending and sets bits in pf->state indicating the reset
* type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
* prepare for pending reset if not already (for PF software-initiated
* global resets the software should already be prepared for it as
* indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
* by firmware or software on other PFs, that bit is not set so prepare
* for the reset now), poll for reset done, rebuild and return.
*/
if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
/* Perform the largest reset requested */
if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
reset_type = ICE_RESET_CORER;
if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
reset_type = ICE_RESET_GLOBR;
if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
reset_type = ICE_RESET_EMPR;
/* return if no valid reset type requested */
if (reset_type == ICE_RESET_INVAL)
return;
ice_prepare_for_reset(pf);
/* make sure we are ready to rebuild */
if (ice_check_reset(&pf->hw)) {
set_bit(__ICE_RESET_FAILED, pf->state);
} else {
/* done with reset. start rebuild */
pf->hw.reset_ongoing = false;
ice_rebuild(pf, reset_type);
/* clear bit to resume normal operations, but
* ICE_NEEDS_RESTART bit is set in case rebuild failed
*/
clear_bit(__ICE_RESET_OICR_RECV, pf->state);
clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
clear_bit(__ICE_PFR_REQ, pf->state);
clear_bit(__ICE_CORER_REQ, pf->state);
clear_bit(__ICE_GLOBR_REQ, pf->state);
ice_reset_all_vfs(pf, true);
}
return;
}
/* No pending resets to finish processing. Check for new resets */
if (test_bit(__ICE_PFR_REQ, pf->state))
reset_type = ICE_RESET_PFR;
if (test_bit(__ICE_CORER_REQ, pf->state))
reset_type = ICE_RESET_CORER;
if (test_bit(__ICE_GLOBR_REQ, pf->state))
reset_type = ICE_RESET_GLOBR;
/* If no valid reset type requested just return */
if (reset_type == ICE_RESET_INVAL)
return;
/* reset if not already down or busy */
if (!test_bit(__ICE_DOWN, pf->state) &&
!test_bit(__ICE_CFG_BUSY, pf->state)) {
ice_do_reset(pf, reset_type);
}
}
/**
* ice_print_topo_conflict - print topology conflict message
* @vsi: the VSI whose topology status is being checked
*/
static void ice_print_topo_conflict(struct ice_vsi *vsi)
{
switch (vsi->port_info->phy.link_info.topo_media_conflict) {
case ICE_AQ_LINK_TOPO_CONFLICT:
case ICE_AQ_LINK_MEDIA_CONFLICT:
case ICE_AQ_LINK_TOPO_UNREACH_PRT:
case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
break;
case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
break;
default:
break;
}
}
/**
* ice_print_link_msg - print link up or down message
* @vsi: the VSI whose link status is being queried
* @isup: boolean for if the link is now up or down
*/
void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
{
struct ice_aqc_get_phy_caps_data *caps;
enum ice_status status;
const char *fec_req;
const char *speed;
const char *fec;
const char *fc;
const char *an;
if (!vsi)
return;
if (vsi->current_isup == isup)
return;
vsi->current_isup = isup;
if (!isup) {
netdev_info(vsi->netdev, "NIC Link is Down\n");
return;
}
switch (vsi->port_info->phy.link_info.link_speed) {
case ICE_AQ_LINK_SPEED_100GB:
speed = "100 G";
break;
case ICE_AQ_LINK_SPEED_50GB:
speed = "50 G";
break;
case ICE_AQ_LINK_SPEED_40GB:
speed = "40 G";
break;
case ICE_AQ_LINK_SPEED_25GB:
speed = "25 G";
break;
case ICE_AQ_LINK_SPEED_20GB:
speed = "20 G";
break;
case ICE_AQ_LINK_SPEED_10GB:
speed = "10 G";
break;
case ICE_AQ_LINK_SPEED_5GB:
speed = "5 G";
break;
case ICE_AQ_LINK_SPEED_2500MB:
speed = "2.5 G";
break;
case ICE_AQ_LINK_SPEED_1000MB:
speed = "1 G";
break;
case ICE_AQ_LINK_SPEED_100MB:
speed = "100 M";
break;
default:
speed = "Unknown";
break;
}
switch (vsi->port_info->fc.current_mode) {
case ICE_FC_FULL:
fc = "Rx/Tx";
break;
case ICE_FC_TX_PAUSE:
fc = "Tx";
break;
case ICE_FC_RX_PAUSE:
fc = "Rx";
break;
case ICE_FC_NONE:
fc = "None";
break;
default:
fc = "Unknown";
break;
}
/* Get FEC mode based on negotiated link info */
switch (vsi->port_info->phy.link_info.fec_info) {
case ICE_AQ_LINK_25G_RS_528_FEC_EN:
case ICE_AQ_LINK_25G_RS_544_FEC_EN:
fec = "RS-FEC";
break;
case ICE_AQ_LINK_25G_KR_FEC_EN:
fec = "FC-FEC/BASE-R";
break;
default:
fec = "NONE";
break;
}
/* check if autoneg completed, might be false due to not supported */
if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
an = "True";
else
an = "False";
/* Get FEC mode requested based on PHY caps last SW configuration */
caps = kzalloc(sizeof(*caps), GFP_KERNEL);
if (!caps) {
fec_req = "Unknown";
goto done;
}
status = ice_aq_get_phy_caps(vsi->port_info, false,
ICE_AQC_REPORT_SW_CFG, caps, NULL);
if (status)
netdev_info(vsi->netdev, "Get phy capability failed.\n");
if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
fec_req = "RS-FEC";
else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
fec_req = "FC-FEC/BASE-R";
else
fec_req = "NONE";
kfree(caps);
done:
netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n",
speed, fec_req, fec, an, fc);
ice_print_topo_conflict(vsi);
}
/**
* ice_vsi_link_event - update the VSI's netdev
* @vsi: the VSI on which the link event occurred
* @link_up: whether or not the VSI needs to be set up or down
*/
static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
{
if (!vsi)
return;
if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
return;
if (vsi->type == ICE_VSI_PF) {
if (link_up == netif_carrier_ok(vsi->netdev))
return;
if (link_up) {
netif_carrier_on(vsi->netdev);
netif_tx_wake_all_queues(vsi->netdev);
} else {
netif_carrier_off(vsi->netdev);
netif_tx_stop_all_queues(vsi->netdev);
}
}
}
/**
* ice_link_event - process the link event
* @pf: PF that the link event is associated with
* @pi: port_info for the port that the link event is associated with
* @link_up: true if the physical link is up and false if it is down
* @link_speed: current link speed received from the link event
*
* Returns 0 on success and negative on failure
*/
static int
ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
u16 link_speed)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_phy_info *phy_info;
struct ice_vsi *vsi;
u16 old_link_speed;
bool old_link;
int result;
phy_info = &pi->phy;
phy_info->link_info_old = phy_info->link_info;
old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
old_link_speed = phy_info->link_info_old.link_speed;
/* update the link info structures and re-enable link events,
* don't bail on failure due to other book keeping needed
*/
result = ice_update_link_info(pi);
if (result)
dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
pi->lport);
/* if the old link up/down and speed is the same as the new */
if (link_up == old_link && link_speed == old_link_speed)
return result;
vsi = ice_get_main_vsi(pf);
if (!vsi || !vsi->port_info)
return -EINVAL;
/* turn off PHY if media was removed */
if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
result = ice_aq_set_link_restart_an(pi, false, NULL);
if (result) {
dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
vsi->vsi_num, result);
return result;
}
}
ice_dcb_rebuild(pf);
ice_vsi_link_event(vsi, link_up);
ice_print_link_msg(vsi, link_up);
ice_vc_notify_link_state(pf);
return result;
}
/**
* ice_watchdog_subtask - periodic tasks not using event driven scheduling
* @pf: board private structure
*/
static void ice_watchdog_subtask(struct ice_pf *pf)
{
int i;
/* if interface is down do nothing */
if (test_bit(__ICE_DOWN, pf->state) ||
test_bit(__ICE_CFG_BUSY, pf->state))
return;
/* make sure we don't do these things too often */
if (time_before(jiffies,
pf->serv_tmr_prev + pf->serv_tmr_period))
return;
pf->serv_tmr_prev = jiffies;
/* Update the stats for active netdevs so the network stack
* can look at updated numbers whenever it cares to
*/
ice_update_pf_stats(pf);
ice_for_each_vsi(pf, i)
if (pf->vsi[i] && pf->vsi[i]->netdev)
ice_update_vsi_stats(pf->vsi[i]);
}
/**
* ice_init_link_events - enable/initialize link events
* @pi: pointer to the port_info instance
*
* Returns -EIO on failure, 0 on success
*/
static int ice_init_link_events(struct ice_port_info *pi)
{
u16 mask;
mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
pi->lport);
return -EIO;
}
if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
pi->lport);
return -EIO;
}
return 0;
}
/**
* ice_handle_link_event - handle link event via ARQ
* @pf: PF that the link event is associated with
* @event: event structure containing link status info
*/
static int
ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
{
struct ice_aqc_get_link_status_data *link_data;
struct ice_port_info *port_info;
int status;
link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
port_info = pf->hw.port_info;
if (!port_info)
return -EINVAL;
status = ice_link_event(pf, port_info,
!!(link_data->link_info & ICE_AQ_LINK_UP),
le16_to_cpu(link_data->link_speed));
if (status)
dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
status);
return status;
}
/**
* __ice_clean_ctrlq - helper function to clean controlq rings
* @pf: ptr to struct ice_pf
* @q_type: specific Control queue type
*/
static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_rq_event_info event;
struct ice_hw *hw = &pf->hw;
struct ice_ctl_q_info *cq;
u16 pending, i = 0;
const char *qtype;
u32 oldval, val;
/* Do not clean control queue if/when PF reset fails */
if (test_bit(__ICE_RESET_FAILED, pf->state))
return 0;
switch (q_type) {
case ICE_CTL_Q_ADMIN:
cq = &hw->adminq;
qtype = "Admin";
break;
case ICE_CTL_Q_MAILBOX:
cq = &hw->mailboxq;
qtype = "Mailbox";
break;
default:
dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
return 0;
}
/* check for error indications - PF_xx_AxQLEN register layout for
* FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
*/
val = rd32(hw, cq->rq.len);
if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
PF_FW_ARQLEN_ARQCRIT_M)) {
oldval = val;
if (val & PF_FW_ARQLEN_ARQVFE_M)
dev_dbg(dev, "%s Receive Queue VF Error detected\n",
qtype);
if (val & PF_FW_ARQLEN_ARQOVFL_M) {
dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
qtype);
}
if (val & PF_FW_ARQLEN_ARQCRIT_M)
dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
qtype);
val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
PF_FW_ARQLEN_ARQCRIT_M);
if (oldval != val)
wr32(hw, cq->rq.len, val);
}
val = rd32(hw, cq->sq.len);
if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
PF_FW_ATQLEN_ATQCRIT_M)) {
oldval = val;
if (val & PF_FW_ATQLEN_ATQVFE_M)
dev_dbg(dev, "%s Send Queue VF Error detected\n",
qtype);
if (val & PF_FW_ATQLEN_ATQOVFL_M) {
dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
qtype);
}
if (val & PF_FW_ATQLEN_ATQCRIT_M)
dev_dbg(dev, "%s Send Queue Critical Error detected\n",
qtype);
val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
PF_FW_ATQLEN_ATQCRIT_M);
if (oldval != val)
wr32(hw, cq->sq.len, val);
}
event.buf_len = cq->rq_buf_size;
event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
if (!event.msg_buf)
return 0;
do {
enum ice_status ret;
u16 opcode;
ret = ice_clean_rq_elem(hw, cq, &event, &pending);
if (ret == ICE_ERR_AQ_NO_WORK)
break;
if (ret) {
dev_err(dev, "%s Receive Queue event error %d\n", qtype,
ret);
break;
}
opcode = le16_to_cpu(event.desc.opcode);
switch (opcode) {
case ice_aqc_opc_get_link_status:
if (ice_handle_link_event(pf, &event))
dev_err(dev, "Could not handle link event\n");
break;
case ice_aqc_opc_event_lan_overflow:
ice_vf_lan_overflow_event(pf, &event);
break;
case ice_mbx_opc_send_msg_to_pf:
ice_vc_process_vf_msg(pf, &event);
break;
case ice_aqc_opc_fw_logging:
ice_output_fw_log(hw, &event.desc, event.msg_buf);
break;
case ice_aqc_opc_lldp_set_mib_change:
ice_dcb_process_lldp_set_mib_change(pf, &event);
break;
default:
dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
qtype, opcode);
break;
}
} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
kfree(event.msg_buf);
return pending && (i == ICE_DFLT_IRQ_WORK);
}
/**
* ice_ctrlq_pending - check if there is a difference between ntc and ntu
* @hw: pointer to hardware info
* @cq: control queue information
*
* returns true if there are pending messages in a queue, false if there aren't
*/
static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
{
u16 ntu;
ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
return cq->rq.next_to_clean != ntu;
}
/**
* ice_clean_adminq_subtask - clean the AdminQ rings
* @pf: board private structure
*/
static void ice_clean_adminq_subtask(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
return;
if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
return;
clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
/* There might be a situation where new messages arrive to a control
* queue between processing the last message and clearing the
* EVENT_PENDING bit. So before exiting, check queue head again (using
* ice_ctrlq_pending) and process new messages if any.
*/
if (ice_ctrlq_pending(hw, &hw->adminq))
__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
ice_flush(hw);
}
/**
* ice_clean_mailboxq_subtask - clean the MailboxQ rings
* @pf: board private structure
*/
static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
return;
if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
return;
clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
if (ice_ctrlq_pending(hw, &hw->mailboxq))
__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
ice_flush(hw);
}
/**
* ice_service_task_schedule - schedule the service task to wake up
* @pf: board private structure
*
* If not already scheduled, this puts the task into the work queue.
*/
static void ice_service_task_schedule(struct ice_pf *pf)
{
if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
!test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
!test_bit(__ICE_NEEDS_RESTART, pf->state))
queue_work(ice_wq, &pf->serv_task);
}
/**
* ice_service_task_complete - finish up the service task
* @pf: board private structure
*/
static void ice_service_task_complete(struct ice_pf *pf)
{
WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
/* force memory (pf->state) to sync before next service task */
smp_mb__before_atomic();
clear_bit(__ICE_SERVICE_SCHED, pf->state);
}
/**
* ice_service_task_stop - stop service task and cancel works
* @pf: board private structure
*/
static void ice_service_task_stop(struct ice_pf *pf)
{
set_bit(__ICE_SERVICE_DIS, pf->state);
if (pf->serv_tmr.function)
del_timer_sync(&pf->serv_tmr);
if (pf->serv_task.func)
cancel_work_sync(&pf->serv_task);
clear_bit(__ICE_SERVICE_SCHED, pf->state);
}
/**
* ice_service_task_restart - restart service task and schedule works
* @pf: board private structure
*
* This function is needed for suspend and resume works (e.g WoL scenario)
*/
static void ice_service_task_restart(struct ice_pf *pf)
{
clear_bit(__ICE_SERVICE_DIS, pf->state);
ice_service_task_schedule(pf);
}
/**
* ice_service_timer - timer callback to schedule service task
* @t: pointer to timer_list
*/
static void ice_service_timer(struct timer_list *t)
{
struct ice_pf *pf = from_timer(pf, t, serv_tmr);
mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
ice_service_task_schedule(pf);
}
/**
* ice_handle_mdd_event - handle malicious driver detect event
* @pf: pointer to the PF structure
*
* Called from service task. OICR interrupt handler indicates MDD event.
* VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
* messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
* disable the queue, the PF can be configured to reset the VF using ethtool
* private flag mdd-auto-reset-vf.
*/
static void ice_handle_mdd_event(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
u32 reg;
int i;
if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
/* Since the VF MDD event logging is rate limited, check if
* there are pending MDD events.
*/
ice_print_vfs_mdd_events(pf);
return;
}
/* find what triggered an MDD event */
reg = rd32(hw, GL_MDET_TX_PQM);
if (reg & GL_MDET_TX_PQM_VALID_M) {
u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
GL_MDET_TX_PQM_PF_NUM_S;
u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
GL_MDET_TX_PQM_VF_NUM_S;
u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
GL_MDET_TX_PQM_MAL_TYPE_S;
u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
GL_MDET_TX_PQM_QNUM_S);
if (netif_msg_tx_err(pf))
dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
event, queue, pf_num, vf_num);
wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
}
reg = rd32(hw, GL_MDET_TX_TCLAN);
if (reg & GL_MDET_TX_TCLAN_VALID_M) {
u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
GL_MDET_TX_TCLAN_PF_NUM_S;
u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
GL_MDET_TX_TCLAN_VF_NUM_S;
u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
GL_MDET_TX_TCLAN_MAL_TYPE_S;
u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
GL_MDET_TX_TCLAN_QNUM_S);
if (netif_msg_tx_err(pf))
dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
event, queue, pf_num, vf_num);
wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
}
reg = rd32(hw, GL_MDET_RX);
if (reg & GL_MDET_RX_VALID_M) {
u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
GL_MDET_RX_PF_NUM_S;
u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
GL_MDET_RX_VF_NUM_S;
u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
GL_MDET_RX_MAL_TYPE_S;
u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
GL_MDET_RX_QNUM_S);
if (netif_msg_rx_err(pf))
dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
event, queue, pf_num, vf_num);
wr32(hw, GL_MDET_RX, 0xffffffff);
}
/* check to see if this PF caused an MDD event */
reg = rd32(hw, PF_MDET_TX_PQM);
if (reg & PF_MDET_TX_PQM_VALID_M) {
wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
if (netif_msg_tx_err(pf))
dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
}
reg = rd32(hw, PF_MDET_TX_TCLAN);
if (reg & PF_MDET_TX_TCLAN_VALID_M) {
wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
if (netif_msg_tx_err(pf))
dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
}
reg = rd32(hw, PF_MDET_RX);
if (reg & PF_MDET_RX_VALID_M) {
wr32(hw, PF_MDET_RX, 0xFFFF);
if (netif_msg_rx_err(pf))
dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
}
/* Check to see if one of the VFs caused an MDD event, and then
* increment counters and set print pending
*/
ice_for_each_vf(pf, i) {
struct ice_vf *vf = &pf->vf[i];
reg = rd32(hw, VP_MDET_TX_PQM(i));
if (reg & VP_MDET_TX_PQM_VALID_M) {
wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
vf->mdd_tx_events.count++;
set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
if (netif_msg_tx_err(pf))
dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
i);
}
reg = rd32(hw, VP_MDET_TX_TCLAN(i));
if (reg & VP_MDET_TX_TCLAN_VALID_M) {
wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
vf->mdd_tx_events.count++;
set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
if (netif_msg_tx_err(pf))
dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
i);
}
reg = rd32(hw, VP_MDET_TX_TDPU(i));
if (reg & VP_MDET_TX_TDPU_VALID_M) {
wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
vf->mdd_tx_events.count++;
set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
if (netif_msg_tx_err(pf))
dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
i);
}
reg = rd32(hw, VP_MDET_RX(i));
if (reg & VP_MDET_RX_VALID_M) {
wr32(hw, VP_MDET_RX(i), 0xFFFF);
vf->mdd_rx_events.count++;
set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
if (netif_msg_rx_err(pf))
dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
i);
/* Since the queue is disabled on VF Rx MDD events, the
* PF can be configured to reset the VF through ethtool
* private flag mdd-auto-reset-vf.
*/
if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
ice_reset_vf(&pf->vf[i], false);
}
}
ice_print_vfs_mdd_events(pf);
}
/**
* ice_force_phys_link_state - Force the physical link state
* @vsi: VSI to force the physical link state to up/down
* @link_up: true/false indicates to set the physical link to up/down
*
* Force the physical link state by getting the current PHY capabilities from
* hardware and setting the PHY config based on the determined capabilities. If
* link changes a link event will be triggered because both the Enable Automatic
* Link Update and LESM Enable bits are set when setting the PHY capabilities.
*
* Returns 0 on success, negative on failure
*/
static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
{
struct ice_aqc_get_phy_caps_data *pcaps;
struct ice_aqc_set_phy_cfg_data *cfg;
struct ice_port_info *pi;
struct device *dev;
int retcode;
if (!vsi || !vsi->port_info || !vsi->back)
return -EINVAL;
if (vsi->type != ICE_VSI_PF)
return 0;
dev = ice_pf_to_dev(vsi->back);
pi = vsi->port_info;
pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
if (!pcaps)
return -ENOMEM;
retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
NULL);
if (retcode) {
dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
vsi->vsi_num, retcode);
retcode = -EIO;
goto out;
}
/* No change in link */
if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
goto out;
cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
if (!cfg) {
retcode = -ENOMEM;
goto out;
}
cfg->phy_type_low = pcaps->phy_type_low;
cfg->phy_type_high = pcaps->phy_type_high;
cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
cfg->low_power_ctrl = pcaps->low_power_ctrl;
cfg->eee_cap = pcaps->eee_cap;
cfg->eeer_value = pcaps->eeer_value;
cfg->link_fec_opt = pcaps->link_fec_options;
if (link_up)
cfg->caps |= ICE_AQ_PHY_ENA_LINK;
else
cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL);
if (retcode) {
dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
vsi->vsi_num, retcode);
retcode = -EIO;
}
kfree(cfg);
out:
kfree(pcaps);
return retcode;
}
/**
* ice_check_media_subtask - Check for media; bring link up if detected.
* @pf: pointer to PF struct
*/
static void ice_check_media_subtask(struct ice_pf *pf)
{
struct ice_port_info *pi;
struct ice_vsi *vsi;
int err;
vsi = ice_get_main_vsi(pf);
if (!vsi)
return;
/* No need to check for media if it's already present or the interface
* is down
*/
if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) ||
test_bit(__ICE_DOWN, vsi->state))
return;
/* Refresh link info and check if media is present */
pi = vsi->port_info;
err = ice_update_link_info(pi);
if (err)
return;
if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
err = ice_force_phys_link_state(vsi, true);
if (err)
return;
clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
/* A Link Status Event will be generated; the event handler
* will complete bringing the interface up
*/
}
}
/**
* ice_service_task - manage and run subtasks
* @work: pointer to work_struct contained by the PF struct
*/
static void ice_service_task(struct work_struct *work)
{
struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
unsigned long start_time = jiffies;
/* subtasks */
/* process reset requests first */
ice_reset_subtask(pf);
/* bail if a reset/recovery cycle is pending or rebuild failed */
if (ice_is_reset_in_progress(pf->state) ||
test_bit(__ICE_SUSPENDED, pf->state) ||
test_bit(__ICE_NEEDS_RESTART, pf->state)) {
ice_service_task_complete(pf);
return;
}
ice_clean_adminq_subtask(pf);
ice_check_media_subtask(pf);
ice_check_for_hang_subtask(pf);
ice_sync_fltr_subtask(pf);
ice_handle_mdd_event(pf);
ice_watchdog_subtask(pf);
if (ice_is_safe_mode(pf)) {
ice_service_task_complete(pf);
return;
}
ice_process_vflr_event(pf);
ice_clean_mailboxq_subtask(pf);
/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
ice_service_task_complete(pf);
/* If the tasks have taken longer than one service timer period
* or there is more work to be done, reset the service timer to
* schedule the service task now.
*/
if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
mod_timer(&pf->serv_tmr, jiffies);
}
/**
* ice_set_ctrlq_len - helper function to set controlq length
* @hw: pointer to the HW instance
*/
static void ice_set_ctrlq_len(struct ice_hw *hw)
{
hw->adminq.num_rq_entries = ICE_AQ_LEN;
hw->adminq.num_sq_entries = ICE_AQ_LEN;
hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
}
/**
* ice_schedule_reset - schedule a reset
* @pf: board private structure
* @reset: reset being requested
*/
int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
{
struct device *dev = ice_pf_to_dev(pf);
/* bail out if earlier reset has failed */
if (test_bit(__ICE_RESET_FAILED, pf->state)) {
dev_dbg(dev, "earlier reset has failed\n");
return -EIO;
}
/* bail if reset/recovery already in progress */
if (ice_is_reset_in_progress(pf->state)) {
dev_dbg(dev, "Reset already in progress\n");
return -EBUSY;
}
switch (reset) {
case ICE_RESET_PFR:
set_bit(__ICE_PFR_REQ, pf->state);
break;
case ICE_RESET_CORER:
set_bit(__ICE_CORER_REQ, pf->state);
break;
case ICE_RESET_GLOBR:
set_bit(__ICE_GLOBR_REQ, pf->state);
break;
default:
return -EINVAL;
}
ice_service_task_schedule(pf);
return 0;
}
/**
* ice_irq_affinity_notify - Callback for affinity changes
* @notify: context as to what irq was changed
* @mask: the new affinity mask
*
* This is a callback function used by the irq_set_affinity_notifier function
* so that we may register to receive changes to the irq affinity masks.
*/
static void
ice_irq_affinity_notify(struct irq_affinity_notify *notify,
const cpumask_t *mask)
{
struct ice_q_vector *q_vector =
container_of(notify, struct ice_q_vector, affinity_notify);
cpumask_copy(&q_vector->affinity_mask, mask);
}
/**
* ice_irq_affinity_release - Callback for affinity notifier release
* @ref: internal core kernel usage
*
* This is a callback function used by the irq_set_affinity_notifier function
* to inform the current notification subscriber that they will no longer
* receive notifications.
*/
static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
/**
* ice_vsi_ena_irq - Enable IRQ for the given VSI
* @vsi: the VSI being configured
*/
static int ice_vsi_ena_irq(struct ice_vsi *vsi)
{
struct ice_hw *hw = &vsi->back->hw;
int i;
ice_for_each_q_vector(vsi, i)
ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
ice_flush(hw);
return 0;
}
/**
* ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
* @vsi: the VSI being configured
* @basename: name for the vector
*/
static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
{
int q_vectors = vsi->num_q_vectors;
struct ice_pf *pf = vsi->back;
int base = vsi->base_vector;
struct device *dev;
int rx_int_idx = 0;
int tx_int_idx = 0;
int vector, err;
int irq_num;
dev = ice_pf_to_dev(pf);
for (vector = 0; vector < q_vectors; vector++) {
struct ice_q_vector *q_vector = vsi->q_vectors[vector];
irq_num = pf->msix_entries[base + vector].vector;
if (q_vector->tx.ring && q_vector->rx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-%s-%d", basename, "TxRx", rx_int_idx++);
tx_int_idx++;
} else if (q_vector->rx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-%s-%d", basename, "rx", rx_int_idx++);
} else if (q_vector->tx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-%s-%d", basename, "tx", tx_int_idx++);
} else {
/* skip this unused q_vector */
continue;
}
err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
q_vector->name, q_vector);
if (err) {
netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
err);
goto free_q_irqs;
}
/* register for affinity change notifications */
q_vector->affinity_notify.notify = ice_irq_affinity_notify;
q_vector->affinity_notify.release = ice_irq_affinity_release;
irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
/* assign the mask for this irq */
irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
}
vsi->irqs_ready = true;
return 0;
free_q_irqs:
while (vector) {
vector--;
irq_num = pf->msix_entries[base + vector].vector,
irq_set_affinity_notifier(irq_num, NULL);
irq_set_affinity_hint(irq_num, NULL);
devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
}
return err;
}
/**
* ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
* @vsi: VSI to setup Tx rings used by XDP
*
* Return 0 on success and negative value on error
*/
static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
{
struct device *dev = ice_pf_to_dev(vsi->back);
int i;
for (i = 0; i < vsi->num_xdp_txq; i++) {
u16 xdp_q_idx = vsi->alloc_txq + i;
struct ice_ring *xdp_ring;
xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
if (!xdp_ring)
goto free_xdp_rings;
xdp_ring->q_index = xdp_q_idx;
xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
xdp_ring->ring_active = false;
xdp_ring->vsi = vsi;
xdp_ring->netdev = NULL;
xdp_ring->dev = dev;
xdp_ring->count = vsi->num_tx_desc;
vsi->xdp_rings[i] = xdp_ring;
if (ice_setup_tx_ring(xdp_ring))
goto free_xdp_rings;
ice_set_ring_xdp(xdp_ring);
xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
}
return 0;
free_xdp_rings:
for (; i >= 0; i--)
if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
ice_free_tx_ring(vsi->xdp_rings[i]);
return -ENOMEM;
}
/**
* ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
* @vsi: VSI to set the bpf prog on
* @prog: the bpf prog pointer
*/
static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
{
struct bpf_prog *old_prog;
int i;
old_prog = xchg(&vsi->xdp_prog, prog);
if (old_prog)
bpf_prog_put(old_prog);
ice_for_each_rxq(vsi, i)
WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
}
/**
* ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
* @vsi: VSI to bring up Tx rings used by XDP
* @prog: bpf program that will be assigned to VSI
*
* Return 0 on success and negative value on error
*/
int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
{
u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
int xdp_rings_rem = vsi->num_xdp_txq;
struct ice_pf *pf = vsi->back;
struct ice_qs_cfg xdp_qs_cfg = {
.qs_mutex = &pf->avail_q_mutex,
.pf_map = pf->avail_txqs,
.pf_map_size = pf->max_pf_txqs,
.q_count = vsi->num_xdp_txq,
.scatter_count = ICE_MAX_SCATTER_TXQS,
.vsi_map = vsi->txq_map,
.vsi_map_offset = vsi->alloc_txq,
.mapping_mode = ICE_VSI_MAP_CONTIG
};
enum ice_status status;
struct device *dev;
int i, v_idx;
dev = ice_pf_to_dev(pf);
vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
sizeof(*vsi->xdp_rings), GFP_KERNEL);
if (!vsi->xdp_rings)
return -ENOMEM;
vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
if (__ice_vsi_get_qs(&xdp_qs_cfg))
goto err_map_xdp;
if (ice_xdp_alloc_setup_rings(vsi))
goto clear_xdp_rings;
/* follow the logic from ice_vsi_map_rings_to_vectors */
ice_for_each_q_vector(vsi, v_idx) {
struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
int xdp_rings_per_v, q_id, q_base;
xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
vsi->num_q_vectors - v_idx);
q_base = vsi->num_xdp_txq - xdp_rings_rem;
for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
xdp_ring->q_vector = q_vector;
xdp_ring->next = q_vector->tx.ring;
q_vector->tx.ring = xdp_ring;
}
xdp_rings_rem -= xdp_rings_per_v;
}
/* omit the scheduler update if in reset path; XDP queues will be
* taken into account at the end of ice_vsi_rebuild, where
* ice_cfg_vsi_lan is being called
*/
if (ice_is_reset_in_progress(pf->state))
return 0;
/* tell the Tx scheduler that right now we have
* additional queues
*/
for (i = 0; i < vsi->tc_cfg.numtc; i++)
max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
max_txqs);
if (status) {
dev_err(dev, "Failed VSI LAN queue config for XDP, error:%d\n",
status);
goto clear_xdp_rings;
}
ice_vsi_assign_bpf_prog(vsi, prog);
return 0;
clear_xdp_rings:
for (i = 0; i < vsi->num_xdp_txq; i++)
if (vsi->xdp_rings[i]) {
kfree_rcu(vsi->xdp_rings[i], rcu);
vsi->xdp_rings[i] = NULL;
}
err_map_xdp:
mutex_lock(&pf->avail_q_mutex);
for (i = 0; i < vsi->num_xdp_txq; i++) {
clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
}
mutex_unlock(&pf->avail_q_mutex);
devm_kfree(dev, vsi->xdp_rings);
return -ENOMEM;
}
/**
* ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
* @vsi: VSI to remove XDP rings
*
* Detach XDP rings from irq vectors, clean up the PF bitmap and free
* resources
*/
int ice_destroy_xdp_rings(struct ice_vsi *vsi)
{
u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
struct ice_pf *pf = vsi->back;
int i, v_idx;
/* q_vectors are freed in reset path so there's no point in detaching
* rings; in case of rebuild being triggered not from reset reset bits
* in pf->state won't be set, so additionally check first q_vector
* against NULL
*/
if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
goto free_qmap;
ice_for_each_q_vector(vsi, v_idx) {
struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
struct ice_ring *ring;
ice_for_each_ring(ring, q_vector->tx)
if (!ring->tx_buf || !ice_ring_is_xdp(ring))
break;
/* restore the value of last node prior to XDP setup */
q_vector->tx.ring = ring;
}
free_qmap:
mutex_lock(&pf->avail_q_mutex);
for (i = 0; i < vsi->num_xdp_txq; i++) {
clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
}
mutex_unlock(&pf->avail_q_mutex);
for (i = 0; i < vsi->num_xdp_txq; i++)
if (vsi->xdp_rings[i]) {
if (vsi->xdp_rings[i]->desc)
ice_free_tx_ring(vsi->xdp_rings[i]);
kfree_rcu(vsi->xdp_rings[i], rcu);
vsi->xdp_rings[i] = NULL;
}
devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
vsi->xdp_rings = NULL;
if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
return 0;
ice_vsi_assign_bpf_prog(vsi, NULL);
/* notify Tx scheduler that we destroyed XDP queues and bring
* back the old number of child nodes
*/
for (i = 0; i < vsi->tc_cfg.numtc; i++)
max_txqs[i] = vsi->num_txq;
return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
max_txqs);
}
/**
* ice_xdp_setup_prog - Add or remove XDP eBPF program
* @vsi: VSI to setup XDP for
* @prog: XDP program
* @extack: netlink extended ack
*/
static int
ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
struct netlink_ext_ack *extack)
{
int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
bool if_running = netif_running(vsi->netdev);
int ret = 0, xdp_ring_err = 0;
if (frame_size > vsi->rx_buf_len) {
NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
return -EOPNOTSUPP;
}
/* need to stop netdev while setting up the program for Rx rings */
if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
ret = ice_down(vsi);
if (ret) {
NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
return ret;
}
}
if (!ice_is_xdp_ena_vsi(vsi) && prog) {
vsi->num_xdp_txq = vsi->alloc_txq;
xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
if (xdp_ring_err)
NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
xdp_ring_err = ice_destroy_xdp_rings(vsi);
if (xdp_ring_err)
NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
} else {
ice_vsi_assign_bpf_prog(vsi, prog);
}
if (if_running)
ret = ice_up(vsi);
if (!ret && prog && vsi->xsk_umems) {
int i;
ice_for_each_rxq(vsi, i) {
struct ice_ring *rx_ring = vsi->rx_rings[i];
if (rx_ring->xsk_umem)
napi_schedule(&rx_ring->q_vector->napi);
}
}
return (ret || xdp_ring_err) ? -ENOMEM : 0;
}
/**
* ice_xdp - implements XDP handler
* @dev: netdevice
* @xdp: XDP command
*/
static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
{
struct ice_netdev_priv *np = netdev_priv(dev);
struct ice_vsi *vsi = np->vsi;
if (vsi->type != ICE_VSI_PF) {
NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
return -EINVAL;
}
switch (xdp->command) {
case XDP_SETUP_PROG:
return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
case XDP_QUERY_PROG:
xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0;
return 0;
case XDP_SETUP_XSK_UMEM:
return ice_xsk_umem_setup(vsi, xdp->xsk.umem,
xdp->xsk.queue_id);
default:
return -EINVAL;
}
}
/**
* ice_ena_misc_vector - enable the non-queue interrupts
* @pf: board private structure
*/
static void ice_ena_misc_vector(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
u32 val;
/* Disable anti-spoof detection interrupt to prevent spurious event
* interrupts during a function reset. Anti-spoof functionally is
* still supported.
*/
val = rd32(hw, GL_MDCK_TX_TDPU);
val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
wr32(hw, GL_MDCK_TX_TDPU, val);
/* clear things first */
wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
rd32(hw, PFINT_OICR); /* read to clear */
val = (PFINT_OICR_ECC_ERR_M |
PFINT_OICR_MAL_DETECT_M |
PFINT_OICR_GRST_M |
PFINT_OICR_PCI_EXCEPTION_M |
PFINT_OICR_VFLR_M |
PFINT_OICR_HMC_ERR_M |
PFINT_OICR_PE_CRITERR_M);
wr32(hw, PFINT_OICR_ENA, val);
/* SW_ITR_IDX = 0, but don't change INTENA */
wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
}
/**
* ice_misc_intr - misc interrupt handler
* @irq: interrupt number
* @data: pointer to a q_vector
*/
static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
{
struct ice_pf *pf = (struct ice_pf *)data;
struct ice_hw *hw = &pf->hw;
irqreturn_t ret = IRQ_NONE;
struct device *dev;
u32 oicr, ena_mask;
dev = ice_pf_to_dev(pf);
set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
oicr = rd32(hw, PFINT_OICR);
ena_mask = rd32(hw, PFINT_OICR_ENA);
if (oicr & PFINT_OICR_SWINT_M) {
ena_mask &= ~PFINT_OICR_SWINT_M;
pf->sw_int_count++;
}
if (oicr & PFINT_OICR_MAL_DETECT_M) {
ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
}
if (oicr & PFINT_OICR_VFLR_M) {
/* disable any further VFLR event notifications */
if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
u32 reg = rd32(hw, PFINT_OICR_ENA);
reg &= ~PFINT_OICR_VFLR_M;
wr32(hw, PFINT_OICR_ENA, reg);
} else {
ena_mask &= ~PFINT_OICR_VFLR_M;
set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
}
}
if (oicr & PFINT_OICR_GRST_M) {
u32 reset;
/* we have a reset warning */
ena_mask &= ~PFINT_OICR_GRST_M;
reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
GLGEN_RSTAT_RESET_TYPE_S;
if (reset == ICE_RESET_CORER)
pf->corer_count++;
else if (reset == ICE_RESET_GLOBR)
pf->globr_count++;
else if (reset == ICE_RESET_EMPR)
pf->empr_count++;
else
dev_dbg(dev, "Invalid reset type %d\n", reset);
/* If a reset cycle isn't already in progress, we set a bit in
* pf->state so that the service task can start a reset/rebuild.
* We also make note of which reset happened so that peer
* devices/drivers can be informed.
*/
if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
if (reset == ICE_RESET_CORER)
set_bit(__ICE_CORER_RECV, pf->state);
else if (reset == ICE_RESET_GLOBR)
set_bit(__ICE_GLOBR_RECV, pf->state);
else
set_bit(__ICE_EMPR_RECV, pf->state);
/* There are couple of different bits at play here.
* hw->reset_ongoing indicates whether the hardware is
* in reset. This is set to true when a reset interrupt
* is received and set back to false after the driver
* has determined that the hardware is out of reset.
*
* __ICE_RESET_OICR_RECV in pf->state indicates
* that a post reset rebuild is required before the
* driver is operational again. This is set above.
*
* As this is the start of the reset/rebuild cycle, set
* both to indicate that.
*/
hw->reset_ongoing = true;
}
}
if (oicr & PFINT_OICR_HMC_ERR_M) {
ena_mask &= ~PFINT_OICR_HMC_ERR_M;
dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
rd32(hw, PFHMC_ERRORINFO),
rd32(hw, PFHMC_ERRORDATA));
}
/* Report any remaining unexpected interrupts */
oicr &= ena_mask;
if (oicr) {
dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
/* If a critical error is pending there is no choice but to
* reset the device.
*/
if (oicr & (PFINT_OICR_PE_CRITERR_M |
PFINT_OICR_PCI_EXCEPTION_M |
PFINT_OICR_ECC_ERR_M)) {
set_bit(__ICE_PFR_REQ, pf->state);
ice_service_task_schedule(pf);
}
}
ret = IRQ_HANDLED;
if (!test_bit(__ICE_DOWN, pf->state)) {
ice_service_task_schedule(pf);
ice_irq_dynamic_ena(hw, NULL, NULL);
}
return ret;
}
/**
* ice_dis_ctrlq_interrupts - disable control queue interrupts
* @hw: pointer to HW structure
*/
static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
{
/* disable Admin queue Interrupt causes */
wr32(hw, PFINT_FW_CTL,
rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
/* disable Mailbox queue Interrupt causes */
wr32(hw, PFINT_MBX_CTL,
rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
/* disable Control queue Interrupt causes */
wr32(hw, PFINT_OICR_CTL,
rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
ice_flush(hw);
}
/**
* ice_free_irq_msix_misc - Unroll misc vector setup
* @pf: board private structure
*/
static void ice_free_irq_msix_misc(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
ice_dis_ctrlq_interrupts(hw);
/* disable OICR interrupt */
wr32(hw, PFINT_OICR_ENA, 0);
ice_flush(hw);
if (pf->msix_entries) {
synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
devm_free_irq(ice_pf_to_dev(pf),
pf->msix_entries[pf->oicr_idx].vector, pf);
}
pf->num_avail_sw_msix += 1;
ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
}
/**
* ice_ena_ctrlq_interrupts - enable control queue interrupts
* @hw: pointer to HW structure
* @reg_idx: HW vector index to associate the control queue interrupts with
*/
static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
{
u32 val;
val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
PFINT_OICR_CTL_CAUSE_ENA_M);
wr32(hw, PFINT_OICR_CTL, val);
/* enable Admin queue Interrupt causes */
val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
PFINT_FW_CTL_CAUSE_ENA_M);
wr32(hw, PFINT_FW_CTL, val);
/* enable Mailbox queue Interrupt causes */
val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
PFINT_MBX_CTL_CAUSE_ENA_M);
wr32(hw, PFINT_MBX_CTL, val);
ice_flush(hw);
}
/**
* ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
* @pf: board private structure
*
* This sets up the handler for MSIX 0, which is used to manage the
* non-queue interrupts, e.g. AdminQ and errors. This is not used
* when in MSI or Legacy interrupt mode.
*/
static int ice_req_irq_msix_misc(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
int oicr_idx, err = 0;
if (!pf->int_name[0])
snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
dev_driver_string(dev), dev_name(dev));
/* Do not request IRQ but do enable OICR interrupt since settings are
* lost during reset. Note that this function is called only during
* rebuild path and not while reset is in progress.
*/
if (ice_is_reset_in_progress(pf->state))
goto skip_req_irq;
/* reserve one vector in irq_tracker for misc interrupts */
oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
if (oicr_idx < 0)
return oicr_idx;
pf->num_avail_sw_msix -= 1;
pf->oicr_idx = oicr_idx;
err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
ice_misc_intr, 0, pf->int_name, pf);
if (err) {
dev_err(dev, "devm_request_irq for %s failed: %d\n",
pf->int_name, err);
ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
pf->num_avail_sw_msix += 1;
return err;
}
skip_req_irq:
ice_ena_misc_vector(pf);
ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
ice_flush(hw);
ice_irq_dynamic_ena(hw, NULL, NULL);
return 0;
}
/**
* ice_napi_add - register NAPI handler for the VSI
* @vsi: VSI for which NAPI handler is to be registered
*
* This function is only called in the driver's load path. Registering the NAPI
* handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
* reset/rebuild, etc.)
*/
static void ice_napi_add(struct ice_vsi *vsi)
{
int v_idx;
if (!vsi->netdev)
return;
ice_for_each_q_vector(vsi, v_idx)
netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
ice_napi_poll, NAPI_POLL_WEIGHT);
}
/**
* ice_set_ops - set netdev and ethtools ops for the given netdev
* @netdev: netdev instance
*/
static void ice_set_ops(struct net_device *netdev)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
if (ice_is_safe_mode(pf)) {
netdev->netdev_ops = &ice_netdev_safe_mode_ops;
ice_set_ethtool_safe_mode_ops(netdev);
return;
}
netdev->netdev_ops = &ice_netdev_ops;
ice_set_ethtool_ops(netdev);
}
/**
* ice_set_netdev_features - set features for the given netdev
* @netdev: netdev instance
*/
static void ice_set_netdev_features(struct net_device *netdev)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
netdev_features_t csumo_features;
netdev_features_t vlano_features;
netdev_features_t dflt_features;
netdev_features_t tso_features;
if (ice_is_safe_mode(pf)) {
/* safe mode */
netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
netdev->hw_features = netdev->features;
return;
}
dflt_features = NETIF_F_SG |
NETIF_F_HIGHDMA |
NETIF_F_RXHASH;
csumo_features = NETIF_F_RXCSUM |
NETIF_F_IP_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_IPV6_CSUM;
vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX;
tso_features = NETIF_F_TSO |
NETIF_F_GSO_UDP_L4;
/* set features that user can change */
netdev->hw_features = dflt_features | csumo_features |
vlano_features | tso_features;
/* enable features */
netdev->features |= netdev->hw_features;
/* encap and VLAN devices inherit default, csumo and tso features */
netdev->hw_enc_features |= dflt_features | csumo_features |
tso_features;
netdev->vlan_features |= dflt_features | csumo_features |
tso_features;
}
/**
* ice_cfg_netdev - Allocate, configure and register a netdev
* @vsi: the VSI associated with the new netdev
*
* Returns 0 on success, negative value on failure
*/
static int ice_cfg_netdev(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_netdev_priv *np;
struct net_device *netdev;
u8 mac_addr[ETH_ALEN];
int err;
netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
vsi->alloc_rxq);
if (!netdev)
return -ENOMEM;
vsi->netdev = netdev;
np = netdev_priv(netdev);
np->vsi = vsi;
ice_set_netdev_features(netdev);
ice_set_ops(netdev);
if (vsi->type == ICE_VSI_PF) {
SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
ether_addr_copy(netdev->dev_addr, mac_addr);
ether_addr_copy(netdev->perm_addr, mac_addr);
}
netdev->priv_flags |= IFF_UNICAST_FLT;
/* Setup netdev TC information */
ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
/* setup watchdog timeout value to be 5 second */
netdev->watchdog_timeo = 5 * HZ;
netdev->min_mtu = ETH_MIN_MTU;
netdev->max_mtu = ICE_MAX_MTU;
err = register_netdev(vsi->netdev);
if (err)
return err;
netif_carrier_off(vsi->netdev);
/* make sure transmit queues start off as stopped */
netif_tx_stop_all_queues(vsi->netdev);
return 0;
}
/**
* ice_fill_rss_lut - Fill the RSS lookup table with default values
* @lut: Lookup table
* @rss_table_size: Lookup table size
* @rss_size: Range of queue number for hashing
*/
void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
{
u16 i;
for (i = 0; i < rss_table_size; i++)
lut[i] = i % rss_size;
}
/**
* ice_pf_vsi_setup - Set up a PF VSI
* @pf: board private structure
* @pi: pointer to the port_info instance
*
* Returns pointer to the successfully allocated VSI software struct
* on success, otherwise returns NULL on failure.
*/
static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
{
return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
}
/**
* ice_lb_vsi_setup - Set up a loopback VSI
* @pf: board private structure
* @pi: pointer to the port_info instance
*
* Returns pointer to the successfully allocated VSI software struct
* on success, otherwise returns NULL on failure.
*/
struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
{
return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
}
/**
* ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
* @netdev: network interface to be adjusted
* @proto: unused protocol
* @vid: VLAN ID to be added
*
* net_device_ops implementation for adding VLAN IDs
*/
static int
ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
u16 vid)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
int ret;
if (vid >= VLAN_N_VID) {
netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
vid, VLAN_N_VID);
return -EINVAL;
}
if (vsi->info.pvid)
return -EINVAL;
/* VLAN 0 is added by default during load/reset */
if (!vid)
return 0;
/* Enable VLAN pruning when a VLAN other than 0 is added */
if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
ret = ice_cfg_vlan_pruning(vsi, true, false);
if (ret)
return ret;
}
/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
* packets aren't pruned by the device's internal switch on Rx
*/
ret = ice_vsi_add_vlan(vsi, vid);
if (!ret) {
vsi->vlan_ena = true;
set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
}
return ret;
}
/**
* ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
* @netdev: network interface to be adjusted
* @proto: unused protocol
* @vid: VLAN ID to be removed
*
* net_device_ops implementation for removing VLAN IDs
*/
static int
ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
u16 vid)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
int ret;
if (vsi->info.pvid)
return -EINVAL;
/* don't allow removal of VLAN 0 */
if (!vid)
return 0;
/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
* information
*/
ret = ice_vsi_kill_vlan(vsi, vid);
if (ret)
return ret;
/* Disable pruning when VLAN 0 is the only VLAN rule */
if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
ret = ice_cfg_vlan_pruning(vsi, false, false);
vsi->vlan_ena = false;
set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
return ret;
}
/**
* ice_setup_pf_sw - Setup the HW switch on startup or after reset
* @pf: board private structure
*
* Returns 0 on success, negative value on failure
*/
static int ice_setup_pf_sw(struct ice_pf *pf)
{
struct ice_vsi *vsi;
int status = 0;
if (ice_is_reset_in_progress(pf->state))
return -EBUSY;
vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
if (!vsi) {
status = -ENOMEM;
goto unroll_vsi_setup;
}
status = ice_cfg_netdev(vsi);
if (status) {
status = -ENODEV;
goto unroll_vsi_setup;
}
/* netdev has to be configured before setting frame size */
ice_vsi_cfg_frame_size(vsi);
/* Setup DCB netlink interface */
ice_dcbnl_setup(vsi);
/* registering the NAPI handler requires both the queues and
* netdev to be created, which are done in ice_pf_vsi_setup()
* and ice_cfg_netdev() respectively
*/
ice_napi_add(vsi);
status = ice_init_mac_fltr(pf);
if (status)
goto unroll_napi_add;
return status;
unroll_napi_add:
if (vsi) {
ice_napi_del(vsi);
if (vsi->netdev) {
if (vsi->netdev->reg_state == NETREG_REGISTERED)
unregister_netdev(vsi->netdev);
free_netdev(vsi->netdev);
vsi->netdev = NULL;
}
}
unroll_vsi_setup:
if (vsi) {
ice_vsi_free_q_vectors(vsi);
ice_vsi_delete(vsi);
ice_vsi_put_qs(vsi);
ice_vsi_clear(vsi);
}
return status;
}
/**
* ice_get_avail_q_count - Get count of queues in use
* @pf_qmap: bitmap to get queue use count from
* @lock: pointer to a mutex that protects access to pf_qmap
* @size: size of the bitmap
*/
static u16
ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
{
u16 count = 0, bit;
mutex_lock(lock);
for_each_clear_bit(bit, pf_qmap, size)
count++;
mutex_unlock(lock);
return count;
}
/**
* ice_get_avail_txq_count - Get count of Tx queues in use
* @pf: pointer to an ice_pf instance
*/
u16 ice_get_avail_txq_count(struct ice_pf *pf)
{
return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
pf->max_pf_txqs);
}
/**
* ice_get_avail_rxq_count - Get count of Rx queues in use
* @pf: pointer to an ice_pf instance
*/
u16 ice_get_avail_rxq_count(struct ice_pf *pf)
{
return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
pf->max_pf_rxqs);
}
/**
* ice_deinit_pf - Unrolls initialziations done by ice_init_pf
* @pf: board private structure to initialize
*/
static void ice_deinit_pf(struct ice_pf *pf)
{
ice_service_task_stop(pf);
mutex_destroy(&pf->sw_mutex);
mutex_destroy(&pf->tc_mutex);
mutex_destroy(&pf->avail_q_mutex);
if (pf->avail_txqs) {
bitmap_free(pf->avail_txqs);
pf->avail_txqs = NULL;
}
if (pf->avail_rxqs) {
bitmap_free(pf->avail_rxqs);
pf->avail_rxqs = NULL;
}
}
/**
* ice_set_pf_caps - set PFs capability flags
* @pf: pointer to the PF instance
*/
static void ice_set_pf_caps(struct ice_pf *pf)
{
struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
if (func_caps->common_cap.dcb)
set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
if (func_caps->common_cap.sr_iov_1_1) {
set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
ICE_MAX_VF_COUNT);
}
clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
if (func_caps->common_cap.rss_table_size)
set_bit(ICE_FLAG_RSS_ENA, pf->flags);
pf->max_pf_txqs = func_caps->common_cap.num_txq;
pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
}
/**
* ice_init_pf - Initialize general software structures (struct ice_pf)
* @pf: board private structure to initialize
*/
static int ice_init_pf(struct ice_pf *pf)
{
ice_set_pf_caps(pf);
mutex_init(&pf->sw_mutex);
mutex_init(&pf->tc_mutex);
/* setup service timer and periodic service task */
timer_setup(&pf->serv_tmr, ice_service_timer, 0);
pf->serv_tmr_period = HZ;
INIT_WORK(&pf->serv_task, ice_service_task);
clear_bit(__ICE_SERVICE_SCHED, pf->state);
mutex_init(&pf->avail_q_mutex);
pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
if (!pf->avail_txqs)
return -ENOMEM;
pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
if (!pf->avail_rxqs) {
devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
pf->avail_txqs = NULL;
return -ENOMEM;
}
return 0;
}
/**
* ice_ena_msix_range - Request a range of MSIX vectors from the OS
* @pf: board private structure
*
* compute the number of MSIX vectors required (v_budget) and request from
* the OS. Return the number of vectors reserved or negative on failure
*/
static int ice_ena_msix_range(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
int v_left, v_actual, v_budget = 0;
int needed, err, i;
v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
/* reserve one vector for miscellaneous handler */
needed = 1;
if (v_left < needed)
goto no_hw_vecs_left_err;
v_budget += needed;
v_left -= needed;
/* reserve vectors for LAN traffic */
needed = min_t(int, num_online_cpus(), v_left);
if (v_left < needed)
goto no_hw_vecs_left_err;
pf->num_lan_msix = needed;
v_budget += needed;
v_left -= needed;
pf->msix_entries = devm_kcalloc(dev, v_budget,
sizeof(*pf->msix_entries), GFP_KERNEL);
if (!pf->msix_entries) {
err = -ENOMEM;
goto exit_err;
}
for (i = 0; i < v_budget; i++)
pf->msix_entries[i].entry = i;
/* actually reserve the vectors */
v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
ICE_MIN_MSIX, v_budget);
if (v_actual < 0) {
dev_err(dev, "unable to reserve MSI-X vectors\n");
err = v_actual;
goto msix_err;
}
if (v_actual < v_budget) {
dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
v_budget, v_actual);
/* 2 vectors for LAN (traffic + OICR) */
#define ICE_MIN_LAN_VECS 2
if (v_actual < ICE_MIN_LAN_VECS) {
/* error if we can't get minimum vectors */
pci_disable_msix(pf->pdev);
err = -ERANGE;
goto msix_err;
} else {
pf->num_lan_msix = ICE_MIN_LAN_VECS;
}
}
return v_actual;
msix_err:
devm_kfree(dev, pf->msix_entries);
goto exit_err;
no_hw_vecs_left_err:
dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
needed, v_left);
err = -ERANGE;
exit_err:
pf->num_lan_msix = 0;
return err;
}
/**
* ice_dis_msix - Disable MSI-X interrupt setup in OS
* @pf: board private structure
*/
static void ice_dis_msix(struct ice_pf *pf)
{
pci_disable_msix(pf->pdev);
devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
pf->msix_entries = NULL;
}
/**
* ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
* @pf: board private structure
*/
static void ice_clear_interrupt_scheme(struct ice_pf *pf)
{
ice_dis_msix(pf);
if (pf->irq_tracker) {
devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
pf->irq_tracker = NULL;
}
}
/**
* ice_init_interrupt_scheme - Determine proper interrupt scheme
* @pf: board private structure to initialize
*/
static int ice_init_interrupt_scheme(struct ice_pf *pf)
{
int vectors;
vectors = ice_ena_msix_range(pf);
if (vectors < 0)
return vectors;
/* set up vector assignment tracking */
pf->irq_tracker =
devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
(sizeof(u16) * vectors), GFP_KERNEL);
if (!pf->irq_tracker) {
ice_dis_msix(pf);
return -ENOMEM;
}
/* populate SW interrupts pool with number of OS granted IRQs. */
pf->num_avail_sw_msix = vectors;
pf->irq_tracker->num_entries = vectors;