blob: 79a54d66a2c0b7bd000ae2a299d2fbde143c58c5 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
/*
* ross.h: Ross module specific definitions and defines.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
*/
#ifndef _SPARC_ROSS_H
#define _SPARC_ROSS_H
#include <asm/asi.h>
#include <asm/page.h>
/* Ross made Hypersparcs have a %psr 'impl' field of '0001'. The 'vers'
* field has '1111'.
*/
/* The MMU control register fields on the HyperSparc.
*
* -----------------------------------------------------------------
* |implvers| RSV |CWR|SE|WBE| MID |BM| C|CS|MR|CM|RSV|CE|RSV|NF|ME|
* -----------------------------------------------------------------
* 31 24 23-22 21 20 19 18-15 14 13 12 11 10 9 8 7-2 1 0
*
* Phew, lots of fields there ;-)
*
* CWR: Cache Wrapping Enabled, if one cache wrapping is on.
* SE: Snoop Enable, turns on bus snooping for cache activity if one.
* WBE: Write Buffer Enable, one turns it on.
* MID: The ModuleID of the chip for MBus transactions.
* BM: Boot-Mode. One indicates the MMU is in boot mode.
* C: Indicates whether accesses are cachable while the MMU is
* disabled.
* CS: Cache Size -- 0 = 128k, 1 = 256k
* MR: Memory Reflection, one indicates that the memory bus connected
* to the MBus supports memory reflection.
* CM: Cache Mode -- 0 = write-through, 1 = copy-back
* CE: Cache Enable -- 0 = no caching, 1 = cache is on
* NF: No Fault -- 0 = faults trap the CPU from supervisor mode
* 1 = faults from supervisor mode do not generate traps
* ME: MMU Enable -- 0 = MMU is off, 1 = MMU is on
*/
#define HYPERSPARC_CWENABLE 0x00200000
#define HYPERSPARC_SBENABLE 0x00100000
#define HYPERSPARC_WBENABLE 0x00080000
#define HYPERSPARC_MIDMASK 0x00078000
#define HYPERSPARC_BMODE 0x00004000
#define HYPERSPARC_ACENABLE 0x00002000
#define HYPERSPARC_CSIZE 0x00001000
#define HYPERSPARC_MRFLCT 0x00000800
#define HYPERSPARC_CMODE 0x00000400
#define HYPERSPARC_CENABLE 0x00000100
#define HYPERSPARC_NFAULT 0x00000002
#define HYPERSPARC_MENABLE 0x00000001
/* The ICCR instruction cache register on the HyperSparc.
*
* -----------------------------------------------
* | | FTD | ICE |
* -----------------------------------------------
* 31 1 0
*
* This register is accessed using the V8 'wrasr' and 'rdasr'
* opcodes, since not all assemblers understand them and those
* that do use different semantics I will just hard code the
* instruction with a '.word' statement.
*
* FTD: If set to one flush instructions executed during an
* instruction cache hit occurs, the corresponding line
* for said cache-hit is invalidated. If FTD is zero,
* an unimplemented 'flush' trap will occur when any
* flush is executed by the processor.
*
* ICE: If set to one, the instruction cache is enabled. If
* zero, the cache will not be used for instruction fetches.
*
* All other bits are read as zeros, and writes to them have no
* effect.
*
* Wheee, not many assemblers understand the %iccr register nor
* the generic asr r/w instructions.
*
* 1000 0011 0100 0111 1100 0000 0000 0000 ! rd %iccr, %g1
*
* 0x 8 3 4 7 c 0 0 0 ! 0x8347c000
*
* 1011 1111 1000 0000 0110 0000 0000 0000 ! wr %g1, 0x0, %iccr
*
* 0x b f 8 0 6 0 0 0 ! 0xbf806000
*
*/
#define HYPERSPARC_ICCR_FTD 0x00000002
#define HYPERSPARC_ICCR_ICE 0x00000001
#ifndef __ASSEMBLY__
static inline unsigned int get_ross_icr(void)
{
unsigned int icreg;
__asm__ __volatile__(".word 0x8347c000\n\t" /* rd %iccr, %g1 */
"mov %%g1, %0\n\t"
: "=r" (icreg)
: /* no inputs */
: "g1", "memory");
return icreg;
}
static inline void put_ross_icr(unsigned int icreg)
{
__asm__ __volatile__("or %%g0, %0, %%g1\n\t"
".word 0xbf806000\n\t" /* wr %g1, 0x0, %iccr */
"nop\n\t"
"nop\n\t"
"nop\n\t"
: /* no outputs */
: "r" (icreg)
: "g1", "memory");
return;
}
/* HyperSparc specific cache flushing. */
/* This is for the on-chip instruction cache. */
static inline void hyper_flush_whole_icache(void)
{
__asm__ __volatile__("sta %%g0, [%%g0] %0\n\t"
: /* no outputs */
: "i" (ASI_M_FLUSH_IWHOLE)
: "memory");
return;
}
extern int vac_cache_size;
extern int vac_line_size;
static inline void hyper_clear_all_tags(void)
{
unsigned long addr;
for(addr = 0; addr < vac_cache_size; addr += vac_line_size)
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
: /* no outputs */
: "r" (addr), "i" (ASI_M_DATAC_TAG)
: "memory");
}
static inline void hyper_flush_unconditional_combined(void)
{
unsigned long addr;
for (addr = 0; addr < vac_cache_size; addr += vac_line_size)
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
: /* no outputs */
: "r" (addr), "i" (ASI_M_FLUSH_CTX)
: "memory");
}
static inline void hyper_flush_cache_user(void)
{
unsigned long addr;
for (addr = 0; addr < vac_cache_size; addr += vac_line_size)
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
: /* no outputs */
: "r" (addr), "i" (ASI_M_FLUSH_USER)
: "memory");
}
static inline void hyper_flush_cache_page(unsigned long page)
{
unsigned long end;
page &= PAGE_MASK;
end = page + PAGE_SIZE;
while (page < end) {
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
: /* no outputs */
: "r" (page), "i" (ASI_M_FLUSH_PAGE)
: "memory");
page += vac_line_size;
}
}
#endif /* !(__ASSEMBLY__) */
#endif /* !(_SPARC_ROSS_H) */