blob: f64a59cc396d5eaee13c7b0840df629f9c909733 [file] [log] [blame]
#ifndef _ASM_IO_H
#define _ASM_IO_H
* This file contains the definitions for the x86 IO instructions
* inb/inw/inl/outb/outw/outl and the "string versions" of the same
* (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing"
* versions of the single-IO instructions (inb_p/inw_p/..).
* This file is not meant to be obfuscating: it's just complicated
* to (a) handle it all in a way that makes gcc able to optimize it
* as well as possible and (b) trying to avoid writing the same thing
* over and over again with slight variations and possibly making a
* mistake somewhere.
* Thanks to James van Artsdalen for a better timing-fix than
* the two short jumps: using outb's to a nonexistent port seems
* to guarantee better timings even on fast machines.
* On the other hand, I'd like to be sure of a non-existent port:
* I feel a bit unsafe about using 0x80 (should be safe, though)
* Linus
* Bit simplified and optimized by Jan Hubicka
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999.
* isa_memset_io, isa_memcpy_fromio, isa_memcpy_toio added,
* isa_read[wl] and isa_write[wl] fixed
* - Arnaldo Carvalho de Melo <>
extern void native_io_delay(void);
extern int io_delay_type;
extern void io_delay_init(void);
#if defined(CONFIG_PARAVIRT)
#include <asm/paravirt.h>
static inline void slow_down_io(void)
* Talk about misusing macros..
#define __OUT1(s,x) \
static inline void out##s(unsigned x value, unsigned short port) {
#define __OUT2(s,s1,s2) \
__asm__ __volatile__ ("out" #s " %" s1 "0,%" s2 "1"
#define __OUT(s,s1,x) \
__OUT1(s,x) __OUT2(s,s1,"w") : : "a" (value), "Nd" (port)); } \
__OUT1(s##_p, x) __OUT2(s, s1, "w") : : "a" (value), "Nd" (port)); \
slow_down_io(); }
#define __IN1(s) \
static inline RETURN_TYPE in##s(unsigned short port) { RETURN_TYPE _v;
#define __IN2(s,s1,s2) \
__asm__ __volatile__ ("in" #s " %" s2 "1,%" s1 "0"
#define __IN(s,s1,i...) \
__IN1(s) __IN2(s, s1, "w") : "=a" (_v) : "Nd" (port), ##i); return _v; } \
__IN1(s##_p) __IN2(s, s1, "w") : "=a" (_v) : "Nd" (port), ##i); \
slow_down_io(); return _v; }
#define __INS(s) \
static inline void ins##s(unsigned short port, void * addr, unsigned long count) \
{ __asm__ __volatile__ ("rep ; ins" #s \
: "=D" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); }
#define __OUTS(s) \
static inline void outs##s(unsigned short port, const void * addr, unsigned long count) \
{ __asm__ __volatile__ ("rep ; outs" #s \
: "=S" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); }
#define RETURN_TYPE unsigned char
#define RETURN_TYPE unsigned short
#define RETURN_TYPE unsigned int
#define IO_SPACE_LIMIT 0xffff
#if defined(__KERNEL__) && defined(__x86_64__)
#include <linux/vmalloc.h>
#ifndef __i386__
* Change virtual addresses to physical addresses and vv.
* These are pretty trivial
static inline unsigned long virt_to_phys(volatile void * address)
return __pa(address);
static inline void * phys_to_virt(unsigned long address)
return __va(address);
* Change "struct page" to physical address.
#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
#include <asm-generic/iomap.h>
extern void *early_ioremap(unsigned long addr, unsigned long size);
extern void early_iounmap(void *addr, unsigned long size);
* This one maps high address device memory and turns off caching for that area.
* it's useful if some control registers are in such an area and write combining
* or read caching is not desirable:
extern void __iomem *ioremap_nocache(unsigned long offset, unsigned long size);
extern void __iomem *ioremap_cache(unsigned long offset, unsigned long size);
* The default ioremap() behavior is non-cached:
static inline void __iomem *ioremap(unsigned long offset, unsigned long size)
return ioremap_nocache(offset, size);
extern void iounmap(volatile void __iomem *addr);
extern void __iomem *fix_ioremap(unsigned idx, unsigned long phys);
* ISA I/O bus memory addresses are 1:1 with the physical address.
#define isa_virt_to_bus virt_to_phys
#define isa_page_to_bus page_to_phys
#define isa_bus_to_virt phys_to_virt
* However PCI ones are not necessarily 1:1 and therefore these interfaces
* are forbidden in portable PCI drivers.
* Allow them on x86 for legacy drivers, though.
#define virt_to_bus virt_to_phys
#define bus_to_virt phys_to_virt
* readX/writeX() are used to access memory mapped devices. On some
* architectures the memory mapped IO stuff needs to be accessed
* differently. On the x86 architecture, we just read/write the
* memory location directly.
static inline __u8 __readb(const volatile void __iomem *addr)
return *(__force volatile __u8 *)addr;
static inline __u16 __readw(const volatile void __iomem *addr)
return *(__force volatile __u16 *)addr;
static __always_inline __u32 __readl(const volatile void __iomem *addr)
return *(__force volatile __u32 *)addr;
static inline __u64 __readq(const volatile void __iomem *addr)
return *(__force volatile __u64 *)addr;
#define readb(x) __readb(x)
#define readw(x) __readw(x)
#define readl(x) __readl(x)
#define readq(x) __readq(x)
#define readb_relaxed(a) readb(a)
#define readw_relaxed(a) readw(a)
#define readl_relaxed(a) readl(a)
#define readq_relaxed(a) readq(a)
#define __raw_readb readb
#define __raw_readw readw
#define __raw_readl readl
#define __raw_readq readq
#define mmiowb()
static inline void __writel(__u32 b, volatile void __iomem *addr)
*(__force volatile __u32 *)addr = b;
static inline void __writeq(__u64 b, volatile void __iomem *addr)
*(__force volatile __u64 *)addr = b;
static inline void __writeb(__u8 b, volatile void __iomem *addr)
*(__force volatile __u8 *)addr = b;
static inline void __writew(__u16 b, volatile void __iomem *addr)
*(__force volatile __u16 *)addr = b;
#define writeq(val,addr) __writeq((val),(addr))
#define writel(val,addr) __writel((val),(addr))
#define writew(val,addr) __writew((val),(addr))
#define writeb(val,addr) __writeb((val),(addr))
#define __raw_writeb writeb
#define __raw_writew writew
#define __raw_writel writel
#define __raw_writeq writeq
void __memcpy_fromio(void*,unsigned long,unsigned);
void __memcpy_toio(unsigned long,const void*,unsigned);
static inline void memcpy_fromio(void *to, const volatile void __iomem *from, unsigned len)
__memcpy_fromio(to,(unsigned long)from,len);
static inline void memcpy_toio(volatile void __iomem *to, const void *from, unsigned len)
__memcpy_toio((unsigned long)to,from,len);
void memset_io(volatile void __iomem *a, int b, size_t c);
* ISA space is 'always mapped' on a typical x86 system, no need to
* explicitly ioremap() it. The fact that the ISA IO space is mapped
* to PAGE_OFFSET is pure coincidence - it does not mean ISA values
* are physical addresses. The following constant pointer can be
* used as the IO-area pointer (it can be iounmapped as well, so the
* analogy with PCI is quite large):
#define __ISA_IO_base ((char __iomem *)(PAGE_OFFSET))
#define flush_write_buffers()
extern int iommu_bio_merge;
#define BIO_VMERGE_BOUNDARY iommu_bio_merge
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
* access
#define xlate_dev_mem_ptr(p) __va(p)
* Convert a virtual cached pointer to an uncached pointer
#define xlate_dev_kmem_ptr(p) p
#endif /* __KERNEL__ */