blob: b9813cf3d91c6ea8a99fa3e63f8f19636eae8e14 [file] [log] [blame]
/* SCTP kernel reference Implementation
* (C) Copyright IBM Corp. 2001, 2004
* Copyright (c) 1999-2000 Cisco, Inc.
* Copyright (c) 1999-2001 Motorola, Inc.
* Copyright (c) 2001 Intel Corp.
* Copyright (c) 2001 Nokia, Inc.
* Copyright (c) 2001 La Monte H.P. Yarroll
*
* This file is part of the SCTP kernel reference Implementation
*
* Initialization/cleanup for SCTP protocol support.
*
* The SCTP reference implementation is free software;
* you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* The SCTP reference implementation is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* ************************
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU CC; see the file COPYING. If not, write to
* the Free Software Foundation, 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Please send any bug reports or fixes you make to the
* email address(es):
* lksctp developers <lksctp-developers@lists.sourceforge.net>
*
* Or submit a bug report through the following website:
* http://www.sf.net/projects/lksctp
*
* Written or modified by:
* La Monte H.P. Yarroll <piggy@acm.org>
* Karl Knutson <karl@athena.chicago.il.us>
* Jon Grimm <jgrimm@us.ibm.com>
* Sridhar Samudrala <sri@us.ibm.com>
* Daisy Chang <daisyc@us.ibm.com>
* Ardelle Fan <ardelle.fan@intel.com>
*
* Any bugs reported given to us we will try to fix... any fixes shared will
* be incorporated into the next SCTP release.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/seq_file.h>
#include <net/protocol.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/sctp/sctp.h>
#include <net/addrconf.h>
#include <net/inet_common.h>
#include <net/inet_ecn.h>
/* Global data structures. */
struct sctp_globals sctp_globals;
struct proc_dir_entry *proc_net_sctp;
DEFINE_SNMP_STAT(struct sctp_mib, sctp_statistics);
struct idr sctp_assocs_id;
DEFINE_SPINLOCK(sctp_assocs_id_lock);
/* This is the global socket data structure used for responding to
* the Out-of-the-blue (OOTB) packets. A control sock will be created
* for this socket at the initialization time.
*/
static struct socket *sctp_ctl_socket;
static struct sctp_pf *sctp_pf_inet6_specific;
static struct sctp_pf *sctp_pf_inet_specific;
static struct sctp_af *sctp_af_v4_specific;
static struct sctp_af *sctp_af_v6_specific;
kmem_cache_t *sctp_chunk_cachep;
kmem_cache_t *sctp_bucket_cachep;
extern int sctp_snmp_proc_init(void);
extern int sctp_snmp_proc_exit(void);
extern int sctp_eps_proc_init(void);
extern int sctp_eps_proc_exit(void);
extern int sctp_assocs_proc_init(void);
extern int sctp_assocs_proc_exit(void);
/* Return the address of the control sock. */
struct sock *sctp_get_ctl_sock(void)
{
return sctp_ctl_socket->sk;
}
/* Set up the proc fs entry for the SCTP protocol. */
static __init int sctp_proc_init(void)
{
if (!proc_net_sctp) {
struct proc_dir_entry *ent;
ent = proc_mkdir("net/sctp", NULL);
if (ent) {
ent->owner = THIS_MODULE;
proc_net_sctp = ent;
} else
goto out_nomem;
}
if (sctp_snmp_proc_init())
goto out_nomem;
if (sctp_eps_proc_init())
goto out_nomem;
if (sctp_assocs_proc_init())
goto out_nomem;
return 0;
out_nomem:
return -ENOMEM;
}
/* Clean up the proc fs entry for the SCTP protocol.
* Note: Do not make this __exit as it is used in the init error
* path.
*/
static void sctp_proc_exit(void)
{
sctp_snmp_proc_exit();
sctp_eps_proc_exit();
sctp_assocs_proc_exit();
if (proc_net_sctp) {
proc_net_sctp = NULL;
remove_proc_entry("net/sctp", NULL);
}
}
/* Private helper to extract ipv4 address and stash them in
* the protocol structure.
*/
static void sctp_v4_copy_addrlist(struct list_head *addrlist,
struct net_device *dev)
{
struct in_device *in_dev;
struct in_ifaddr *ifa;
struct sctp_sockaddr_entry *addr;
rcu_read_lock();
if ((in_dev = __in_dev_get(dev)) == NULL) {
rcu_read_unlock();
return;
}
for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) {
/* Add the address to the local list. */
addr = t_new(struct sctp_sockaddr_entry, GFP_ATOMIC);
if (addr) {
addr->a.v4.sin_family = AF_INET;
addr->a.v4.sin_port = 0;
addr->a.v4.sin_addr.s_addr = ifa->ifa_local;
list_add_tail(&addr->list, addrlist);
}
}
rcu_read_unlock();
}
/* Extract our IP addresses from the system and stash them in the
* protocol structure.
*/
static void __sctp_get_local_addr_list(void)
{
struct net_device *dev;
struct list_head *pos;
struct sctp_af *af;
read_lock(&dev_base_lock);
for (dev = dev_base; dev; dev = dev->next) {
__list_for_each(pos, &sctp_address_families) {
af = list_entry(pos, struct sctp_af, list);
af->copy_addrlist(&sctp_local_addr_list, dev);
}
}
read_unlock(&dev_base_lock);
}
static void sctp_get_local_addr_list(void)
{
unsigned long flags;
sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
__sctp_get_local_addr_list();
sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
}
/* Free the existing local addresses. */
static void __sctp_free_local_addr_list(void)
{
struct sctp_sockaddr_entry *addr;
struct list_head *pos, *temp;
list_for_each_safe(pos, temp, &sctp_local_addr_list) {
addr = list_entry(pos, struct sctp_sockaddr_entry, list);
list_del(pos);
kfree(addr);
}
}
/* Free the existing local addresses. */
static void sctp_free_local_addr_list(void)
{
unsigned long flags;
sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
__sctp_free_local_addr_list();
sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
}
/* Copy the local addresses which are valid for 'scope' into 'bp'. */
int sctp_copy_local_addr_list(struct sctp_bind_addr *bp, sctp_scope_t scope,
int gfp, int copy_flags)
{
struct sctp_sockaddr_entry *addr;
int error = 0;
struct list_head *pos;
unsigned long flags;
sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
list_for_each(pos, &sctp_local_addr_list) {
addr = list_entry(pos, struct sctp_sockaddr_entry, list);
if (sctp_in_scope(&addr->a, scope)) {
/* Now that the address is in scope, check to see if
* the address type is really supported by the local
* sock as well as the remote peer.
*/
if ((((AF_INET == addr->a.sa.sa_family) &&
(copy_flags & SCTP_ADDR4_PEERSUPP))) ||
(((AF_INET6 == addr->a.sa.sa_family) &&
(copy_flags & SCTP_ADDR6_ALLOWED) &&
(copy_flags & SCTP_ADDR6_PEERSUPP)))) {
error = sctp_add_bind_addr(bp, &addr->a,
GFP_ATOMIC);
if (error)
goto end_copy;
}
}
}
end_copy:
sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
return error;
}
/* Initialize a sctp_addr from in incoming skb. */
static void sctp_v4_from_skb(union sctp_addr *addr, struct sk_buff *skb,
int is_saddr)
{
void *from;
__u16 *port;
struct sctphdr *sh;
port = &addr->v4.sin_port;
addr->v4.sin_family = AF_INET;
sh = (struct sctphdr *) skb->h.raw;
if (is_saddr) {
*port = ntohs(sh->source);
from = &skb->nh.iph->saddr;
} else {
*port = ntohs(sh->dest);
from = &skb->nh.iph->daddr;
}
memcpy(&addr->v4.sin_addr.s_addr, from, sizeof(struct in_addr));
}
/* Initialize an sctp_addr from a socket. */
static void sctp_v4_from_sk(union sctp_addr *addr, struct sock *sk)
{
addr->v4.sin_family = AF_INET;
addr->v4.sin_port = inet_sk(sk)->num;
addr->v4.sin_addr.s_addr = inet_sk(sk)->rcv_saddr;
}
/* Initialize sk->sk_rcv_saddr from sctp_addr. */
static void sctp_v4_to_sk_saddr(union sctp_addr *addr, struct sock *sk)
{
inet_sk(sk)->rcv_saddr = addr->v4.sin_addr.s_addr;
}
/* Initialize sk->sk_daddr from sctp_addr. */
static void sctp_v4_to_sk_daddr(union sctp_addr *addr, struct sock *sk)
{
inet_sk(sk)->daddr = addr->v4.sin_addr.s_addr;
}
/* Initialize a sctp_addr from an address parameter. */
static void sctp_v4_from_addr_param(union sctp_addr *addr,
union sctp_addr_param *param,
__u16 port, int iif)
{
addr->v4.sin_family = AF_INET;
addr->v4.sin_port = port;
addr->v4.sin_addr.s_addr = param->v4.addr.s_addr;
}
/* Initialize an address parameter from a sctp_addr and return the length
* of the address parameter.
*/
static int sctp_v4_to_addr_param(const union sctp_addr *addr,
union sctp_addr_param *param)
{
int length = sizeof(sctp_ipv4addr_param_t);
param->v4.param_hdr.type = SCTP_PARAM_IPV4_ADDRESS;
param->v4.param_hdr.length = ntohs(length);
param->v4.addr.s_addr = addr->v4.sin_addr.s_addr;
return length;
}
/* Initialize a sctp_addr from a dst_entry. */
static void sctp_v4_dst_saddr(union sctp_addr *saddr, struct dst_entry *dst,
unsigned short port)
{
struct rtable *rt = (struct rtable *)dst;
saddr->v4.sin_family = AF_INET;
saddr->v4.sin_port = port;
saddr->v4.sin_addr.s_addr = rt->rt_src;
}
/* Compare two addresses exactly. */
static int sctp_v4_cmp_addr(const union sctp_addr *addr1,
const union sctp_addr *addr2)
{
if (addr1->sa.sa_family != addr2->sa.sa_family)
return 0;
if (addr1->v4.sin_port != addr2->v4.sin_port)
return 0;
if (addr1->v4.sin_addr.s_addr != addr2->v4.sin_addr.s_addr)
return 0;
return 1;
}
/* Initialize addr struct to INADDR_ANY. */
static void sctp_v4_inaddr_any(union sctp_addr *addr, unsigned short port)
{
addr->v4.sin_family = AF_INET;
addr->v4.sin_addr.s_addr = INADDR_ANY;
addr->v4.sin_port = port;
}
/* Is this a wildcard address? */
static int sctp_v4_is_any(const union sctp_addr *addr)
{
return INADDR_ANY == addr->v4.sin_addr.s_addr;
}
/* This function checks if the address is a valid address to be used for
* SCTP binding.
*
* Output:
* Return 0 - If the address is a non-unicast or an illegal address.
* Return 1 - If the address is a unicast.
*/
static int sctp_v4_addr_valid(union sctp_addr *addr, struct sctp_sock *sp)
{
/* Is this a non-unicast address or a unusable SCTP address? */
if (IS_IPV4_UNUSABLE_ADDRESS(&addr->v4.sin_addr.s_addr))
return 0;
return 1;
}
/* Should this be available for binding? */
static int sctp_v4_available(union sctp_addr *addr, struct sctp_sock *sp)
{
int ret = inet_addr_type(addr->v4.sin_addr.s_addr);
/* FIXME: ip_nonlocal_bind sysctl support. */
if (addr->v4.sin_addr.s_addr != INADDR_ANY && ret != RTN_LOCAL)
return 0;
return 1;
}
/* Checking the loopback, private and other address scopes as defined in
* RFC 1918. The IPv4 scoping is based on the draft for SCTP IPv4
* scoping <draft-stewart-tsvwg-sctp-ipv4-00.txt>.
*
* Level 0 - unusable SCTP addresses
* Level 1 - loopback address
* Level 2 - link-local addresses
* Level 3 - private addresses.
* Level 4 - global addresses
* For INIT and INIT-ACK address list, let L be the level of
* of requested destination address, sender and receiver
* SHOULD include all of its addresses with level greater
* than or equal to L.
*/
static sctp_scope_t sctp_v4_scope(union sctp_addr *addr)
{
sctp_scope_t retval;
/* Should IPv4 scoping be a sysctl configurable option
* so users can turn it off (default on) for certain
* unconventional networking environments?
*/
/* Check for unusable SCTP addresses. */
if (IS_IPV4_UNUSABLE_ADDRESS(&addr->v4.sin_addr.s_addr)) {
retval = SCTP_SCOPE_UNUSABLE;
} else if (LOOPBACK(addr->v4.sin_addr.s_addr)) {
retval = SCTP_SCOPE_LOOPBACK;
} else if (IS_IPV4_LINK_ADDRESS(&addr->v4.sin_addr.s_addr)) {
retval = SCTP_SCOPE_LINK;
} else if (IS_IPV4_PRIVATE_ADDRESS(&addr->v4.sin_addr.s_addr)) {
retval = SCTP_SCOPE_PRIVATE;
} else {
retval = SCTP_SCOPE_GLOBAL;
}
return retval;
}
/* Returns a valid dst cache entry for the given source and destination ip
* addresses. If an association is passed, trys to get a dst entry with a
* source address that matches an address in the bind address list.
*/
static struct dst_entry *sctp_v4_get_dst(struct sctp_association *asoc,
union sctp_addr *daddr,
union sctp_addr *saddr)
{
struct rtable *rt;
struct flowi fl;
struct sctp_bind_addr *bp;
rwlock_t *addr_lock;
struct sctp_sockaddr_entry *laddr;
struct list_head *pos;
struct dst_entry *dst = NULL;
union sctp_addr dst_saddr;
memset(&fl, 0x0, sizeof(struct flowi));
fl.fl4_dst = daddr->v4.sin_addr.s_addr;
fl.proto = IPPROTO_SCTP;
if (asoc) {
fl.fl4_tos = RT_CONN_FLAGS(asoc->base.sk);
fl.oif = asoc->base.sk->sk_bound_dev_if;
}
if (saddr)
fl.fl4_src = saddr->v4.sin_addr.s_addr;
SCTP_DEBUG_PRINTK("%s: DST:%u.%u.%u.%u, SRC:%u.%u.%u.%u - ",
__FUNCTION__, NIPQUAD(fl.fl4_dst),
NIPQUAD(fl.fl4_src));
if (!ip_route_output_key(&rt, &fl)) {
dst = &rt->u.dst;
}
/* If there is no association or if a source address is passed, no
* more validation is required.
*/
if (!asoc || saddr)
goto out;
bp = &asoc->base.bind_addr;
addr_lock = &asoc->base.addr_lock;
if (dst) {
/* Walk through the bind address list and look for a bind
* address that matches the source address of the returned dst.
*/
sctp_read_lock(addr_lock);
list_for_each(pos, &bp->address_list) {
laddr = list_entry(pos, struct sctp_sockaddr_entry,
list);
sctp_v4_dst_saddr(&dst_saddr, dst, bp->port);
if (sctp_v4_cmp_addr(&dst_saddr, &laddr->a))
goto out_unlock;
}
sctp_read_unlock(addr_lock);
/* None of the bound addresses match the source address of the
* dst. So release it.
*/
dst_release(dst);
dst = NULL;
}
/* Walk through the bind address list and try to get a dst that
* matches a bind address as the source address.
*/
sctp_read_lock(addr_lock);
list_for_each(pos, &bp->address_list) {
laddr = list_entry(pos, struct sctp_sockaddr_entry, list);
if (AF_INET == laddr->a.sa.sa_family) {
fl.fl4_src = laddr->a.v4.sin_addr.s_addr;
if (!ip_route_output_key(&rt, &fl)) {
dst = &rt->u.dst;
goto out_unlock;
}
}
}
out_unlock:
sctp_read_unlock(addr_lock);
out:
if (dst)
SCTP_DEBUG_PRINTK("rt_dst:%u.%u.%u.%u, rt_src:%u.%u.%u.%u\n",
NIPQUAD(rt->rt_dst), NIPQUAD(rt->rt_src));
else
SCTP_DEBUG_PRINTK("NO ROUTE\n");
return dst;
}
/* For v4, the source address is cached in the route entry(dst). So no need
* to cache it separately and hence this is an empty routine.
*/
static void sctp_v4_get_saddr(struct sctp_association *asoc,
struct dst_entry *dst,
union sctp_addr *daddr,
union sctp_addr *saddr)
{
struct rtable *rt = (struct rtable *)dst;
if (rt) {
saddr->v4.sin_family = AF_INET;
saddr->v4.sin_port = asoc->base.bind_addr.port;
saddr->v4.sin_addr.s_addr = rt->rt_src;
}
}
/* What interface did this skb arrive on? */
static int sctp_v4_skb_iif(const struct sk_buff *skb)
{
return ((struct rtable *)skb->dst)->rt_iif;
}
/* Was this packet marked by Explicit Congestion Notification? */
static int sctp_v4_is_ce(const struct sk_buff *skb)
{
return INET_ECN_is_ce(skb->nh.iph->tos);
}
/* Create and initialize a new sk for the socket returned by accept(). */
static struct sock *sctp_v4_create_accept_sk(struct sock *sk,
struct sctp_association *asoc)
{
struct inet_sock *inet = inet_sk(sk);
struct inet_sock *newinet;
struct sock *newsk = sk_alloc(PF_INET, GFP_KERNEL, sk->sk_prot, 1);
if (!newsk)
goto out;
sock_init_data(NULL, newsk);
newsk->sk_type = SOCK_STREAM;
newsk->sk_no_check = sk->sk_no_check;
newsk->sk_reuse = sk->sk_reuse;
newsk->sk_shutdown = sk->sk_shutdown;
newsk->sk_destruct = inet_sock_destruct;
newsk->sk_family = PF_INET;
newsk->sk_protocol = IPPROTO_SCTP;
newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
sock_reset_flag(newsk, SOCK_ZAPPED);
newinet = inet_sk(newsk);
/* Initialize sk's sport, dport, rcv_saddr and daddr for
* getsockname() and getpeername()
*/
newinet->sport = inet->sport;
newinet->saddr = inet->saddr;
newinet->rcv_saddr = inet->rcv_saddr;
newinet->dport = htons(asoc->peer.port);
newinet->daddr = asoc->peer.primary_addr.v4.sin_addr.s_addr;
newinet->pmtudisc = inet->pmtudisc;
newinet->id = 0;
newinet->uc_ttl = -1;
newinet->mc_loop = 1;
newinet->mc_ttl = 1;
newinet->mc_index = 0;
newinet->mc_list = NULL;
#ifdef INET_REFCNT_DEBUG
atomic_inc(&inet_sock_nr);
#endif
if (newsk->sk_prot->init(newsk)) {
sk_common_release(newsk);
newsk = NULL;
}
out:
return newsk;
}
/* Map address, empty for v4 family */
static void sctp_v4_addr_v4map(struct sctp_sock *sp, union sctp_addr *addr)
{
/* Empty */
}
/* Dump the v4 addr to the seq file. */
static void sctp_v4_seq_dump_addr(struct seq_file *seq, union sctp_addr *addr)
{
seq_printf(seq, "%d.%d.%d.%d ", NIPQUAD(addr->v4.sin_addr));
}
/* Event handler for inet address addition/deletion events.
* Basically, whenever there is an event, we re-build our local address list.
*/
int sctp_inetaddr_event(struct notifier_block *this, unsigned long ev,
void *ptr)
{
unsigned long flags;
sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
__sctp_free_local_addr_list();
__sctp_get_local_addr_list();
sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
return NOTIFY_DONE;
}
/*
* Initialize the control inode/socket with a control endpoint data
* structure. This endpoint is reserved exclusively for the OOTB processing.
*/
static int sctp_ctl_sock_init(void)
{
int err;
sa_family_t family;
if (sctp_get_pf_specific(PF_INET6))
family = PF_INET6;
else
family = PF_INET;
err = sock_create_kern(family, SOCK_SEQPACKET, IPPROTO_SCTP,
&sctp_ctl_socket);
if (err < 0) {
printk(KERN_ERR
"SCTP: Failed to create the SCTP control socket.\n");
return err;
}
sctp_ctl_socket->sk->sk_allocation = GFP_ATOMIC;
inet_sk(sctp_ctl_socket->sk)->uc_ttl = -1;
return 0;
}
/* Register address family specific functions. */
int sctp_register_af(struct sctp_af *af)
{
switch (af->sa_family) {
case AF_INET:
if (sctp_af_v4_specific)
return 0;
sctp_af_v4_specific = af;
break;
case AF_INET6:
if (sctp_af_v6_specific)
return 0;
sctp_af_v6_specific = af;
break;
default:
return 0;
}
INIT_LIST_HEAD(&af->list);
list_add_tail(&af->list, &sctp_address_families);
return 1;
}
/* Get the table of functions for manipulating a particular address
* family.
*/
struct sctp_af *sctp_get_af_specific(sa_family_t family)
{
switch (family) {
case AF_INET:
return sctp_af_v4_specific;
case AF_INET6:
return sctp_af_v6_specific;
default:
return NULL;
}
}
/* Common code to initialize a AF_INET msg_name. */
static void sctp_inet_msgname(char *msgname, int *addr_len)
{
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)msgname;
*addr_len = sizeof(struct sockaddr_in);
sin->sin_family = AF_INET;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
}
/* Copy the primary address of the peer primary address as the msg_name. */
static void sctp_inet_event_msgname(struct sctp_ulpevent *event, char *msgname,
int *addr_len)
{
struct sockaddr_in *sin, *sinfrom;
if (msgname) {
struct sctp_association *asoc;
asoc = event->asoc;
sctp_inet_msgname(msgname, addr_len);
sin = (struct sockaddr_in *)msgname;
sinfrom = &asoc->peer.primary_addr.v4;
sin->sin_port = htons(asoc->peer.port);
sin->sin_addr.s_addr = sinfrom->sin_addr.s_addr;
}
}
/* Initialize and copy out a msgname from an inbound skb. */
static void sctp_inet_skb_msgname(struct sk_buff *skb, char *msgname, int *len)
{
struct sctphdr *sh;
struct sockaddr_in *sin;
if (msgname) {
sctp_inet_msgname(msgname, len);
sin = (struct sockaddr_in *)msgname;
sh = (struct sctphdr *)skb->h.raw;
sin->sin_port = sh->source;
sin->sin_addr.s_addr = skb->nh.iph->saddr;
}
}
/* Do we support this AF? */
static int sctp_inet_af_supported(sa_family_t family, struct sctp_sock *sp)
{
/* PF_INET only supports AF_INET addresses. */
return (AF_INET == family);
}
/* Address matching with wildcards allowed. */
static int sctp_inet_cmp_addr(const union sctp_addr *addr1,
const union sctp_addr *addr2,
struct sctp_sock *opt)
{
/* PF_INET only supports AF_INET addresses. */
if (addr1->sa.sa_family != addr2->sa.sa_family)
return 0;
if (INADDR_ANY == addr1->v4.sin_addr.s_addr ||
INADDR_ANY == addr2->v4.sin_addr.s_addr)
return 1;
if (addr1->v4.sin_addr.s_addr == addr2->v4.sin_addr.s_addr)
return 1;
return 0;
}
/* Verify that provided sockaddr looks bindable. Common verification has
* already been taken care of.
*/
static int sctp_inet_bind_verify(struct sctp_sock *opt, union sctp_addr *addr)
{
return sctp_v4_available(addr, opt);
}
/* Verify that sockaddr looks sendable. Common verification has already
* been taken care of.
*/
static int sctp_inet_send_verify(struct sctp_sock *opt, union sctp_addr *addr)
{
return 1;
}
/* Fill in Supported Address Type information for INIT and INIT-ACK
* chunks. Returns number of addresses supported.
*/
static int sctp_inet_supported_addrs(const struct sctp_sock *opt,
__u16 *types)
{
types[0] = SCTP_PARAM_IPV4_ADDRESS;
return 1;
}
/* Wrapper routine that calls the ip transmit routine. */
static inline int sctp_v4_xmit(struct sk_buff *skb,
struct sctp_transport *transport, int ipfragok)
{
SCTP_DEBUG_PRINTK("%s: skb:%p, len:%d, "
"src:%u.%u.%u.%u, dst:%u.%u.%u.%u\n",
__FUNCTION__, skb, skb->len,
NIPQUAD(((struct rtable *)skb->dst)->rt_src),
NIPQUAD(((struct rtable *)skb->dst)->rt_dst));
SCTP_INC_STATS(SCTP_MIB_OUTSCTPPACKS);
return ip_queue_xmit(skb, ipfragok);
}
static struct sctp_af sctp_ipv4_specific;
static struct sctp_pf sctp_pf_inet = {
.event_msgname = sctp_inet_event_msgname,
.skb_msgname = sctp_inet_skb_msgname,
.af_supported = sctp_inet_af_supported,
.cmp_addr = sctp_inet_cmp_addr,
.bind_verify = sctp_inet_bind_verify,
.send_verify = sctp_inet_send_verify,
.supported_addrs = sctp_inet_supported_addrs,
.create_accept_sk = sctp_v4_create_accept_sk,
.addr_v4map = sctp_v4_addr_v4map,
.af = &sctp_ipv4_specific,
};
/* Notifier for inetaddr addition/deletion events. */
static struct notifier_block sctp_inetaddr_notifier = {
.notifier_call = sctp_inetaddr_event,
};
/* Socket operations. */
static struct proto_ops inet_seqpacket_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release, /* Needs to be wrapped... */
.bind = inet_bind,
.connect = inet_dgram_connect,
.socketpair = sock_no_socketpair,
.accept = inet_accept,
.getname = inet_getname, /* Semantics are different. */
.poll = sctp_poll,
.ioctl = inet_ioctl,
.listen = sctp_inet_listen,
.shutdown = inet_shutdown, /* Looks harmless. */
.setsockopt = sock_common_setsockopt, /* IP_SOL IP_OPTION is a problem. */
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = sock_common_recvmsg,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};
/* Registration with AF_INET family. */
static struct inet_protosw sctp_seqpacket_protosw = {
.type = SOCK_SEQPACKET,
.protocol = IPPROTO_SCTP,
.prot = &sctp_prot,
.ops = &inet_seqpacket_ops,
.capability = -1,
.no_check = 0,
.flags = SCTP_PROTOSW_FLAG
};
static struct inet_protosw sctp_stream_protosw = {
.type = SOCK_STREAM,
.protocol = IPPROTO_SCTP,
.prot = &sctp_prot,
.ops = &inet_seqpacket_ops,
.capability = -1,
.no_check = 0,
.flags = SCTP_PROTOSW_FLAG
};
/* Register with IP layer. */
static struct net_protocol sctp_protocol = {
.handler = sctp_rcv,
.err_handler = sctp_v4_err,
.no_policy = 1,
};
/* IPv4 address related functions. */
static struct sctp_af sctp_ipv4_specific = {
.sctp_xmit = sctp_v4_xmit,
.setsockopt = ip_setsockopt,
.getsockopt = ip_getsockopt,
.get_dst = sctp_v4_get_dst,
.get_saddr = sctp_v4_get_saddr,
.copy_addrlist = sctp_v4_copy_addrlist,
.from_skb = sctp_v4_from_skb,
.from_sk = sctp_v4_from_sk,
.to_sk_saddr = sctp_v4_to_sk_saddr,
.to_sk_daddr = sctp_v4_to_sk_daddr,
.from_addr_param= sctp_v4_from_addr_param,
.to_addr_param = sctp_v4_to_addr_param,
.dst_saddr = sctp_v4_dst_saddr,
.cmp_addr = sctp_v4_cmp_addr,
.addr_valid = sctp_v4_addr_valid,
.inaddr_any = sctp_v4_inaddr_any,
.is_any = sctp_v4_is_any,
.available = sctp_v4_available,
.scope = sctp_v4_scope,
.skb_iif = sctp_v4_skb_iif,
.is_ce = sctp_v4_is_ce,
.seq_dump_addr = sctp_v4_seq_dump_addr,
.net_header_len = sizeof(struct iphdr),
.sockaddr_len = sizeof(struct sockaddr_in),
.sa_family = AF_INET,
};
struct sctp_pf *sctp_get_pf_specific(sa_family_t family) {
switch (family) {
case PF_INET:
return sctp_pf_inet_specific;
case PF_INET6:
return sctp_pf_inet6_specific;
default:
return NULL;
}
}
/* Register the PF specific function table. */
int sctp_register_pf(struct sctp_pf *pf, sa_family_t family)
{
switch (family) {
case PF_INET:
if (sctp_pf_inet_specific)
return 0;
sctp_pf_inet_specific = pf;
break;
case PF_INET6:
if (sctp_pf_inet6_specific)
return 0;
sctp_pf_inet6_specific = pf;
break;
default:
return 0;
}
return 1;
}
static int __init init_sctp_mibs(void)
{
sctp_statistics[0] = alloc_percpu(struct sctp_mib);
if (!sctp_statistics[0])
return -ENOMEM;
sctp_statistics[1] = alloc_percpu(struct sctp_mib);
if (!sctp_statistics[1]) {
free_percpu(sctp_statistics[0]);
return -ENOMEM;
}
return 0;
}
static void cleanup_sctp_mibs(void)
{
free_percpu(sctp_statistics[0]);
free_percpu(sctp_statistics[1]);
}
/* Initialize the universe into something sensible. */
SCTP_STATIC __init int sctp_init(void)
{
int i;
int status = -EINVAL;
unsigned long goal;
int order;
/* SCTP_DEBUG sanity check. */
if (!sctp_sanity_check())
goto out;
status = proto_register(&sctp_prot, 1);
if (status)
goto out;
/* Add SCTP to inet_protos hash table. */
status = -EAGAIN;
if (inet_add_protocol(&sctp_protocol, IPPROTO_SCTP) < 0)
goto err_add_protocol;
/* Add SCTP(TCP and UDP style) to inetsw linked list. */
inet_register_protosw(&sctp_seqpacket_protosw);
inet_register_protosw(&sctp_stream_protosw);
/* Allocate a cache pools. */
status = -ENOBUFS;
sctp_bucket_cachep = kmem_cache_create("sctp_bind_bucket",
sizeof(struct sctp_bind_bucket),
0, SLAB_HWCACHE_ALIGN,
NULL, NULL);
if (!sctp_bucket_cachep)
goto err_bucket_cachep;
sctp_chunk_cachep = kmem_cache_create("sctp_chunk",
sizeof(struct sctp_chunk),
0, SLAB_HWCACHE_ALIGN,
NULL, NULL);
if (!sctp_chunk_cachep)
goto err_chunk_cachep;
/* Allocate and initialise sctp mibs. */
status = init_sctp_mibs();
if (status)
goto err_init_mibs;
/* Initialize proc fs directory. */
status = sctp_proc_init();
if (status)
goto err_init_proc;
/* Initialize object count debugging. */
sctp_dbg_objcnt_init();
/* Initialize the SCTP specific PF functions. */
sctp_register_pf(&sctp_pf_inet, PF_INET);
/*
* 14. Suggested SCTP Protocol Parameter Values
*/
/* The following protocol parameters are RECOMMENDED: */
/* RTO.Initial - 3 seconds */
sctp_rto_initial = SCTP_RTO_INITIAL;
/* RTO.Min - 1 second */
sctp_rto_min = SCTP_RTO_MIN;
/* RTO.Max - 60 seconds */
sctp_rto_max = SCTP_RTO_MAX;
/* RTO.Alpha - 1/8 */
sctp_rto_alpha = SCTP_RTO_ALPHA;
/* RTO.Beta - 1/4 */
sctp_rto_beta = SCTP_RTO_BETA;
/* Valid.Cookie.Life - 60 seconds */
sctp_valid_cookie_life = 60 * HZ;
/* Whether Cookie Preservative is enabled(1) or not(0) */
sctp_cookie_preserve_enable = 1;
/* Max.Burst - 4 */
sctp_max_burst = SCTP_MAX_BURST;
/* Association.Max.Retrans - 10 attempts
* Path.Max.Retrans - 5 attempts (per destination address)
* Max.Init.Retransmits - 8 attempts
*/
sctp_max_retrans_association = 10;
sctp_max_retrans_path = 5;
sctp_max_retrans_init = 8;
/* HB.interval - 30 seconds */
sctp_hb_interval = 30 * HZ;
/* Implementation specific variables. */
/* Initialize default stream count setup information. */
sctp_max_instreams = SCTP_DEFAULT_INSTREAMS;
sctp_max_outstreams = SCTP_DEFAULT_OUTSTREAMS;
/* Initialize handle used for association ids. */
idr_init(&sctp_assocs_id);
/* Size and allocate the association hash table.
* The methodology is similar to that of the tcp hash tables.
*/
if (num_physpages >= (128 * 1024))
goal = num_physpages >> (22 - PAGE_SHIFT);
else
goal = num_physpages >> (24 - PAGE_SHIFT);
for (order = 0; (1UL << order) < goal; order++)
;
do {
sctp_assoc_hashsize = (1UL << order) * PAGE_SIZE /
sizeof(struct sctp_hashbucket);
if ((sctp_assoc_hashsize > (64 * 1024)) && order > 0)
continue;
sctp_assoc_hashtable = (struct sctp_hashbucket *)
__get_free_pages(GFP_ATOMIC, order);
} while (!sctp_assoc_hashtable && --order > 0);
if (!sctp_assoc_hashtable) {
printk(KERN_ERR "SCTP: Failed association hash alloc.\n");
status = -ENOMEM;
goto err_ahash_alloc;
}
for (i = 0; i < sctp_assoc_hashsize; i++) {
rwlock_init(&sctp_assoc_hashtable[i].lock);
sctp_assoc_hashtable[i].chain = NULL;
}
/* Allocate and initialize the endpoint hash table. */
sctp_ep_hashsize = 64;
sctp_ep_hashtable = (struct sctp_hashbucket *)
kmalloc(64 * sizeof(struct sctp_hashbucket), GFP_KERNEL);
if (!sctp_ep_hashtable) {
printk(KERN_ERR "SCTP: Failed endpoint_hash alloc.\n");
status = -ENOMEM;
goto err_ehash_alloc;
}
for (i = 0; i < sctp_ep_hashsize; i++) {
rwlock_init(&sctp_ep_hashtable[i].lock);
sctp_ep_hashtable[i].chain = NULL;
}
/* Allocate and initialize the SCTP port hash table. */
do {
sctp_port_hashsize = (1UL << order) * PAGE_SIZE /
sizeof(struct sctp_bind_hashbucket);
if ((sctp_port_hashsize > (64 * 1024)) && order > 0)
continue;
sctp_port_hashtable = (struct sctp_bind_hashbucket *)
__get_free_pages(GFP_ATOMIC, order);
} while (!sctp_port_hashtable && --order > 0);
if (!sctp_port_hashtable) {
printk(KERN_ERR "SCTP: Failed bind hash alloc.");
status = -ENOMEM;
goto err_bhash_alloc;
}
for (i = 0; i < sctp_port_hashsize; i++) {
spin_lock_init(&sctp_port_hashtable[i].lock);
sctp_port_hashtable[i].chain = NULL;
}
spin_lock_init(&sctp_port_alloc_lock);
sctp_port_rover = sysctl_local_port_range[0] - 1;
printk(KERN_INFO "SCTP: Hash tables configured "
"(established %d bind %d)\n",
sctp_assoc_hashsize, sctp_port_hashsize);
/* Disable ADDIP by default. */
sctp_addip_enable = 0;
/* Enable PR-SCTP by default. */
sctp_prsctp_enable = 1;
sctp_sysctl_register();
INIT_LIST_HEAD(&sctp_address_families);
sctp_register_af(&sctp_ipv4_specific);
status = sctp_v6_init();
if (status)
goto err_v6_init;
/* Initialize the control inode/socket for handling OOTB packets. */
if ((status = sctp_ctl_sock_init())) {
printk (KERN_ERR
"SCTP: Failed to initialize the SCTP control sock.\n");
goto err_ctl_sock_init;
}
/* Initialize the local address list. */
INIT_LIST_HEAD(&sctp_local_addr_list);
spin_lock_init(&sctp_local_addr_lock);
/* Register notifier for inet address additions/deletions. */
register_inetaddr_notifier(&sctp_inetaddr_notifier);
sctp_get_local_addr_list();
__unsafe(THIS_MODULE);
status = 0;
out:
return status;
err_add_protocol:
proto_unregister(&sctp_prot);
err_ctl_sock_init:
sctp_v6_exit();
err_v6_init:
sctp_sysctl_unregister();
list_del(&sctp_ipv4_specific.list);
free_pages((unsigned long)sctp_port_hashtable,
get_order(sctp_port_hashsize *
sizeof(struct sctp_bind_hashbucket)));
err_bhash_alloc:
kfree(sctp_ep_hashtable);
err_ehash_alloc:
free_pages((unsigned long)sctp_assoc_hashtable,
get_order(sctp_assoc_hashsize *
sizeof(struct sctp_hashbucket)));
err_ahash_alloc:
sctp_dbg_objcnt_exit();
err_init_proc:
sctp_proc_exit();
cleanup_sctp_mibs();
err_init_mibs:
kmem_cache_destroy(sctp_chunk_cachep);
err_chunk_cachep:
kmem_cache_destroy(sctp_bucket_cachep);
err_bucket_cachep:
inet_del_protocol(&sctp_protocol, IPPROTO_SCTP);
inet_unregister_protosw(&sctp_seqpacket_protosw);
inet_unregister_protosw(&sctp_stream_protosw);
goto out;
}
/* Exit handler for the SCTP protocol. */
SCTP_STATIC __exit void sctp_exit(void)
{
/* BUG. This should probably do something useful like clean
* up all the remaining associations and all that memory.
*/
/* Unregister notifier for inet address additions/deletions. */
unregister_inetaddr_notifier(&sctp_inetaddr_notifier);
/* Free the local address list. */
sctp_free_local_addr_list();
/* Free the control endpoint. */
sock_release(sctp_ctl_socket);
sctp_v6_exit();
sctp_sysctl_unregister();
list_del(&sctp_ipv4_specific.list);
free_pages((unsigned long)sctp_assoc_hashtable,
get_order(sctp_assoc_hashsize *
sizeof(struct sctp_hashbucket)));
kfree(sctp_ep_hashtable);
free_pages((unsigned long)sctp_port_hashtable,
get_order(sctp_port_hashsize *
sizeof(struct sctp_bind_hashbucket)));
kmem_cache_destroy(sctp_chunk_cachep);
kmem_cache_destroy(sctp_bucket_cachep);
sctp_dbg_objcnt_exit();
sctp_proc_exit();
cleanup_sctp_mibs();
inet_del_protocol(&sctp_protocol, IPPROTO_SCTP);
inet_unregister_protosw(&sctp_seqpacket_protosw);
inet_unregister_protosw(&sctp_stream_protosw);
proto_unregister(&sctp_prot);
}
module_init(sctp_init);
module_exit(sctp_exit);
MODULE_AUTHOR("Linux Kernel SCTP developers <lksctp-developers@lists.sourceforge.net>");
MODULE_DESCRIPTION("Support for the SCTP protocol (RFC2960)");
MODULE_LICENSE("GPL");