| /* |
| * raid5.c : Multiple Devices driver for Linux |
| * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman |
| * Copyright (C) 1999, 2000 Ingo Molnar |
| * Copyright (C) 2002, 2003 H. Peter Anvin |
| * |
| * RAID-4/5/6 management functions. |
| * Thanks to Penguin Computing for making the RAID-6 development possible |
| * by donating a test server! |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * You should have received a copy of the GNU General Public License |
| * (for example /usr/src/linux/COPYING); if not, write to the Free |
| * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| /* |
| * BITMAP UNPLUGGING: |
| * |
| * The sequencing for updating the bitmap reliably is a little |
| * subtle (and I got it wrong the first time) so it deserves some |
| * explanation. |
| * |
| * We group bitmap updates into batches. Each batch has a number. |
| * We may write out several batches at once, but that isn't very important. |
| * conf->bm_write is the number of the last batch successfully written. |
| * conf->bm_flush is the number of the last batch that was closed to |
| * new additions. |
| * When we discover that we will need to write to any block in a stripe |
| * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq |
| * the number of the batch it will be in. This is bm_flush+1. |
| * When we are ready to do a write, if that batch hasn't been written yet, |
| * we plug the array and queue the stripe for later. |
| * When an unplug happens, we increment bm_flush, thus closing the current |
| * batch. |
| * When we notice that bm_flush > bm_write, we write out all pending updates |
| * to the bitmap, and advance bm_write to where bm_flush was. |
| * This may occasionally write a bit out twice, but is sure never to |
| * miss any bits. |
| */ |
| |
| #include <linux/blkdev.h> |
| #include <linux/kthread.h> |
| #include <linux/raid/pq.h> |
| #include <linux/async_tx.h> |
| #include <linux/seq_file.h> |
| #include "md.h" |
| #include "raid5.h" |
| #include "bitmap.h" |
| |
| /* |
| * Stripe cache |
| */ |
| |
| #define NR_STRIPES 256 |
| #define STRIPE_SIZE PAGE_SIZE |
| #define STRIPE_SHIFT (PAGE_SHIFT - 9) |
| #define STRIPE_SECTORS (STRIPE_SIZE>>9) |
| #define IO_THRESHOLD 1 |
| #define BYPASS_THRESHOLD 1 |
| #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) |
| #define HASH_MASK (NR_HASH - 1) |
| |
| #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])) |
| |
| /* bio's attached to a stripe+device for I/O are linked together in bi_sector |
| * order without overlap. There may be several bio's per stripe+device, and |
| * a bio could span several devices. |
| * When walking this list for a particular stripe+device, we must never proceed |
| * beyond a bio that extends past this device, as the next bio might no longer |
| * be valid. |
| * This macro is used to determine the 'next' bio in the list, given the sector |
| * of the current stripe+device |
| */ |
| #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL) |
| /* |
| * The following can be used to debug the driver |
| */ |
| #define RAID5_PARANOIA 1 |
| #if RAID5_PARANOIA && defined(CONFIG_SMP) |
| # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock) |
| #else |
| # define CHECK_DEVLOCK() |
| #endif |
| |
| #ifdef DEBUG |
| #define inline |
| #define __inline__ |
| #endif |
| |
| #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args))) |
| |
| /* |
| * We maintain a biased count of active stripes in the bottom 16 bits of |
| * bi_phys_segments, and a count of processed stripes in the upper 16 bits |
| */ |
| static inline int raid5_bi_phys_segments(struct bio *bio) |
| { |
| return bio->bi_phys_segments & 0xffff; |
| } |
| |
| static inline int raid5_bi_hw_segments(struct bio *bio) |
| { |
| return (bio->bi_phys_segments >> 16) & 0xffff; |
| } |
| |
| static inline int raid5_dec_bi_phys_segments(struct bio *bio) |
| { |
| --bio->bi_phys_segments; |
| return raid5_bi_phys_segments(bio); |
| } |
| |
| static inline int raid5_dec_bi_hw_segments(struct bio *bio) |
| { |
| unsigned short val = raid5_bi_hw_segments(bio); |
| |
| --val; |
| bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio); |
| return val; |
| } |
| |
| static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt) |
| { |
| bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16); |
| } |
| |
| /* Find first data disk in a raid6 stripe */ |
| static inline int raid6_d0(struct stripe_head *sh) |
| { |
| if (sh->ddf_layout) |
| /* ddf always start from first device */ |
| return 0; |
| /* md starts just after Q block */ |
| if (sh->qd_idx == sh->disks - 1) |
| return 0; |
| else |
| return sh->qd_idx + 1; |
| } |
| static inline int raid6_next_disk(int disk, int raid_disks) |
| { |
| disk++; |
| return (disk < raid_disks) ? disk : 0; |
| } |
| |
| /* When walking through the disks in a raid5, starting at raid6_d0, |
| * We need to map each disk to a 'slot', where the data disks are slot |
| * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk |
| * is raid_disks-1. This help does that mapping. |
| */ |
| static int raid6_idx_to_slot(int idx, struct stripe_head *sh, |
| int *count, int syndrome_disks) |
| { |
| int slot; |
| |
| if (idx == sh->pd_idx) |
| return syndrome_disks; |
| if (idx == sh->qd_idx) |
| return syndrome_disks + 1; |
| slot = (*count)++; |
| return slot; |
| } |
| |
| static void return_io(struct bio *return_bi) |
| { |
| struct bio *bi = return_bi; |
| while (bi) { |
| |
| return_bi = bi->bi_next; |
| bi->bi_next = NULL; |
| bi->bi_size = 0; |
| bio_endio(bi, 0); |
| bi = return_bi; |
| } |
| } |
| |
| static void print_raid5_conf (raid5_conf_t *conf); |
| |
| static int stripe_operations_active(struct stripe_head *sh) |
| { |
| return sh->check_state || sh->reconstruct_state || |
| test_bit(STRIPE_BIOFILL_RUN, &sh->state) || |
| test_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| } |
| |
| static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh) |
| { |
| if (atomic_dec_and_test(&sh->count)) { |
| BUG_ON(!list_empty(&sh->lru)); |
| BUG_ON(atomic_read(&conf->active_stripes)==0); |
| if (test_bit(STRIPE_HANDLE, &sh->state)) { |
| if (test_bit(STRIPE_DELAYED, &sh->state)) { |
| list_add_tail(&sh->lru, &conf->delayed_list); |
| blk_plug_device(conf->mddev->queue); |
| } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && |
| sh->bm_seq - conf->seq_write > 0) { |
| list_add_tail(&sh->lru, &conf->bitmap_list); |
| blk_plug_device(conf->mddev->queue); |
| } else { |
| clear_bit(STRIPE_BIT_DELAY, &sh->state); |
| list_add_tail(&sh->lru, &conf->handle_list); |
| } |
| md_wakeup_thread(conf->mddev->thread); |
| } else { |
| BUG_ON(stripe_operations_active(sh)); |
| if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { |
| atomic_dec(&conf->preread_active_stripes); |
| if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) |
| md_wakeup_thread(conf->mddev->thread); |
| } |
| atomic_dec(&conf->active_stripes); |
| if (!test_bit(STRIPE_EXPANDING, &sh->state)) { |
| list_add_tail(&sh->lru, &conf->inactive_list); |
| wake_up(&conf->wait_for_stripe); |
| if (conf->retry_read_aligned) |
| md_wakeup_thread(conf->mddev->thread); |
| } |
| } |
| } |
| } |
| |
| static void release_stripe(struct stripe_head *sh) |
| { |
| raid5_conf_t *conf = sh->raid_conf; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&conf->device_lock, flags); |
| __release_stripe(conf, sh); |
| spin_unlock_irqrestore(&conf->device_lock, flags); |
| } |
| |
| static inline void remove_hash(struct stripe_head *sh) |
| { |
| pr_debug("remove_hash(), stripe %llu\n", |
| (unsigned long long)sh->sector); |
| |
| hlist_del_init(&sh->hash); |
| } |
| |
| static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh) |
| { |
| struct hlist_head *hp = stripe_hash(conf, sh->sector); |
| |
| pr_debug("insert_hash(), stripe %llu\n", |
| (unsigned long long)sh->sector); |
| |
| CHECK_DEVLOCK(); |
| hlist_add_head(&sh->hash, hp); |
| } |
| |
| |
| /* find an idle stripe, make sure it is unhashed, and return it. */ |
| static struct stripe_head *get_free_stripe(raid5_conf_t *conf) |
| { |
| struct stripe_head *sh = NULL; |
| struct list_head *first; |
| |
| CHECK_DEVLOCK(); |
| if (list_empty(&conf->inactive_list)) |
| goto out; |
| first = conf->inactive_list.next; |
| sh = list_entry(first, struct stripe_head, lru); |
| list_del_init(first); |
| remove_hash(sh); |
| atomic_inc(&conf->active_stripes); |
| out: |
| return sh; |
| } |
| |
| static void shrink_buffers(struct stripe_head *sh, int num) |
| { |
| struct page *p; |
| int i; |
| |
| for (i=0; i<num ; i++) { |
| p = sh->dev[i].page; |
| if (!p) |
| continue; |
| sh->dev[i].page = NULL; |
| put_page(p); |
| } |
| } |
| |
| static int grow_buffers(struct stripe_head *sh, int num) |
| { |
| int i; |
| |
| for (i=0; i<num; i++) { |
| struct page *page; |
| |
| if (!(page = alloc_page(GFP_KERNEL))) { |
| return 1; |
| } |
| sh->dev[i].page = page; |
| } |
| return 0; |
| } |
| |
| static void raid5_build_block(struct stripe_head *sh, int i, int previous); |
| static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous, |
| struct stripe_head *sh); |
| |
| static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) |
| { |
| raid5_conf_t *conf = sh->raid_conf; |
| int i; |
| |
| BUG_ON(atomic_read(&sh->count) != 0); |
| BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); |
| BUG_ON(stripe_operations_active(sh)); |
| |
| CHECK_DEVLOCK(); |
| pr_debug("init_stripe called, stripe %llu\n", |
| (unsigned long long)sh->sector); |
| |
| remove_hash(sh); |
| |
| sh->generation = conf->generation - previous; |
| sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; |
| sh->sector = sector; |
| stripe_set_idx(sector, conf, previous, sh); |
| sh->state = 0; |
| |
| |
| for (i = sh->disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| if (dev->toread || dev->read || dev->towrite || dev->written || |
| test_bit(R5_LOCKED, &dev->flags)) { |
| printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", |
| (unsigned long long)sh->sector, i, dev->toread, |
| dev->read, dev->towrite, dev->written, |
| test_bit(R5_LOCKED, &dev->flags)); |
| BUG(); |
| } |
| dev->flags = 0; |
| raid5_build_block(sh, i, previous); |
| } |
| insert_hash(conf, sh); |
| } |
| |
| static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, |
| short generation) |
| { |
| struct stripe_head *sh; |
| struct hlist_node *hn; |
| |
| CHECK_DEVLOCK(); |
| pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); |
| hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash) |
| if (sh->sector == sector && sh->generation == generation) |
| return sh; |
| pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); |
| return NULL; |
| } |
| |
| static void unplug_slaves(mddev_t *mddev); |
| static void raid5_unplug_device(struct request_queue *q); |
| |
| static struct stripe_head * |
| get_active_stripe(raid5_conf_t *conf, sector_t sector, |
| int previous, int noblock) |
| { |
| struct stripe_head *sh; |
| |
| pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); |
| |
| spin_lock_irq(&conf->device_lock); |
| |
| do { |
| wait_event_lock_irq(conf->wait_for_stripe, |
| conf->quiesce == 0, |
| conf->device_lock, /* nothing */); |
| sh = __find_stripe(conf, sector, conf->generation - previous); |
| if (!sh) { |
| if (!conf->inactive_blocked) |
| sh = get_free_stripe(conf); |
| if (noblock && sh == NULL) |
| break; |
| if (!sh) { |
| conf->inactive_blocked = 1; |
| wait_event_lock_irq(conf->wait_for_stripe, |
| !list_empty(&conf->inactive_list) && |
| (atomic_read(&conf->active_stripes) |
| < (conf->max_nr_stripes *3/4) |
| || !conf->inactive_blocked), |
| conf->device_lock, |
| raid5_unplug_device(conf->mddev->queue) |
| ); |
| conf->inactive_blocked = 0; |
| } else |
| init_stripe(sh, sector, previous); |
| } else { |
| if (atomic_read(&sh->count)) { |
| BUG_ON(!list_empty(&sh->lru) |
| && !test_bit(STRIPE_EXPANDING, &sh->state)); |
| } else { |
| if (!test_bit(STRIPE_HANDLE, &sh->state)) |
| atomic_inc(&conf->active_stripes); |
| if (list_empty(&sh->lru) && |
| !test_bit(STRIPE_EXPANDING, &sh->state)) |
| BUG(); |
| list_del_init(&sh->lru); |
| } |
| } |
| } while (sh == NULL); |
| |
| if (sh) |
| atomic_inc(&sh->count); |
| |
| spin_unlock_irq(&conf->device_lock); |
| return sh; |
| } |
| |
| static void |
| raid5_end_read_request(struct bio *bi, int error); |
| static void |
| raid5_end_write_request(struct bio *bi, int error); |
| |
| static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) |
| { |
| raid5_conf_t *conf = sh->raid_conf; |
| int i, disks = sh->disks; |
| |
| might_sleep(); |
| |
| for (i = disks; i--; ) { |
| int rw; |
| struct bio *bi; |
| mdk_rdev_t *rdev; |
| if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) |
| rw = WRITE; |
| else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) |
| rw = READ; |
| else |
| continue; |
| |
| bi = &sh->dev[i].req; |
| |
| bi->bi_rw = rw; |
| if (rw == WRITE) |
| bi->bi_end_io = raid5_end_write_request; |
| else |
| bi->bi_end_io = raid5_end_read_request; |
| |
| rcu_read_lock(); |
| rdev = rcu_dereference(conf->disks[i].rdev); |
| if (rdev && test_bit(Faulty, &rdev->flags)) |
| rdev = NULL; |
| if (rdev) |
| atomic_inc(&rdev->nr_pending); |
| rcu_read_unlock(); |
| |
| if (rdev) { |
| if (s->syncing || s->expanding || s->expanded) |
| md_sync_acct(rdev->bdev, STRIPE_SECTORS); |
| |
| set_bit(STRIPE_IO_STARTED, &sh->state); |
| |
| bi->bi_bdev = rdev->bdev; |
| pr_debug("%s: for %llu schedule op %ld on disc %d\n", |
| __func__, (unsigned long long)sh->sector, |
| bi->bi_rw, i); |
| atomic_inc(&sh->count); |
| bi->bi_sector = sh->sector + rdev->data_offset; |
| bi->bi_flags = 1 << BIO_UPTODATE; |
| bi->bi_vcnt = 1; |
| bi->bi_max_vecs = 1; |
| bi->bi_idx = 0; |
| bi->bi_io_vec = &sh->dev[i].vec; |
| bi->bi_io_vec[0].bv_len = STRIPE_SIZE; |
| bi->bi_io_vec[0].bv_offset = 0; |
| bi->bi_size = STRIPE_SIZE; |
| bi->bi_next = NULL; |
| if (rw == WRITE && |
| test_bit(R5_ReWrite, &sh->dev[i].flags)) |
| atomic_add(STRIPE_SECTORS, |
| &rdev->corrected_errors); |
| generic_make_request(bi); |
| } else { |
| if (rw == WRITE) |
| set_bit(STRIPE_DEGRADED, &sh->state); |
| pr_debug("skip op %ld on disc %d for sector %llu\n", |
| bi->bi_rw, i, (unsigned long long)sh->sector); |
| clear_bit(R5_LOCKED, &sh->dev[i].flags); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| } |
| } |
| |
| static struct dma_async_tx_descriptor * |
| async_copy_data(int frombio, struct bio *bio, struct page *page, |
| sector_t sector, struct dma_async_tx_descriptor *tx) |
| { |
| struct bio_vec *bvl; |
| struct page *bio_page; |
| int i; |
| int page_offset; |
| |
| if (bio->bi_sector >= sector) |
| page_offset = (signed)(bio->bi_sector - sector) * 512; |
| else |
| page_offset = (signed)(sector - bio->bi_sector) * -512; |
| bio_for_each_segment(bvl, bio, i) { |
| int len = bio_iovec_idx(bio, i)->bv_len; |
| int clen; |
| int b_offset = 0; |
| |
| if (page_offset < 0) { |
| b_offset = -page_offset; |
| page_offset += b_offset; |
| len -= b_offset; |
| } |
| |
| if (len > 0 && page_offset + len > STRIPE_SIZE) |
| clen = STRIPE_SIZE - page_offset; |
| else |
| clen = len; |
| |
| if (clen > 0) { |
| b_offset += bio_iovec_idx(bio, i)->bv_offset; |
| bio_page = bio_iovec_idx(bio, i)->bv_page; |
| if (frombio) |
| tx = async_memcpy(page, bio_page, page_offset, |
| b_offset, clen, |
| ASYNC_TX_DEP_ACK, |
| tx, NULL, NULL); |
| else |
| tx = async_memcpy(bio_page, page, b_offset, |
| page_offset, clen, |
| ASYNC_TX_DEP_ACK, |
| tx, NULL, NULL); |
| } |
| if (clen < len) /* hit end of page */ |
| break; |
| page_offset += len; |
| } |
| |
| return tx; |
| } |
| |
| static void ops_complete_biofill(void *stripe_head_ref) |
| { |
| struct stripe_head *sh = stripe_head_ref; |
| struct bio *return_bi = NULL; |
| raid5_conf_t *conf = sh->raid_conf; |
| int i; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| /* clear completed biofills */ |
| spin_lock_irq(&conf->device_lock); |
| for (i = sh->disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| /* acknowledge completion of a biofill operation */ |
| /* and check if we need to reply to a read request, |
| * new R5_Wantfill requests are held off until |
| * !STRIPE_BIOFILL_RUN |
| */ |
| if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { |
| struct bio *rbi, *rbi2; |
| |
| BUG_ON(!dev->read); |
| rbi = dev->read; |
| dev->read = NULL; |
| while (rbi && rbi->bi_sector < |
| dev->sector + STRIPE_SECTORS) { |
| rbi2 = r5_next_bio(rbi, dev->sector); |
| if (!raid5_dec_bi_phys_segments(rbi)) { |
| rbi->bi_next = return_bi; |
| return_bi = rbi; |
| } |
| rbi = rbi2; |
| } |
| } |
| } |
| spin_unlock_irq(&conf->device_lock); |
| clear_bit(STRIPE_BIOFILL_RUN, &sh->state); |
| |
| return_io(return_bi); |
| |
| set_bit(STRIPE_HANDLE, &sh->state); |
| release_stripe(sh); |
| } |
| |
| static void ops_run_biofill(struct stripe_head *sh) |
| { |
| struct dma_async_tx_descriptor *tx = NULL; |
| raid5_conf_t *conf = sh->raid_conf; |
| int i; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| for (i = sh->disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (test_bit(R5_Wantfill, &dev->flags)) { |
| struct bio *rbi; |
| spin_lock_irq(&conf->device_lock); |
| dev->read = rbi = dev->toread; |
| dev->toread = NULL; |
| spin_unlock_irq(&conf->device_lock); |
| while (rbi && rbi->bi_sector < |
| dev->sector + STRIPE_SECTORS) { |
| tx = async_copy_data(0, rbi, dev->page, |
| dev->sector, tx); |
| rbi = r5_next_bio(rbi, dev->sector); |
| } |
| } |
| } |
| |
| atomic_inc(&sh->count); |
| async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx, |
| ops_complete_biofill, sh); |
| } |
| |
| static void ops_complete_compute5(void *stripe_head_ref) |
| { |
| struct stripe_head *sh = stripe_head_ref; |
| int target = sh->ops.target; |
| struct r5dev *tgt = &sh->dev[target]; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| set_bit(R5_UPTODATE, &tgt->flags); |
| BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); |
| clear_bit(R5_Wantcompute, &tgt->flags); |
| clear_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| if (sh->check_state == check_state_compute_run) |
| sh->check_state = check_state_compute_result; |
| set_bit(STRIPE_HANDLE, &sh->state); |
| release_stripe(sh); |
| } |
| |
| static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh) |
| { |
| /* kernel stack size limits the total number of disks */ |
| int disks = sh->disks; |
| struct page *xor_srcs[disks]; |
| int target = sh->ops.target; |
| struct r5dev *tgt = &sh->dev[target]; |
| struct page *xor_dest = tgt->page; |
| int count = 0; |
| struct dma_async_tx_descriptor *tx; |
| int i; |
| |
| pr_debug("%s: stripe %llu block: %d\n", |
| __func__, (unsigned long long)sh->sector, target); |
| BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); |
| |
| for (i = disks; i--; ) |
| if (i != target) |
| xor_srcs[count++] = sh->dev[i].page; |
| |
| atomic_inc(&sh->count); |
| |
| if (unlikely(count == 1)) |
| tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, |
| 0, NULL, ops_complete_compute5, sh); |
| else |
| tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, |
| ASYNC_TX_XOR_ZERO_DST, NULL, |
| ops_complete_compute5, sh); |
| |
| return tx; |
| } |
| |
| static void ops_complete_prexor(void *stripe_head_ref) |
| { |
| struct stripe_head *sh = stripe_head_ref; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) |
| { |
| /* kernel stack size limits the total number of disks */ |
| int disks = sh->disks; |
| struct page *xor_srcs[disks]; |
| int count = 0, pd_idx = sh->pd_idx, i; |
| |
| /* existing parity data subtracted */ |
| struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| /* Only process blocks that are known to be uptodate */ |
| if (test_bit(R5_Wantdrain, &dev->flags)) |
| xor_srcs[count++] = dev->page; |
| } |
| |
| tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, |
| ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx, |
| ops_complete_prexor, sh); |
| |
| return tx; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) |
| { |
| int disks = sh->disks; |
| int i; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| struct bio *chosen; |
| |
| if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { |
| struct bio *wbi; |
| |
| spin_lock(&sh->lock); |
| chosen = dev->towrite; |
| dev->towrite = NULL; |
| BUG_ON(dev->written); |
| wbi = dev->written = chosen; |
| spin_unlock(&sh->lock); |
| |
| while (wbi && wbi->bi_sector < |
| dev->sector + STRIPE_SECTORS) { |
| tx = async_copy_data(1, wbi, dev->page, |
| dev->sector, tx); |
| wbi = r5_next_bio(wbi, dev->sector); |
| } |
| } |
| } |
| |
| return tx; |
| } |
| |
| static void ops_complete_postxor(void *stripe_head_ref) |
| { |
| struct stripe_head *sh = stripe_head_ref; |
| int disks = sh->disks, i, pd_idx = sh->pd_idx; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (dev->written || i == pd_idx) |
| set_bit(R5_UPTODATE, &dev->flags); |
| } |
| |
| if (sh->reconstruct_state == reconstruct_state_drain_run) |
| sh->reconstruct_state = reconstruct_state_drain_result; |
| else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) |
| sh->reconstruct_state = reconstruct_state_prexor_drain_result; |
| else { |
| BUG_ON(sh->reconstruct_state != reconstruct_state_run); |
| sh->reconstruct_state = reconstruct_state_result; |
| } |
| |
| set_bit(STRIPE_HANDLE, &sh->state); |
| release_stripe(sh); |
| } |
| |
| static void |
| ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) |
| { |
| /* kernel stack size limits the total number of disks */ |
| int disks = sh->disks; |
| struct page *xor_srcs[disks]; |
| |
| int count = 0, pd_idx = sh->pd_idx, i; |
| struct page *xor_dest; |
| int prexor = 0; |
| unsigned long flags; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| /* check if prexor is active which means only process blocks |
| * that are part of a read-modify-write (written) |
| */ |
| if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { |
| prexor = 1; |
| xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (dev->written) |
| xor_srcs[count++] = dev->page; |
| } |
| } else { |
| xor_dest = sh->dev[pd_idx].page; |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (i != pd_idx) |
| xor_srcs[count++] = dev->page; |
| } |
| } |
| |
| /* 1/ if we prexor'd then the dest is reused as a source |
| * 2/ if we did not prexor then we are redoing the parity |
| * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST |
| * for the synchronous xor case |
| */ |
| flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK | |
| (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); |
| |
| atomic_inc(&sh->count); |
| |
| if (unlikely(count == 1)) { |
| flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST); |
| tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, |
| flags, tx, ops_complete_postxor, sh); |
| } else |
| tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, |
| flags, tx, ops_complete_postxor, sh); |
| } |
| |
| static void ops_complete_check(void *stripe_head_ref) |
| { |
| struct stripe_head *sh = stripe_head_ref; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| sh->check_state = check_state_check_result; |
| set_bit(STRIPE_HANDLE, &sh->state); |
| release_stripe(sh); |
| } |
| |
| static void ops_run_check(struct stripe_head *sh) |
| { |
| /* kernel stack size limits the total number of disks */ |
| int disks = sh->disks; |
| struct page *xor_srcs[disks]; |
| struct dma_async_tx_descriptor *tx; |
| |
| int count = 0, pd_idx = sh->pd_idx, i; |
| struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; |
| |
| pr_debug("%s: stripe %llu\n", __func__, |
| (unsigned long long)sh->sector); |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (i != pd_idx) |
| xor_srcs[count++] = dev->page; |
| } |
| |
| tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, |
| &sh->ops.zero_sum_result, 0, NULL, NULL, NULL); |
| |
| atomic_inc(&sh->count); |
| tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx, |
| ops_complete_check, sh); |
| } |
| |
| static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request) |
| { |
| int overlap_clear = 0, i, disks = sh->disks; |
| struct dma_async_tx_descriptor *tx = NULL; |
| |
| if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { |
| ops_run_biofill(sh); |
| overlap_clear++; |
| } |
| |
| if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { |
| tx = ops_run_compute5(sh); |
| /* terminate the chain if postxor is not set to be run */ |
| if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request)) |
| async_tx_ack(tx); |
| } |
| |
| if (test_bit(STRIPE_OP_PREXOR, &ops_request)) |
| tx = ops_run_prexor(sh, tx); |
| |
| if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { |
| tx = ops_run_biodrain(sh, tx); |
| overlap_clear++; |
| } |
| |
| if (test_bit(STRIPE_OP_POSTXOR, &ops_request)) |
| ops_run_postxor(sh, tx); |
| |
| if (test_bit(STRIPE_OP_CHECK, &ops_request)) |
| ops_run_check(sh); |
| |
| if (overlap_clear) |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (test_and_clear_bit(R5_Overlap, &dev->flags)) |
| wake_up(&sh->raid_conf->wait_for_overlap); |
| } |
| } |
| |
| static int grow_one_stripe(raid5_conf_t *conf) |
| { |
| struct stripe_head *sh; |
| sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL); |
| if (!sh) |
| return 0; |
| memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev)); |
| sh->raid_conf = conf; |
| spin_lock_init(&sh->lock); |
| |
| if (grow_buffers(sh, conf->raid_disks)) { |
| shrink_buffers(sh, conf->raid_disks); |
| kmem_cache_free(conf->slab_cache, sh); |
| return 0; |
| } |
| sh->disks = conf->raid_disks; |
| /* we just created an active stripe so... */ |
| atomic_set(&sh->count, 1); |
| atomic_inc(&conf->active_stripes); |
| INIT_LIST_HEAD(&sh->lru); |
| release_stripe(sh); |
| return 1; |
| } |
| |
| static int grow_stripes(raid5_conf_t *conf, int num) |
| { |
| struct kmem_cache *sc; |
| int devs = conf->raid_disks; |
| |
| sprintf(conf->cache_name[0], |
| "raid%d-%s", conf->level, mdname(conf->mddev)); |
| sprintf(conf->cache_name[1], |
| "raid%d-%s-alt", conf->level, mdname(conf->mddev)); |
| conf->active_name = 0; |
| sc = kmem_cache_create(conf->cache_name[conf->active_name], |
| sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), |
| 0, 0, NULL); |
| if (!sc) |
| return 1; |
| conf->slab_cache = sc; |
| conf->pool_size = devs; |
| while (num--) |
| if (!grow_one_stripe(conf)) |
| return 1; |
| return 0; |
| } |
| |
| static int resize_stripes(raid5_conf_t *conf, int newsize) |
| { |
| /* Make all the stripes able to hold 'newsize' devices. |
| * New slots in each stripe get 'page' set to a new page. |
| * |
| * This happens in stages: |
| * 1/ create a new kmem_cache and allocate the required number of |
| * stripe_heads. |
| * 2/ gather all the old stripe_heads and tranfer the pages across |
| * to the new stripe_heads. This will have the side effect of |
| * freezing the array as once all stripe_heads have been collected, |
| * no IO will be possible. Old stripe heads are freed once their |
| * pages have been transferred over, and the old kmem_cache is |
| * freed when all stripes are done. |
| * 3/ reallocate conf->disks to be suitable bigger. If this fails, |
| * we simple return a failre status - no need to clean anything up. |
| * 4/ allocate new pages for the new slots in the new stripe_heads. |
| * If this fails, we don't bother trying the shrink the |
| * stripe_heads down again, we just leave them as they are. |
| * As each stripe_head is processed the new one is released into |
| * active service. |
| * |
| * Once step2 is started, we cannot afford to wait for a write, |
| * so we use GFP_NOIO allocations. |
| */ |
| struct stripe_head *osh, *nsh; |
| LIST_HEAD(newstripes); |
| struct disk_info *ndisks; |
| int err; |
| struct kmem_cache *sc; |
| int i; |
| |
| if (newsize <= conf->pool_size) |
| return 0; /* never bother to shrink */ |
| |
| err = md_allow_write(conf->mddev); |
| if (err) |
| return err; |
| |
| /* Step 1 */ |
| sc = kmem_cache_create(conf->cache_name[1-conf->active_name], |
| sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), |
| 0, 0, NULL); |
| if (!sc) |
| return -ENOMEM; |
| |
| for (i = conf->max_nr_stripes; i; i--) { |
| nsh = kmem_cache_alloc(sc, GFP_KERNEL); |
| if (!nsh) |
| break; |
| |
| memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev)); |
| |
| nsh->raid_conf = conf; |
| spin_lock_init(&nsh->lock); |
| |
| list_add(&nsh->lru, &newstripes); |
| } |
| if (i) { |
| /* didn't get enough, give up */ |
| while (!list_empty(&newstripes)) { |
| nsh = list_entry(newstripes.next, struct stripe_head, lru); |
| list_del(&nsh->lru); |
| kmem_cache_free(sc, nsh); |
| } |
| kmem_cache_destroy(sc); |
| return -ENOMEM; |
| } |
| /* Step 2 - Must use GFP_NOIO now. |
| * OK, we have enough stripes, start collecting inactive |
| * stripes and copying them over |
| */ |
| list_for_each_entry(nsh, &newstripes, lru) { |
| spin_lock_irq(&conf->device_lock); |
| wait_event_lock_irq(conf->wait_for_stripe, |
| !list_empty(&conf->inactive_list), |
| conf->device_lock, |
| unplug_slaves(conf->mddev) |
| ); |
| osh = get_free_stripe(conf); |
| spin_unlock_irq(&conf->device_lock); |
| atomic_set(&nsh->count, 1); |
| for(i=0; i<conf->pool_size; i++) |
| nsh->dev[i].page = osh->dev[i].page; |
| for( ; i<newsize; i++) |
| nsh->dev[i].page = NULL; |
| kmem_cache_free(conf->slab_cache, osh); |
| } |
| kmem_cache_destroy(conf->slab_cache); |
| |
| /* Step 3. |
| * At this point, we are holding all the stripes so the array |
| * is completely stalled, so now is a good time to resize |
| * conf->disks. |
| */ |
| ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); |
| if (ndisks) { |
| for (i=0; i<conf->raid_disks; i++) |
| ndisks[i] = conf->disks[i]; |
| kfree(conf->disks); |
| conf->disks = ndisks; |
| } else |
| err = -ENOMEM; |
| |
| /* Step 4, return new stripes to service */ |
| while(!list_empty(&newstripes)) { |
| nsh = list_entry(newstripes.next, struct stripe_head, lru); |
| list_del_init(&nsh->lru); |
| for (i=conf->raid_disks; i < newsize; i++) |
| if (nsh->dev[i].page == NULL) { |
| struct page *p = alloc_page(GFP_NOIO); |
| nsh->dev[i].page = p; |
| if (!p) |
| err = -ENOMEM; |
| } |
| release_stripe(nsh); |
| } |
| /* critical section pass, GFP_NOIO no longer needed */ |
| |
| conf->slab_cache = sc; |
| conf->active_name = 1-conf->active_name; |
| conf->pool_size = newsize; |
| return err; |
| } |
| |
| static int drop_one_stripe(raid5_conf_t *conf) |
| { |
| struct stripe_head *sh; |
| |
| spin_lock_irq(&conf->device_lock); |
| sh = get_free_stripe(conf); |
| spin_unlock_irq(&conf->device_lock); |
| if (!sh) |
| return 0; |
| BUG_ON(atomic_read(&sh->count)); |
| shrink_buffers(sh, conf->pool_size); |
| kmem_cache_free(conf->slab_cache, sh); |
| atomic_dec(&conf->active_stripes); |
| return 1; |
| } |
| |
| static void shrink_stripes(raid5_conf_t *conf) |
| { |
| while (drop_one_stripe(conf)) |
| ; |
| |
| if (conf->slab_cache) |
| kmem_cache_destroy(conf->slab_cache); |
| conf->slab_cache = NULL; |
| } |
| |
| static void raid5_end_read_request(struct bio * bi, int error) |
| { |
| struct stripe_head *sh = bi->bi_private; |
| raid5_conf_t *conf = sh->raid_conf; |
| int disks = sh->disks, i; |
| int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); |
| char b[BDEVNAME_SIZE]; |
| mdk_rdev_t *rdev; |
| |
| |
| for (i=0 ; i<disks; i++) |
| if (bi == &sh->dev[i].req) |
| break; |
| |
| pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", |
| (unsigned long long)sh->sector, i, atomic_read(&sh->count), |
| uptodate); |
| if (i == disks) { |
| BUG(); |
| return; |
| } |
| |
| if (uptodate) { |
| set_bit(R5_UPTODATE, &sh->dev[i].flags); |
| if (test_bit(R5_ReadError, &sh->dev[i].flags)) { |
| rdev = conf->disks[i].rdev; |
| printk_rl(KERN_INFO "raid5:%s: read error corrected" |
| " (%lu sectors at %llu on %s)\n", |
| mdname(conf->mddev), STRIPE_SECTORS, |
| (unsigned long long)(sh->sector |
| + rdev->data_offset), |
| bdevname(rdev->bdev, b)); |
| clear_bit(R5_ReadError, &sh->dev[i].flags); |
| clear_bit(R5_ReWrite, &sh->dev[i].flags); |
| } |
| if (atomic_read(&conf->disks[i].rdev->read_errors)) |
| atomic_set(&conf->disks[i].rdev->read_errors, 0); |
| } else { |
| const char *bdn = bdevname(conf->disks[i].rdev->bdev, b); |
| int retry = 0; |
| rdev = conf->disks[i].rdev; |
| |
| clear_bit(R5_UPTODATE, &sh->dev[i].flags); |
| atomic_inc(&rdev->read_errors); |
| if (conf->mddev->degraded) |
| printk_rl(KERN_WARNING |
| "raid5:%s: read error not correctable " |
| "(sector %llu on %s).\n", |
| mdname(conf->mddev), |
| (unsigned long long)(sh->sector |
| + rdev->data_offset), |
| bdn); |
| else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) |
| /* Oh, no!!! */ |
| printk_rl(KERN_WARNING |
| "raid5:%s: read error NOT corrected!! " |
| "(sector %llu on %s).\n", |
| mdname(conf->mddev), |
| (unsigned long long)(sh->sector |
| + rdev->data_offset), |
| bdn); |
| else if (atomic_read(&rdev->read_errors) |
| > conf->max_nr_stripes) |
| printk(KERN_WARNING |
| "raid5:%s: Too many read errors, failing device %s.\n", |
| mdname(conf->mddev), bdn); |
| else |
| retry = 1; |
| if (retry) |
| set_bit(R5_ReadError, &sh->dev[i].flags); |
| else { |
| clear_bit(R5_ReadError, &sh->dev[i].flags); |
| clear_bit(R5_ReWrite, &sh->dev[i].flags); |
| md_error(conf->mddev, rdev); |
| } |
| } |
| rdev_dec_pending(conf->disks[i].rdev, conf->mddev); |
| clear_bit(R5_LOCKED, &sh->dev[i].flags); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| release_stripe(sh); |
| } |
| |
| static void raid5_end_write_request(struct bio *bi, int error) |
| { |
| struct stripe_head *sh = bi->bi_private; |
| raid5_conf_t *conf = sh->raid_conf; |
| int disks = sh->disks, i; |
| int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); |
| |
| for (i=0 ; i<disks; i++) |
| if (bi == &sh->dev[i].req) |
| break; |
| |
| pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", |
| (unsigned long long)sh->sector, i, atomic_read(&sh->count), |
| uptodate); |
| if (i == disks) { |
| BUG(); |
| return; |
| } |
| |
| if (!uptodate) |
| md_error(conf->mddev, conf->disks[i].rdev); |
| |
| rdev_dec_pending(conf->disks[i].rdev, conf->mddev); |
| |
| clear_bit(R5_LOCKED, &sh->dev[i].flags); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| release_stripe(sh); |
| } |
| |
| |
| static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); |
| |
| static void raid5_build_block(struct stripe_head *sh, int i, int previous) |
| { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| bio_init(&dev->req); |
| dev->req.bi_io_vec = &dev->vec; |
| dev->req.bi_vcnt++; |
| dev->req.bi_max_vecs++; |
| dev->vec.bv_page = dev->page; |
| dev->vec.bv_len = STRIPE_SIZE; |
| dev->vec.bv_offset = 0; |
| |
| dev->req.bi_sector = sh->sector; |
| dev->req.bi_private = sh; |
| |
| dev->flags = 0; |
| dev->sector = compute_blocknr(sh, i, previous); |
| } |
| |
| static void error(mddev_t *mddev, mdk_rdev_t *rdev) |
| { |
| char b[BDEVNAME_SIZE]; |
| raid5_conf_t *conf = (raid5_conf_t *) mddev->private; |
| pr_debug("raid5: error called\n"); |
| |
| if (!test_bit(Faulty, &rdev->flags)) { |
| set_bit(MD_CHANGE_DEVS, &mddev->flags); |
| if (test_and_clear_bit(In_sync, &rdev->flags)) { |
| unsigned long flags; |
| spin_lock_irqsave(&conf->device_lock, flags); |
| mddev->degraded++; |
| spin_unlock_irqrestore(&conf->device_lock, flags); |
| /* |
| * if recovery was running, make sure it aborts. |
| */ |
| set_bit(MD_RECOVERY_INTR, &mddev->recovery); |
| } |
| set_bit(Faulty, &rdev->flags); |
| printk(KERN_ALERT |
| "raid5: Disk failure on %s, disabling device.\n" |
| "raid5: Operation continuing on %d devices.\n", |
| bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); |
| } |
| } |
| |
| /* |
| * Input: a 'big' sector number, |
| * Output: index of the data and parity disk, and the sector # in them. |
| */ |
| static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector, |
| int previous, int *dd_idx, |
| struct stripe_head *sh) |
| { |
| long stripe; |
| unsigned long chunk_number; |
| unsigned int chunk_offset; |
| int pd_idx, qd_idx; |
| int ddf_layout = 0; |
| sector_t new_sector; |
| int algorithm = previous ? conf->prev_algo |
| : conf->algorithm; |
| int sectors_per_chunk = previous ? (conf->prev_chunk >> 9) |
| : (conf->chunk_size >> 9); |
| int raid_disks = previous ? conf->previous_raid_disks |
| : conf->raid_disks; |
| int data_disks = raid_disks - conf->max_degraded; |
| |
| /* First compute the information on this sector */ |
| |
| /* |
| * Compute the chunk number and the sector offset inside the chunk |
| */ |
| chunk_offset = sector_div(r_sector, sectors_per_chunk); |
| chunk_number = r_sector; |
| BUG_ON(r_sector != chunk_number); |
| |
| /* |
| * Compute the stripe number |
| */ |
| stripe = chunk_number / data_disks; |
| |
| /* |
| * Compute the data disk and parity disk indexes inside the stripe |
| */ |
| *dd_idx = chunk_number % data_disks; |
| |
| /* |
| * Select the parity disk based on the user selected algorithm. |
| */ |
| pd_idx = qd_idx = ~0; |
| switch(conf->level) { |
| case 4: |
| pd_idx = data_disks; |
| break; |
| case 5: |
| switch (algorithm) { |
| case ALGORITHM_LEFT_ASYMMETRIC: |
| pd_idx = data_disks - stripe % raid_disks; |
| if (*dd_idx >= pd_idx) |
| (*dd_idx)++; |
| break; |
| case ALGORITHM_RIGHT_ASYMMETRIC: |
| pd_idx = stripe % raid_disks; |
| if (*dd_idx >= pd_idx) |
| (*dd_idx)++; |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC: |
| pd_idx = data_disks - stripe % raid_disks; |
| *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; |
| break; |
| case ALGORITHM_RIGHT_SYMMETRIC: |
| pd_idx = stripe % raid_disks; |
| *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; |
| break; |
| case ALGORITHM_PARITY_0: |
| pd_idx = 0; |
| (*dd_idx)++; |
| break; |
| case ALGORITHM_PARITY_N: |
| pd_idx = data_disks; |
| break; |
| default: |
| printk(KERN_ERR "raid5: unsupported algorithm %d\n", |
| algorithm); |
| BUG(); |
| } |
| break; |
| case 6: |
| |
| switch (algorithm) { |
| case ALGORITHM_LEFT_ASYMMETRIC: |
| pd_idx = raid_disks - 1 - (stripe % raid_disks); |
| qd_idx = pd_idx + 1; |
| if (pd_idx == raid_disks-1) { |
| (*dd_idx)++; /* Q D D D P */ |
| qd_idx = 0; |
| } else if (*dd_idx >= pd_idx) |
| (*dd_idx) += 2; /* D D P Q D */ |
| break; |
| case ALGORITHM_RIGHT_ASYMMETRIC: |
| pd_idx = stripe % raid_disks; |
| qd_idx = pd_idx + 1; |
| if (pd_idx == raid_disks-1) { |
| (*dd_idx)++; /* Q D D D P */ |
| qd_idx = 0; |
| } else if (*dd_idx >= pd_idx) |
| (*dd_idx) += 2; /* D D P Q D */ |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC: |
| pd_idx = raid_disks - 1 - (stripe % raid_disks); |
| qd_idx = (pd_idx + 1) % raid_disks; |
| *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; |
| break; |
| case ALGORITHM_RIGHT_SYMMETRIC: |
| pd_idx = stripe % raid_disks; |
| qd_idx = (pd_idx + 1) % raid_disks; |
| *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; |
| break; |
| |
| case ALGORITHM_PARITY_0: |
| pd_idx = 0; |
| qd_idx = 1; |
| (*dd_idx) += 2; |
| break; |
| case ALGORITHM_PARITY_N: |
| pd_idx = data_disks; |
| qd_idx = data_disks + 1; |
| break; |
| |
| case ALGORITHM_ROTATING_ZERO_RESTART: |
| /* Exactly the same as RIGHT_ASYMMETRIC, but or |
| * of blocks for computing Q is different. |
| */ |
| pd_idx = stripe % raid_disks; |
| qd_idx = pd_idx + 1; |
| if (pd_idx == raid_disks-1) { |
| (*dd_idx)++; /* Q D D D P */ |
| qd_idx = 0; |
| } else if (*dd_idx >= pd_idx) |
| (*dd_idx) += 2; /* D D P Q D */ |
| ddf_layout = 1; |
| break; |
| |
| case ALGORITHM_ROTATING_N_RESTART: |
| /* Same a left_asymmetric, by first stripe is |
| * D D D P Q rather than |
| * Q D D D P |
| */ |
| pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks); |
| qd_idx = pd_idx + 1; |
| if (pd_idx == raid_disks-1) { |
| (*dd_idx)++; /* Q D D D P */ |
| qd_idx = 0; |
| } else if (*dd_idx >= pd_idx) |
| (*dd_idx) += 2; /* D D P Q D */ |
| ddf_layout = 1; |
| break; |
| |
| case ALGORITHM_ROTATING_N_CONTINUE: |
| /* Same as left_symmetric but Q is before P */ |
| pd_idx = raid_disks - 1 - (stripe % raid_disks); |
| qd_idx = (pd_idx + raid_disks - 1) % raid_disks; |
| *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; |
| ddf_layout = 1; |
| break; |
| |
| case ALGORITHM_LEFT_ASYMMETRIC_6: |
| /* RAID5 left_asymmetric, with Q on last device */ |
| pd_idx = data_disks - stripe % (raid_disks-1); |
| if (*dd_idx >= pd_idx) |
| (*dd_idx)++; |
| qd_idx = raid_disks - 1; |
| break; |
| |
| case ALGORITHM_RIGHT_ASYMMETRIC_6: |
| pd_idx = stripe % (raid_disks-1); |
| if (*dd_idx >= pd_idx) |
| (*dd_idx)++; |
| qd_idx = raid_disks - 1; |
| break; |
| |
| case ALGORITHM_LEFT_SYMMETRIC_6: |
| pd_idx = data_disks - stripe % (raid_disks-1); |
| *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); |
| qd_idx = raid_disks - 1; |
| break; |
| |
| case ALGORITHM_RIGHT_SYMMETRIC_6: |
| pd_idx = stripe % (raid_disks-1); |
| *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); |
| qd_idx = raid_disks - 1; |
| break; |
| |
| case ALGORITHM_PARITY_0_6: |
| pd_idx = 0; |
| (*dd_idx)++; |
| qd_idx = raid_disks - 1; |
| break; |
| |
| |
| default: |
| printk(KERN_CRIT "raid6: unsupported algorithm %d\n", |
| algorithm); |
| BUG(); |
| } |
| break; |
| } |
| |
| if (sh) { |
| sh->pd_idx = pd_idx; |
| sh->qd_idx = qd_idx; |
| sh->ddf_layout = ddf_layout; |
| } |
| /* |
| * Finally, compute the new sector number |
| */ |
| new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; |
| return new_sector; |
| } |
| |
| |
| static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) |
| { |
| raid5_conf_t *conf = sh->raid_conf; |
| int raid_disks = sh->disks; |
| int data_disks = raid_disks - conf->max_degraded; |
| sector_t new_sector = sh->sector, check; |
| int sectors_per_chunk = previous ? (conf->prev_chunk >> 9) |
| : (conf->chunk_size >> 9); |
| int algorithm = previous ? conf->prev_algo |
| : conf->algorithm; |
| sector_t stripe; |
| int chunk_offset; |
| int chunk_number, dummy1, dd_idx = i; |
| sector_t r_sector; |
| struct stripe_head sh2; |
| |
| |
| chunk_offset = sector_div(new_sector, sectors_per_chunk); |
| stripe = new_sector; |
| BUG_ON(new_sector != stripe); |
| |
| if (i == sh->pd_idx) |
| return 0; |
| switch(conf->level) { |
| case 4: break; |
| case 5: |
| switch (algorithm) { |
| case ALGORITHM_LEFT_ASYMMETRIC: |
| case ALGORITHM_RIGHT_ASYMMETRIC: |
| if (i > sh->pd_idx) |
| i--; |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC: |
| case ALGORITHM_RIGHT_SYMMETRIC: |
| if (i < sh->pd_idx) |
| i += raid_disks; |
| i -= (sh->pd_idx + 1); |
| break; |
| case ALGORITHM_PARITY_0: |
| i -= 1; |
| break; |
| case ALGORITHM_PARITY_N: |
| break; |
| default: |
| printk(KERN_ERR "raid5: unsupported algorithm %d\n", |
| algorithm); |
| BUG(); |
| } |
| break; |
| case 6: |
| if (i == sh->qd_idx) |
| return 0; /* It is the Q disk */ |
| switch (algorithm) { |
| case ALGORITHM_LEFT_ASYMMETRIC: |
| case ALGORITHM_RIGHT_ASYMMETRIC: |
| case ALGORITHM_ROTATING_ZERO_RESTART: |
| case ALGORITHM_ROTATING_N_RESTART: |
| if (sh->pd_idx == raid_disks-1) |
| i--; /* Q D D D P */ |
| else if (i > sh->pd_idx) |
| i -= 2; /* D D P Q D */ |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC: |
| case ALGORITHM_RIGHT_SYMMETRIC: |
| if (sh->pd_idx == raid_disks-1) |
| i--; /* Q D D D P */ |
| else { |
| /* D D P Q D */ |
| if (i < sh->pd_idx) |
| i += raid_disks; |
| i -= (sh->pd_idx + 2); |
| } |
| break; |
| case ALGORITHM_PARITY_0: |
| i -= 2; |
| break; |
| case ALGORITHM_PARITY_N: |
| break; |
| case ALGORITHM_ROTATING_N_CONTINUE: |
| if (sh->pd_idx == 0) |
| i--; /* P D D D Q */ |
| else if (i > sh->pd_idx) |
| i -= 2; /* D D Q P D */ |
| break; |
| case ALGORITHM_LEFT_ASYMMETRIC_6: |
| case ALGORITHM_RIGHT_ASYMMETRIC_6: |
| if (i > sh->pd_idx) |
| i--; |
| break; |
| case ALGORITHM_LEFT_SYMMETRIC_6: |
| case ALGORITHM_RIGHT_SYMMETRIC_6: |
| if (i < sh->pd_idx) |
| i += data_disks + 1; |
| i -= (sh->pd_idx + 1); |
| break; |
| case ALGORITHM_PARITY_0_6: |
| i -= 1; |
| break; |
| default: |
| printk(KERN_CRIT "raid6: unsupported algorithm %d\n", |
| algorithm); |
| BUG(); |
| } |
| break; |
| } |
| |
| chunk_number = stripe * data_disks + i; |
| r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset; |
| |
| check = raid5_compute_sector(conf, r_sector, |
| previous, &dummy1, &sh2); |
| if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx |
| || sh2.qd_idx != sh->qd_idx) { |
| printk(KERN_ERR "compute_blocknr: map not correct\n"); |
| return 0; |
| } |
| return r_sector; |
| } |
| |
| |
| |
| /* |
| * Copy data between a page in the stripe cache, and one or more bion |
| * The page could align with the middle of the bio, or there could be |
| * several bion, each with several bio_vecs, which cover part of the page |
| * Multiple bion are linked together on bi_next. There may be extras |
| * at the end of this list. We ignore them. |
| */ |
| static void copy_data(int frombio, struct bio *bio, |
| struct page *page, |
| sector_t sector) |
| { |
| char *pa = page_address(page); |
| struct bio_vec *bvl; |
| int i; |
| int page_offset; |
| |
| if (bio->bi_sector >= sector) |
| page_offset = (signed)(bio->bi_sector - sector) * 512; |
| else |
| page_offset = (signed)(sector - bio->bi_sector) * -512; |
| bio_for_each_segment(bvl, bio, i) { |
| int len = bio_iovec_idx(bio,i)->bv_len; |
| int clen; |
| int b_offset = 0; |
| |
| if (page_offset < 0) { |
| b_offset = -page_offset; |
| page_offset += b_offset; |
| len -= b_offset; |
| } |
| |
| if (len > 0 && page_offset + len > STRIPE_SIZE) |
| clen = STRIPE_SIZE - page_offset; |
| else clen = len; |
| |
| if (clen > 0) { |
| char *ba = __bio_kmap_atomic(bio, i, KM_USER0); |
| if (frombio) |
| memcpy(pa+page_offset, ba+b_offset, clen); |
| else |
| memcpy(ba+b_offset, pa+page_offset, clen); |
| __bio_kunmap_atomic(ba, KM_USER0); |
| } |
| if (clen < len) /* hit end of page */ |
| break; |
| page_offset += len; |
| } |
| } |
| |
| #define check_xor() do { \ |
| if (count == MAX_XOR_BLOCKS) { \ |
| xor_blocks(count, STRIPE_SIZE, dest, ptr);\ |
| count = 0; \ |
| } \ |
| } while(0) |
| |
| static void compute_parity6(struct stripe_head *sh, int method) |
| { |
| raid5_conf_t *conf = sh->raid_conf; |
| int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count; |
| int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); |
| struct bio *chosen; |
| /**** FIX THIS: This could be very bad if disks is close to 256 ****/ |
| void *ptrs[syndrome_disks+2]; |
| |
| pd_idx = sh->pd_idx; |
| qd_idx = sh->qd_idx; |
| d0_idx = raid6_d0(sh); |
| |
| pr_debug("compute_parity, stripe %llu, method %d\n", |
| (unsigned long long)sh->sector, method); |
| |
| switch(method) { |
| case READ_MODIFY_WRITE: |
| BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */ |
| case RECONSTRUCT_WRITE: |
| for (i= disks; i-- ;) |
| if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) { |
| chosen = sh->dev[i].towrite; |
| sh->dev[i].towrite = NULL; |
| |
| if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) |
| wake_up(&conf->wait_for_overlap); |
| |
| BUG_ON(sh->dev[i].written); |
| sh->dev[i].written = chosen; |
| } |
| break; |
| case CHECK_PARITY: |
| BUG(); /* Not implemented yet */ |
| } |
| |
| for (i = disks; i--;) |
| if (sh->dev[i].written) { |
| sector_t sector = sh->dev[i].sector; |
| struct bio *wbi = sh->dev[i].written; |
| while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) { |
| copy_data(1, wbi, sh->dev[i].page, sector); |
| wbi = r5_next_bio(wbi, sector); |
| } |
| |
| set_bit(R5_LOCKED, &sh->dev[i].flags); |
| set_bit(R5_UPTODATE, &sh->dev[i].flags); |
| } |
| |
| /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/ |
| |
| for (i = 0; i < disks; i++) |
| ptrs[i] = (void *)raid6_empty_zero_page; |
| |
| count = 0; |
| i = d0_idx; |
| do { |
| int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); |
| |
| ptrs[slot] = page_address(sh->dev[i].page); |
| if (slot < syndrome_disks && |
| !test_bit(R5_UPTODATE, &sh->dev[i].flags)) { |
| printk(KERN_ERR "block %d/%d not uptodate " |
| "on parity calc\n", i, count); |
| BUG(); |
| } |
| |
| i = raid6_next_disk(i, disks); |
| } while (i != d0_idx); |
| BUG_ON(count != syndrome_disks); |
| |
| raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs); |
| |
| switch(method) { |
| case RECONSTRUCT_WRITE: |
| set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); |
| set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); |
| set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); |
| set_bit(R5_LOCKED, &sh->dev[qd_idx].flags); |
| break; |
| case UPDATE_PARITY: |
| set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); |
| set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); |
| break; |
| } |
| } |
| |
| |
| /* Compute one missing block */ |
| static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero) |
| { |
| int i, count, disks = sh->disks; |
| void *ptr[MAX_XOR_BLOCKS], *dest, *p; |
| int qd_idx = sh->qd_idx; |
| |
| pr_debug("compute_block_1, stripe %llu, idx %d\n", |
| (unsigned long long)sh->sector, dd_idx); |
| |
| if ( dd_idx == qd_idx ) { |
| /* We're actually computing the Q drive */ |
| compute_parity6(sh, UPDATE_PARITY); |
| } else { |
| dest = page_address(sh->dev[dd_idx].page); |
| if (!nozero) memset(dest, 0, STRIPE_SIZE); |
| count = 0; |
| for (i = disks ; i--; ) { |
| if (i == dd_idx || i == qd_idx) |
| continue; |
| p = page_address(sh->dev[i].page); |
| if (test_bit(R5_UPTODATE, &sh->dev[i].flags)) |
| ptr[count++] = p; |
| else |
| printk("compute_block() %d, stripe %llu, %d" |
| " not present\n", dd_idx, |
| (unsigned long long)sh->sector, i); |
| |
| check_xor(); |
| } |
| if (count) |
| xor_blocks(count, STRIPE_SIZE, dest, ptr); |
| if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); |
| else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); |
| } |
| } |
| |
| /* Compute two missing blocks */ |
| static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2) |
| { |
| int i, count, disks = sh->disks; |
| int syndrome_disks = sh->ddf_layout ? disks : disks-2; |
| int d0_idx = raid6_d0(sh); |
| int faila = -1, failb = -1; |
| /**** FIX THIS: This could be very bad if disks is close to 256 ****/ |
| void *ptrs[syndrome_disks+2]; |
| |
| for (i = 0; i < disks ; i++) |
| ptrs[i] = (void *)raid6_empty_zero_page; |
| count = 0; |
| i = d0_idx; |
| do { |
| int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); |
| |
| ptrs[slot] = page_address(sh->dev[i].page); |
| |
| if (i == dd_idx1) |
| faila = slot; |
| if (i == dd_idx2) |
| failb = slot; |
| i = raid6_next_disk(i, disks); |
| } while (i != d0_idx); |
| BUG_ON(count != syndrome_disks); |
| |
| BUG_ON(faila == failb); |
| if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; } |
| |
| pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n", |
| (unsigned long long)sh->sector, dd_idx1, dd_idx2, |
| faila, failb); |
| |
| if (failb == syndrome_disks+1) { |
| /* Q disk is one of the missing disks */ |
| if (faila == syndrome_disks) { |
| /* Missing P+Q, just recompute */ |
| compute_parity6(sh, UPDATE_PARITY); |
| return; |
| } else { |
| /* We're missing D+Q; recompute D from P */ |
| compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ? |
| dd_idx2 : dd_idx1), |
| 0); |
| compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */ |
| return; |
| } |
| } |
| |
| /* We're missing D+P or D+D; */ |
| if (failb == syndrome_disks) { |
| /* We're missing D+P. */ |
| raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs); |
| } else { |
| /* We're missing D+D. */ |
| raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb, |
| ptrs); |
| } |
| |
| /* Both the above update both missing blocks */ |
| set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags); |
| set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags); |
| } |
| |
| static void |
| schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s, |
| int rcw, int expand) |
| { |
| int i, pd_idx = sh->pd_idx, disks = sh->disks; |
| |
| if (rcw) { |
| /* if we are not expanding this is a proper write request, and |
| * there will be bios with new data to be drained into the |
| * stripe cache |
| */ |
| if (!expand) { |
| sh->reconstruct_state = reconstruct_state_drain_run; |
| set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); |
| } else |
| sh->reconstruct_state = reconstruct_state_run; |
| |
| set_bit(STRIPE_OP_POSTXOR, &s->ops_request); |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| if (dev->towrite) { |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantdrain, &dev->flags); |
| if (!expand) |
| clear_bit(R5_UPTODATE, &dev->flags); |
| s->locked++; |
| } |
| } |
| if (s->locked + 1 == disks) |
| if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) |
| atomic_inc(&sh->raid_conf->pending_full_writes); |
| } else { |
| BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || |
| test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); |
| |
| sh->reconstruct_state = reconstruct_state_prexor_drain_run; |
| set_bit(STRIPE_OP_PREXOR, &s->ops_request); |
| set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); |
| set_bit(STRIPE_OP_POSTXOR, &s->ops_request); |
| |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (i == pd_idx) |
| continue; |
| |
| if (dev->towrite && |
| (test_bit(R5_UPTODATE, &dev->flags) || |
| test_bit(R5_Wantcompute, &dev->flags))) { |
| set_bit(R5_Wantdrain, &dev->flags); |
| set_bit(R5_LOCKED, &dev->flags); |
| clear_bit(R5_UPTODATE, &dev->flags); |
| s->locked++; |
| } |
| } |
| } |
| |
| /* keep the parity disk locked while asynchronous operations |
| * are in flight |
| */ |
| set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); |
| clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); |
| s->locked++; |
| |
| pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", |
| __func__, (unsigned long long)sh->sector, |
| s->locked, s->ops_request); |
| } |
| |
| /* |
| * Each stripe/dev can have one or more bion attached. |
| * toread/towrite point to the first in a chain. |
| * The bi_next chain must be in order. |
| */ |
| static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) |
| { |
| struct bio **bip; |
| raid5_conf_t *conf = sh->raid_conf; |
| int firstwrite=0; |
| |
| pr_debug("adding bh b#%llu to stripe s#%llu\n", |
| (unsigned long long)bi->bi_sector, |
| (unsigned long long)sh->sector); |
| |
| |
| spin_lock(&sh->lock); |
| spin_lock_irq(&conf->device_lock); |
| if (forwrite) { |
| bip = &sh->dev[dd_idx].towrite; |
| if (*bip == NULL && sh->dev[dd_idx].written == NULL) |
| firstwrite = 1; |
| } else |
| bip = &sh->dev[dd_idx].toread; |
| while (*bip && (*bip)->bi_sector < bi->bi_sector) { |
| if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) |
| goto overlap; |
| bip = & (*bip)->bi_next; |
| } |
| if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) |
| goto overlap; |
| |
| BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); |
| if (*bip) |
| bi->bi_next = *bip; |
| *bip = bi; |
| bi->bi_phys_segments++; |
| spin_unlock_irq(&conf->device_lock); |
| spin_unlock(&sh->lock); |
| |
| pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", |
| (unsigned long long)bi->bi_sector, |
| (unsigned long long)sh->sector, dd_idx); |
| |
| if (conf->mddev->bitmap && firstwrite) { |
| bitmap_startwrite(conf->mddev->bitmap, sh->sector, |
| STRIPE_SECTORS, 0); |
| sh->bm_seq = conf->seq_flush+1; |
| set_bit(STRIPE_BIT_DELAY, &sh->state); |
| } |
| |
| if (forwrite) { |
| /* check if page is covered */ |
| sector_t sector = sh->dev[dd_idx].sector; |
| for (bi=sh->dev[dd_idx].towrite; |
| sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && |
| bi && bi->bi_sector <= sector; |
| bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { |
| if (bi->bi_sector + (bi->bi_size>>9) >= sector) |
| sector = bi->bi_sector + (bi->bi_size>>9); |
| } |
| if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) |
| set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); |
| } |
| return 1; |
| |
| overlap: |
| set_bit(R5_Overlap, &sh->dev[dd_idx].flags); |
| spin_unlock_irq(&conf->device_lock); |
| spin_unlock(&sh->lock); |
| return 0; |
| } |
| |
| static void end_reshape(raid5_conf_t *conf); |
| |
| static int page_is_zero(struct page *p) |
| { |
| char *a = page_address(p); |
| return ((*(u32*)a) == 0 && |
| memcmp(a, a+4, STRIPE_SIZE-4)==0); |
| } |
| |
| static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous, |
| struct stripe_head *sh) |
| { |
| int sectors_per_chunk = |
| previous ? (conf->prev_chunk >> 9) |
| : (conf->chunk_size >> 9); |
| int dd_idx; |
| int chunk_offset = sector_div(stripe, sectors_per_chunk); |
| int disks = previous ? conf->previous_raid_disks : conf->raid_disks; |
| |
| raid5_compute_sector(conf, |
| stripe * (disks - conf->max_degraded) |
| *sectors_per_chunk + chunk_offset, |
| previous, |
| &dd_idx, sh); |
| } |
| |
| static void |
| handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh, |
| struct stripe_head_state *s, int disks, |
| struct bio **return_bi) |
| { |
| int i; |
| for (i = disks; i--; ) { |
| struct bio *bi; |
| int bitmap_end = 0; |
| |
| if (test_bit(R5_ReadError, &sh->dev[i].flags)) { |
| mdk_rdev_t *rdev; |
| rcu_read_lock(); |
| rdev = rcu_dereference(conf->disks[i].rdev); |
| if (rdev && test_bit(In_sync, &rdev->flags)) |
| /* multiple read failures in one stripe */ |
| md_error(conf->mddev, rdev); |
| rcu_read_unlock(); |
| } |
| spin_lock_irq(&conf->device_lock); |
| /* fail all writes first */ |
| bi = sh->dev[i].towrite; |
| sh->dev[i].towrite = NULL; |
| if (bi) { |
| s->to_write--; |
| bitmap_end = 1; |
| } |
| |
| if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) |
| wake_up(&conf->wait_for_overlap); |
| |
| while (bi && bi->bi_sector < |
| sh->dev[i].sector + STRIPE_SECTORS) { |
| struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); |
| clear_bit(BIO_UPTODATE, &bi->bi_flags); |
| if (!raid5_dec_bi_phys_segments(bi)) { |
| md_write_end(conf->mddev); |
| bi->bi_next = *return_bi; |
| *return_bi = bi; |
| } |
| bi = nextbi; |
| } |
| /* and fail all 'written' */ |
| bi = sh->dev[i].written; |
| sh->dev[i].written = NULL; |
| if (bi) bitmap_end = 1; |
| while (bi && bi->bi_sector < |
| sh->dev[i].sector + STRIPE_SECTORS) { |
| struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); |
| clear_bit(BIO_UPTODATE, &bi->bi_flags); |
| if (!raid5_dec_bi_phys_segments(bi)) { |
| md_write_end(conf->mddev); |
| bi->bi_next = *return_bi; |
| *return_bi = bi; |
| } |
| bi = bi2; |
| } |
| |
| /* fail any reads if this device is non-operational and |
| * the data has not reached the cache yet. |
| */ |
| if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && |
| (!test_bit(R5_Insync, &sh->dev[i].flags) || |
| test_bit(R5_ReadError, &sh->dev[i].flags))) { |
| bi = sh->dev[i].toread; |
| sh->dev[i].toread = NULL; |
| if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) |
| wake_up(&conf->wait_for_overlap); |
| if (bi) s->to_read--; |
| while (bi && bi->bi_sector < |
| sh->dev[i].sector + STRIPE_SECTORS) { |
| struct bio *nextbi = |
| r5_next_bio(bi, sh->dev[i].sector); |
| clear_bit(BIO_UPTODATE, &bi->bi_flags); |
| if (!raid5_dec_bi_phys_segments(bi)) { |
| bi->bi_next = *return_bi; |
| *return_bi = bi; |
| } |
| bi = nextbi; |
| } |
| } |
| spin_unlock_irq(&conf->device_lock); |
| if (bitmap_end) |
| bitmap_endwrite(conf->mddev->bitmap, sh->sector, |
| STRIPE_SECTORS, 0, 0); |
| } |
| |
| if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) |
| if (atomic_dec_and_test(&conf->pending_full_writes)) |
| md_wakeup_thread(conf->mddev->thread); |
| } |
| |
| /* fetch_block5 - checks the given member device to see if its data needs |
| * to be read or computed to satisfy a request. |
| * |
| * Returns 1 when no more member devices need to be checked, otherwise returns |
| * 0 to tell the loop in handle_stripe_fill5 to continue |
| */ |
| static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s, |
| int disk_idx, int disks) |
| { |
| struct r5dev *dev = &sh->dev[disk_idx]; |
| struct r5dev *failed_dev = &sh->dev[s->failed_num]; |
| |
| /* is the data in this block needed, and can we get it? */ |
| if (!test_bit(R5_LOCKED, &dev->flags) && |
| !test_bit(R5_UPTODATE, &dev->flags) && |
| (dev->toread || |
| (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || |
| s->syncing || s->expanding || |
| (s->failed && |
| (failed_dev->toread || |
| (failed_dev->towrite && |
| !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) { |
| /* We would like to get this block, possibly by computing it, |
| * otherwise read it if the backing disk is insync |
| */ |
| if ((s->uptodate == disks - 1) && |
| (s->failed && disk_idx == s->failed_num)) { |
| set_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); |
| set_bit(R5_Wantcompute, &dev->flags); |
| sh->ops.target = disk_idx; |
| s->req_compute = 1; |
| /* Careful: from this point on 'uptodate' is in the eye |
| * of raid5_run_ops which services 'compute' operations |
| * before writes. R5_Wantcompute flags a block that will |
| * be R5_UPTODATE by the time it is needed for a |
| * subsequent operation. |
| */ |
| s->uptodate++; |
| return 1; /* uptodate + compute == disks */ |
| } else if (test_bit(R5_Insync, &dev->flags)) { |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantread, &dev->flags); |
| s->locked++; |
| pr_debug("Reading block %d (sync=%d)\n", disk_idx, |
| s->syncing); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * handle_stripe_fill5 - read or compute data to satisfy pending requests. |
| */ |
| static void handle_stripe_fill5(struct stripe_head *sh, |
| struct stripe_head_state *s, int disks) |
| { |
| int i; |
| |
| /* look for blocks to read/compute, skip this if a compute |
| * is already in flight, or if the stripe contents are in the |
| * midst of changing due to a write |
| */ |
| if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && |
| !sh->reconstruct_state) |
| for (i = disks; i--; ) |
| if (fetch_block5(sh, s, i, disks)) |
| break; |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| |
| static void handle_stripe_fill6(struct stripe_head *sh, |
| struct stripe_head_state *s, struct r6_state *r6s, |
| int disks) |
| { |
| int i; |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (!test_bit(R5_LOCKED, &dev->flags) && |
| !test_bit(R5_UPTODATE, &dev->flags) && |
| (dev->toread || (dev->towrite && |
| !test_bit(R5_OVERWRITE, &dev->flags)) || |
| s->syncing || s->expanding || |
| (s->failed >= 1 && |
| (sh->dev[r6s->failed_num[0]].toread || |
| s->to_write)) || |
| (s->failed >= 2 && |
| (sh->dev[r6s->failed_num[1]].toread || |
| s->to_write)))) { |
| /* we would like to get this block, possibly |
| * by computing it, but we might not be able to |
| */ |
| if ((s->uptodate == disks - 1) && |
| (s->failed && (i == r6s->failed_num[0] || |
| i == r6s->failed_num[1]))) { |
| pr_debug("Computing stripe %llu block %d\n", |
| (unsigned long long)sh->sector, i); |
| compute_block_1(sh, i, 0); |
| s->uptodate++; |
| } else if ( s->uptodate == disks-2 && s->failed >= 2 ) { |
| /* Computing 2-failure is *very* expensive; only |
| * do it if failed >= 2 |
| */ |
| int other; |
| for (other = disks; other--; ) { |
| if (other == i) |
| continue; |
| if (!test_bit(R5_UPTODATE, |
| &sh->dev[other].flags)) |
| break; |
| } |
| BUG_ON(other < 0); |
| pr_debug("Computing stripe %llu blocks %d,%d\n", |
| (unsigned long long)sh->sector, |
| i, other); |
| compute_block_2(sh, i, other); |
| s->uptodate += 2; |
| } else if (test_bit(R5_Insync, &dev->flags)) { |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantread, &dev->flags); |
| s->locked++; |
| pr_debug("Reading block %d (sync=%d)\n", |
| i, s->syncing); |
| } |
| } |
| } |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| |
| |
| /* handle_stripe_clean_event |
| * any written block on an uptodate or failed drive can be returned. |
| * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but |
| * never LOCKED, so we don't need to test 'failed' directly. |
| */ |
| static void handle_stripe_clean_event(raid5_conf_t *conf, |
| struct stripe_head *sh, int disks, struct bio **return_bi) |
| { |
| int i; |
| struct r5dev *dev; |
| |
| for (i = disks; i--; ) |
| if (sh->dev[i].written) { |
| dev = &sh->dev[i]; |
| if (!test_bit(R5_LOCKED, &dev->flags) && |
| test_bit(R5_UPTODATE, &dev->flags)) { |
| /* We can return any write requests */ |
| struct bio *wbi, *wbi2; |
| int bitmap_end = 0; |
| pr_debug("Return write for disc %d\n", i); |
| spin_lock_irq(&conf->device_lock); |
| wbi = dev->written; |
| dev->written = NULL; |
| while (wbi && wbi->bi_sector < |
| dev->sector + STRIPE_SECTORS) { |
| wbi2 = r5_next_bio(wbi, dev->sector); |
| if (!raid5_dec_bi_phys_segments(wbi)) { |
| md_write_end(conf->mddev); |
| wbi->bi_next = *return_bi; |
| *return_bi = wbi; |
| } |
| wbi = wbi2; |
| } |
| if (dev->towrite == NULL) |
| bitmap_end = 1; |
| spin_unlock_irq(&conf->device_lock); |
| if (bitmap_end) |
| bitmap_endwrite(conf->mddev->bitmap, |
| sh->sector, |
| STRIPE_SECTORS, |
| !test_bit(STRIPE_DEGRADED, &sh->state), |
| 0); |
| } |
| } |
| |
| if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) |
| if (atomic_dec_and_test(&conf->pending_full_writes)) |
| md_wakeup_thread(conf->mddev->thread); |
| } |
| |
| static void handle_stripe_dirtying5(raid5_conf_t *conf, |
| struct stripe_head *sh, struct stripe_head_state *s, int disks) |
| { |
| int rmw = 0, rcw = 0, i; |
| for (i = disks; i--; ) { |
| /* would I have to read this buffer for read_modify_write */ |
| struct r5dev *dev = &sh->dev[i]; |
| if ((dev->towrite || i == sh->pd_idx) && |
| !test_bit(R5_LOCKED, &dev->flags) && |
| !(test_bit(R5_UPTODATE, &dev->flags) || |
| test_bit(R5_Wantcompute, &dev->flags))) { |
| if (test_bit(R5_Insync, &dev->flags)) |
| rmw++; |
| else |
| rmw += 2*disks; /* cannot read it */ |
| } |
| /* Would I have to read this buffer for reconstruct_write */ |
| if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && |
| !test_bit(R5_LOCKED, &dev->flags) && |
| !(test_bit(R5_UPTODATE, &dev->flags) || |
| test_bit(R5_Wantcompute, &dev->flags))) { |
| if (test_bit(R5_Insync, &dev->flags)) rcw++; |
| else |
| rcw += 2*disks; |
| } |
| } |
| pr_debug("for sector %llu, rmw=%d rcw=%d\n", |
| (unsigned long long)sh->sector, rmw, rcw); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| if (rmw < rcw && rmw > 0) |
| /* prefer read-modify-write, but need to get some data */ |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if ((dev->towrite || i == sh->pd_idx) && |
| !test_bit(R5_LOCKED, &dev->flags) && |
| !(test_bit(R5_UPTODATE, &dev->flags) || |
| test_bit(R5_Wantcompute, &dev->flags)) && |
| test_bit(R5_Insync, &dev->flags)) { |
| if ( |
| test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { |
| pr_debug("Read_old block " |
| "%d for r-m-w\n", i); |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantread, &dev->flags); |
| s->locked++; |
| } else { |
| set_bit(STRIPE_DELAYED, &sh->state); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| } |
| } |
| if (rcw <= rmw && rcw > 0) |
| /* want reconstruct write, but need to get some data */ |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (!test_bit(R5_OVERWRITE, &dev->flags) && |
| i != sh->pd_idx && |
| !test_bit(R5_LOCKED, &dev->flags) && |
| !(test_bit(R5_UPTODATE, &dev->flags) || |
| test_bit(R5_Wantcompute, &dev->flags)) && |
| test_bit(R5_Insync, &dev->flags)) { |
| if ( |
| test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { |
| pr_debug("Read_old block " |
| "%d for Reconstruct\n", i); |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantread, &dev->flags); |
| s->locked++; |
| } else { |
| set_bit(STRIPE_DELAYED, &sh->state); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| } |
| } |
| /* now if nothing is locked, and if we have enough data, |
| * we can start a write request |
| */ |
| /* since handle_stripe can be called at any time we need to handle the |
| * case where a compute block operation has been submitted and then a |
| * subsequent call wants to start a write request. raid5_run_ops only |
| * handles the case where compute block and postxor are requested |
| * simultaneously. If this is not the case then new writes need to be |
| * held off until the compute completes. |
| */ |
| if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && |
| (s->locked == 0 && (rcw == 0 || rmw == 0) && |
| !test_bit(STRIPE_BIT_DELAY, &sh->state))) |
| schedule_reconstruction5(sh, s, rcw == 0, 0); |
| } |
| |
| static void handle_stripe_dirtying6(raid5_conf_t *conf, |
| struct stripe_head *sh, struct stripe_head_state *s, |
| struct r6_state *r6s, int disks) |
| { |
| int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i; |
| int qd_idx = sh->qd_idx; |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| /* Would I have to read this buffer for reconstruct_write */ |
| if (!test_bit(R5_OVERWRITE, &dev->flags) |
| && i != pd_idx && i != qd_idx |
| && (!test_bit(R5_LOCKED, &dev->flags) |
| ) && |
| !test_bit(R5_UPTODATE, &dev->flags)) { |
| if (test_bit(R5_Insync, &dev->flags)) rcw++; |
| else { |
| pr_debug("raid6: must_compute: " |
| "disk %d flags=%#lx\n", i, dev->flags); |
| must_compute++; |
| } |
| } |
| } |
| pr_debug("for sector %llu, rcw=%d, must_compute=%d\n", |
| (unsigned long long)sh->sector, rcw, must_compute); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| |
| if (rcw > 0) |
| /* want reconstruct write, but need to get some data */ |
| for (i = disks; i--; ) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (!test_bit(R5_OVERWRITE, &dev->flags) |
| && !(s->failed == 0 && (i == pd_idx || i == qd_idx)) |
| && !test_bit(R5_LOCKED, &dev->flags) && |
| !test_bit(R5_UPTODATE, &dev->flags) && |
| test_bit(R5_Insync, &dev->flags)) { |
| if ( |
| test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { |
| pr_debug("Read_old stripe %llu " |
| "block %d for Reconstruct\n", |
| (unsigned long long)sh->sector, i); |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantread, &dev->flags); |
| s->locked++; |
| } else { |
| pr_debug("Request delayed stripe %llu " |
| "block %d for Reconstruct\n", |
| (unsigned long long)sh->sector, i); |
| set_bit(STRIPE_DELAYED, &sh->state); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| } |
| } |
| } |
| /* now if nothing is locked, and if we have enough data, we can start a |
| * write request |
| */ |
| if (s->locked == 0 && rcw == 0 && |
| !test_bit(STRIPE_BIT_DELAY, &sh->state)) { |
| if (must_compute > 0) { |
| /* We have failed blocks and need to compute them */ |
| switch (s->failed) { |
| case 0: |
| BUG(); |
| case 1: |
| compute_block_1(sh, r6s->failed_num[0], 0); |
| break; |
| case 2: |
| compute_block_2(sh, r6s->failed_num[0], |
| r6s->failed_num[1]); |
| break; |
| default: /* This request should have been failed? */ |
| BUG(); |
| } |
| } |
| |
| pr_debug("Computing parity for stripe %llu\n", |
| (unsigned long long)sh->sector); |
| compute_parity6(sh, RECONSTRUCT_WRITE); |
| /* now every locked buffer is ready to be written */ |
| for (i = disks; i--; ) |
| if (test_bit(R5_LOCKED, &sh->dev[i].flags)) { |
| pr_debug("Writing stripe %llu block %d\n", |
| (unsigned long long)sh->sector, i); |
| s->locked++; |
| set_bit(R5_Wantwrite, &sh->dev[i].flags); |
| } |
| if (s->locked == disks) |
| if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) |
| atomic_inc(&conf->pending_full_writes); |
| /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */ |
| set_bit(STRIPE_INSYNC, &sh->state); |
| |
| if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { |
| atomic_dec(&conf->preread_active_stripes); |
| if (atomic_read(&conf->preread_active_stripes) < |
| IO_THRESHOLD) |
| md_wakeup_thread(conf->mddev->thread); |
| } |
| } |
| } |
| |
| static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh, |
| struct stripe_head_state *s, int disks) |
| { |
| struct r5dev *dev = NULL; |
| |
| set_bit(STRIPE_HANDLE, &sh->state); |
| |
| switch (sh->check_state) { |
| case check_state_idle: |
| /* start a new check operation if there are no failures */ |
| if (s->failed == 0) { |
| BUG_ON(s->uptodate != disks); |
| sh->check_state = check_state_run; |
| set_bit(STRIPE_OP_CHECK, &s->ops_request); |
| clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); |
| s->uptodate--; |
| break; |
| } |
| dev = &sh->dev[s->failed_num]; |
| /* fall through */ |
| case check_state_compute_result: |
| sh->check_state = check_state_idle; |
| if (!dev) |
| dev = &sh->dev[sh->pd_idx]; |
| |
| /* check that a write has not made the stripe insync */ |
| if (test_bit(STRIPE_INSYNC, &sh->state)) |
| break; |
| |
| /* either failed parity check, or recovery is happening */ |
| BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); |
| BUG_ON(s->uptodate != disks); |
| |
| set_bit(R5_LOCKED, &dev->flags); |
| s->locked++; |
| set_bit(R5_Wantwrite, &dev->flags); |
| |
| clear_bit(STRIPE_DEGRADED, &sh->state); |
| set_bit(STRIPE_INSYNC, &sh->state); |
| break; |
| case check_state_run: |
| break; /* we will be called again upon completion */ |
| case check_state_check_result: |
| sh->check_state = check_state_idle; |
| |
| /* if a failure occurred during the check operation, leave |
| * STRIPE_INSYNC not set and let the stripe be handled again |
| */ |
| if (s->failed) |
| break; |
| |
| /* handle a successful check operation, if parity is correct |
| * we are done. Otherwise update the mismatch count and repair |
| * parity if !MD_RECOVERY_CHECK |
| */ |
| if (sh->ops.zero_sum_result == 0) |
| /* parity is correct (on disc, |
| * not in buffer any more) |
| */ |
| set_bit(STRIPE_INSYNC, &sh->state); |
| else { |
| conf->mddev->resync_mismatches += STRIPE_SECTORS; |
| if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) |
| /* don't try to repair!! */ |
| set_bit(STRIPE_INSYNC, &sh->state); |
| else { |
| sh->check_state = check_state_compute_run; |
| set_bit(STRIPE_COMPUTE_RUN, &sh->state); |
| set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); |
| set_bit(R5_Wantcompute, |
| &sh->dev[sh->pd_idx].flags); |
| sh->ops.target = sh->pd_idx; |
| s->uptodate++; |
| } |
| } |
| break; |
| case check_state_compute_run: |
| break; |
| default: |
| printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", |
| __func__, sh->check_state, |
| (unsigned long long) sh->sector); |
| BUG(); |
| } |
| } |
| |
| |
| static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh, |
| struct stripe_head_state *s, |
| struct r6_state *r6s, struct page *tmp_page, |
| int disks) |
| { |
| int update_p = 0, update_q = 0; |
| struct r5dev *dev; |
| int pd_idx = sh->pd_idx; |
| int qd_idx = sh->qd_idx; |
| |
| set_bit(STRIPE_HANDLE, &sh->state); |
| |
| BUG_ON(s->failed > 2); |
| BUG_ON(s->uptodate < disks); |
| /* Want to check and possibly repair P and Q. |
| * However there could be one 'failed' device, in which |
| * case we can only check one of them, possibly using the |
| * other to generate missing data |
| */ |
| |
| /* If !tmp_page, we cannot do the calculations, |
| * but as we have set STRIPE_HANDLE, we will soon be called |
| * by stripe_handle with a tmp_page - just wait until then. |
| */ |
| if (tmp_page) { |
| if (s->failed == r6s->q_failed) { |
| /* The only possible failed device holds 'Q', so it |
| * makes sense to check P (If anything else were failed, |
| * we would have used P to recreate it). |
| */ |
| compute_block_1(sh, pd_idx, 1); |
| if (!page_is_zero(sh->dev[pd_idx].page)) { |
| compute_block_1(sh, pd_idx, 0); |
| update_p = 1; |
| } |
| } |
| if (!r6s->q_failed && s->failed < 2) { |
| /* q is not failed, and we didn't use it to generate |
| * anything, so it makes sense to check it |
| */ |
| memcpy(page_address(tmp_page), |
| page_address(sh->dev[qd_idx].page), |
| STRIPE_SIZE); |
| compute_parity6(sh, UPDATE_PARITY); |
| if (memcmp(page_address(tmp_page), |
| page_address(sh->dev[qd_idx].page), |
| STRIPE_SIZE) != 0) { |
| clear_bit(STRIPE_INSYNC, &sh->state); |
| update_q = 1; |
| } |
| } |
| if (update_p || update_q) { |
| conf->mddev->resync_mismatches += STRIPE_SECTORS; |
| if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) |
| /* don't try to repair!! */ |
| update_p = update_q = 0; |
| } |
| |
| /* now write out any block on a failed drive, |
| * or P or Q if they need it |
| */ |
| |
| if (s->failed == 2) { |
| dev = &sh->dev[r6s->failed_num[1]]; |
| s->locked++; |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantwrite, &dev->flags); |
| } |
| if (s->failed >= 1) { |
| dev = &sh->dev[r6s->failed_num[0]]; |
| s->locked++; |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantwrite, &dev->flags); |
| } |
| |
| if (update_p) { |
| dev = &sh->dev[pd_idx]; |
| s->locked++; |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantwrite, &dev->flags); |
| } |
| if (update_q) { |
| dev = &sh->dev[qd_idx]; |
| s->locked++; |
| set_bit(R5_LOCKED, &dev->flags); |
| set_bit(R5_Wantwrite, &dev->flags); |
| } |
| clear_bit(STRIPE_DEGRADED, &sh->state); |
| |
| set_bit(STRIPE_INSYNC, &sh->state); |
| } |
| } |
| |
| static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh, |
| struct r6_state *r6s) |
| { |
| int i; |
| |
| /* We have read all the blocks in this stripe and now we need to |
| * copy some of them into a target stripe for expand. |
| */ |
| struct dma_async_tx_descriptor *tx = NULL; |
| clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); |
| for (i = 0; i < sh->disks; i++) |
| if (i != sh->pd_idx && i != sh->qd_idx) { |
| int dd_idx, j; |
| struct stripe_head *sh2; |
| |
| sector_t bn = compute_blocknr(sh, i, 1); |
| sector_t s = raid5_compute_sector(conf, bn, 0, |
| &dd_idx, NULL); |
| sh2 = get_active_stripe(conf, s, 0, 1); |
| if (sh2 == NULL) |
| /* so far only the early blocks of this stripe |
| * have been requested. When later blocks |
| * get requested, we will try again |
| */ |
| continue; |
| if (!test_bit(STRIPE_EXPANDING, &sh2->state) || |
| test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { |
| /* must have already done this block */ |
| release_stripe(sh2); |
| continue; |
| } |
| |
| /* place all the copies on one channel */ |
| tx = async_memcpy(sh2->dev[dd_idx].page, |
| sh->dev[i].page, 0, 0, STRIPE_SIZE, |
| ASYNC_TX_DEP_ACK, tx, NULL, NULL); |
| |
| set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); |
| set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); |
| for (j = 0; j < conf->raid_disks; j++) |
| if (j != sh2->pd_idx && |
| (!r6s || j != sh2->qd_idx) && |
| !test_bit(R5_Expanded, &sh2->dev[j].flags)) |
| break; |
| if (j == conf->raid_disks) { |
| set_bit(STRIPE_EXPAND_READY, &sh2->state); |
| set_bit(STRIPE_HANDLE, &sh2->state); |
| } |
| release_stripe(sh2); |
| |
| } |
| /* done submitting copies, wait for them to complete */ |
| if (tx) { |
| async_tx_ack(tx); |
| dma_wait_for_async_tx(tx); |
| } |
| } |
| |
| |
| /* |
| * handle_stripe - do things to a stripe. |
| * |
| * We lock the stripe and then examine the state of various bits |
| * to see what needs to be done. |
| * Possible results: |
| * return some read request which now have data |
| * return some write requests which are safely on disc |
| * schedule a read on some buffers |
| * schedule a write of some buffers |
| * return confirmation of parity correctness |
| * |
| * buffers are taken off read_list or write_list, and bh_cache buffers |
| * get BH_Lock set before the stripe lock is released. |
| * |
| */ |
| |
| static bool handle_stripe5(struct stripe_head *sh) |
| { |
| raid5_conf_t *conf = sh->raid_conf; |
| int disks = sh->disks, i; |
| struct bio *return_bi = NULL; |
| struct stripe_head_state s; |
| struct r5dev *dev; |
| mdk_rdev_t *blocked_rdev = NULL; |
| int prexor; |
| |
| memset(&s, 0, sizeof(s)); |
| pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d " |
| "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state, |
| atomic_read(&sh->count), sh->pd_idx, sh->check_state, |
| sh->reconstruct_state); |
| |
| spin_lock(&sh->lock); |
| clear_bit(STRIPE_HANDLE, &sh->state); |
| clear_bit(STRIPE_DELAYED, &sh->state); |
| |
| s.syncing = test_bit(STRIPE_SYNCING, &sh->state); |
| s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); |
| s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); |
| |
| /* Now to look around and see what can be done */ |
| rcu_read_lock(); |
| for (i=disks; i--; ) { |
| mdk_rdev_t *rdev; |
| struct r5dev *dev = &sh->dev[i]; |
| clear_bit(R5_Insync, &dev->flags); |
| |
| pr_debug("check %d: state 0x%lx toread %p read %p write %p " |
| "written %p\n", i, dev->flags, dev->toread, dev->read, |
| dev->towrite, dev->written); |
| |
| /* maybe we can request a biofill operation |
| * |
| * new wantfill requests are only permitted while |
| * ops_complete_biofill is guaranteed to be inactive |
| */ |
| if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && |
| !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) |
| set_bit(R5_Wantfill, &dev->flags); |
| |
| /* now count some things */ |
| if (test_bit(R5_LOCKED, &dev->flags)) s.locked++; |
| if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++; |
| if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++; |
| |
| if (test_bit(R5_Wantfill, &dev->flags)) |
| s.to_fill++; |
| else if (dev->toread) |
| s.to_read++; |
| if (dev->towrite) { |
| s.to_write++; |
| if (!test_bit(R5_OVERWRITE, &dev->flags)) |
| s.non_overwrite++; |
| } |
| if (dev->written) |
| s.written++; |
| rdev = rcu_dereference(conf->disks[i].rdev); |
| if (blocked_rdev == NULL && |
| rdev && unlikely(test_bit(Blocked, &rdev->flags))) { |
| blocked_rdev = rdev; |
| atomic_inc(&rdev->nr_pending); |
| } |
| if (!rdev || !test_bit(In_sync, &rdev->flags)) { |
| /* The ReadError flag will just be confusing now */ |
| clear_bit(R5_ReadError, &dev->flags); |
| clear_bit(R5_ReWrite, &dev->flags); |
| } |
| if (!rdev || !test_bit(In_sync, &rdev->flags) |
| || test_bit(R5_ReadError, &dev->flags)) { |
| s.failed++; |
| s.
|