blob: e85c08d78ddadf5e85f14818fc858c94692e40d2 [file] [log] [blame]
/*
* linux/include/asm-arm/pgtable.h
*
* Copyright (C) 1995-2002 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _ASMARM_PGTABLE_H
#define _ASMARM_PGTABLE_H
#include <asm-generic/4level-fixup.h>
#include <asm/memory.h>
#include <asm/proc-fns.h>
#include <asm/arch/vmalloc.h>
/*
* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 8MB value just means that there will be a 8MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*
* Note that platforms may override VMALLOC_START, but they must provide
* VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
* which may not overlap IO space.
*/
#ifndef VMALLOC_START
#define VMALLOC_OFFSET (8*1024*1024)
#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#endif
/*
* Hardware-wise, we have a two level page table structure, where the first
* level has 4096 entries, and the second level has 256 entries. Each entry
* is one 32-bit word. Most of the bits in the second level entry are used
* by hardware, and there aren't any "accessed" and "dirty" bits.
*
* Linux on the other hand has a three level page table structure, which can
* be wrapped to fit a two level page table structure easily - using the PGD
* and PTE only. However, Linux also expects one "PTE" table per page, and
* at least a "dirty" bit.
*
* Therefore, we tweak the implementation slightly - we tell Linux that we
* have 2048 entries in the first level, each of which is 8 bytes (iow, two
* hardware pointers to the second level.) The second level contains two
* hardware PTE tables arranged contiguously, followed by Linux versions
* which contain the state information Linux needs. We, therefore, end up
* with 512 entries in the "PTE" level.
*
* This leads to the page tables having the following layout:
*
* pgd pte
* | |
* +--------+ +0
* | |-----> +------------+ +0
* +- - - - + +4 | h/w pt 0 |
* | |-----> +------------+ +1024
* +--------+ +8 | h/w pt 1 |
* | | +------------+ +2048
* +- - - - + | Linux pt 0 |
* | | +------------+ +3072
* +--------+ | Linux pt 1 |
* | | +------------+ +4096
*
* See L_PTE_xxx below for definitions of bits in the "Linux pt", and
* PTE_xxx for definitions of bits appearing in the "h/w pt".
*
* PMD_xxx definitions refer to bits in the first level page table.
*
* The "dirty" bit is emulated by only granting hardware write permission
* iff the page is marked "writable" and "dirty" in the Linux PTE. This
* means that a write to a clean page will cause a permission fault, and
* the Linux MM layer will mark the page dirty via handle_pte_fault().
* For the hardware to notice the permission change, the TLB entry must
* be flushed, and ptep_establish() does that for us.
*
* The "accessed" or "young" bit is emulated by a similar method; we only
* allow accesses to the page if the "young" bit is set. Accesses to the
* page will cause a fault, and handle_pte_fault() will set the young bit
* for us as long as the page is marked present in the corresponding Linux
* PTE entry. Again, ptep_establish() will ensure that the TLB is up to
* date.
*
* However, when the "young" bit is cleared, we deny access to the page
* by clearing the hardware PTE. Currently Linux does not flush the TLB
* for us in this case, which means the TLB will retain the transation
* until either the TLB entry is evicted under pressure, or a context
* switch which changes the user space mapping occurs.
*/
#define PTRS_PER_PTE 512
#define PTRS_PER_PMD 1
#define PTRS_PER_PGD 2048
/*
* PMD_SHIFT determines the size of the area a second-level page table can map
* PGDIR_SHIFT determines what a third-level page table entry can map
*/
#define PMD_SHIFT 21
#define PGDIR_SHIFT 21
#define LIBRARY_TEXT_START 0x0c000000
#ifndef __ASSEMBLY__
extern void __pte_error(const char *file, int line, unsigned long val);
extern void __pmd_error(const char *file, int line, unsigned long val);
extern void __pgd_error(const char *file, int line, unsigned long val);
#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
#endif /* !__ASSEMBLY__ */
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* This is the lowest virtual address we can permit any user space
* mapping to be mapped at. This is particularly important for
* non-high vector CPUs.
*/
#define FIRST_USER_ADDRESS PAGE_SIZE
#define FIRST_USER_PGD_NR 1
#define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
/*
* ARMv6 supersection address mask and size definitions.
*/
#define SUPERSECTION_SHIFT 24
#define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
#define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
/*
* "Linux" PTE definitions.
*
* We keep two sets of PTEs - the hardware and the linux version.
* This allows greater flexibility in the way we map the Linux bits
* onto the hardware tables, and allows us to have YOUNG and DIRTY
* bits.
*
* The PTE table pointer refers to the hardware entries; the "Linux"
* entries are stored 1024 bytes below.
*/
#define L_PTE_PRESENT (1 << 0)
#define L_PTE_FILE (1 << 1) /* only when !PRESENT */
#define L_PTE_YOUNG (1 << 1)
#define L_PTE_BUFFERABLE (1 << 2) /* matches PTE */
#define L_PTE_CACHEABLE (1 << 3) /* matches PTE */
#define L_PTE_USER (1 << 4)
#define L_PTE_WRITE (1 << 5)
#define L_PTE_EXEC (1 << 6)
#define L_PTE_DIRTY (1 << 7)
#define L_PTE_COHERENT (1 << 9) /* I/O coherent (xsc3) */
#define L_PTE_SHARED (1 << 10) /* shared between CPUs (v6) */
#define L_PTE_ASID (1 << 11) /* non-global (use ASID, v6) */
#ifndef __ASSEMBLY__
/*
* The following macros handle the cache and bufferable bits...
*/
#define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE
#define _L_PTE_READ L_PTE_USER | L_PTE_EXEC
extern pgprot_t pgprot_kernel;
#define PAGE_NONE __pgprot(_L_PTE_DEFAULT)
#define PAGE_COPY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
#define PAGE_SHARED __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE)
#define PAGE_READONLY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
#define PAGE_KERNEL pgprot_kernel
#endif /* __ASSEMBLY__ */
/*
* The table below defines the page protection levels that we insert into our
* Linux page table version. These get translated into the best that the
* architecture can perform. Note that on most ARM hardware:
* 1) We cannot do execute protection
* 2) If we could do execute protection, then read is implied
* 3) write implies read permissions
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED
#ifndef __ASSEMBLY__
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern struct page *empty_zero_page;
#define ZERO_PAGE(vaddr) (empty_zero_page)
#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
#define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
#define pte_none(pte) (!pte_val(pte))
#define pte_clear(mm,addr,ptep) set_pte_at((mm),(addr),(ptep), __pte(0))
#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
#define pte_offset_kernel(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
#define pte_offset_map(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
#define pte_offset_map_nested(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
#define set_pte(ptep, pte) cpu_set_pte(ptep,pte)
#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
#define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
#define pte_read(pte) (pte_val(pte) & L_PTE_USER)
#define pte_write(pte) (pte_val(pte) & L_PTE_WRITE)
#define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC)
#define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
#define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
/*
* The following only works if pte_present() is not true.
*/
#define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
#define pte_to_pgoff(x) (pte_val(x) >> 2)
#define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE)
#define PTE_FILE_MAX_BITS 30
#define PTE_BIT_FUNC(fn,op) \
static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
/*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/
/*PTE_BIT_FUNC(mkread, |= L_PTE_USER);*/
PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE);
PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC);
PTE_BIT_FUNC(mkexec, |= L_PTE_EXEC);
PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
/*
* Mark the prot value as uncacheable and unbufferable.
*/
#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE))
#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE)
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_present(pmd) (pmd_val(pmd))
#define pmd_bad(pmd) (pmd_val(pmd) & 2)
#define copy_pmd(pmdpd,pmdps) \
do { \
pmdpd[0] = pmdps[0]; \
pmdpd[1] = pmdps[1]; \
flush_pmd_entry(pmdpd); \
} while (0)
#define pmd_clear(pmdp) \
do { \
pmdp[0] = __pmd(0); \
pmdp[1] = __pmd(0); \
clean_pmd_entry(pmdp); \
} while (0)
static inline pte_t *pmd_page_kernel(pmd_t pmd)
{
unsigned long ptr;
ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
ptr += PTRS_PER_PTE * sizeof(void *);
return __va(ptr);
}
#define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd)))
/*
* Permanent address of a page. We never have highmem, so this is trivial.
*/
#define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT))
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
/*
* The "pgd_xxx()" functions here are trivial for a folded two-level
* setup: the pgd is never bad, and a pmd always exists (as it's folded
* into the pgd entry)
*/
#define pgd_none(pgd) (0)
#define pgd_bad(pgd) (0)
#define pgd_present(pgd) (1)
#define pgd_clear(pgdp) do { } while (0)
#define set_pgd(pgd,pgdp) do { } while (0)
/* to find an entry in a page-table-directory */
#define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
#define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
/* Find an entry in the second-level page table.. */
#define pmd_offset(dir, addr) ((pmd_t *)(dir))
/* Find an entry in the third-level page table.. */
#define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
return pte;
}
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
/* Encode and decode a swap entry.
*
* We support up to 32GB of swap on 4k machines
*/
#define __swp_type(x) (((x).val >> 2) & 0x7f)
#define __swp_offset(x) ((x).val >> 9)
#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
/* FIXME: this is not correct */
#define kern_addr_valid(addr) (1)
#include <asm-generic/pgtable.h>
/*
* We provide our own arch_get_unmapped_area to cope with VIPT caches.
*/
#define HAVE_ARCH_UNMAPPED_AREA
/*
* remap a physical page `pfn' of size `size' with page protection `prot'
* into virtual address `from'
*/
#define io_remap_pfn_range(vma,from,pfn,size,prot) \
remap_pfn_range(vma, from, pfn, size, prot)
#define MK_IOSPACE_PFN(space, pfn) (pfn)
#define GET_IOSPACE(pfn) 0
#define GET_PFN(pfn) (pfn)
#define pgtable_cache_init() do { } while (0)
#endif /* !__ASSEMBLY__ */
#endif /* _ASMARM_PGTABLE_H */