blob: af5cd3b8a39683fc25bea766f2f9748dca2ffd35 [file] [log] [blame]
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) 2000, 2001 Kanoj Sarcar
* Copyright (C) 2000, 2001 Ralf Baechle
* Copyright (C) 2000, 2001 Silicon Graphics, Inc.
* Copyright (C) 2000, 2001, 2003 Broadcom Corporation
*/
#include <linux/cache.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/threads.h>
#include <linux/module.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/sched.h>
#include <linux/cpumask.h>
#include <asm/atomic.h>
#include <asm/cpu.h>
#include <asm/processor.h>
#include <asm/system.h>
#include <asm/mmu_context.h>
#include <asm/smp.h>
cpumask_t phys_cpu_present_map; /* Bitmask of available CPUs */
volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
cpumask_t cpu_online_map; /* Bitmask of currently online CPUs */
int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
EXPORT_SYMBOL(phys_cpu_present_map);
EXPORT_SYMBOL(cpu_online_map);
static void smp_tune_scheduling (void)
{
struct cache_desc *cd = &current_cpu_data.scache;
unsigned long cachesize; /* kB */
unsigned long bandwidth = 350; /* MB/s */
unsigned long cpu_khz;
/*
* Crude estimate until we actually meassure ...
*/
cpu_khz = loops_per_jiffy * 2 * HZ / 1000;
/*
* Rough estimation for SMP scheduling, this is the number of
* cycles it takes for a fully memory-limited process to flush
* the SMP-local cache.
*
* (For a P5 this pretty much means we will choose another idle
* CPU almost always at wakeup time (this is due to the small
* L1 cache), on PIIs it's around 50-100 usecs, depending on
* the cache size)
*/
if (!cpu_khz)
return;
cachesize = cd->linesz * cd->sets * cd->ways;
}
extern void __init calibrate_delay(void);
extern ATTRIB_NORET void cpu_idle(void);
/*
* First C code run on the secondary CPUs after being started up by
* the master.
*/
asmlinkage void start_secondary(void)
{
unsigned int cpu = smp_processor_id();
cpu_probe();
cpu_report();
per_cpu_trap_init();
prom_init_secondary();
/*
* XXX parity protection should be folded in here when it's converted
* to an option instead of something based on .cputype
*/
calibrate_delay();
cpu_data[cpu].udelay_val = loops_per_jiffy;
prom_smp_finish();
cpu_set(cpu, cpu_callin_map);
cpu_idle();
}
DEFINE_SPINLOCK(smp_call_lock);
struct call_data_struct *call_data;
/*
* Run a function on all other CPUs.
* <func> The function to run. This must be fast and non-blocking.
* <info> An arbitrary pointer to pass to the function.
* <retry> If true, keep retrying until ready.
* <wait> If true, wait until function has completed on other CPUs.
* [RETURNS] 0 on success, else a negative status code.
*
* Does not return until remote CPUs are nearly ready to execute <func>
* or are or have executed.
*
* You must not call this function with disabled interrupts or from a
* hardware interrupt handler or from a bottom half handler.
*/
int smp_call_function (void (*func) (void *info), void *info, int retry,
int wait)
{
struct call_data_struct data;
int i, cpus = num_online_cpus() - 1;
int cpu = smp_processor_id();
if (!cpus)
return 0;
/* Can deadlock when called with interrupts disabled */
WARN_ON(irqs_disabled());
data.func = func;
data.info = info;
atomic_set(&data.started, 0);
data.wait = wait;
if (wait)
atomic_set(&data.finished, 0);
spin_lock(&smp_call_lock);
call_data = &data;
mb();
/* Send a message to all other CPUs and wait for them to respond */
for (i = 0; i < NR_CPUS; i++)
if (cpu_online(i) && i != cpu)
core_send_ipi(i, SMP_CALL_FUNCTION);
/* Wait for response */
/* FIXME: lock-up detection, backtrace on lock-up */
while (atomic_read(&data.started) != cpus)
barrier();
if (wait)
while (atomic_read(&data.finished) != cpus)
barrier();
spin_unlock(&smp_call_lock);
return 0;
}
void smp_call_function_interrupt(void)
{
void (*func) (void *info) = call_data->func;
void *info = call_data->info;
int wait = call_data->wait;
/*
* Notify initiating CPU that I've grabbed the data and am
* about to execute the function.
*/
mb();
atomic_inc(&call_data->started);
/*
* At this point the info structure may be out of scope unless wait==1.
*/
irq_enter();
(*func)(info);
irq_exit();
if (wait) {
mb();
atomic_inc(&call_data->finished);
}
}
static void stop_this_cpu(void *dummy)
{
/*
* Remove this CPU:
*/
cpu_clear(smp_processor_id(), cpu_online_map);
local_irq_enable(); /* May need to service _machine_restart IPI */
for (;;); /* Wait if available. */
}
void smp_send_stop(void)
{
smp_call_function(stop_this_cpu, NULL, 1, 0);
}
void __init smp_cpus_done(unsigned int max_cpus)
{
prom_cpus_done();
}
/* called from main before smp_init() */
void __init smp_prepare_cpus(unsigned int max_cpus)
{
cpu_data[0].udelay_val = loops_per_jiffy;
init_new_context(current, &init_mm);
current_thread_info()->cpu = 0;
smp_tune_scheduling();
prom_prepare_cpus(max_cpus);
}
/* preload SMP state for boot cpu */
void __devinit smp_prepare_boot_cpu(void)
{
/*
* This assumes that bootup is always handled by the processor
* with the logic and physical number 0.
*/
__cpu_number_map[0] = 0;
__cpu_logical_map[0] = 0;
cpu_set(0, phys_cpu_present_map);
cpu_set(0, cpu_online_map);
cpu_set(0, cpu_callin_map);
}
/*
* Startup the CPU with this logical number
*/
static int __init do_boot_cpu(int cpu)
{
struct task_struct *idle;
/*
* The following code is purely to make sure
* Linux can schedule processes on this slave.
*/
idle = fork_idle(cpu);
if (IS_ERR(idle))
panic("failed fork for CPU %d\n", cpu);
prom_boot_secondary(cpu, idle);
/* XXXKW timeout */
while (!cpu_isset(cpu, cpu_callin_map))
udelay(100);
cpu_set(cpu, cpu_online_map);
return 0;
}
/*
* Called once for each "cpu_possible(cpu)". Needs to spin up the cpu
* and keep control until "cpu_online(cpu)" is set. Note: cpu is
* physical, not logical.
*/
int __devinit __cpu_up(unsigned int cpu)
{
int ret;
/* Processor goes to start_secondary(), sets online flag */
ret = do_boot_cpu(cpu);
if (ret < 0)
return ret;
return 0;
}
/* Not really SMP stuff ... */
int setup_profiling_timer(unsigned int multiplier)
{
return 0;
}
static void flush_tlb_all_ipi(void *info)
{
local_flush_tlb_all();
}
void flush_tlb_all(void)
{
on_each_cpu(flush_tlb_all_ipi, 0, 1, 1);
}
static void flush_tlb_mm_ipi(void *mm)
{
local_flush_tlb_mm((struct mm_struct *)mm);
}
/*
* The following tlb flush calls are invoked when old translations are
* being torn down, or pte attributes are changing. For single threaded
* address spaces, a new context is obtained on the current cpu, and tlb
* context on other cpus are invalidated to force a new context allocation
* at switch_mm time, should the mm ever be used on other cpus. For
* multithreaded address spaces, intercpu interrupts have to be sent.
* Another case where intercpu interrupts are required is when the target
* mm might be active on another cpu (eg debuggers doing the flushes on
* behalf of debugees, kswapd stealing pages from another process etc).
* Kanoj 07/00.
*/
void flush_tlb_mm(struct mm_struct *mm)
{
preempt_disable();
if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1, 1);
} else {
int i;
for (i = 0; i < num_online_cpus(); i++)
if (smp_processor_id() != i)
cpu_context(i, mm) = 0;
}
local_flush_tlb_mm(mm);
preempt_enable();
}
struct flush_tlb_data {
struct vm_area_struct *vma;
unsigned long addr1;
unsigned long addr2;
};
static void flush_tlb_range_ipi(void *info)
{
struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
}
void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
preempt_disable();
if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
struct flush_tlb_data fd;
fd.vma = vma;
fd.addr1 = start;
fd.addr2 = end;
smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1, 1);
} else {
int i;
for (i = 0; i < num_online_cpus(); i++)
if (smp_processor_id() != i)
cpu_context(i, mm) = 0;
}
local_flush_tlb_range(vma, start, end);
preempt_enable();
}
static void flush_tlb_kernel_range_ipi(void *info)
{
struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
}
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
{
struct flush_tlb_data fd;
fd.addr1 = start;
fd.addr2 = end;
on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1, 1);
}
static void flush_tlb_page_ipi(void *info)
{
struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
local_flush_tlb_page(fd->vma, fd->addr1);
}
void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
preempt_disable();
if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
struct flush_tlb_data fd;
fd.vma = vma;
fd.addr1 = page;
smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1, 1);
} else {
int i;
for (i = 0; i < num_online_cpus(); i++)
if (smp_processor_id() != i)
cpu_context(i, vma->vm_mm) = 0;
}
local_flush_tlb_page(vma, page);
preempt_enable();
}
static void flush_tlb_one_ipi(void *info)
{
unsigned long vaddr = (unsigned long) info;
local_flush_tlb_one(vaddr);
}
void flush_tlb_one(unsigned long vaddr)
{
smp_call_function(flush_tlb_one_ipi, (void *) vaddr, 1, 1);
local_flush_tlb_one(vaddr);
}
EXPORT_SYMBOL(flush_tlb_page);
EXPORT_SYMBOL(flush_tlb_one);
EXPORT_SYMBOL(cpu_data);
EXPORT_SYMBOL(synchronize_irq);