blob: d029b75bcf04b31af41bc79074b76736db4ccad2 [file] [log] [blame]
#ifndef _MOTOROLA_PGTABLE_H
#define _MOTOROLA_PGTABLE_H
/*
* Definitions for MMU descriptors
*/
#define _PAGE_PRESENT 0x001
#define _PAGE_SHORT 0x002
#define _PAGE_RONLY 0x004
#define _PAGE_ACCESSED 0x008
#define _PAGE_DIRTY 0x010
#define _PAGE_SUPER 0x080 /* 68040 supervisor only */
#define _PAGE_GLOBAL040 0x400 /* 68040 global bit, used for kva descs */
#define _PAGE_NOCACHE030 0x040 /* 68030 no-cache mode */
#define _PAGE_NOCACHE 0x060 /* 68040 cache mode, non-serialized */
#define _PAGE_NOCACHE_S 0x040 /* 68040 no-cache mode, serialized */
#define _PAGE_CACHE040 0x020 /* 68040 cache mode, cachable, copyback */
#define _PAGE_CACHE040W 0x000 /* 68040 cache mode, cachable, write-through */
#define _DESCTYPE_MASK 0x003
#define _CACHEMASK040 (~0x060)
#define _TABLE_MASK (0xfffffe00)
#define _PAGE_TABLE (_PAGE_SHORT)
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_NOCACHE)
#define _PAGE_PROTNONE 0x004
#define _PAGE_FILE 0x008 /* pagecache or swap? */
#ifndef __ASSEMBLY__
/* This is the cache mode to be used for pages containing page descriptors for
* processors >= '040. It is in pte_mknocache(), and the variable is defined
* and initialized in head.S */
extern int m68k_pgtable_cachemode;
/* This is the cache mode for normal pages, for supervisor access on
* processors >= '040. It is used in pte_mkcache(), and the variable is
* defined and initialized in head.S */
#if defined(CPU_M68060_ONLY) && defined(CONFIG_060_WRITETHROUGH)
#define m68k_supervisor_cachemode _PAGE_CACHE040W
#elif defined(CPU_M68040_OR_M68060_ONLY)
#define m68k_supervisor_cachemode _PAGE_CACHE040
#elif defined(CPU_M68020_OR_M68030_ONLY)
#define m68k_supervisor_cachemode 0
#else
extern int m68k_supervisor_cachemode;
#endif
#if defined(CPU_M68040_OR_M68060_ONLY)
#define mm_cachebits _PAGE_CACHE040
#elif defined(CPU_M68020_OR_M68030_ONLY)
#define mm_cachebits 0
#else
extern unsigned long mm_cachebits;
#endif
#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED | mm_cachebits)
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | mm_cachebits)
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits)
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits)
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED | mm_cachebits)
/* Alternate definitions that are compile time constants, for
initializing protection_map. The cachebits are fixed later. */
#define PAGE_NONE_C __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
#define PAGE_SHARED_C __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
#define PAGE_COPY_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)
#define PAGE_READONLY_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)
/*
* The m68k can't do page protection for execute, and considers that the same are read.
* Also, write permissions imply read permissions. This is the closest we can get..
*/
#define __P000 PAGE_NONE_C
#define __P001 PAGE_READONLY_C
#define __P010 PAGE_COPY_C
#define __P011 PAGE_COPY_C
#define __P100 PAGE_READONLY_C
#define __P101 PAGE_READONLY_C
#define __P110 PAGE_COPY_C
#define __P111 PAGE_COPY_C
#define __S000 PAGE_NONE_C
#define __S001 PAGE_READONLY_C
#define __S010 PAGE_SHARED_C
#define __S011 PAGE_SHARED_C
#define __S100 PAGE_READONLY_C
#define __S101 PAGE_READONLY_C
#define __S110 PAGE_SHARED_C
#define __S111 PAGE_SHARED_C
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
return pte;
}
static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
{
unsigned long ptbl = virt_to_phys(ptep) | _PAGE_TABLE | _PAGE_ACCESSED;
unsigned long *ptr = pmdp->pmd;
short i = 16;
while (--i >= 0) {
*ptr++ = ptbl;
ptbl += (sizeof(pte_t)*PTRS_PER_PTE/16);
}
}
static inline void pgd_set(pgd_t *pgdp, pmd_t *pmdp)
{
pgd_val(*pgdp) = _PAGE_TABLE | _PAGE_ACCESSED | __pa(pmdp);
}
#define __pte_page(pte) ((unsigned long)__va(pte_val(pte) & PAGE_MASK))
#define __pmd_page(pmd) ((unsigned long)__va(pmd_val(pmd) & _TABLE_MASK))
#define __pgd_page(pgd) ((unsigned long)__va(pgd_val(pgd) & _TABLE_MASK))
#define pte_none(pte) (!pte_val(pte))
#define pte_present(pte) (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROTNONE))
#define pte_clear(mm,addr,ptep) ({ pte_val(*(ptep)) = 0; })
#define pte_page(pte) virt_to_page(__va(pte_val(pte)))
#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) ((pmd_val(pmd) & _DESCTYPE_MASK) != _PAGE_TABLE)
#define pmd_present(pmd) (pmd_val(pmd) & _PAGE_TABLE)
#define pmd_clear(pmdp) ({ \
unsigned long *__ptr = pmdp->pmd; \
short __i = 16; \
while (--__i >= 0) \
*__ptr++ = 0; \
})
#define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd)))
#define pgd_none(pgd) (!pgd_val(pgd))
#define pgd_bad(pgd) ((pgd_val(pgd) & _DESCTYPE_MASK) != _PAGE_TABLE)
#define pgd_present(pgd) (pgd_val(pgd) & _PAGE_TABLE)
#define pgd_clear(pgdp) ({ pgd_val(*pgdp) = 0; })
#define pgd_page(pgd) (mem_map + ((unsigned long)(__va(pgd_val(pgd)) - PAGE_OFFSET) >> PAGE_SHIFT))
#define pte_ERROR(e) \
printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
static inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_RONLY); }
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_RONLY; return pte; }
static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_RONLY; return pte; }
static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
static inline pte_t pte_mknocache(pte_t pte)
{
pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | m68k_pgtable_cachemode;
return pte;
}
static inline pte_t pte_mkcache(pte_t pte)
{
pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | m68k_supervisor_cachemode;
return pte;
}
#define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address))
#define pgd_index(address) ((address) >> PGDIR_SHIFT)
/* to find an entry in a page-table-directory */
static inline pgd_t *pgd_offset(struct mm_struct *mm, unsigned long address)
{
return mm->pgd + pgd_index(address);
}
#define swapper_pg_dir kernel_pg_dir
extern pgd_t kernel_pg_dir[128];
static inline pgd_t *pgd_offset_k(unsigned long address)
{
return kernel_pg_dir + (address >> PGDIR_SHIFT);
}
/* Find an entry in the second-level page table.. */
static inline pmd_t *pmd_offset(pgd_t *dir, unsigned long address)
{
return (pmd_t *)__pgd_page(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PMD-1));
}
/* Find an entry in the third-level page table.. */
static inline pte_t *pte_offset_kernel(pmd_t *pmdp, unsigned long address)
{
return (pte_t *)__pmd_page(*pmdp) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}
#define pte_offset_map(pmdp,address) ((pte_t *)__pmd_page(*pmdp) + (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
#define pte_offset_map_nested(pmdp, address) pte_offset_map(pmdp, address)
#define pte_unmap(pte) ((void)0)
#define pte_unmap_nested(pte) ((void)0)
/*
* Allocate and free page tables. The xxx_kernel() versions are
* used to allocate a kernel page table - this turns on ASN bits
* if any.
*/
/* Prior to calling these routines, the page should have been flushed
* from both the cache and ATC, or the CPU might not notice that the
* cache setting for the page has been changed. -jskov
*/
static inline void nocache_page(void *vaddr)
{
unsigned long addr = (unsigned long)vaddr;
if (CPU_IS_040_OR_060) {
pgd_t *dir;
pmd_t *pmdp;
pte_t *ptep;
dir = pgd_offset_k(addr);
pmdp = pmd_offset(dir, addr);
ptep = pte_offset_kernel(pmdp, addr);
*ptep = pte_mknocache(*ptep);
}
}
static inline void cache_page(void *vaddr)
{
unsigned long addr = (unsigned long)vaddr;
if (CPU_IS_040_OR_060) {
pgd_t *dir;
pmd_t *pmdp;
pte_t *ptep;
dir = pgd_offset_k(addr);
pmdp = pmd_offset(dir, addr);
ptep = pte_offset_kernel(pmdp, addr);
*ptep = pte_mkcache(*ptep);
}
}
#define PTE_FILE_MAX_BITS 28
static inline unsigned long pte_to_pgoff(pte_t pte)
{
return pte.pte >> 4;
}
static inline pte_t pgoff_to_pte(unsigned off)
{
pte_t pte = { (off << 4) + _PAGE_FILE };
return pte;
}
/* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
#define __swp_type(x) (((x).val >> 4) & 0xff)
#define __swp_offset(x) ((x).val >> 12)
#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 4) | ((offset) << 12) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
#endif /* !__ASSEMBLY__ */
#endif /* _MOTOROLA_PGTABLE_H */