blob: 1777a01fa84e1755902c2ee388344125e822250d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* PRU-ICSS remoteproc driver for various TI SoCs
*
* Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/
*
* Author(s):
* Suman Anna <s-anna@ti.com>
* Andrew F. Davis <afd@ti.com>
* Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
*/
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/irqdomain.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/pruss_driver.h>
#include <linux/remoteproc.h>
#include "remoteproc_internal.h"
#include "remoteproc_elf_helpers.h"
#include "pru_rproc.h"
/* PRU_ICSS_PRU_CTRL registers */
#define PRU_CTRL_CTRL 0x0000
#define PRU_CTRL_STS 0x0004
#define PRU_CTRL_WAKEUP_EN 0x0008
#define PRU_CTRL_CYCLE 0x000C
#define PRU_CTRL_STALL 0x0010
#define PRU_CTRL_CTBIR0 0x0020
#define PRU_CTRL_CTBIR1 0x0024
#define PRU_CTRL_CTPPR0 0x0028
#define PRU_CTRL_CTPPR1 0x002C
/* CTRL register bit-fields */
#define CTRL_CTRL_SOFT_RST_N BIT(0)
#define CTRL_CTRL_EN BIT(1)
#define CTRL_CTRL_SLEEPING BIT(2)
#define CTRL_CTRL_CTR_EN BIT(3)
#define CTRL_CTRL_SINGLE_STEP BIT(8)
#define CTRL_CTRL_RUNSTATE BIT(15)
/* PRU_ICSS_PRU_DEBUG registers */
#define PRU_DEBUG_GPREG(x) (0x0000 + (x) * 4)
#define PRU_DEBUG_CT_REG(x) (0x0080 + (x) * 4)
/* PRU/RTU/Tx_PRU Core IRAM address masks */
#define PRU_IRAM_ADDR_MASK 0x3ffff
#define PRU0_IRAM_ADDR_MASK 0x34000
#define PRU1_IRAM_ADDR_MASK 0x38000
#define RTU0_IRAM_ADDR_MASK 0x4000
#define RTU1_IRAM_ADDR_MASK 0x6000
#define TX_PRU0_IRAM_ADDR_MASK 0xa000
#define TX_PRU1_IRAM_ADDR_MASK 0xc000
/* PRU device addresses for various type of PRU RAMs */
#define PRU_IRAM_DA 0 /* Instruction RAM */
#define PRU_PDRAM_DA 0 /* Primary Data RAM */
#define PRU_SDRAM_DA 0x2000 /* Secondary Data RAM */
#define PRU_SHRDRAM_DA 0x10000 /* Shared Data RAM */
#define MAX_PRU_SYS_EVENTS 160
/**
* enum pru_iomem - PRU core memory/register range identifiers
*
* @PRU_IOMEM_IRAM: PRU Instruction RAM range
* @PRU_IOMEM_CTRL: PRU Control register range
* @PRU_IOMEM_DEBUG: PRU Debug register range
* @PRU_IOMEM_MAX: just keep this one at the end
*/
enum pru_iomem {
PRU_IOMEM_IRAM = 0,
PRU_IOMEM_CTRL,
PRU_IOMEM_DEBUG,
PRU_IOMEM_MAX,
};
/**
* enum pru_type - PRU core type identifier
*
* @PRU_TYPE_PRU: Programmable Real-time Unit
* @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit
* @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit
* @PRU_TYPE_MAX: just keep this one at the end
*/
enum pru_type {
PRU_TYPE_PRU = 0,
PRU_TYPE_RTU,
PRU_TYPE_TX_PRU,
PRU_TYPE_MAX,
};
/**
* struct pru_private_data - device data for a PRU core
* @type: type of the PRU core (PRU, RTU, Tx_PRU)
* @is_k3: flag used to identify the need for special load handling
*/
struct pru_private_data {
enum pru_type type;
unsigned int is_k3 : 1;
};
/**
* struct pru_rproc - PRU remoteproc structure
* @id: id of the PRU core within the PRUSS
* @dev: PRU core device pointer
* @pruss: back-reference to parent PRUSS structure
* @rproc: remoteproc pointer for this PRU core
* @data: PRU core specific data
* @mem_regions: data for each of the PRU memory regions
* @fw_name: name of firmware image used during loading
* @mapped_irq: virtual interrupt numbers of created fw specific mapping
* @pru_interrupt_map: pointer to interrupt mapping description (firmware)
* @pru_interrupt_map_sz: pru_interrupt_map size
* @dbg_single_step: debug state variable to set PRU into single step mode
* @dbg_continuous: debug state variable to restore PRU execution mode
* @evt_count: number of mapped events
*/
struct pru_rproc {
int id;
struct device *dev;
struct pruss *pruss;
struct rproc *rproc;
const struct pru_private_data *data;
struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
const char *fw_name;
unsigned int *mapped_irq;
struct pru_irq_rsc *pru_interrupt_map;
size_t pru_interrupt_map_sz;
u32 dbg_single_step;
u32 dbg_continuous;
u8 evt_count;
};
static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
{
return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
}
static inline
void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
{
writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
}
static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
{
return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
}
static int regs_show(struct seq_file *s, void *data)
{
struct rproc *rproc = s->private;
struct pru_rproc *pru = rproc->priv;
int i, nregs = 32;
u32 pru_sts;
int pru_is_running;
seq_puts(s, "============== Control Registers ==============\n");
seq_printf(s, "CTRL := 0x%08x\n",
pru_control_read_reg(pru, PRU_CTRL_CTRL));
pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
seq_printf(s, "STS (PC) := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
seq_printf(s, "WAKEUP_EN := 0x%08x\n",
pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
seq_printf(s, "CYCLE := 0x%08x\n",
pru_control_read_reg(pru, PRU_CTRL_CYCLE));
seq_printf(s, "STALL := 0x%08x\n",
pru_control_read_reg(pru, PRU_CTRL_STALL));
seq_printf(s, "CTBIR0 := 0x%08x\n",
pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
seq_printf(s, "CTBIR1 := 0x%08x\n",
pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
seq_printf(s, "CTPPR0 := 0x%08x\n",
pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
seq_printf(s, "CTPPR1 := 0x%08x\n",
pru_control_read_reg(pru, PRU_CTRL_CTPPR1));
seq_puts(s, "=============== Debug Registers ===============\n");
pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
CTRL_CTRL_RUNSTATE;
if (pru_is_running) {
seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
return 0;
}
for (i = 0; i < nregs; i++) {
seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(regs);
/*
* Control PRU single-step mode
*
* This is a debug helper function used for controlling the single-step
* mode of the PRU. The PRU Debug registers are not accessible when the
* PRU is in RUNNING state.
*
* Writing a non-zero value sets the PRU into single-step mode irrespective
* of its previous state. The PRU mode is saved only on the first set into
* a single-step mode. Writing a zero value will restore the PRU into its
* original mode.
*/
static int pru_rproc_debug_ss_set(void *data, u64 val)
{
struct rproc *rproc = data;
struct pru_rproc *pru = rproc->priv;
u32 reg_val;
val = val ? 1 : 0;
if (!val && !pru->dbg_single_step)
return 0;
reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
if (val && !pru->dbg_single_step)
pru->dbg_continuous = reg_val;
if (val)
reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
else
reg_val = pru->dbg_continuous;
pru->dbg_single_step = val;
pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);
return 0;
}
static int pru_rproc_debug_ss_get(void *data, u64 *val)
{
struct rproc *rproc = data;
struct pru_rproc *pru = rproc->priv;
*val = pru->dbg_single_step;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
pru_rproc_debug_ss_set, "%llu\n");
/*
* Create PRU-specific debugfs entries
*
* The entries are created only if the parent remoteproc debugfs directory
* exists, and will be cleaned up by the remoteproc core.
*/
static void pru_rproc_create_debug_entries(struct rproc *rproc)
{
if (!rproc->dbg_dir)
return;
debugfs_create_file("regs", 0400, rproc->dbg_dir,
rproc, &regs_fops);
debugfs_create_file("single_step", 0600, rproc->dbg_dir,
rproc, &pru_rproc_debug_ss_fops);
}
static void pru_dispose_irq_mapping(struct pru_rproc *pru)
{
if (!pru->mapped_irq)
return;
while (pru->evt_count) {
pru->evt_count--;
if (pru->mapped_irq[pru->evt_count] > 0)
irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
}
kfree(pru->mapped_irq);
pru->mapped_irq = NULL;
}
/*
* Parse the custom PRU interrupt map resource and configure the INTC
* appropriately.
*/
static int pru_handle_intrmap(struct rproc *rproc)
{
struct device *dev = rproc->dev.parent;
struct pru_rproc *pru = rproc->priv;
struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
struct irq_fwspec fwspec;
struct device_node *parent, *irq_parent;
int i, ret = 0;
/* not having pru_interrupt_map is not an error */
if (!rsc)
return 0;
/* currently supporting only type 0 */
if (rsc->type != 0) {
dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
return -EINVAL;
}
if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
return -EINVAL;
if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
pru->pru_interrupt_map_sz)
return -EINVAL;
pru->evt_count = rsc->num_evts;
pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
GFP_KERNEL);
if (!pru->mapped_irq) {
pru->evt_count = 0;
return -ENOMEM;
}
/*
* parse and fill in system event to interrupt channel and
* channel-to-host mapping. The interrupt controller to be used
* for these mappings for a given PRU remoteproc is always its
* corresponding sibling PRUSS INTC node.
*/
parent = of_get_parent(dev_of_node(pru->dev));
if (!parent) {
kfree(pru->mapped_irq);
pru->mapped_irq = NULL;
pru->evt_count = 0;
return -ENODEV;
}
irq_parent = of_get_child_by_name(parent, "interrupt-controller");
of_node_put(parent);
if (!irq_parent) {
kfree(pru->mapped_irq);
pru->mapped_irq = NULL;
pru->evt_count = 0;
return -ENODEV;
}
fwspec.fwnode = of_node_to_fwnode(irq_parent);
fwspec.param_count = 3;
for (i = 0; i < pru->evt_count; i++) {
fwspec.param[0] = rsc->pru_intc_map[i].event;
fwspec.param[1] = rsc->pru_intc_map[i].chnl;
fwspec.param[2] = rsc->pru_intc_map[i].host;
dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);
pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
if (!pru->mapped_irq[i]) {
dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
i, fwspec.param[0], fwspec.param[1],
fwspec.param[2]);
ret = -EINVAL;
goto map_fail;
}
}
of_node_put(irq_parent);
return ret;
map_fail:
pru_dispose_irq_mapping(pru);
of_node_put(irq_parent);
return ret;
}
static int pru_rproc_start(struct rproc *rproc)
{
struct device *dev = &rproc->dev;
struct pru_rproc *pru = rproc->priv;
const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
u32 val;
int ret;
dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
names[pru->data->type], pru->id, (rproc->bootaddr >> 2));
ret = pru_handle_intrmap(rproc);
/*
* reset references to pru interrupt map - they will stop being valid
* after rproc_start returns
*/
pru->pru_interrupt_map = NULL;
pru->pru_interrupt_map_sz = 0;
if (ret)
return ret;
val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
return 0;
}
static int pru_rproc_stop(struct rproc *rproc)
{
struct device *dev = &rproc->dev;
struct pru_rproc *pru = rproc->priv;
const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
u32 val;
dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);
val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
val &= ~CTRL_CTRL_EN;
pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
/* dispose irq mapping - new firmware can provide new mapping */
pru_dispose_irq_mapping(pru);
return 0;
}
/*
* Convert PRU device address (data spaces only) to kernel virtual address.
*
* Each PRU has access to all data memories within the PRUSS, accessible at
* different ranges. So, look through both its primary and secondary Data
* RAMs as well as any shared Data RAM to convert a PRU device address to
* kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
* RAM1 is primary Data RAM for PRU1.
*/
static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
{
struct pruss_mem_region dram0, dram1, shrd_ram;
struct pruss *pruss = pru->pruss;
u32 offset;
void *va = NULL;
if (len == 0)
return NULL;
dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
/* PRU1 has its local RAM addresses reversed */
if (pru->id == 1)
swap(dram0, dram1);
shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];
if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) {
offset = da - PRU_PDRAM_DA;
va = (__force void *)(dram0.va + offset);
} else if (da >= PRU_SDRAM_DA &&
da + len <= PRU_SDRAM_DA + dram1.size) {
offset = da - PRU_SDRAM_DA;
va = (__force void *)(dram1.va + offset);
} else if (da >= PRU_SHRDRAM_DA &&
da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
offset = da - PRU_SHRDRAM_DA;
va = (__force void *)(shrd_ram.va + offset);
}
return va;
}
/*
* Convert PRU device address (instruction space) to kernel virtual address.
*
* A PRU does not have an unified address space. Each PRU has its very own
* private Instruction RAM, and its device address is identical to that of
* its primary Data RAM device address.
*/
static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
{
u32 offset;
void *va = NULL;
if (len == 0)
return NULL;
/*
* GNU binutils do not support multiple address spaces. The GNU
* linker's default linker script places IRAM at an arbitrary high
* offset, in order to differentiate it from DRAM. Hence we need to
* strip the artificial offset in the IRAM addresses coming from the
* ELF file.
*
* The TI proprietary linker would never set those higher IRAM address
* bits anyway. PRU architecture limits the program counter to 16-bit
* word-address range. This in turn corresponds to 18-bit IRAM
* byte-address range for ELF.
*
* Two more bits are added just in case to make the final 20-bit mask.
* Idea is to have a safeguard in case TI decides to add banking
* in future SoCs.
*/
da &= 0xfffff;
if (da >= PRU_IRAM_DA &&
da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
offset = da - PRU_IRAM_DA;
va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
offset);
}
return va;
}
/*
* Provide address translations for only PRU Data RAMs through the remoteproc
* core for any PRU client drivers. The PRU Instruction RAM access is restricted
* only to the PRU loader code.
*/
static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
{
struct pru_rproc *pru = rproc->priv;
return pru_d_da_to_va(pru, da, len);
}
/* PRU-specific address translator used by PRU loader. */
static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
{
struct pru_rproc *pru = rproc->priv;
void *va;
if (is_iram)
va = pru_i_da_to_va(pru, da, len);
else
va = pru_d_da_to_va(pru, da, len);
return va;
}
static struct rproc_ops pru_rproc_ops = {
.start = pru_rproc_start,
.stop = pru_rproc_stop,
.da_to_va = pru_rproc_da_to_va,
};
/*
* Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
*
* The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
* memories, that is not seen on previous generation SoCs. The data is reflected
* properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
* copies result in all the other pre-existing bytes zeroed out within that
* 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
* IRAM memory port interface does not allow any 8-byte copies (as commonly used
* by ARM64 memcpy implementation) and throws an exception. The DRAM memory
* ports do not show this behavior.
*/
static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
{
const u32 *s = src;
u32 *d = dest;
size_t size = count / 4;
u32 *tmp_src = NULL;
/*
* TODO: relax limitation of 4-byte aligned dest addresses and copy
* sizes
*/
if ((long)dest % 4 || count % 4)
return -EINVAL;
/* src offsets in ELF firmware image can be non-aligned */
if ((long)src % 4) {
tmp_src = kmemdup(src, count, GFP_KERNEL);
if (!tmp_src)
return -ENOMEM;
s = tmp_src;
}
while (size--)
*d++ = *s++;
kfree(tmp_src);
return 0;
}
static int
pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
{
struct pru_rproc *pru = rproc->priv;
struct device *dev = &rproc->dev;
struct elf32_hdr *ehdr;
struct elf32_phdr *phdr;
int i, ret = 0;
const u8 *elf_data = fw->data;
ehdr = (struct elf32_hdr *)elf_data;
phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
/* go through the available ELF segments */
for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
u32 da = phdr->p_paddr;
u32 memsz = phdr->p_memsz;
u32 filesz = phdr->p_filesz;
u32 offset = phdr->p_offset;
bool is_iram;
void *ptr;
if (phdr->p_type != PT_LOAD || !filesz)
continue;
dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
phdr->p_type, da, memsz, filesz);
if (filesz > memsz) {
dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
filesz, memsz);
ret = -EINVAL;
break;
}
if (offset + filesz > fw->size) {
dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
offset + filesz, fw->size);
ret = -EINVAL;
break;
}
/* grab the kernel address for this device address */
is_iram = phdr->p_flags & PF_X;
ptr = pru_da_to_va(rproc, da, memsz, is_iram);
if (!ptr) {
dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
ret = -EINVAL;
break;
}
if (pru->data->is_k3) {
ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
filesz);
if (ret) {
dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
da, memsz);
break;
}
} else {
memcpy(ptr, elf_data + phdr->p_offset, filesz);
}
/* skip the memzero logic performed by remoteproc ELF loader */
}
return ret;
}
static const void *
pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
{
struct elf32_shdr *shdr, *name_table_shdr;
const char *name_table;
const u8 *elf_data = fw->data;
struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
u16 shnum = ehdr->e_shnum;
u16 shstrndx = ehdr->e_shstrndx;
int i;
/* first, get the section header */
shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
/* compute name table section header entry in shdr array */
name_table_shdr = shdr + shstrndx;
/* finally, compute the name table section address in elf */
name_table = elf_data + name_table_shdr->sh_offset;
for (i = 0; i < shnum; i++, shdr++) {
u32 size = shdr->sh_size;
u32 offset = shdr->sh_offset;
u32 name = shdr->sh_name;
if (strcmp(name_table + name, ".pru_irq_map"))
continue;
/* make sure we have the entire irq map */
if (offset + size > fw->size || offset + size < size) {
dev_err(dev, ".pru_irq_map section truncated\n");
return ERR_PTR(-EINVAL);
}
/* make sure irq map has at least the header */
if (sizeof(struct pru_irq_rsc) > size) {
dev_err(dev, "header-less .pru_irq_map section\n");
return ERR_PTR(-EINVAL);
}
return shdr;
}
dev_dbg(dev, "no .pru_irq_map section found for this fw\n");
return NULL;
}
/*
* Use a custom parse_fw callback function for dealing with PRU firmware
* specific sections.
*
* The firmware blob can contain optional ELF sections: .resource_table section
* and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
* description, which needs to be setup before powering on the PRU core. To
* avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
* firmware linker) and therefore is not loaded to PRU memory.
*/
static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
{
struct device *dev = &rproc->dev;
struct pru_rproc *pru = rproc->priv;
const u8 *elf_data = fw->data;
const void *shdr;
u8 class = fw_elf_get_class(fw);
u64 sh_offset;
int ret;
/* load optional rsc table */
ret = rproc_elf_load_rsc_table(rproc, fw);
if (ret == -EINVAL)
dev_dbg(&rproc->dev, "no resource table found for this fw\n");
else if (ret)
return ret;
/* find .pru_interrupt_map section, not having it is not an error */
shdr = pru_rproc_find_interrupt_map(dev, fw);
if (IS_ERR(shdr))
return PTR_ERR(shdr);
if (!shdr)
return 0;
/* preserve pointer to PRU interrupt map together with it size */
sh_offset = elf_shdr_get_sh_offset(class, shdr);
pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);
return 0;
}
/*
* Compute PRU id based on the IRAM addresses. The PRU IRAMs are
* always at a particular offset within the PRUSS address space.
*/
static int pru_rproc_set_id(struct pru_rproc *pru)
{
int ret = 0;
switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
case TX_PRU0_IRAM_ADDR_MASK:
fallthrough;
case RTU0_IRAM_ADDR_MASK:
fallthrough;
case PRU0_IRAM_ADDR_MASK:
pru->id = 0;
break;
case TX_PRU1_IRAM_ADDR_MASK:
fallthrough;
case RTU1_IRAM_ADDR_MASK:
fallthrough;
case PRU1_IRAM_ADDR_MASK:
pru->id = 1;
break;
default:
ret = -EINVAL;
}
return ret;
}
static int pru_rproc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct platform_device *ppdev = to_platform_device(dev->parent);
struct pru_rproc *pru;
const char *fw_name;
struct rproc *rproc = NULL;
struct resource *res;
int i, ret;
const struct pru_private_data *data;
const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };
data = of_device_get_match_data(&pdev->dev);
if (!data)
return -ENODEV;
ret = of_property_read_string(np, "firmware-name", &fw_name);
if (ret) {
dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
return ret;
}
rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
sizeof(*pru));
if (!rproc) {
dev_err(dev, "rproc_alloc failed\n");
return -ENOMEM;
}
/* use a custom load function to deal with PRU-specific quirks */
rproc->ops->load = pru_rproc_load_elf_segments;
/* use a custom parse function to deal with PRU-specific resources */
rproc->ops->parse_fw = pru_rproc_parse_fw;
/* error recovery is not supported for PRUs */
rproc->recovery_disabled = true;
/*
* rproc_add will auto-boot the processor normally, but this is not
* desired with PRU client driven boot-flow methodology. A PRU
* application/client driver will boot the corresponding PRU
* remote-processor as part of its state machine either through the
* remoteproc sysfs interface or through the equivalent kernel API.
*/
rproc->auto_boot = false;
pru = rproc->priv;
pru->dev = dev;
pru->data = data;
pru->pruss = platform_get_drvdata(ppdev);
pru->rproc = rproc;
pru->fw_name = fw_name;
for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
mem_names[i]);
pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
if (IS_ERR(pru->mem_regions[i].va)) {
dev_err(dev, "failed to parse and map memory resource %d %s\n",
i, mem_names[i]);
ret = PTR_ERR(pru->mem_regions[i].va);
return ret;
}
pru->mem_regions[i].pa = res->start;
pru->mem_regions[i].size = resource_size(res);
dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
mem_names[i], &pru->mem_regions[i].pa,
pru->mem_regions[i].size, pru->mem_regions[i].va);
}
ret = pru_rproc_set_id(pru);
if (ret < 0)
return ret;
platform_set_drvdata(pdev, rproc);
ret = devm_rproc_add(dev, pru->rproc);
if (ret) {
dev_err(dev, "rproc_add failed: %d\n", ret);
return ret;
}
pru_rproc_create_debug_entries(rproc);
dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);
return 0;
}
static int pru_rproc_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rproc *rproc = platform_get_drvdata(pdev);
dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);
return 0;
}
static const struct pru_private_data pru_data = {
.type = PRU_TYPE_PRU,
};
static const struct pru_private_data k3_pru_data = {
.type = PRU_TYPE_PRU,
.is_k3 = 1,
};
static const struct pru_private_data k3_rtu_data = {
.type = PRU_TYPE_RTU,
.is_k3 = 1,
};
static const struct pru_private_data k3_tx_pru_data = {
.type = PRU_TYPE_TX_PRU,
.is_k3 = 1,
};
static const struct of_device_id pru_rproc_match[] = {
{ .compatible = "ti,am3356-pru", .data = &pru_data },
{ .compatible = "ti,am4376-pru", .data = &pru_data },
{ .compatible = "ti,am5728-pru", .data = &pru_data },
{ .compatible = "ti,am642-pru", .data = &k3_pru_data },
{ .compatible = "ti,am642-rtu", .data = &k3_rtu_data },
{ .compatible = "ti,am642-tx-pru", .data = &k3_tx_pru_data },
{ .compatible = "ti,k2g-pru", .data = &pru_data },
{ .compatible = "ti,am654-pru", .data = &k3_pru_data },
{ .compatible = "ti,am654-rtu", .data = &k3_rtu_data },
{ .compatible = "ti,am654-tx-pru", .data = &k3_tx_pru_data },
{ .compatible = "ti,j721e-pru", .data = &k3_pru_data },
{ .compatible = "ti,j721e-rtu", .data = &k3_rtu_data },
{ .compatible = "ti,j721e-tx-pru", .data = &k3_tx_pru_data },
{},
};
MODULE_DEVICE_TABLE(of, pru_rproc_match);
static struct platform_driver pru_rproc_driver = {
.driver = {
.name = "pru-rproc",
.of_match_table = pru_rproc_match,
.suppress_bind_attrs = true,
},
.probe = pru_rproc_probe,
.remove = pru_rproc_remove,
};
module_platform_driver(pru_rproc_driver);
MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
MODULE_LICENSE("GPL v2");