blob: 721f6a693799b5f96eeb9bf16ec9c1386ea28bdc [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* svm_vmcall_test
*
* Copyright © 2021 Amazon.com, Inc. or its affiliates.
*
* Xen shared_info / pvclock testing
*/
#include "test_util.h"
#include "kvm_util.h"
#include "processor.h"
#include <stdint.h>
#include <time.h>
#include <sched.h>
#include <signal.h>
#include <pthread.h>
#include <sys/eventfd.h>
/* Defined in include/linux/kvm_types.h */
#define GPA_INVALID (~(ulong)0)
#define SHINFO_REGION_GVA 0xc0000000ULL
#define SHINFO_REGION_GPA 0xc0000000ULL
#define SHINFO_REGION_SLOT 10
#define DUMMY_REGION_GPA (SHINFO_REGION_GPA + (3 * PAGE_SIZE))
#define DUMMY_REGION_SLOT 11
#define SHINFO_ADDR (SHINFO_REGION_GPA)
#define VCPU_INFO_ADDR (SHINFO_REGION_GPA + 0x40)
#define PVTIME_ADDR (SHINFO_REGION_GPA + PAGE_SIZE)
#define RUNSTATE_ADDR (SHINFO_REGION_GPA + PAGE_SIZE + PAGE_SIZE - 15)
#define SHINFO_VADDR (SHINFO_REGION_GVA)
#define VCPU_INFO_VADDR (SHINFO_REGION_GVA + 0x40)
#define RUNSTATE_VADDR (SHINFO_REGION_GVA + PAGE_SIZE + PAGE_SIZE - 15)
#define EVTCHN_VECTOR 0x10
#define EVTCHN_TEST1 15
#define EVTCHN_TEST2 66
#define EVTCHN_TIMER 13
#define XEN_HYPERCALL_MSR 0x40000000
#define MIN_STEAL_TIME 50000
#define SHINFO_RACE_TIMEOUT 2 /* seconds */
#define __HYPERVISOR_set_timer_op 15
#define __HYPERVISOR_sched_op 29
#define __HYPERVISOR_event_channel_op 32
#define SCHEDOP_poll 3
#define EVTCHNOP_send 4
#define EVTCHNSTAT_interdomain 2
struct evtchn_send {
u32 port;
};
struct sched_poll {
u32 *ports;
unsigned int nr_ports;
u64 timeout;
};
struct pvclock_vcpu_time_info {
u32 version;
u32 pad0;
u64 tsc_timestamp;
u64 system_time;
u32 tsc_to_system_mul;
s8 tsc_shift;
u8 flags;
u8 pad[2];
} __attribute__((__packed__)); /* 32 bytes */
struct pvclock_wall_clock {
u32 version;
u32 sec;
u32 nsec;
} __attribute__((__packed__));
struct vcpu_runstate_info {
uint32_t state;
uint64_t state_entry_time;
uint64_t time[5]; /* Extra field for overrun check */
};
struct compat_vcpu_runstate_info {
uint32_t state;
uint64_t state_entry_time;
uint64_t time[5];
} __attribute__((__packed__));;
struct arch_vcpu_info {
unsigned long cr2;
unsigned long pad; /* sizeof(vcpu_info_t) == 64 */
};
struct vcpu_info {
uint8_t evtchn_upcall_pending;
uint8_t evtchn_upcall_mask;
unsigned long evtchn_pending_sel;
struct arch_vcpu_info arch;
struct pvclock_vcpu_time_info time;
}; /* 64 bytes (x86) */
struct shared_info {
struct vcpu_info vcpu_info[32];
unsigned long evtchn_pending[64];
unsigned long evtchn_mask[64];
struct pvclock_wall_clock wc;
uint32_t wc_sec_hi;
/* arch_shared_info here */
};
#define RUNSTATE_running 0
#define RUNSTATE_runnable 1
#define RUNSTATE_blocked 2
#define RUNSTATE_offline 3
static const char *runstate_names[] = {
"running",
"runnable",
"blocked",
"offline"
};
struct {
struct kvm_irq_routing info;
struct kvm_irq_routing_entry entries[2];
} irq_routes;
static volatile bool guest_saw_irq;
static void evtchn_handler(struct ex_regs *regs)
{
struct vcpu_info *vi = (void *)VCPU_INFO_VADDR;
vi->evtchn_upcall_pending = 0;
vi->evtchn_pending_sel = 0;
guest_saw_irq = true;
GUEST_SYNC(0x20);
}
static void guest_wait_for_irq(void)
{
while (!guest_saw_irq)
__asm__ __volatile__ ("rep nop" : : : "memory");
guest_saw_irq = false;
}
static void guest_code(void)
{
struct vcpu_runstate_info *rs = (void *)RUNSTATE_VADDR;
int i;
__asm__ __volatile__(
"sti\n"
"nop\n"
);
/* Trigger an interrupt injection */
GUEST_SYNC(0);
guest_wait_for_irq();
/* Test having the host set runstates manually */
GUEST_SYNC(RUNSTATE_runnable);
GUEST_ASSERT(rs->time[RUNSTATE_runnable] != 0);
GUEST_ASSERT(rs->state == 0);
GUEST_SYNC(RUNSTATE_blocked);
GUEST_ASSERT(rs->time[RUNSTATE_blocked] != 0);
GUEST_ASSERT(rs->state == 0);
GUEST_SYNC(RUNSTATE_offline);
GUEST_ASSERT(rs->time[RUNSTATE_offline] != 0);
GUEST_ASSERT(rs->state == 0);
/* Test runstate time adjust */
GUEST_SYNC(4);
GUEST_ASSERT(rs->time[RUNSTATE_blocked] == 0x5a);
GUEST_ASSERT(rs->time[RUNSTATE_offline] == 0x6b6b);
/* Test runstate time set */
GUEST_SYNC(5);
GUEST_ASSERT(rs->state_entry_time >= 0x8000);
GUEST_ASSERT(rs->time[RUNSTATE_runnable] == 0);
GUEST_ASSERT(rs->time[RUNSTATE_blocked] == 0x6b6b);
GUEST_ASSERT(rs->time[RUNSTATE_offline] == 0x5a);
/* sched_yield() should result in some 'runnable' time */
GUEST_SYNC(6);
GUEST_ASSERT(rs->time[RUNSTATE_runnable] >= MIN_STEAL_TIME);
/* Attempt to deliver a *masked* interrupt */
GUEST_SYNC(7);
/* Wait until we see the bit set */
struct shared_info *si = (void *)SHINFO_VADDR;
while (!si->evtchn_pending[0])
__asm__ __volatile__ ("rep nop" : : : "memory");
/* Now deliver an *unmasked* interrupt */
GUEST_SYNC(8);
guest_wait_for_irq();
/* Change memslots and deliver an interrupt */
GUEST_SYNC(9);
guest_wait_for_irq();
/* Deliver event channel with KVM_XEN_HVM_EVTCHN_SEND */
GUEST_SYNC(10);
guest_wait_for_irq();
GUEST_SYNC(11);
/* Our turn. Deliver event channel (to ourselves) with
* EVTCHNOP_send hypercall. */
unsigned long rax;
struct evtchn_send s = { .port = 127 };
__asm__ __volatile__ ("vmcall" :
"=a" (rax) :
"a" (__HYPERVISOR_event_channel_op),
"D" (EVTCHNOP_send),
"S" (&s));
GUEST_ASSERT(rax == 0);
guest_wait_for_irq();
GUEST_SYNC(12);
/* Deliver "outbound" event channel to an eventfd which
* happens to be one of our own irqfds. */
s.port = 197;
__asm__ __volatile__ ("vmcall" :
"=a" (rax) :
"a" (__HYPERVISOR_event_channel_op),
"D" (EVTCHNOP_send),
"S" (&s));
GUEST_ASSERT(rax == 0);
guest_wait_for_irq();
GUEST_SYNC(13);
/* Set a timer 100ms in the future. */
__asm__ __volatile__ ("vmcall" :
"=a" (rax) :
"a" (__HYPERVISOR_set_timer_op),
"D" (rs->state_entry_time + 100000000));
GUEST_ASSERT(rax == 0);
GUEST_SYNC(14);
/* Now wait for the timer */
guest_wait_for_irq();
GUEST_SYNC(15);
/* The host has 'restored' the timer. Just wait for it. */
guest_wait_for_irq();
GUEST_SYNC(16);
/* Poll for an event channel port which is already set */
u32 ports[1] = { EVTCHN_TIMER };
struct sched_poll p = {
.ports = ports,
.nr_ports = 1,
.timeout = 0,
};
__asm__ __volatile__ ("vmcall" :
"=a" (rax) :
"a" (__HYPERVISOR_sched_op),
"D" (SCHEDOP_poll),
"S" (&p));
GUEST_ASSERT(rax == 0);
GUEST_SYNC(17);
/* Poll for an unset port and wait for the timeout. */
p.timeout = 100000000;
__asm__ __volatile__ ("vmcall" :
"=a" (rax) :
"a" (__HYPERVISOR_sched_op),
"D" (SCHEDOP_poll),
"S" (&p));
GUEST_ASSERT(rax == 0);
GUEST_SYNC(18);
/* A timer will wake the masked port we're waiting on, while we poll */
p.timeout = 0;
__asm__ __volatile__ ("vmcall" :
"=a" (rax) :
"a" (__HYPERVISOR_sched_op),
"D" (SCHEDOP_poll),
"S" (&p));
GUEST_ASSERT(rax == 0);
GUEST_SYNC(19);
/* A timer wake an *unmasked* port which should wake us with an
* actual interrupt, while we're polling on a different port. */
ports[0]++;
p.timeout = 0;
__asm__ __volatile__ ("vmcall" :
"=a" (rax) :
"a" (__HYPERVISOR_sched_op),
"D" (SCHEDOP_poll),
"S" (&p));
GUEST_ASSERT(rax == 0);
guest_wait_for_irq();
GUEST_SYNC(20);
/* Timer should have fired already */
guest_wait_for_irq();
GUEST_SYNC(21);
/* Racing host ioctls */
guest_wait_for_irq();
GUEST_SYNC(22);
/* Racing vmcall against host ioctl */
ports[0] = 0;
p = (struct sched_poll) {
.ports = ports,
.nr_ports = 1,
.timeout = 0
};
wait_for_timer:
/*
* Poll for a timer wake event while the worker thread is mucking with
* the shared info. KVM XEN drops timer IRQs if the shared info is
* invalid when the timer expires. Arbitrarily poll 100 times before
* giving up and asking the VMM to re-arm the timer. 100 polls should
* consume enough time to beat on KVM without taking too long if the
* timer IRQ is dropped due to an invalid event channel.
*/
for (i = 0; i < 100 && !guest_saw_irq; i++)
asm volatile("vmcall"
: "=a" (rax)
: "a" (__HYPERVISOR_sched_op),
"D" (SCHEDOP_poll),
"S" (&p)
: "memory");
/*
* Re-send the timer IRQ if it was (likely) dropped due to the timer
* expiring while the event channel was invalid.
*/
if (!guest_saw_irq) {
GUEST_SYNC(23);
goto wait_for_timer;
}
guest_saw_irq = false;
GUEST_SYNC(24);
}
static int cmp_timespec(struct timespec *a, struct timespec *b)
{
if (a->tv_sec > b->tv_sec)
return 1;
else if (a->tv_sec < b->tv_sec)
return -1;
else if (a->tv_nsec > b->tv_nsec)
return 1;
else if (a->tv_nsec < b->tv_nsec)
return -1;
else
return 0;
}
static struct vcpu_info *vinfo;
static struct kvm_vcpu *vcpu;
static void handle_alrm(int sig)
{
if (vinfo)
printf("evtchn_upcall_pending 0x%x\n", vinfo->evtchn_upcall_pending);
vcpu_dump(stdout, vcpu, 0);
TEST_FAIL("IRQ delivery timed out");
}
static void *juggle_shinfo_state(void *arg)
{
struct kvm_vm *vm = (struct kvm_vm *)arg;
struct kvm_xen_hvm_attr cache_init = {
.type = KVM_XEN_ATTR_TYPE_SHARED_INFO,
.u.shared_info.gfn = SHINFO_REGION_GPA / PAGE_SIZE
};
struct kvm_xen_hvm_attr cache_destroy = {
.type = KVM_XEN_ATTR_TYPE_SHARED_INFO,
.u.shared_info.gfn = GPA_INVALID
};
for (;;) {
__vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &cache_init);
__vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &cache_destroy);
pthread_testcancel();
};
return NULL;
}
int main(int argc, char *argv[])
{
struct timespec min_ts, max_ts, vm_ts;
struct kvm_vm *vm;
pthread_t thread;
bool verbose;
int ret;
verbose = argc > 1 && (!strncmp(argv[1], "-v", 3) ||
!strncmp(argv[1], "--verbose", 10));
int xen_caps = kvm_check_cap(KVM_CAP_XEN_HVM);
TEST_REQUIRE(xen_caps & KVM_XEN_HVM_CONFIG_SHARED_INFO);
bool do_runstate_tests = !!(xen_caps & KVM_XEN_HVM_CONFIG_RUNSTATE);
bool do_runstate_flag = !!(xen_caps & KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG);
bool do_eventfd_tests = !!(xen_caps & KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL);
bool do_evtchn_tests = do_eventfd_tests && !!(xen_caps & KVM_XEN_HVM_CONFIG_EVTCHN_SEND);
clock_gettime(CLOCK_REALTIME, &min_ts);
vm = vm_create_with_one_vcpu(&vcpu, guest_code);
/* Map a region for the shared_info page */
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
SHINFO_REGION_GPA, SHINFO_REGION_SLOT, 3, 0);
virt_map(vm, SHINFO_REGION_GVA, SHINFO_REGION_GPA, 3);
struct shared_info *shinfo = addr_gpa2hva(vm, SHINFO_VADDR);
int zero_fd = open("/dev/zero", O_RDONLY);
TEST_ASSERT(zero_fd != -1, "Failed to open /dev/zero");
struct kvm_xen_hvm_config hvmc = {
.flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL,
.msr = XEN_HYPERCALL_MSR,
};
/* Let the kernel know that we *will* use it for sending all
* event channels, which lets it intercept SCHEDOP_poll */
if (do_evtchn_tests)
hvmc.flags |= KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
vm_ioctl(vm, KVM_XEN_HVM_CONFIG, &hvmc);
struct kvm_xen_hvm_attr lm = {
.type = KVM_XEN_ATTR_TYPE_LONG_MODE,
.u.long_mode = 1,
};
vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &lm);
if (do_runstate_flag) {
struct kvm_xen_hvm_attr ruf = {
.type = KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG,
.u.runstate_update_flag = 1,
};
vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &ruf);
ruf.u.runstate_update_flag = 0;
vm_ioctl(vm, KVM_XEN_HVM_GET_ATTR, &ruf);
TEST_ASSERT(ruf.u.runstate_update_flag == 1,
"Failed to read back RUNSTATE_UPDATE_FLAG attr");
}
struct kvm_xen_hvm_attr ha = {
.type = KVM_XEN_ATTR_TYPE_SHARED_INFO,
.u.shared_info.gfn = SHINFO_REGION_GPA / PAGE_SIZE,
};
vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &ha);
/*
* Test what happens when the HVA of the shinfo page is remapped after
* the kernel has a reference to it. But make sure we copy the clock
* info over since that's only set at setup time, and we test it later.
*/
struct pvclock_wall_clock wc_copy = shinfo->wc;
void *m = mmap(shinfo, PAGE_SIZE, PROT_READ|PROT_WRITE, MAP_FIXED|MAP_PRIVATE, zero_fd, 0);
TEST_ASSERT(m == shinfo, "Failed to map /dev/zero over shared info");
shinfo->wc = wc_copy;
struct kvm_xen_vcpu_attr vi = {
.type = KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO,
.u.gpa = VCPU_INFO_ADDR,
};
vcpu_ioctl(vcpu, KVM_XEN_VCPU_SET_ATTR, &vi);
struct kvm_xen_vcpu_attr pvclock = {
.type = KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO,
.u.gpa = PVTIME_ADDR,
};
vcpu_ioctl(vcpu, KVM_XEN_VCPU_SET_ATTR, &pvclock);
struct kvm_xen_hvm_attr vec = {
.type = KVM_XEN_ATTR_TYPE_UPCALL_VECTOR,
.u.vector = EVTCHN_VECTOR,
};
vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &vec);
vm_init_descriptor_tables(vm);
vcpu_init_descriptor_tables(vcpu);
vm_install_exception_handler(vm, EVTCHN_VECTOR, evtchn_handler);
if (do_runstate_tests) {
struct kvm_xen_vcpu_attr st = {
.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR,
.u.gpa = RUNSTATE_ADDR,
};
vcpu_ioctl(vcpu, KVM_XEN_VCPU_SET_ATTR, &st);
}
int irq_fd[2] = { -1, -1 };
if (do_eventfd_tests) {
irq_fd[0] = eventfd(0, 0);
irq_fd[1] = eventfd(0, 0);
/* Unexpected, but not a KVM failure */
if (irq_fd[0] == -1 || irq_fd[1] == -1)
do_evtchn_tests = do_eventfd_tests = false;
}
if (do_eventfd_tests) {
irq_routes.info.nr = 2;
irq_routes.entries[0].gsi = 32;
irq_routes.entries[0].type = KVM_IRQ_ROUTING_XEN_EVTCHN;
irq_routes.entries[0].u.xen_evtchn.port = EVTCHN_TEST1;
irq_routes.entries[0].u.xen_evtchn.vcpu = vcpu->id;
irq_routes.entries[0].u.xen_evtchn.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
irq_routes.entries[1].gsi = 33;
irq_routes.entries[1].type = KVM_IRQ_ROUTING_XEN_EVTCHN;
irq_routes.entries[1].u.xen_evtchn.port = EVTCHN_TEST2;
irq_routes.entries[1].u.xen_evtchn.vcpu = vcpu->id;
irq_routes.entries[1].u.xen_evtchn.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
vm_ioctl(vm, KVM_SET_GSI_ROUTING, &irq_routes.info);
struct kvm_irqfd ifd = { };
ifd.fd = irq_fd[0];
ifd.gsi = 32;
vm_ioctl(vm, KVM_IRQFD, &ifd);
ifd.fd = irq_fd[1];
ifd.gsi = 33;
vm_ioctl(vm, KVM_IRQFD, &ifd);
struct sigaction sa = { };
sa.sa_handler = handle_alrm;
sigaction(SIGALRM, &sa, NULL);
}
struct kvm_xen_vcpu_attr tmr = {
.type = KVM_XEN_VCPU_ATTR_TYPE_TIMER,
.u.timer.port = EVTCHN_TIMER,
.u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL,
.u.timer.expires_ns = 0
};
if (do_evtchn_tests) {
struct kvm_xen_hvm_attr inj = {
.type = KVM_XEN_ATTR_TYPE_EVTCHN,
.u.evtchn.send_port = 127,
.u.evtchn.type = EVTCHNSTAT_interdomain,
.u.evtchn.flags = 0,
.u.evtchn.deliver.port.port = EVTCHN_TEST1,
.u.evtchn.deliver.port.vcpu = vcpu->id + 1,
.u.evtchn.deliver.port.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL,
};
vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &inj);
/* Test migration to a different vCPU */
inj.u.evtchn.flags = KVM_XEN_EVTCHN_UPDATE;
inj.u.evtchn.deliver.port.vcpu = vcpu->id;
vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &inj);
inj.u.evtchn.send_port = 197;
inj.u.evtchn.deliver.eventfd.port = 0;
inj.u.evtchn.deliver.eventfd.fd = irq_fd[1];
inj.u.evtchn.flags = 0;
vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &inj);
vcpu_ioctl(vcpu, KVM_XEN_VCPU_SET_ATTR, &tmr);
}
vinfo = addr_gpa2hva(vm, VCPU_INFO_VADDR);
vinfo->evtchn_upcall_pending = 0;
struct vcpu_runstate_info *rs = addr_gpa2hva(vm, RUNSTATE_ADDR);
rs->state = 0x5a;
bool evtchn_irq_expected = false;
for (;;) {
volatile struct kvm_run *run = vcpu->run;
struct ucall uc;
vcpu_run(vcpu);
TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
"Got exit_reason other than KVM_EXIT_IO: %u (%s)\n",
run->exit_reason,
exit_reason_str(run->exit_reason));
switch (get_ucall(vcpu, &uc)) {
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
/* NOT REACHED */
case UCALL_SYNC: {
struct kvm_xen_vcpu_attr rst;
long rundelay;
if (do_runstate_tests)
TEST_ASSERT(rs->state_entry_time == rs->time[0] +
rs->time[1] + rs->time[2] + rs->time[3],
"runstate times don't add up");
switch (uc.args[1]) {
case 0:
if (verbose)
printf("Delivering evtchn upcall\n");
evtchn_irq_expected = true;
vinfo->evtchn_upcall_pending = 1;
break;
case RUNSTATE_runnable...RUNSTATE_offline:
TEST_ASSERT(!evtchn_irq_expected, "Event channel IRQ not seen");
if (!do_runstate_tests)
goto done;
if (verbose)
printf("Testing runstate %s\n", runstate_names[uc.args[1]]);
rst.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT;
rst.u.runstate.state = uc.args[1];
vcpu_ioctl(vcpu, KVM_XEN_VCPU_SET_ATTR, &rst);
break;
case 4:
if (verbose)
printf("Testing RUNSTATE_ADJUST\n");
rst.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST;
memset(&rst.u, 0, sizeof(rst.u));
rst.u.runstate.state = (uint64_t)-1;
rst.u.runstate.time_blocked =
0x5a - rs->time[RUNSTATE_blocked];
rst.u.runstate.time_offline =
0x6b6b - rs->time[RUNSTATE_offline];
rst.u.runstate.time_runnable = -rst.u.runstate.time_blocked -
rst.u.runstate.time_offline;
vcpu_ioctl(vcpu, KVM_XEN_VCPU_SET_ATTR, &rst);
break;
case 5:
if (verbose)
printf("Testing RUNSTATE_DATA\n");
rst.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA;
memset(&rst.u, 0, sizeof(rst.u));
rst.u.runstate.state = RUNSTATE_running;
rst.u.runstate.state_entry_time = 0x6b6b + 0x5a;
rst.u.runstate.time_blocked = 0x6b6b;
rst.u.runstate.time_offline = 0x5a;
vcpu_ioctl(vcpu, KVM_XEN_VCPU_SET_ATTR, &rst);
break;
case 6:
if (verbose)
printf("Testing steal time\n");
/* Yield until scheduler delay exceeds target */
rundelay = get_run_delay() + MIN_STEAL_TIME;
do {
sched_yield();
} while (get_run_delay() < rundelay);
break;
case 7:
if (!do_eventfd_tests)
goto done;
if (verbose)
printf("Testing masked event channel\n");
shinfo->evtchn_mask[0] = 1UL << EVTCHN_TEST1;
eventfd_write(irq_fd[0], 1UL);
alarm(1);
break;
case 8:
if (verbose)
printf("Testing unmasked event channel\n");
/* Unmask that, but deliver the other one */
shinfo->evtchn_pending[0] = 0;
shinfo->evtchn_mask[0] = 0;
eventfd_write(irq_fd[1], 1UL);
evtchn_irq_expected = true;
alarm(1);
break;
case 9:
TEST_ASSERT(!evtchn_irq_expected,
"Expected event channel IRQ but it didn't happen");
shinfo->evtchn_pending[1] = 0;
if (verbose)
printf("Testing event channel after memslot change\n");
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
DUMMY_REGION_GPA, DUMMY_REGION_SLOT, 1, 0);
eventfd_write(irq_fd[0], 1UL);
evtchn_irq_expected = true;
alarm(1);
break;
case 10:
TEST_ASSERT(!evtchn_irq_expected,
"Expected event channel IRQ but it didn't happen");
if (!do_evtchn_tests)
goto done;
shinfo->evtchn_pending[0] = 0;
if (verbose)
printf("Testing injection with KVM_XEN_HVM_EVTCHN_SEND\n");
struct kvm_irq_routing_xen_evtchn e;
e.port = EVTCHN_TEST2;
e.vcpu = vcpu->id;
e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
vm_ioctl(vm, KVM_XEN_HVM_EVTCHN_SEND, &e);
evtchn_irq_expected = true;
alarm(1);
break;
case 11:
TEST_ASSERT(!evtchn_irq_expected,
"Expected event channel IRQ but it didn't happen");
shinfo->evtchn_pending[1] = 0;
if (verbose)
printf("Testing guest EVTCHNOP_send direct to evtchn\n");
evtchn_irq_expected = true;
alarm(1);
break;
case 12:
TEST_ASSERT(!evtchn_irq_expected,
"Expected event channel IRQ but it didn't happen");
shinfo->evtchn_pending[0] = 0;
if (verbose)
printf("Testing guest EVTCHNOP_send to eventfd\n");
evtchn_irq_expected = true;
alarm(1);
break;
case 13:
TEST_ASSERT(!evtchn_irq_expected,
"Expected event channel IRQ but it didn't happen");
shinfo->evtchn_pending[1] = 0;
if (verbose)
printf("Testing guest oneshot timer\n");
break;
case 14:
memset(&tmr, 0, sizeof(tmr));
tmr.type = KVM_XEN_VCPU_ATTR_TYPE_TIMER;
vcpu_ioctl(vcpu, KVM_XEN_VCPU_GET_ATTR, &tmr);
TEST_ASSERT(tmr.u.timer.port == EVTCHN_TIMER,
"Timer port not returned");
TEST_ASSERT(tmr.u.timer.priority == KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL,
"Timer priority not returned");
TEST_ASSERT(tmr.u.timer.expires_ns > rs->state_entry_time,
"Timer expiry not returned");
evtchn_irq_expected = true;
alarm(1);
break;
case 15:
TEST_ASSERT(!evtchn_irq_expected,
"Expected event channel IRQ but it didn't happen");
shinfo->evtchn_pending[0] = 0;
if (verbose)
printf("Testing restored oneshot timer\n");
tmr.u.timer.expires_ns = rs->state_entry_time + 100000000;
vcpu_ioctl(vcpu, KVM_XEN_VCPU_SET_ATTR, &tmr);
evtchn_irq_expected = true;
alarm(1);
break;
case 16:
TEST_ASSERT(!evtchn_irq_expected,
"Expected event channel IRQ but it didn't happen");
if (verbose)
printf("Testing SCHEDOP_poll with already pending event\n");
shinfo->evtchn_pending[0] = shinfo->evtchn_mask[0] = 1UL << EVTCHN_TIMER;
alarm(1);
break;
case 17:
if (verbose)
printf("Testing SCHEDOP_poll timeout\n");
shinfo->evtchn_pending[0] = 0;
alarm(1);
break;
case 18:
if (verbose)
printf("Testing SCHEDOP_poll wake on masked event\n");
tmr.u.timer.expires_ns = rs->state_entry_time + 100000000;
vcpu_ioctl(vcpu, KVM_XEN_VCPU_SET_ATTR, &tmr);
alarm(1);
break;
case 19:
shinfo->evtchn_pending[0] = shinfo->evtchn_mask[0] = 0;
if (verbose)
printf("Testing SCHEDOP_poll wake on unmasked event\n");
evtchn_irq_expected = true;
tmr.u.timer.expires_ns = rs->state_entry_time + 100000000;
vcpu_ioctl(vcpu, KVM_XEN_VCPU_SET_ATTR, &tmr);
/* Read it back and check the pending time is reported correctly */
tmr.u.timer.expires_ns = 0;
vcpu_ioctl(vcpu, KVM_XEN_VCPU_GET_ATTR, &tmr);
TEST_ASSERT(tmr.u.timer.expires_ns == rs->state_entry_time + 100000000,
"Timer not reported pending");
alarm(1);
break;
case 20:
TEST_ASSERT(!evtchn_irq_expected,
"Expected event channel IRQ but it didn't happen");
/* Read timer and check it is no longer pending */
vcpu_ioctl(vcpu, KVM_XEN_VCPU_GET_ATTR, &tmr);
TEST_ASSERT(!tmr.u.timer.expires_ns, "Timer still reported pending");
shinfo->evtchn_pending[0] = 0;
if (verbose)
printf("Testing timer in the past\n");
evtchn_irq_expected = true;
tmr.u.timer.expires_ns = rs->state_entry_time - 100000000ULL;
vcpu_ioctl(vcpu, KVM_XEN_VCPU_SET_ATTR, &tmr);
alarm(1);
break;
case 21:
TEST_ASSERT(!evtchn_irq_expected,
"Expected event channel IRQ but it didn't happen");
alarm(0);
if (verbose)
printf("Testing shinfo lock corruption (KVM_XEN_HVM_EVTCHN_SEND)\n");
ret = pthread_create(&thread, NULL, &juggle_shinfo_state, (void *)vm);
TEST_ASSERT(ret == 0, "pthread_create() failed: %s", strerror(ret));
struct kvm_irq_routing_xen_evtchn uxe = {
.port = 1,
.vcpu = vcpu->id,
.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL
};
evtchn_irq_expected = true;
for (time_t t = time(NULL) + SHINFO_RACE_TIMEOUT; time(NULL) < t;)
__vm_ioctl(vm, KVM_XEN_HVM_EVTCHN_SEND, &uxe);
break;
case 22:
TEST_ASSERT(!evtchn_irq_expected,
"Expected event channel IRQ but it didn't happen");
if (verbose)
printf("Testing shinfo lock corruption (SCHEDOP_poll)\n");
shinfo->evtchn_pending[0] = 1;
evtchn_irq_expected = true;
tmr.u.timer.expires_ns = rs->state_entry_time +
SHINFO_RACE_TIMEOUT * 1000000000ULL;
vcpu_ioctl(vcpu, KVM_XEN_VCPU_SET_ATTR, &tmr);
break;
case 23:
/*
* Optional and possibly repeated sync point.
* Injecting the timer IRQ may fail if the
* shinfo is invalid when the timer expires.
* If the timer has expired but the IRQ hasn't
* been delivered, rearm the timer and retry.
*/
vcpu_ioctl(vcpu, KVM_XEN_VCPU_GET_ATTR, &tmr);
/* Resume the guest if the timer is still pending. */
if (tmr.u.timer.expires_ns)
break;
/* All done if the IRQ was delivered. */
if (!evtchn_irq_expected)
break;
tmr.u.timer.expires_ns = rs->state_entry_time +
SHINFO_RACE_TIMEOUT * 1000000000ULL;
vcpu_ioctl(vcpu, KVM_XEN_VCPU_SET_ATTR, &tmr);
break;
case 24:
TEST_ASSERT(!evtchn_irq_expected,
"Expected event channel IRQ but it didn't happen");
ret = pthread_cancel(thread);
TEST_ASSERT(ret == 0, "pthread_cancel() failed: %s", strerror(ret));
ret = pthread_join(thread, 0);
TEST_ASSERT(ret == 0, "pthread_join() failed: %s", strerror(ret));
goto done;
case 0x20:
TEST_ASSERT(evtchn_irq_expected, "Unexpected event channel IRQ");
evtchn_irq_expected = false;
break;
}
break;
}
case UCALL_DONE:
goto done;
default:
TEST_FAIL("Unknown ucall 0x%lx.", uc.cmd);
}
}
done:
alarm(0);
clock_gettime(CLOCK_REALTIME, &max_ts);
/*
* Just a *really* basic check that things are being put in the
* right place. The actual calculations are much the same for
* Xen as they are for the KVM variants, so no need to check.
*/
struct pvclock_wall_clock *wc;
struct pvclock_vcpu_time_info *ti, *ti2;
wc = addr_gpa2hva(vm, SHINFO_REGION_GPA + 0xc00);
ti = addr_gpa2hva(vm, SHINFO_REGION_GPA + 0x40 + 0x20);
ti2 = addr_gpa2hva(vm, PVTIME_ADDR);
if (verbose) {
printf("Wall clock (v %d) %d.%09d\n", wc->version, wc->sec, wc->nsec);
printf("Time info 1: v %u tsc %" PRIu64 " time %" PRIu64 " mul %u shift %u flags %x\n",
ti->version, ti->tsc_timestamp, ti->system_time, ti->tsc_to_system_mul,
ti->tsc_shift, ti->flags);
printf("Time info 2: v %u tsc %" PRIu64 " time %" PRIu64 " mul %u shift %u flags %x\n",
ti2->version, ti2->tsc_timestamp, ti2->system_time, ti2->tsc_to_system_mul,
ti2->tsc_shift, ti2->flags);
}
vm_ts.tv_sec = wc->sec;
vm_ts.tv_nsec = wc->nsec;
TEST_ASSERT(wc->version && !(wc->version & 1),
"Bad wallclock version %x", wc->version);
TEST_ASSERT(cmp_timespec(&min_ts, &vm_ts) <= 0, "VM time too old");
TEST_ASSERT(cmp_timespec(&max_ts, &vm_ts) >= 0, "VM time too new");
TEST_ASSERT(ti->version && !(ti->version & 1),
"Bad time_info version %x", ti->version);
TEST_ASSERT(ti2->version && !(ti2->version & 1),
"Bad time_info version %x", ti->version);
if (do_runstate_tests) {
/*
* Fetch runstate and check sanity. Strictly speaking in the
* general case we might not expect the numbers to be identical
* but in this case we know we aren't running the vCPU any more.
*/
struct kvm_xen_vcpu_attr rst = {
.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA,
};
vcpu_ioctl(vcpu, KVM_XEN_VCPU_GET_ATTR, &rst);
if (verbose) {
printf("Runstate: %s(%d), entry %" PRIu64 " ns\n",
rs->state <= RUNSTATE_offline ? runstate_names[rs->state] : "unknown",
rs->state, rs->state_entry_time);
for (int i = RUNSTATE_running; i <= RUNSTATE_offline; i++) {
printf("State %s: %" PRIu64 " ns\n",
runstate_names[i], rs->time[i]);
}
}
/*
* Exercise runstate info at all points across the page boundary, in
* 32-bit and 64-bit mode. In particular, test the case where it is
* configured in 32-bit mode and then switched to 64-bit mode while
* active, which takes it onto the second page.
*/
unsigned long runstate_addr;
struct compat_vcpu_runstate_info *crs;
for (runstate_addr = SHINFO_REGION_GPA + PAGE_SIZE + PAGE_SIZE - sizeof(*rs) - 4;
runstate_addr < SHINFO_REGION_GPA + PAGE_SIZE + PAGE_SIZE + 4; runstate_addr++) {
rs = addr_gpa2hva(vm, runstate_addr);
crs = (void *)rs;
memset(rs, 0xa5, sizeof(*rs));
/* Set to compatibility mode */
lm.u.long_mode = 0;
vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &lm);
/* Set runstate to new address (kernel will write it) */
struct kvm_xen_vcpu_attr st = {
.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR,
.u.gpa = runstate_addr,
};
vcpu_ioctl(vcpu, KVM_XEN_VCPU_SET_ATTR, &st);
if (verbose)
printf("Compatibility runstate at %08lx\n", runstate_addr);
TEST_ASSERT(crs->state == rst.u.runstate.state, "Runstate mismatch");
TEST_ASSERT(crs->state_entry_time == rst.u.runstate.state_entry_time,
"State entry time mismatch");
TEST_ASSERT(crs->time[RUNSTATE_running] == rst.u.runstate.time_running,
"Running time mismatch");
TEST_ASSERT(crs->time[RUNSTATE_runnable] == rst.u.runstate.time_runnable,
"Runnable time mismatch");
TEST_ASSERT(crs->time[RUNSTATE_blocked] == rst.u.runstate.time_blocked,
"Blocked time mismatch");
TEST_ASSERT(crs->time[RUNSTATE_offline] == rst.u.runstate.time_offline,
"Offline time mismatch");
TEST_ASSERT(crs->time[RUNSTATE_offline + 1] == 0xa5a5a5a5a5a5a5a5ULL,
"Structure overrun");
TEST_ASSERT(crs->state_entry_time == crs->time[0] +
crs->time[1] + crs->time[2] + crs->time[3],
"runstate times don't add up");
/* Now switch to 64-bit mode */
lm.u.long_mode = 1;
vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &lm);
memset(rs, 0xa5, sizeof(*rs));
/* Don't change the address, just trigger a write */
struct kvm_xen_vcpu_attr adj = {
.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST,
.u.runstate.state = (uint64_t)-1
};
vcpu_ioctl(vcpu, KVM_XEN_VCPU_SET_ATTR, &adj);
if (verbose)
printf("64-bit runstate at %08lx\n", runstate_addr);
TEST_ASSERT(rs->state == rst.u.runstate.state, "Runstate mismatch");
TEST_ASSERT(rs->state_entry_time == rst.u.runstate.state_entry_time,
"State entry time mismatch");
TEST_ASSERT(rs->time[RUNSTATE_running] == rst.u.runstate.time_running,
"Running time mismatch");
TEST_ASSERT(rs->time[RUNSTATE_runnable] == rst.u.runstate.time_runnable,
"Runnable time mismatch");
TEST_ASSERT(rs->time[RUNSTATE_blocked] == rst.u.runstate.time_blocked,
"Blocked time mismatch");
TEST_ASSERT(rs->time[RUNSTATE_offline] == rst.u.runstate.time_offline,
"Offline time mismatch");
TEST_ASSERT(rs->time[RUNSTATE_offline + 1] == 0xa5a5a5a5a5a5a5a5ULL,
"Structure overrun");
TEST_ASSERT(rs->state_entry_time == rs->time[0] +
rs->time[1] + rs->time[2] + rs->time[3],
"runstate times don't add up");
}
}
kvm_vm_free(vm);
return 0;
}