| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Based on arch/arm/include/asm/memory.h |
| * |
| * Copyright (C) 2000-2002 Russell King |
| * Copyright (C) 2012 ARM Ltd. |
| * |
| * Note: this file should not be included by non-asm/.h files |
| */ |
| #ifndef __ASM_MEMORY_H |
| #define __ASM_MEMORY_H |
| |
| #include <linux/const.h> |
| #include <linux/sizes.h> |
| #include <asm/page-def.h> |
| |
| /* |
| * Size of the PCI I/O space. This must remain a power of two so that |
| * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses. |
| */ |
| #define PCI_IO_SIZE SZ_16M |
| |
| /* |
| * VMEMMAP_SIZE - allows the whole linear region to be covered by |
| * a struct page array |
| * |
| * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE |
| * needs to cover the memory region from the beginning of the 52-bit |
| * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to |
| * keep a constant PAGE_OFFSET and "fallback" to using the higher end |
| * of the VMEMMAP where 52-bit support is not available in hardware. |
| */ |
| #define VMEMMAP_SHIFT (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT) |
| #define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) >> VMEMMAP_SHIFT) |
| |
| /* |
| * PAGE_OFFSET - the virtual address of the start of the linear map, at the |
| * start of the TTBR1 address space. |
| * PAGE_END - the end of the linear map, where all other kernel mappings begin. |
| * KIMAGE_VADDR - the virtual address of the start of the kernel image. |
| * VA_BITS - the maximum number of bits for virtual addresses. |
| */ |
| #define VA_BITS (CONFIG_ARM64_VA_BITS) |
| #define _PAGE_OFFSET(va) (-(UL(1) << (va))) |
| #define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS)) |
| #define KIMAGE_VADDR (MODULES_END) |
| #define MODULES_END (MODULES_VADDR + MODULES_VSIZE) |
| #define MODULES_VADDR (_PAGE_END(VA_BITS_MIN)) |
| #define MODULES_VSIZE (SZ_128M) |
| #define VMEMMAP_START (-(UL(1) << (VA_BITS - VMEMMAP_SHIFT))) |
| #define VMEMMAP_END (VMEMMAP_START + VMEMMAP_SIZE) |
| #define PCI_IO_END (VMEMMAP_START - SZ_8M) |
| #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) |
| #define FIXADDR_TOP (VMEMMAP_START - SZ_32M) |
| |
| #if VA_BITS > 48 |
| #define VA_BITS_MIN (48) |
| #else |
| #define VA_BITS_MIN (VA_BITS) |
| #endif |
| |
| #define _PAGE_END(va) (-(UL(1) << ((va) - 1))) |
| |
| #define KERNEL_START _text |
| #define KERNEL_END _end |
| |
| /* |
| * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual |
| * address space for the shadow region respectively. They can bloat the stack |
| * significantly, so double the (minimum) stack size when they are in use. |
| */ |
| #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) |
| #define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL) |
| #define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \ |
| + KASAN_SHADOW_OFFSET) |
| #define PAGE_END (KASAN_SHADOW_END - (1UL << (vabits_actual - KASAN_SHADOW_SCALE_SHIFT))) |
| #define KASAN_THREAD_SHIFT 1 |
| #else |
| #define KASAN_THREAD_SHIFT 0 |
| #define PAGE_END (_PAGE_END(VA_BITS_MIN)) |
| #endif /* CONFIG_KASAN */ |
| |
| #define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT) |
| |
| /* |
| * VMAP'd stacks are allocated at page granularity, so we must ensure that such |
| * stacks are a multiple of page size. |
| */ |
| #if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT) |
| #define THREAD_SHIFT PAGE_SHIFT |
| #else |
| #define THREAD_SHIFT MIN_THREAD_SHIFT |
| #endif |
| |
| #if THREAD_SHIFT >= PAGE_SHIFT |
| #define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT) |
| #endif |
| |
| #define THREAD_SIZE (UL(1) << THREAD_SHIFT) |
| |
| /* |
| * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by |
| * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry |
| * assembly. |
| */ |
| #ifdef CONFIG_VMAP_STACK |
| #define THREAD_ALIGN (2 * THREAD_SIZE) |
| #else |
| #define THREAD_ALIGN THREAD_SIZE |
| #endif |
| |
| #define IRQ_STACK_SIZE THREAD_SIZE |
| |
| #define OVERFLOW_STACK_SIZE SZ_4K |
| |
| /* |
| * With the minimum frame size of [x29, x30], exactly half the combined |
| * sizes of the hyp and overflow stacks is the maximum size needed to |
| * save the unwinded stacktrace; plus an additional entry to delimit the |
| * end. |
| */ |
| #define NVHE_STACKTRACE_SIZE ((OVERFLOW_STACK_SIZE + PAGE_SIZE) / 2 + sizeof(long)) |
| |
| /* |
| * Alignment of kernel segments (e.g. .text, .data). |
| * |
| * 4 KB granule: 16 level 3 entries, with contiguous bit |
| * 16 KB granule: 4 level 3 entries, without contiguous bit |
| * 64 KB granule: 1 level 3 entry |
| */ |
| #define SEGMENT_ALIGN SZ_64K |
| |
| /* |
| * Memory types available. |
| * |
| * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in |
| * the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note |
| * that protection_map[] only contains MT_NORMAL attributes. |
| */ |
| #define MT_NORMAL 0 |
| #define MT_NORMAL_TAGGED 1 |
| #define MT_NORMAL_NC 2 |
| #define MT_DEVICE_nGnRnE 3 |
| #define MT_DEVICE_nGnRE 4 |
| |
| /* |
| * Memory types for Stage-2 translation |
| */ |
| #define MT_S2_NORMAL 0xf |
| #define MT_S2_DEVICE_nGnRE 0x1 |
| |
| /* |
| * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001 |
| * Stage-2 enforces Normal-WB and Device-nGnRE |
| */ |
| #define MT_S2_FWB_NORMAL 6 |
| #define MT_S2_FWB_DEVICE_nGnRE 1 |
| |
| #ifdef CONFIG_ARM64_4K_PAGES |
| #define IOREMAP_MAX_ORDER (PUD_SHIFT) |
| #else |
| #define IOREMAP_MAX_ORDER (PMD_SHIFT) |
| #endif |
| |
| /* |
| * Open-coded (swapper_pg_dir - reserved_pg_dir) as this cannot be calculated |
| * until link time. |
| */ |
| #define RESERVED_SWAPPER_OFFSET (PAGE_SIZE) |
| |
| /* |
| * Open-coded (swapper_pg_dir - tramp_pg_dir) as this cannot be calculated |
| * until link time. |
| */ |
| #define TRAMP_SWAPPER_OFFSET (2 * PAGE_SIZE) |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <linux/bitops.h> |
| #include <linux/compiler.h> |
| #include <linux/mmdebug.h> |
| #include <linux/types.h> |
| #include <asm/bug.h> |
| |
| #if VA_BITS > 48 |
| extern u64 vabits_actual; |
| #else |
| #define vabits_actual ((u64)VA_BITS) |
| #endif |
| |
| extern s64 memstart_addr; |
| /* PHYS_OFFSET - the physical address of the start of memory. */ |
| #define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; }) |
| |
| /* the virtual base of the kernel image */ |
| extern u64 kimage_vaddr; |
| |
| /* the offset between the kernel virtual and physical mappings */ |
| extern u64 kimage_voffset; |
| |
| static inline unsigned long kaslr_offset(void) |
| { |
| return kimage_vaddr - KIMAGE_VADDR; |
| } |
| |
| /* |
| * Allow all memory at the discovery stage. We will clip it later. |
| */ |
| #define MIN_MEMBLOCK_ADDR 0 |
| #define MAX_MEMBLOCK_ADDR U64_MAX |
| |
| /* |
| * PFNs are used to describe any physical page; this means |
| * PFN 0 == physical address 0. |
| * |
| * This is the PFN of the first RAM page in the kernel |
| * direct-mapped view. We assume this is the first page |
| * of RAM in the mem_map as well. |
| */ |
| #define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT) |
| |
| /* |
| * When dealing with data aborts, watchpoints, or instruction traps we may end |
| * up with a tagged userland pointer. Clear the tag to get a sane pointer to |
| * pass on to access_ok(), for instance. |
| */ |
| #define __untagged_addr(addr) \ |
| ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55)) |
| |
| #define untagged_addr(addr) ({ \ |
| u64 __addr = (__force u64)(addr); \ |
| __addr &= __untagged_addr(__addr); \ |
| (__force __typeof__(addr))__addr; \ |
| }) |
| |
| #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) |
| #define __tag_shifted(tag) ((u64)(tag) << 56) |
| #define __tag_reset(addr) __untagged_addr(addr) |
| #define __tag_get(addr) (__u8)((u64)(addr) >> 56) |
| #else |
| #define __tag_shifted(tag) 0UL |
| #define __tag_reset(addr) (addr) |
| #define __tag_get(addr) 0 |
| #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ |
| |
| static inline const void *__tag_set(const void *addr, u8 tag) |
| { |
| u64 __addr = (u64)addr & ~__tag_shifted(0xff); |
| return (const void *)(__addr | __tag_shifted(tag)); |
| } |
| |
| #ifdef CONFIG_KASAN_HW_TAGS |
| #define arch_enable_tagging_sync() mte_enable_kernel_sync() |
| #define arch_enable_tagging_async() mte_enable_kernel_async() |
| #define arch_enable_tagging_asymm() mte_enable_kernel_asymm() |
| #define arch_force_async_tag_fault() mte_check_tfsr_exit() |
| #define arch_get_random_tag() mte_get_random_tag() |
| #define arch_get_mem_tag(addr) mte_get_mem_tag(addr) |
| #define arch_set_mem_tag_range(addr, size, tag, init) \ |
| mte_set_mem_tag_range((addr), (size), (tag), (init)) |
| #endif /* CONFIG_KASAN_HW_TAGS */ |
| |
| /* |
| * Physical vs virtual RAM address space conversion. These are |
| * private definitions which should NOT be used outside memory.h |
| * files. Use virt_to_phys/phys_to_virt/__pa/__va instead. |
| */ |
| |
| |
| /* |
| * Check whether an arbitrary address is within the linear map, which |
| * lives in the [PAGE_OFFSET, PAGE_END) interval at the bottom of the |
| * kernel's TTBR1 address range. |
| */ |
| #define __is_lm_address(addr) (((u64)(addr) - PAGE_OFFSET) < (PAGE_END - PAGE_OFFSET)) |
| |
| #define __lm_to_phys(addr) (((addr) - PAGE_OFFSET) + PHYS_OFFSET) |
| #define __kimg_to_phys(addr) ((addr) - kimage_voffset) |
| |
| #define __virt_to_phys_nodebug(x) ({ \ |
| phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \ |
| __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \ |
| }) |
| |
| #define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x)) |
| |
| #ifdef CONFIG_DEBUG_VIRTUAL |
| extern phys_addr_t __virt_to_phys(unsigned long x); |
| extern phys_addr_t __phys_addr_symbol(unsigned long x); |
| #else |
| #define __virt_to_phys(x) __virt_to_phys_nodebug(x) |
| #define __phys_addr_symbol(x) __pa_symbol_nodebug(x) |
| #endif /* CONFIG_DEBUG_VIRTUAL */ |
| |
| #define __phys_to_virt(x) ((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET) |
| #define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset)) |
| |
| /* |
| * Convert a page to/from a physical address |
| */ |
| #define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page))) |
| #define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys))) |
| |
| /* |
| * Note: Drivers should NOT use these. They are the wrong |
| * translation for translating DMA addresses. Use the driver |
| * DMA support - see dma-mapping.h. |
| */ |
| #define virt_to_phys virt_to_phys |
| static inline phys_addr_t virt_to_phys(const volatile void *x) |
| { |
| return __virt_to_phys((unsigned long)(x)); |
| } |
| |
| #define phys_to_virt phys_to_virt |
| static inline void *phys_to_virt(phys_addr_t x) |
| { |
| return (void *)(__phys_to_virt(x)); |
| } |
| |
| /* |
| * Drivers should NOT use these either. |
| */ |
| #define __pa(x) __virt_to_phys((unsigned long)(x)) |
| #define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0)) |
| #define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x)) |
| #define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x))) |
| #define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) |
| #define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x))) |
| #define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x)) |
| |
| /* |
| * virt_to_page(x) convert a _valid_ virtual address to struct page * |
| * virt_addr_valid(x) indicates whether a virtual address is valid |
| */ |
| #define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET) |
| |
| #if defined(CONFIG_DEBUG_VIRTUAL) |
| #define page_to_virt(x) ({ \ |
| __typeof__(x) __page = x; \ |
| void *__addr = __va(page_to_phys(__page)); \ |
| (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ |
| }) |
| #define virt_to_page(x) pfn_to_page(virt_to_pfn(x)) |
| #else |
| #define page_to_virt(x) ({ \ |
| __typeof__(x) __page = x; \ |
| u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\ |
| u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \ |
| (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ |
| }) |
| |
| #define virt_to_page(x) ({ \ |
| u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \ |
| u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \ |
| (struct page *)__addr; \ |
| }) |
| #endif /* CONFIG_DEBUG_VIRTUAL */ |
| |
| #define virt_addr_valid(addr) ({ \ |
| __typeof__(addr) __addr = __tag_reset(addr); \ |
| __is_lm_address(__addr) && pfn_is_map_memory(virt_to_pfn(__addr)); \ |
| }) |
| |
| void dump_mem_limit(void); |
| |
| static inline bool defer_reserve_crashkernel(void) |
| { |
| return IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32); |
| } |
| #endif /* !ASSEMBLY */ |
| |
| /* |
| * Given that the GIC architecture permits ITS implementations that can only be |
| * configured with a LPI table address once, GICv3 systems with many CPUs may |
| * end up reserving a lot of different regions after a kexec for their LPI |
| * tables (one per CPU), as we are forced to reuse the same memory after kexec |
| * (and thus reserve it persistently with EFI beforehand) |
| */ |
| #if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS) |
| # define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1) |
| #endif |
| |
| /* |
| * memory regions which marked with flag MEMBLOCK_NOMAP(for example, the memory |
| * of the EFI_UNUSABLE_MEMORY type) may divide a continuous memory block into |
| * multiple parts. As a result, the number of memory regions is large. |
| */ |
| #ifdef CONFIG_EFI |
| #define INIT_MEMBLOCK_MEMORY_REGIONS (INIT_MEMBLOCK_REGIONS * 8) |
| #endif |
| |
| #include <asm-generic/memory_model.h> |
| |
| #endif /* __ASM_MEMORY_H */ |