| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Handle caching attributes in page tables (PAT) |
| * |
| * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> |
| * Suresh B Siddha <suresh.b.siddha@intel.com> |
| * |
| * Interval tree used to store the PAT memory type reservations. |
| */ |
| |
| #include <linux/seq_file.h> |
| #include <linux/debugfs.h> |
| #include <linux/kernel.h> |
| #include <linux/interval_tree_generic.h> |
| #include <linux/sched.h> |
| #include <linux/gfp.h> |
| #include <linux/pgtable.h> |
| |
| #include <asm/memtype.h> |
| |
| #include "memtype.h" |
| |
| /* |
| * The memtype tree keeps track of memory type for specific |
| * physical memory areas. Without proper tracking, conflicting memory |
| * types in different mappings can cause CPU cache corruption. |
| * |
| * The tree is an interval tree (augmented rbtree) which tree is ordered |
| * by the starting address. The tree can contain multiple entries for |
| * different regions which overlap. All the aliases have the same |
| * cache attributes of course, as enforced by the PAT logic. |
| * |
| * memtype_lock protects the rbtree. |
| */ |
| |
| static inline u64 interval_start(struct memtype *entry) |
| { |
| return entry->start; |
| } |
| |
| static inline u64 interval_end(struct memtype *entry) |
| { |
| return entry->end - 1; |
| } |
| |
| INTERVAL_TREE_DEFINE(struct memtype, rb, u64, subtree_max_end, |
| interval_start, interval_end, |
| static, interval) |
| |
| static struct rb_root_cached memtype_rbroot = RB_ROOT_CACHED; |
| |
| enum { |
| MEMTYPE_EXACT_MATCH = 0, |
| MEMTYPE_END_MATCH = 1 |
| }; |
| |
| static struct memtype *memtype_match(u64 start, u64 end, int match_type) |
| { |
| struct memtype *entry_match; |
| |
| entry_match = interval_iter_first(&memtype_rbroot, start, end-1); |
| |
| while (entry_match != NULL && entry_match->start < end) { |
| if ((match_type == MEMTYPE_EXACT_MATCH) && |
| (entry_match->start == start) && (entry_match->end == end)) |
| return entry_match; |
| |
| if ((match_type == MEMTYPE_END_MATCH) && |
| (entry_match->start < start) && (entry_match->end == end)) |
| return entry_match; |
| |
| entry_match = interval_iter_next(entry_match, start, end-1); |
| } |
| |
| return NULL; /* Returns NULL if there is no match */ |
| } |
| |
| static int memtype_check_conflict(u64 start, u64 end, |
| enum page_cache_mode reqtype, |
| enum page_cache_mode *newtype) |
| { |
| struct memtype *entry_match; |
| enum page_cache_mode found_type = reqtype; |
| |
| entry_match = interval_iter_first(&memtype_rbroot, start, end-1); |
| if (entry_match == NULL) |
| goto success; |
| |
| if (entry_match->type != found_type && newtype == NULL) |
| goto failure; |
| |
| dprintk("Overlap at 0x%Lx-0x%Lx\n", entry_match->start, entry_match->end); |
| found_type = entry_match->type; |
| |
| entry_match = interval_iter_next(entry_match, start, end-1); |
| while (entry_match) { |
| if (entry_match->type != found_type) |
| goto failure; |
| |
| entry_match = interval_iter_next(entry_match, start, end-1); |
| } |
| success: |
| if (newtype) |
| *newtype = found_type; |
| |
| return 0; |
| |
| failure: |
| pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n", |
| current->comm, current->pid, start, end, |
| cattr_name(found_type), cattr_name(entry_match->type)); |
| |
| return -EBUSY; |
| } |
| |
| int memtype_check_insert(struct memtype *entry_new, enum page_cache_mode *ret_type) |
| { |
| int err = 0; |
| |
| err = memtype_check_conflict(entry_new->start, entry_new->end, entry_new->type, ret_type); |
| if (err) |
| return err; |
| |
| if (ret_type) |
| entry_new->type = *ret_type; |
| |
| interval_insert(entry_new, &memtype_rbroot); |
| return 0; |
| } |
| |
| struct memtype *memtype_erase(u64 start, u64 end) |
| { |
| struct memtype *entry_old; |
| |
| /* |
| * Since the memtype_rbroot tree allows overlapping ranges, |
| * memtype_erase() checks with EXACT_MATCH first, i.e. free |
| * a whole node for the munmap case. If no such entry is found, |
| * it then checks with END_MATCH, i.e. shrink the size of a node |
| * from the end for the mremap case. |
| */ |
| entry_old = memtype_match(start, end, MEMTYPE_EXACT_MATCH); |
| if (!entry_old) { |
| entry_old = memtype_match(start, end, MEMTYPE_END_MATCH); |
| if (!entry_old) |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (entry_old->start == start) { |
| /* munmap: erase this node */ |
| interval_remove(entry_old, &memtype_rbroot); |
| } else { |
| /* mremap: update the end value of this node */ |
| interval_remove(entry_old, &memtype_rbroot); |
| entry_old->end = start; |
| interval_insert(entry_old, &memtype_rbroot); |
| |
| return NULL; |
| } |
| |
| return entry_old; |
| } |
| |
| struct memtype *memtype_lookup(u64 addr) |
| { |
| return interval_iter_first(&memtype_rbroot, addr, addr + PAGE_SIZE-1); |
| } |
| |
| /* |
| * Debugging helper, copy the Nth entry of the tree into a |
| * a copy for printout. This allows us to print out the tree |
| * via debugfs, without holding the memtype_lock too long: |
| */ |
| #ifdef CONFIG_DEBUG_FS |
| int memtype_copy_nth_element(struct memtype *entry_out, loff_t pos) |
| { |
| struct memtype *entry_match; |
| int i = 1; |
| |
| entry_match = interval_iter_first(&memtype_rbroot, 0, ULONG_MAX); |
| |
| while (entry_match && pos != i) { |
| entry_match = interval_iter_next(entry_match, 0, ULONG_MAX); |
| i++; |
| } |
| |
| if (entry_match) { /* pos == i */ |
| *entry_out = *entry_match; |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| #endif |