blob: ea63ac76988914d85bdfb7fdbe7bd209f4066741 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* hosting IBM Z kernel virtual machines (s390x)
*
* Copyright IBM Corp. 2008, 2020
*
* Author(s): Carsten Otte <cotte@de.ibm.com>
* Christian Borntraeger <borntraeger@de.ibm.com>
* Christian Ehrhardt <ehrhardt@de.ibm.com>
* Jason J. Herne <jjherne@us.ibm.com>
*/
#define KMSG_COMPONENT "kvm-s390"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/hrtimer.h>
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/mman.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/vmalloc.h>
#include <linux/bitmap.h>
#include <linux/sched/signal.h>
#include <linux/string.h>
#include <linux/pgtable.h>
#include <linux/mmu_notifier.h>
#include <asm/asm-offsets.h>
#include <asm/lowcore.h>
#include <asm/stp.h>
#include <asm/gmap.h>
#include <asm/nmi.h>
#include <asm/switch_to.h>
#include <asm/isc.h>
#include <asm/sclp.h>
#include <asm/cpacf.h>
#include <asm/timex.h>
#include <asm/ap.h>
#include <asm/uv.h>
#include <asm/fpu/api.h>
#include "kvm-s390.h"
#include "gaccess.h"
#include "pci.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
#include "trace-s390.h"
#define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
(KVM_MAX_VCPUS + LOCAL_IRQS))
const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
KVM_GENERIC_VM_STATS(),
STATS_DESC_COUNTER(VM, inject_io),
STATS_DESC_COUNTER(VM, inject_float_mchk),
STATS_DESC_COUNTER(VM, inject_pfault_done),
STATS_DESC_COUNTER(VM, inject_service_signal),
STATS_DESC_COUNTER(VM, inject_virtio),
STATS_DESC_COUNTER(VM, aen_forward),
STATS_DESC_COUNTER(VM, gmap_shadow_reuse),
STATS_DESC_COUNTER(VM, gmap_shadow_create),
STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry),
STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry),
STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry),
STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry),
STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry),
};
const struct kvm_stats_header kvm_vm_stats_header = {
.name_size = KVM_STATS_NAME_SIZE,
.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
.id_offset = sizeof(struct kvm_stats_header),
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
sizeof(kvm_vm_stats_desc),
};
const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
KVM_GENERIC_VCPU_STATS(),
STATS_DESC_COUNTER(VCPU, exit_userspace),
STATS_DESC_COUNTER(VCPU, exit_null),
STATS_DESC_COUNTER(VCPU, exit_external_request),
STATS_DESC_COUNTER(VCPU, exit_io_request),
STATS_DESC_COUNTER(VCPU, exit_external_interrupt),
STATS_DESC_COUNTER(VCPU, exit_stop_request),
STATS_DESC_COUNTER(VCPU, exit_validity),
STATS_DESC_COUNTER(VCPU, exit_instruction),
STATS_DESC_COUNTER(VCPU, exit_pei),
STATS_DESC_COUNTER(VCPU, halt_no_poll_steal),
STATS_DESC_COUNTER(VCPU, instruction_lctl),
STATS_DESC_COUNTER(VCPU, instruction_lctlg),
STATS_DESC_COUNTER(VCPU, instruction_stctl),
STATS_DESC_COUNTER(VCPU, instruction_stctg),
STATS_DESC_COUNTER(VCPU, exit_program_interruption),
STATS_DESC_COUNTER(VCPU, exit_instr_and_program),
STATS_DESC_COUNTER(VCPU, exit_operation_exception),
STATS_DESC_COUNTER(VCPU, deliver_ckc),
STATS_DESC_COUNTER(VCPU, deliver_cputm),
STATS_DESC_COUNTER(VCPU, deliver_external_call),
STATS_DESC_COUNTER(VCPU, deliver_emergency_signal),
STATS_DESC_COUNTER(VCPU, deliver_service_signal),
STATS_DESC_COUNTER(VCPU, deliver_virtio),
STATS_DESC_COUNTER(VCPU, deliver_stop_signal),
STATS_DESC_COUNTER(VCPU, deliver_prefix_signal),
STATS_DESC_COUNTER(VCPU, deliver_restart_signal),
STATS_DESC_COUNTER(VCPU, deliver_program),
STATS_DESC_COUNTER(VCPU, deliver_io),
STATS_DESC_COUNTER(VCPU, deliver_machine_check),
STATS_DESC_COUNTER(VCPU, exit_wait_state),
STATS_DESC_COUNTER(VCPU, inject_ckc),
STATS_DESC_COUNTER(VCPU, inject_cputm),
STATS_DESC_COUNTER(VCPU, inject_external_call),
STATS_DESC_COUNTER(VCPU, inject_emergency_signal),
STATS_DESC_COUNTER(VCPU, inject_mchk),
STATS_DESC_COUNTER(VCPU, inject_pfault_init),
STATS_DESC_COUNTER(VCPU, inject_program),
STATS_DESC_COUNTER(VCPU, inject_restart),
STATS_DESC_COUNTER(VCPU, inject_set_prefix),
STATS_DESC_COUNTER(VCPU, inject_stop_signal),
STATS_DESC_COUNTER(VCPU, instruction_epsw),
STATS_DESC_COUNTER(VCPU, instruction_gs),
STATS_DESC_COUNTER(VCPU, instruction_io_other),
STATS_DESC_COUNTER(VCPU, instruction_lpsw),
STATS_DESC_COUNTER(VCPU, instruction_lpswe),
STATS_DESC_COUNTER(VCPU, instruction_pfmf),
STATS_DESC_COUNTER(VCPU, instruction_ptff),
STATS_DESC_COUNTER(VCPU, instruction_sck),
STATS_DESC_COUNTER(VCPU, instruction_sckpf),
STATS_DESC_COUNTER(VCPU, instruction_stidp),
STATS_DESC_COUNTER(VCPU, instruction_spx),
STATS_DESC_COUNTER(VCPU, instruction_stpx),
STATS_DESC_COUNTER(VCPU, instruction_stap),
STATS_DESC_COUNTER(VCPU, instruction_iske),
STATS_DESC_COUNTER(VCPU, instruction_ri),
STATS_DESC_COUNTER(VCPU, instruction_rrbe),
STATS_DESC_COUNTER(VCPU, instruction_sske),
STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock),
STATS_DESC_COUNTER(VCPU, instruction_stsi),
STATS_DESC_COUNTER(VCPU, instruction_stfl),
STATS_DESC_COUNTER(VCPU, instruction_tb),
STATS_DESC_COUNTER(VCPU, instruction_tpi),
STATS_DESC_COUNTER(VCPU, instruction_tprot),
STATS_DESC_COUNTER(VCPU, instruction_tsch),
STATS_DESC_COUNTER(VCPU, instruction_sie),
STATS_DESC_COUNTER(VCPU, instruction_essa),
STATS_DESC_COUNTER(VCPU, instruction_sthyi),
STATS_DESC_COUNTER(VCPU, instruction_sigp_sense),
STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running),
STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call),
STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency),
STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency),
STATS_DESC_COUNTER(VCPU, instruction_sigp_start),
STATS_DESC_COUNTER(VCPU, instruction_sigp_stop),
STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status),
STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status),
STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status),
STATS_DESC_COUNTER(VCPU, instruction_sigp_arch),
STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix),
STATS_DESC_COUNTER(VCPU, instruction_sigp_restart),
STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset),
STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset),
STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown),
STATS_DESC_COUNTER(VCPU, instruction_diagnose_10),
STATS_DESC_COUNTER(VCPU, instruction_diagnose_44),
STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c),
STATS_DESC_COUNTER(VCPU, diag_9c_ignored),
STATS_DESC_COUNTER(VCPU, diag_9c_forward),
STATS_DESC_COUNTER(VCPU, instruction_diagnose_258),
STATS_DESC_COUNTER(VCPU, instruction_diagnose_308),
STATS_DESC_COUNTER(VCPU, instruction_diagnose_500),
STATS_DESC_COUNTER(VCPU, instruction_diagnose_other),
STATS_DESC_COUNTER(VCPU, pfault_sync)
};
const struct kvm_stats_header kvm_vcpu_stats_header = {
.name_size = KVM_STATS_NAME_SIZE,
.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
.id_offset = sizeof(struct kvm_stats_header),
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
sizeof(kvm_vcpu_stats_desc),
};
/* allow nested virtualization in KVM (if enabled by user space) */
static int nested;
module_param(nested, int, S_IRUGO);
MODULE_PARM_DESC(nested, "Nested virtualization support");
/* allow 1m huge page guest backing, if !nested */
static int hpage;
module_param(hpage, int, 0444);
MODULE_PARM_DESC(hpage, "1m huge page backing support");
/* maximum percentage of steal time for polling. >100 is treated like 100 */
static u8 halt_poll_max_steal = 10;
module_param(halt_poll_max_steal, byte, 0644);
MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling");
/* if set to true, the GISA will be initialized and used if available */
static bool use_gisa = true;
module_param(use_gisa, bool, 0644);
MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it.");
/* maximum diag9c forwarding per second */
unsigned int diag9c_forwarding_hz;
module_param(diag9c_forwarding_hz, uint, 0644);
MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off");
/*
* allow asynchronous deinit for protected guests; enable by default since
* the feature is opt-in anyway
*/
static int async_destroy = 1;
module_param(async_destroy, int, 0444);
MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests");
/*
* For now we handle at most 16 double words as this is what the s390 base
* kernel handles and stores in the prefix page. If we ever need to go beyond
* this, this requires changes to code, but the external uapi can stay.
*/
#define SIZE_INTERNAL 16
/*
* Base feature mask that defines default mask for facilities. Consists of the
* defines in FACILITIES_KVM and the non-hypervisor managed bits.
*/
static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM };
/*
* Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL
* and defines the facilities that can be enabled via a cpu model.
*/
static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL };
static unsigned long kvm_s390_fac_size(void)
{
BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64);
BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64);
BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) >
sizeof(stfle_fac_list));
return SIZE_INTERNAL;
}
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
static struct gmap_notifier gmap_notifier;
static struct gmap_notifier vsie_gmap_notifier;
debug_info_t *kvm_s390_dbf;
debug_info_t *kvm_s390_dbf_uv;
/* Section: not file related */
/* forward declarations */
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
unsigned long end);
static int sca_switch_to_extended(struct kvm *kvm);
static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta)
{
u8 delta_idx = 0;
/*
* The TOD jumps by delta, we have to compensate this by adding
* -delta to the epoch.
*/
delta = -delta;
/* sign-extension - we're adding to signed values below */
if ((s64)delta < 0)
delta_idx = -1;
scb->epoch += delta;
if (scb->ecd & ECD_MEF) {
scb->epdx += delta_idx;
if (scb->epoch < delta)
scb->epdx += 1;
}
}
/*
* This callback is executed during stop_machine(). All CPUs are therefore
* temporarily stopped. In order not to change guest behavior, we have to
* disable preemption whenever we touch the epoch of kvm and the VCPUs,
* so a CPU won't be stopped while calculating with the epoch.
*/
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
void *v)
{
struct kvm *kvm;
struct kvm_vcpu *vcpu;
unsigned long i;
unsigned long long *delta = v;
list_for_each_entry(kvm, &vm_list, vm_list) {
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_clock_sync_scb(vcpu->arch.sie_block, *delta);
if (i == 0) {
kvm->arch.epoch = vcpu->arch.sie_block->epoch;
kvm->arch.epdx = vcpu->arch.sie_block->epdx;
}
if (vcpu->arch.cputm_enabled)
vcpu->arch.cputm_start += *delta;
if (vcpu->arch.vsie_block)
kvm_clock_sync_scb(vcpu->arch.vsie_block,
*delta);
}
}
return NOTIFY_OK;
}
static struct notifier_block kvm_clock_notifier = {
.notifier_call = kvm_clock_sync,
};
static void allow_cpu_feat(unsigned long nr)
{
set_bit_inv(nr, kvm_s390_available_cpu_feat);
}
static inline int plo_test_bit(unsigned char nr)
{
unsigned long function = (unsigned long)nr | 0x100;
int cc;
asm volatile(
" lgr 0,%[function]\n"
/* Parameter registers are ignored for "test bit" */
" plo 0,0,0,0(0)\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (cc)
: [function] "d" (function)
: "cc", "0");
return cc == 0;
}
static __always_inline void __insn32_query(unsigned int opcode, u8 *query)
{
asm volatile(
" lghi 0,0\n"
" lgr 1,%[query]\n"
/* Parameter registers are ignored */
" .insn rrf,%[opc] << 16,2,4,6,0\n"
:
: [query] "d" ((unsigned long)query), [opc] "i" (opcode)
: "cc", "memory", "0", "1");
}
#define INSN_SORTL 0xb938
#define INSN_DFLTCC 0xb939
static void __init kvm_s390_cpu_feat_init(void)
{
int i;
for (i = 0; i < 256; ++i) {
if (plo_test_bit(i))
kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
}
if (test_facility(28)) /* TOD-clock steering */
ptff(kvm_s390_available_subfunc.ptff,
sizeof(kvm_s390_available_subfunc.ptff),
PTFF_QAF);
if (test_facility(17)) { /* MSA */
__cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
kvm_s390_available_subfunc.kmac);
__cpacf_query(CPACF_KMC, (cpacf_mask_t *)
kvm_s390_available_subfunc.kmc);
__cpacf_query(CPACF_KM, (cpacf_mask_t *)
kvm_s390_available_subfunc.km);
__cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
kvm_s390_available_subfunc.kimd);
__cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
kvm_s390_available_subfunc.klmd);
}
if (test_facility(76)) /* MSA3 */
__cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
kvm_s390_available_subfunc.pckmo);
if (test_facility(77)) { /* MSA4 */
__cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
kvm_s390_available_subfunc.kmctr);
__cpacf_query(CPACF_KMF, (cpacf_mask_t *)
kvm_s390_available_subfunc.kmf);
__cpacf_query(CPACF_KMO, (cpacf_mask_t *)
kvm_s390_available_subfunc.kmo);
__cpacf_query(CPACF_PCC, (cpacf_mask_t *)
kvm_s390_available_subfunc.pcc);
}
if (test_facility(57)) /* MSA5 */
__cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
kvm_s390_available_subfunc.ppno);
if (test_facility(146)) /* MSA8 */
__cpacf_query(CPACF_KMA, (cpacf_mask_t *)
kvm_s390_available_subfunc.kma);
if (test_facility(155)) /* MSA9 */
__cpacf_query(CPACF_KDSA, (cpacf_mask_t *)
kvm_s390_available_subfunc.kdsa);
if (test_facility(150)) /* SORTL */
__insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl);
if (test_facility(151)) /* DFLTCC */
__insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc);
if (MACHINE_HAS_ESOP)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
/*
* We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
* 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
*/
if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
!test_facility(3) || !nested)
return;
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
if (sclp.has_64bscao)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
if (sclp.has_siif)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
if (sclp.has_gpere)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
if (sclp.has_gsls)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
if (sclp.has_ib)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
if (sclp.has_cei)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
if (sclp.has_ibs)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
if (sclp.has_kss)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
/*
* KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
* all skey handling functions read/set the skey from the PGSTE
* instead of the real storage key.
*
* KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
* pages being detected as preserved although they are resident.
*
* KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
* have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
*
* For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
* KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
* correctly shadowed. We can do that for the PGSTE but not for PTE.I.
*
* KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
* cannot easily shadow the SCA because of the ipte lock.
*/
}
static int __init __kvm_s390_init(void)
{
int rc = -ENOMEM;
kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
if (!kvm_s390_dbf)
return -ENOMEM;
kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long));
if (!kvm_s390_dbf_uv)
goto err_kvm_uv;
if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) ||
debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view))
goto err_debug_view;
kvm_s390_cpu_feat_init();
/* Register floating interrupt controller interface. */
rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
if (rc) {
pr_err("A FLIC registration call failed with rc=%d\n", rc);
goto err_flic;
}
if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
rc = kvm_s390_pci_init();
if (rc) {
pr_err("Unable to allocate AIFT for PCI\n");
goto err_pci;
}
}
rc = kvm_s390_gib_init(GAL_ISC);
if (rc)
goto err_gib;
gmap_notifier.notifier_call = kvm_gmap_notifier;
gmap_register_pte_notifier(&gmap_notifier);
vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
gmap_register_pte_notifier(&vsie_gmap_notifier);
atomic_notifier_chain_register(&s390_epoch_delta_notifier,
&kvm_clock_notifier);
return 0;
err_gib:
if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
kvm_s390_pci_exit();
err_pci:
err_flic:
err_debug_view:
debug_unregister(kvm_s390_dbf_uv);
err_kvm_uv:
debug_unregister(kvm_s390_dbf);
return rc;
}
static void __kvm_s390_exit(void)
{
gmap_unregister_pte_notifier(&gmap_notifier);
gmap_unregister_pte_notifier(&vsie_gmap_notifier);
atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
&kvm_clock_notifier);
kvm_s390_gib_destroy();
if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
kvm_s390_pci_exit();
debug_unregister(kvm_s390_dbf);
debug_unregister(kvm_s390_dbf_uv);
}
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
if (ioctl == KVM_S390_ENABLE_SIE)
return s390_enable_sie();
return -EINVAL;
}
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
{
int r;
switch (ext) {
case KVM_CAP_S390_PSW:
case KVM_CAP_S390_GMAP:
case KVM_CAP_SYNC_MMU:
#ifdef CONFIG_KVM_S390_UCONTROL
case KVM_CAP_S390_UCONTROL:
#endif
case KVM_CAP_ASYNC_PF:
case KVM_CAP_SYNC_REGS:
case KVM_CAP_ONE_REG:
case KVM_CAP_ENABLE_CAP:
case KVM_CAP_S390_CSS_SUPPORT:
case KVM_CAP_IOEVENTFD:
case KVM_CAP_S390_IRQCHIP:
case KVM_CAP_VM_ATTRIBUTES:
case KVM_CAP_MP_STATE:
case KVM_CAP_IMMEDIATE_EXIT:
case KVM_CAP_S390_INJECT_IRQ:
case KVM_CAP_S390_USER_SIGP:
case KVM_CAP_S390_USER_STSI:
case KVM_CAP_S390_SKEYS:
case KVM_CAP_S390_IRQ_STATE:
case KVM_CAP_S390_USER_INSTR0:
case KVM_CAP_S390_CMMA_MIGRATION:
case KVM_CAP_S390_AIS:
case KVM_CAP_S390_AIS_MIGRATION:
case KVM_CAP_S390_VCPU_RESETS:
case KVM_CAP_SET_GUEST_DEBUG:
case KVM_CAP_S390_DIAG318:
case KVM_CAP_IRQFD_RESAMPLE:
r = 1;
break;
case KVM_CAP_SET_GUEST_DEBUG2:
r = KVM_GUESTDBG_VALID_MASK;
break;
case KVM_CAP_S390_HPAGE_1M:
r = 0;
if (hpage && !kvm_is_ucontrol(kvm))
r = 1;
break;
case KVM_CAP_S390_MEM_OP:
r = MEM_OP_MAX_SIZE;
break;
case KVM_CAP_S390_MEM_OP_EXTENSION:
/*
* Flag bits indicating which extensions are supported.
* If r > 0, the base extension must also be supported/indicated,
* in order to maintain backwards compatibility.
*/
r = KVM_S390_MEMOP_EXTENSION_CAP_BASE |
KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG;
break;
case KVM_CAP_NR_VCPUS:
case KVM_CAP_MAX_VCPUS:
case KVM_CAP_MAX_VCPU_ID:
r = KVM_S390_BSCA_CPU_SLOTS;
if (!kvm_s390_use_sca_entries())
r = KVM_MAX_VCPUS;
else if (sclp.has_esca && sclp.has_64bscao)
r = KVM_S390_ESCA_CPU_SLOTS;
if (ext == KVM_CAP_NR_VCPUS)
r = min_t(unsigned int, num_online_cpus(), r);
break;
case KVM_CAP_S390_COW:
r = MACHINE_HAS_ESOP;
break;
case KVM_CAP_S390_VECTOR_REGISTERS:
r = test_facility(129);
break;
case KVM_CAP_S390_RI:
r = test_facility(64);
break;
case KVM_CAP_S390_GS:
r = test_facility(133);
break;
case KVM_CAP_S390_BPB:
r = test_facility(82);
break;
case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE:
r = async_destroy && is_prot_virt_host();
break;
case KVM_CAP_S390_PROTECTED:
r = is_prot_virt_host();
break;
case KVM_CAP_S390_PROTECTED_DUMP: {
u64 pv_cmds_dump[] = {
BIT_UVC_CMD_DUMP_INIT,
BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE,
BIT_UVC_CMD_DUMP_CPU,
BIT_UVC_CMD_DUMP_COMPLETE,
};
int i;
r = is_prot_virt_host();
for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) {
if (!test_bit_inv(pv_cmds_dump[i],
(unsigned long *)&uv_info.inst_calls_list)) {
r = 0;
break;
}
}
break;
}
case KVM_CAP_S390_ZPCI_OP:
r = kvm_s390_pci_interp_allowed();
break;
case KVM_CAP_S390_CPU_TOPOLOGY:
r = test_facility(11);
break;
default:
r = 0;
}
return r;
}
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
{
int i;
gfn_t cur_gfn, last_gfn;
unsigned long gaddr, vmaddr;
struct gmap *gmap = kvm->arch.gmap;
DECLARE_BITMAP(bitmap, _PAGE_ENTRIES);
/* Loop over all guest segments */
cur_gfn = memslot->base_gfn;
last_gfn = memslot->base_gfn + memslot->npages;
for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) {
gaddr = gfn_to_gpa(cur_gfn);
vmaddr = gfn_to_hva_memslot(memslot, cur_gfn);
if (kvm_is_error_hva(vmaddr))
continue;
bitmap_zero(bitmap, _PAGE_ENTRIES);
gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr);
for (i = 0; i < _PAGE_ENTRIES; i++) {
if (test_bit(i, bitmap))
mark_page_dirty(kvm, cur_gfn + i);
}
if (fatal_signal_pending(current))
return;
cond_resched();
}
}
/* Section: vm related */
static void sca_del_vcpu(struct kvm_vcpu *vcpu);
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log)
{
int r;
unsigned long n;
struct kvm_memory_slot *memslot;
int is_dirty;
if (kvm_is_ucontrol(kvm))
return -EINVAL;
mutex_lock(&kvm->slots_lock);
r = -EINVAL;
if (log->slot >= KVM_USER_MEM_SLOTS)
goto out;
r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
if (r)
goto out;
/* Clear the dirty log */
if (is_dirty) {
n = kvm_dirty_bitmap_bytes(memslot);
memset(memslot->dirty_bitmap, 0, n);
}
r = 0;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
{
unsigned long i;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
}
}
int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
int r;
if (cap->flags)
return -EINVAL;
switch (cap->cap) {
case KVM_CAP_S390_IRQCHIP:
VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
kvm->arch.use_irqchip = 1;
r = 0;
break;
case KVM_CAP_S390_USER_SIGP:
VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
kvm->arch.user_sigp = 1;
r = 0;
break;
case KVM_CAP_S390_VECTOR_REGISTERS:
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
r = -EBUSY;
} else if (cpu_has_vx()) {
set_kvm_facility(kvm->arch.model.fac_mask, 129);
set_kvm_facility(kvm->arch.model.fac_list, 129);
if (test_facility(134)) {
set_kvm_facility(kvm->arch.model.fac_mask, 134);
set_kvm_facility(kvm->arch.model.fac_list, 134);
}
if (test_facility(135)) {
set_kvm_facility(kvm->arch.model.fac_mask, 135);
set_kvm_facility(kvm->arch.model.fac_list, 135);
}
if (test_facility(148)) {
set_kvm_facility(kvm->arch.model.fac_mask, 148);
set_kvm_facility(kvm->arch.model.fac_list, 148);
}
if (test_facility(152)) {
set_kvm_facility(kvm->arch.model.fac_mask, 152);
set_kvm_facility(kvm->arch.model.fac_list, 152);
}
if (test_facility(192)) {
set_kvm_facility(kvm->arch.model.fac_mask, 192);
set_kvm_facility(kvm->arch.model.fac_list, 192);
}
r = 0;
} else
r = -EINVAL;
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
r ? "(not available)" : "(success)");
break;
case KVM_CAP_S390_RI:
r = -EINVAL;
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
r = -EBUSY;
} else if (test_facility(64)) {
set_kvm_facility(kvm->arch.model.fac_mask, 64);
set_kvm_facility(kvm->arch.model.fac_list, 64);
r = 0;
}
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
r ? "(not available)" : "(success)");
break;
case KVM_CAP_S390_AIS:
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
r = -EBUSY;
} else {
set_kvm_facility(kvm->arch.model.fac_mask, 72);
set_kvm_facility(kvm->arch.model.fac_list, 72);
r = 0;
}
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "ENABLE: AIS %s",
r ? "(not available)" : "(success)");
break;
case KVM_CAP_S390_GS:
r = -EINVAL;
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
r = -EBUSY;
} else if (test_facility(133)) {
set_kvm_facility(kvm->arch.model.fac_mask, 133);
set_kvm_facility(kvm->arch.model.fac_list, 133);
r = 0;
}
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
r ? "(not available)" : "(success)");
break;
case KVM_CAP_S390_HPAGE_1M:
mutex_lock(&kvm->lock);
if (kvm->created_vcpus)
r = -EBUSY;
else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm))
r = -EINVAL;
else {
r = 0;
mmap_write_lock(kvm->mm);
kvm->mm->context.allow_gmap_hpage_1m = 1;
mmap_write_unlock(kvm->mm);
/*
* We might have to create fake 4k page
* tables. To avoid that the hardware works on
* stale PGSTEs, we emulate these instructions.
*/
kvm->arch.use_skf = 0;
kvm->arch.use_pfmfi = 0;
}
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s",
r ? "(not available)" : "(success)");
break;
case KVM_CAP_S390_USER_STSI:
VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
kvm->arch.user_stsi = 1;
r = 0;
break;
case KVM_CAP_S390_USER_INSTR0:
VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
kvm->arch.user_instr0 = 1;
icpt_operexc_on_all_vcpus(kvm);
r = 0;
break;
case KVM_CAP_S390_CPU_TOPOLOGY:
r = -EINVAL;
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
r = -EBUSY;
} else if (test_facility(11)) {
set_kvm_facility(kvm->arch.model.fac_mask, 11);
set_kvm_facility(kvm->arch.model.fac_list, 11);
r = 0;
}
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s",
r ? "(not available)" : "(success)");
break;
default:
r = -EINVAL;
break;
}
return r;
}
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
switch (attr->attr) {
case KVM_S390_VM_MEM_LIMIT_SIZE:
ret = 0;
VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
kvm->arch.mem_limit);
if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
ret = -EFAULT;
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
unsigned int idx;
switch (attr->attr) {
case KVM_S390_VM_MEM_ENABLE_CMMA:
ret = -ENXIO;
if (!sclp.has_cmma)
break;
VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
mutex_lock(&kvm->lock);
if (kvm->created_vcpus)
ret = -EBUSY;
else if (kvm->mm->context.allow_gmap_hpage_1m)
ret = -EINVAL;
else {
kvm->arch.use_cmma = 1;
/* Not compatible with cmma. */
kvm->arch.use_pfmfi = 0;
ret = 0;
}
mutex_unlock(&kvm->lock);
break;
case KVM_S390_VM_MEM_CLR_CMMA:
ret = -ENXIO;
if (!sclp.has_cmma)
break;
ret = -EINVAL;
if (!kvm->arch.use_cmma)
break;
VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
mutex_lock(&kvm->lock);
idx = srcu_read_lock(&kvm->srcu);
s390_reset_cmma(kvm->arch.gmap->mm);
srcu_read_unlock(&kvm->srcu, idx);
mutex_unlock(&kvm->lock);
ret = 0;
break;
case KVM_S390_VM_MEM_LIMIT_SIZE: {
unsigned long new_limit;
if (kvm_is_ucontrol(kvm))
return -EINVAL;
if (get_user(new_limit, (u64 __user *)attr->addr))
return -EFAULT;
if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
new_limit > kvm->arch.mem_limit)
return -E2BIG;
if (!new_limit)
return -EINVAL;
/* gmap_create takes last usable address */
if (new_limit != KVM_S390_NO_MEM_LIMIT)
new_limit -= 1;
ret = -EBUSY;
mutex_lock(&kvm->lock);
if (!kvm->created_vcpus) {
/* gmap_create will round the limit up */
struct gmap *new = gmap_create(current->mm, new_limit);
if (!new) {
ret = -ENOMEM;
} else {
gmap_remove(kvm->arch.gmap);
new->private = kvm;
kvm->arch.gmap = new;
ret = 0;
}
}
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
(void *) kvm->arch.gmap->asce);
break;
}
default:
ret = -ENXIO;
break;
}
return ret;
}
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
unsigned long i;
kvm_s390_vcpu_block_all(kvm);
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_s390_vcpu_crypto_setup(vcpu);
/* recreate the shadow crycb by leaving the VSIE handler */
kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
}
kvm_s390_vcpu_unblock_all(kvm);
}
static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
mutex_lock(&kvm->lock);
switch (attr->attr) {
case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
if (!test_kvm_facility(kvm, 76)) {
mutex_unlock(&kvm->lock);
return -EINVAL;
}
get_random_bytes(
kvm->arch.crypto.crycb->aes_wrapping_key_mask,
sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
kvm->arch.crypto.aes_kw = 1;
VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
break;
case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
if (!test_kvm_facility(kvm, 76)) {
mutex_unlock(&kvm->lock);
return -EINVAL;
}
get_random_bytes(
kvm->arch.crypto.crycb->dea_wrapping_key_mask,
sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
kvm->arch.crypto.dea_kw = 1;
VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
break;
case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
if (!test_kvm_facility(kvm, 76)) {
mutex_unlock(&kvm->lock);
return -EINVAL;
}
kvm->arch.crypto.aes_kw = 0;
memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
break;
case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
if (!test_kvm_facility(kvm, 76)) {
mutex_unlock(&kvm->lock);
return -EINVAL;
}
kvm->arch.crypto.dea_kw = 0;
memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
break;
case KVM_S390_VM_CRYPTO_ENABLE_APIE:
if (!ap_instructions_available()) {
mutex_unlock(&kvm->lock);
return -EOPNOTSUPP;
}
kvm->arch.crypto.apie = 1;
break;
case KVM_S390_VM_CRYPTO_DISABLE_APIE:
if (!ap_instructions_available()) {
mutex_unlock(&kvm->lock);
return -EOPNOTSUPP;
}
kvm->arch.crypto.apie = 0;
break;
default:
mutex_unlock(&kvm->lock);
return -ENXIO;
}
kvm_s390_vcpu_crypto_reset_all(kvm);
mutex_unlock(&kvm->lock);
return 0;
}
static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu)
{
/* Only set the ECB bits after guest requests zPCI interpretation */
if (!vcpu->kvm->arch.use_zpci_interp)
return;
vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI;
vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI;
}
void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
unsigned long i;
lockdep_assert_held(&kvm->lock);
if (!kvm_s390_pci_interp_allowed())
return;
/*
* If host is configured for PCI and the necessary facilities are
* available, turn on interpretation for the life of this guest
*/
kvm->arch.use_zpci_interp = 1;
kvm_s390_vcpu_block_all(kvm);
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_s390_vcpu_pci_setup(vcpu);
kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
}
kvm_s390_vcpu_unblock_all(kvm);
}
static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
{
unsigned long cx;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(cx, vcpu, kvm)
kvm_s390_sync_request(req, vcpu);
}
/*
* Must be called with kvm->srcu held to avoid races on memslots, and with
* kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
*/
static int kvm_s390_vm_start_migration(struct kvm *kvm)
{
struct kvm_memory_slot *ms;
struct kvm_memslots *slots;
unsigned long ram_pages = 0;
int bkt;
/* migration mode already enabled */
if (kvm->arch.migration_mode)
return 0;
slots = kvm_memslots(kvm);
if (!slots || kvm_memslots_empty(slots))
return -EINVAL;
if (!kvm->arch.use_cmma) {
kvm->arch.migration_mode = 1;
return 0;
}
/* mark all the pages in active slots as dirty */
kvm_for_each_memslot(ms, bkt, slots) {
if (!ms->dirty_bitmap)
return -EINVAL;
/*
* The second half of the bitmap is only used on x86,
* and would be wasted otherwise, so we put it to good
* use here to keep track of the state of the storage
* attributes.
*/
memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms));
ram_pages += ms->npages;
}
atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages);
kvm->arch.migration_mode = 1;
kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
return 0;
}
/*
* Must be called with kvm->slots_lock to avoid races with ourselves and
* kvm_s390_vm_start_migration.
*/
static int kvm_s390_vm_stop_migration(struct kvm *kvm)
{
/* migration mode already disabled */
if (!kvm->arch.migration_mode)
return 0;
kvm->arch.migration_mode = 0;
if (kvm->arch.use_cmma)
kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
return 0;
}
static int kvm_s390_vm_set_migration(struct kvm *kvm,
struct kvm_device_attr *attr)
{
int res = -ENXIO;
mutex_lock(&kvm->slots_lock);
switch (attr->attr) {
case KVM_S390_VM_MIGRATION_START:
res = kvm_s390_vm_start_migration(kvm);
break;
case KVM_S390_VM_MIGRATION_STOP:
res = kvm_s390_vm_stop_migration(kvm);
break;
default:
break;
}
mutex_unlock(&kvm->slots_lock);
return res;
}
static int kvm_s390_vm_get_migration(struct kvm *kvm,
struct kvm_device_attr *attr)
{
u64 mig = kvm->arch.migration_mode;
if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
return -ENXIO;
if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
return -EFAULT;
return 0;
}
static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod);
static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_vm_tod_clock gtod;
if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
return -EFAULT;
if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx)
return -EINVAL;
__kvm_s390_set_tod_clock(kvm, &gtod);
VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
gtod.epoch_idx, gtod.tod);
return 0;
}
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
u8 gtod_high;
if (copy_from_user(&gtod_high, (void __user *)attr->addr,
sizeof(gtod_high)))
return -EFAULT;
if (gtod_high != 0)
return -EINVAL;
VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
return 0;
}
static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_vm_tod_clock gtod = { 0 };
if (copy_from_user(&gtod.tod, (void __user *)attr->addr,
sizeof(gtod.tod)))
return -EFAULT;
__kvm_s390_set_tod_clock(kvm, &gtod);
VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod);
return 0;
}
static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
if (attr->flags)
return -EINVAL;
mutex_lock(&kvm->lock);
/*
* For protected guests, the TOD is managed by the ultravisor, so trying
* to change it will never bring the expected results.
*/
if (kvm_s390_pv_is_protected(kvm)) {
ret = -EOPNOTSUPP;
goto out_unlock;
}
switch (attr->attr) {
case KVM_S390_VM_TOD_EXT:
ret = kvm_s390_set_tod_ext(kvm, attr);
break;
case KVM_S390_VM_TOD_HIGH:
ret = kvm_s390_set_tod_high(kvm, attr);
break;
case KVM_S390_VM_TOD_LOW:
ret = kvm_s390_set_tod_low(kvm, attr);
break;
default:
ret = -ENXIO;
break;
}
out_unlock:
mutex_unlock(&kvm->lock);
return ret;
}
static void kvm_s390_get_tod_clock(struct kvm *kvm,
struct kvm_s390_vm_tod_clock *gtod)
{
union tod_clock clk;
preempt_disable();
store_tod_clock_ext(&clk);
gtod->tod = clk.tod + kvm->arch.epoch;
gtod->epoch_idx = 0;
if (test_kvm_facility(kvm, 139)) {
gtod->epoch_idx = clk.ei + kvm->arch.epdx;
if (gtod->tod < clk.tod)
gtod->epoch_idx += 1;
}
preempt_enable();
}
static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_vm_tod_clock gtod;
memset(&gtod, 0, sizeof(gtod));
kvm_s390_get_tod_clock(kvm, &gtod);
if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
return -EFAULT;
VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
gtod.epoch_idx, gtod.tod);
return 0;
}
static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
u8 gtod_high = 0;
if (copy_to_user((void __user *)attr->addr, &gtod_high,
sizeof(gtod_high)))
return -EFAULT;
VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
return 0;
}
static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
u64 gtod;
gtod = kvm_s390_get_tod_clock_fast(kvm);
if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
return -EFAULT;
VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
return 0;
}
static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
if (attr->flags)
return -EINVAL;
switch (attr->attr) {
case KVM_S390_VM_TOD_EXT:
ret = kvm_s390_get_tod_ext(kvm, attr);
break;
case KVM_S390_VM_TOD_HIGH:
ret = kvm_s390_get_tod_high(kvm, attr);
break;
case KVM_S390_VM_TOD_LOW:
ret = kvm_s390_get_tod_low(kvm, attr);
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_vm_cpu_processor *proc;
u16 lowest_ibc, unblocked_ibc;
int ret = 0;
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
ret = -EBUSY;
goto out;
}
proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
if (!proc) {
ret = -ENOMEM;
goto out;
}
if (!copy_from_user(proc, (void __user *)attr->addr,
sizeof(*proc))) {
kvm->arch.model.cpuid = proc->cpuid;
lowest_ibc = sclp.ibc >> 16 & 0xfff;
unblocked_ibc = sclp.ibc & 0xfff;
if (lowest_ibc && proc->ibc) {
if (proc->ibc > unblocked_ibc)
kvm->arch.model.ibc = unblocked_ibc;
else if (proc->ibc < lowest_ibc)
kvm->arch.model.ibc = lowest_ibc;
else
kvm->arch.model.ibc = proc->ibc;
}
memcpy(kvm->arch.model.fac_list, proc->fac_list,
S390_ARCH_FAC_LIST_SIZE_BYTE);
VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
kvm->arch.model.ibc,
kvm->arch.model.cpuid);
VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
kvm->arch.model.fac_list[0],
kvm->arch.model.fac_list[1],
kvm->arch.model.fac_list[2]);
} else
ret = -EFAULT;
kfree(proc);
out:
mutex_unlock(&kvm->lock);
return ret;
}
static int kvm_s390_set_processor_feat(struct kvm *kvm,
struct kvm_device_attr *attr)
{
struct kvm_s390_vm_cpu_feat data;
if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
return -EFAULT;
if (!bitmap_subset((unsigned long *) data.feat,
kvm_s390_available_cpu_feat,
KVM_S390_VM_CPU_FEAT_NR_BITS))
return -EINVAL;
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
mutex_unlock(&kvm->lock);
return -EBUSY;
}
bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
data.feat[0],
data.feat[1],
data.feat[2]);
return 0;
}
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
struct kvm_device_attr *attr)
{
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
mutex_unlock(&kvm->lock);
return -EBUSY;
}
if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr,
sizeof(struct kvm_s390_vm_cpu_subfunc))) {
mutex_unlock(&kvm->lock);
return -EFAULT;
}
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
return 0;
}
#define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \
( \
((struct kvm_s390_vm_cpu_uv_feat){ \
.ap = 1, \
.ap_intr = 1, \
}) \
.feat \
)
static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr;
unsigned long data, filter;
filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
if (get_user(data, &ptr->feat))
return -EFAULT;
if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS))
return -EINVAL;
mutex_lock(&kvm->lock);
if (kvm->created_vcpus) {
mutex_unlock(&kvm->lock);
return -EBUSY;
}
kvm->arch.model.uv_feat_guest.feat = data;
mutex_unlock(&kvm->lock);
VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data);
return 0;
}
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret = -ENXIO;
switch (attr->attr) {
case KVM_S390_VM_CPU_PROCESSOR:
ret = kvm_s390_set_processor(kvm, attr);
break;
case KVM_S390_VM_CPU_PROCESSOR_FEAT:
ret = kvm_s390_set_processor_feat(kvm, attr);
break;
case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
ret = kvm_s390_set_processor_subfunc(kvm, attr);
break;
case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
ret = kvm_s390_set_uv_feat(kvm, attr);
break;
}
return ret;
}
static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_vm_cpu_processor *proc;
int ret = 0;
proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
if (!proc) {
ret = -ENOMEM;
goto out;
}
proc->cpuid = kvm->arch.model.cpuid;
proc->ibc = kvm->arch.model.ibc;
memcpy(&proc->fac_list, kvm->arch.model.fac_list,
S390_ARCH_FAC_LIST_SIZE_BYTE);
VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
kvm->arch.model.ibc,
kvm->arch.model.cpuid);
VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
kvm->arch.model.fac_list[0],
kvm->arch.model.fac_list[1],
kvm->arch.model.fac_list[2]);
if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
ret = -EFAULT;
kfree(proc);
out:
return ret;
}
static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_vm_cpu_machine *mach;
int ret = 0;
mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT);
if (!mach) {
ret = -ENOMEM;
goto out;
}
get_cpu_id((struct cpuid *) &mach->cpuid);
mach->ibc = sclp.ibc;
memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
S390_ARCH_FAC_LIST_SIZE_BYTE);
memcpy((unsigned long *)&mach->fac_list, stfle_fac_list,
sizeof(stfle_fac_list));
VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx",
kvm->arch.model.ibc,
kvm->arch.model.cpuid);
VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx",
mach->fac_mask[0],
mach->fac_mask[1],
mach->fac_mask[2]);
VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx",
mach->fac_list[0],
mach->fac_list[1],
mach->fac_list[2]);
if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
ret = -EFAULT;
kfree(mach);
out:
return ret;
}
static int kvm_s390_get_processor_feat(struct kvm *kvm,
struct kvm_device_attr *attr)
{
struct kvm_s390_vm_cpu_feat data;
bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
return -EFAULT;
VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
data.feat[0],
data.feat[1],
data.feat[2]);
return 0;
}
static int kvm_s390_get_machine_feat(struct kvm *kvm,
struct kvm_device_attr *attr)
{
struct kvm_s390_vm_cpu_feat data;
bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
return -EFAULT;
VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
data.feat[0],
data.feat[1],
data.feat[2]);
return 0;
}
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
struct kvm_device_attr *attr)
{
if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs,
sizeof(struct kvm_s390_vm_cpu_subfunc)))
return -EFAULT;
VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
return 0;
}
static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
struct kvm_device_attr *attr)
{
if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
sizeof(struct kvm_s390_vm_cpu_subfunc)))
return -EFAULT;
VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.plo)[0],
((unsigned long *) &kvm_s390_available_subfunc.plo)[1],
((unsigned long *) &kvm_s390_available_subfunc.plo)[2],
((unsigned long *) &kvm_s390_available_subfunc.plo)[3]);
VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.ptff)[0],
((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]);
VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kmac)[0],
((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]);
VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kmc)[0],
((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]);
VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.km)[0],
((unsigned long *) &kvm_s390_available_subfunc.km)[1]);
VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kimd)[0],
((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]);
VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.klmd)[0],
((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]);
VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0],
((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]);
VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0],
((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]);
VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kmf)[0],
((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]);
VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kmo)[0],
((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]);
VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.pcc)[0],
((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]);
VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.ppno)[0],
((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]);
VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kma)[0],
((unsigned long *) &kvm_s390_available_subfunc.kma)[1]);
VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0],
((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]);
VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.sortl)[0],
((unsigned long *) &kvm_s390_available_subfunc.sortl)[1],
((unsigned long *) &kvm_s390_available_subfunc.sortl)[2],
((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]);
VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0],
((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1],
((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2],
((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]);
return 0;
}
static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
unsigned long feat = kvm->arch.model.uv_feat_guest.feat;
if (put_user(feat, &dst->feat))
return -EFAULT;
VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
return 0;
}
static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
{
struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
unsigned long feat;
BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications));
feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
if (put_user(feat, &dst->feat))
return -EFAULT;
VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
return 0;
}
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret = -ENXIO;
switch (attr->attr) {
case KVM_S390_VM_CPU_PROCESSOR:
ret = kvm_s390_get_processor(kvm, attr);
break;
case KVM_S390_VM_CPU_MACHINE:
ret = kvm_s390_get_machine(kvm, attr);
break;
case KVM_S390_VM_CPU_PROCESSOR_FEAT:
ret = kvm_s390_get_processor_feat(kvm, attr);
break;
case KVM_S390_VM_CPU_MACHINE_FEAT:
ret = kvm_s390_get_machine_feat(kvm, attr);
break;
case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
ret = kvm_s390_get_processor_subfunc(kvm, attr);
break;
case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
ret = kvm_s390_get_machine_subfunc(kvm, attr);
break;
case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
ret = kvm_s390_get_processor_uv_feat(kvm, attr);
break;
case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
ret = kvm_s390_get_machine_uv_feat(kvm, attr);
break;
}
return ret;
}
/**
* kvm_s390_update_topology_change_report - update CPU topology change report
* @kvm: guest KVM description
* @val: set or clear the MTCR bit
*
* Updates the Multiprocessor Topology-Change-Report bit to signal
* the guest with a topology change.
* This is only relevant if the topology facility is present.
*
* The SCA version, bsca or esca, doesn't matter as offset is the same.
*/
static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val)
{
union sca_utility new, old;
struct bsca_block *sca;
read_lock(&kvm->arch.sca_lock);
sca = kvm->arch.sca;
do {
old = READ_ONCE(sca->utility);
new = old;
new.mtcr = val;
} while (cmpxchg(&sca->utility.val, old.val, new.val) != old.val);
read_unlock(&kvm->arch.sca_lock);
}
static int kvm_s390_set_topo_change_indication(struct kvm *kvm,
struct kvm_device_attr *attr)
{
if (!test_kvm_facility(kvm, 11))
return -ENXIO;
kvm_s390_update_topology_change_report(kvm, !!attr->attr);
return 0;
}
static int kvm_s390_get_topo_change_indication(struct kvm *kvm,
struct kvm_device_attr *attr)
{
u8 topo;
if (!test_kvm_facility(kvm, 11))
return -ENXIO;
read_lock(&kvm->arch.sca_lock);
topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr;
read_unlock(&kvm->arch.sca_lock);
return put_user(topo, (u8 __user *)attr->addr);
}
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
switch (attr->group) {
case KVM_S390_VM_MEM_CTRL:
ret = kvm_s390_set_mem_control(kvm, attr);
break;
case KVM_S390_VM_TOD:
ret = kvm_s390_set_tod(kvm, attr);
break;
case KVM_S390_VM_CPU_MODEL:
ret = kvm_s390_set_cpu_model(kvm, attr);
break;
case KVM_S390_VM_CRYPTO:
ret = kvm_s390_vm_set_crypto(kvm, attr);
break;
case KVM_S390_VM_MIGRATION:
ret = kvm_s390_vm_set_migration(kvm, attr);
break;
case KVM_S390_VM_CPU_TOPOLOGY:
ret = kvm_s390_set_topo_change_indication(kvm, attr);
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
switch (attr->group) {
case KVM_S390_VM_MEM_CTRL:
ret = kvm_s390_get_mem_control(kvm, attr);
break;
case KVM_S390_VM_TOD:
ret = kvm_s390_get_tod(kvm, attr);
break;
case KVM_S390_VM_CPU_MODEL:
ret = kvm_s390_get_cpu_model(kvm, attr);
break;
case KVM_S390_VM_MIGRATION:
ret = kvm_s390_vm_get_migration(kvm, attr);
break;
case KVM_S390_VM_CPU_TOPOLOGY:
ret = kvm_s390_get_topo_change_indication(kvm, attr);
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
int ret;
switch (attr->group) {
case KVM_S390_VM_MEM_CTRL:
switch (attr->attr) {
case KVM_S390_VM_MEM_ENABLE_CMMA:
case KVM_S390_VM_MEM_CLR_CMMA:
ret = sclp.has_cmma ? 0 : -ENXIO;
break;
case KVM_S390_VM_MEM_LIMIT_SIZE:
ret = 0;
break;
default:
ret = -ENXIO;
break;
}
break;
case KVM_S390_VM_TOD:
switch (attr->attr) {
case KVM_S390_VM_TOD_LOW:
case KVM_S390_VM_TOD_HIGH:
ret = 0;
break;
default:
ret = -ENXIO;
break;
}
break;
case KVM_S390_VM_CPU_MODEL:
switch (attr->attr) {
case KVM_S390_VM_CPU_PROCESSOR:
case KVM_S390_VM_CPU_MACHINE:
case KVM_S390_VM_CPU_PROCESSOR_FEAT:
case KVM_S390_VM_CPU_MACHINE_FEAT:
case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
ret = 0;
break;
default:
ret = -ENXIO;
break;
}
break;
case KVM_S390_VM_CRYPTO:
switch (attr->attr) {
case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
ret = 0;
break;
case KVM_S390_VM_CRYPTO_ENABLE_APIE:
case KVM_S390_VM_CRYPTO_DISABLE_APIE:
ret = ap_instructions_available() ? 0 : -ENXIO;
break;
default:
ret = -ENXIO;
break;
}
break;
case KVM_S390_VM_MIGRATION:
ret = 0;
break;
case KVM_S390_VM_CPU_TOPOLOGY:
ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO;
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
uint8_t *keys;
uint64_t hva;
int srcu_idx, i, r = 0;
if (args->flags != 0)
return -EINVAL;
/* Is this guest using storage keys? */
if (!mm_uses_skeys(current->mm))
return KVM_S390_GET_SKEYS_NONE;
/* Enforce sane limit on memory allocation */
if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
return -EINVAL;
keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
if (!keys)
return -ENOMEM;
mmap_read_lock(current->mm);
srcu_idx = srcu_read_lock(&kvm->srcu);
for (i = 0; i < args->count; i++) {
hva = gfn_to_hva(kvm, args->start_gfn + i);
if (kvm_is_error_hva(hva)) {
r = -EFAULT;
break;
}
r = get_guest_storage_key(current->mm, hva, &keys[i]);
if (r)
break;
}
srcu_read_unlock(&kvm->srcu, srcu_idx);
mmap_read_unlock(current->mm);
if (!r) {
r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
sizeof(uint8_t) * args->count);
if (r)
r = -EFAULT;
}
kvfree(keys);
return r;
}
static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
uint8_t *keys;
uint64_t hva;
int srcu_idx, i, r = 0;
bool unlocked;
if (args->flags != 0)
return -EINVAL;
/* Enforce sane limit on memory allocation */
if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
return -EINVAL;
keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
if (!keys)
return -ENOMEM;
r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
sizeof(uint8_t) * args->count);
if (r) {
r = -EFAULT;
goto out;
}
/* Enable storage key handling for the guest */
r = s390_enable_skey();
if (r)
goto out;
i = 0;
mmap_read_lock(current->mm);
srcu_idx = srcu_read_lock(&kvm->srcu);
while (i < args->count) {
unlocked = false;
hva = gfn_to_hva(kvm, args->start_gfn + i);
if (kvm_is_error_hva(hva)) {
r = -EFAULT;
break;
}
/* Lowest order bit is reserved */
if (keys[i] & 0x01) {
r = -EINVAL;
break;
}
r = set_guest_storage_key(current->mm, hva, keys[i], 0);
if (r) {
r = fixup_user_fault(current->mm, hva,
FAULT_FLAG_WRITE, &unlocked);
if (r)
break;
}
if (!r)
i++;
}
srcu_read_unlock(&kvm->srcu, srcu_idx);
mmap_read_unlock(current->mm);
out:
kvfree(keys);
return r;
}
/*
* Base address and length must be sent at the start of each block, therefore
* it's cheaper to send some clean data, as long as it's less than the size of
* two longs.
*/
#define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *))
/* for consistency */
#define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX)
static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
u8 *res, unsigned long bufsize)
{
unsigned long pgstev, hva, cur_gfn = args->start_gfn;
args->count = 0;
while (args->count < bufsize) {
hva = gfn_to_hva(kvm, cur_gfn);
/*
* We return an error if the first value was invalid, but we
* return successfully if at least one value was copied.
*/
if (kvm_is_error_hva(hva))
return args->count ? 0 : -EFAULT;
if (get_pgste(kvm->mm, hva, &pgstev) < 0)
pgstev = 0;
res[args->count++] = (pgstev >> 24) & 0x43;
cur_gfn++;
}
return 0;
}
static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots,
gfn_t gfn)
{
return ____gfn_to_memslot(slots, gfn, true);
}
static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots,
unsigned long cur_gfn)
{
struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn);
unsigned long ofs = cur_gfn - ms->base_gfn;
struct rb_node *mnode = &ms->gfn_node[slots->node_idx];
if (ms->base_gfn + ms->npages <= cur_gfn) {
mnode = rb_next(mnode);
/* If we are above the highest slot, wrap around */
if (!mnode)
mnode = rb_first(&slots->gfn_tree);
ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
ofs = 0;
}
if (cur_gfn < ms->base_gfn)
ofs = 0;
ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs);
while (ofs >= ms->npages && (mnode = rb_next(mnode))) {
ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages);
}
return ms->base_gfn + ofs;
}
static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
u8 *res, unsigned long bufsize)
{
unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev;
struct kvm_memslots *slots = kvm_memslots(kvm);
struct kvm_memory_slot *ms;
if (unlikely(kvm_memslots_empty(slots)))
return 0;
cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn);
ms = gfn_to_memslot(kvm, cur_gfn);
args->count = 0;
args->start_gfn = cur_gfn;
if (!ms)
return 0;
next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
mem_end = kvm_s390_get_gfn_end(slots);
while (args->count < bufsize) {
hva = gfn_to_hva(kvm, cur_gfn);
if (kvm_is_error_hva(hva))
return 0;
/* Decrement only if we actually flipped the bit to 0 */
if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms)))
atomic64_dec(&kvm->arch.cmma_dirty_pages);
if (get_pgste(kvm->mm, hva, &pgstev) < 0)
pgstev = 0;
/* Save the value */
res[args->count++] = (pgstev >> 24) & 0x43;
/* If the next bit is too far away, stop. */
if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE)
return 0;
/* If we reached the previous "next", find the next one */
if (cur_gfn == next_gfn)
next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
/* Reached the end of memory or of the buffer, stop */
if ((next_gfn >= mem_end) ||
(next_gfn - args->start_gfn >= bufsize))
return 0;
cur_gfn++;
/* Reached the end of the current memslot, take the next one. */
if (cur_gfn - ms->base_gfn >= ms->npages) {
ms = gfn_to_memslot(kvm, cur_gfn);
if (!ms)
return 0;
}
}
return 0;
}
/*
* This function searches for the next page with dirty CMMA attributes, and
* saves the attributes in the buffer up to either the end of the buffer or
* until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
* no trailing clean bytes are saved.
* In case no dirty bits were found, or if CMMA was not enabled or used, the
* output buffer will indicate 0 as length.
*/
static int kvm_s390_get_cmma_bits(struct kvm *kvm,
struct kvm_s390_cmma_log *args)
{
unsigned long bufsize;
int srcu_idx, peek, ret;
u8 *values;
if (!kvm->arch.use_cmma)
return -ENXIO;
/* Invalid/unsupported flags were specified */
if (args->flags & ~KVM_S390_CMMA_PEEK)
return -EINVAL;
/* Migration mode query, and we are not doing a migration */
peek = !!(args->flags & KVM_S390_CMMA_PEEK);
if (!peek && !kvm->arch.migration_mode)
return -EINVAL;
/* CMMA is disabled or was not used, or the buffer has length zero */
bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX);
if (!bufsize || !kvm->mm->context.uses_cmm) {
memset(args, 0, sizeof(*args));
return 0;
}
/* We are not peeking, and there are no dirty pages */
if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) {
memset(args, 0, sizeof(*args));
return 0;
}
values = vmalloc(bufsize);
if (!values)
return -ENOMEM;
mmap_read_lock(kvm->mm);
srcu_idx = srcu_read_lock(&kvm->srcu);
if (peek)
ret = kvm_s390_peek_cmma(kvm, args, values, bufsize);
else
ret = kvm_s390_get_cmma(kvm, args, values, bufsize);
srcu_read_unlock(&kvm->srcu, srcu_idx);
mmap_read_unlock(kvm->mm);
if (kvm->arch.migration_mode)
args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages);
else
args->remaining = 0;
if (copy_to_user((void __user *)args->values, values, args->count))
ret = -EFAULT;
vfree(values);
return ret;
}
/*
* This function sets the CMMA attributes for the given pages. If the input
* buffer has zero length, no action is taken, otherwise the attributes are
* set and the mm->context.uses_cmm flag is set.
*/
static int kvm_s390_set_cmma_bits(struct kvm *kvm,
const struct kvm_s390_cmma_log *args)
{
unsigned long hva, mask, pgstev, i;
uint8_t *bits;
int srcu_idx, r = 0;
mask = args->mask;
if (!kvm->arch.use_cmma)
return -ENXIO;
/* invalid/unsupported flags */
if (args->flags != 0)
return -EINVAL;
/* Enforce sane limit on memory allocation */
if (args->count > KVM_S390_CMMA_SIZE_MAX)
return -EINVAL;
/* Nothing to do */
if (args->count == 0)
return 0;
bits = vmalloc(array_size(sizeof(*bits), args->count));
if (!bits)
return -ENOMEM;
r = copy_from_user(bits, (void __user *)args->values, args->count);
if (r) {
r = -EFAULT;
goto out;
}
mmap_read_lock(kvm->mm);
srcu_idx = srcu_read_lock(&kvm->srcu);
for (i = 0; i < args->count; i++) {
hva = gfn_to_hva(kvm, args->start_gfn + i);
if (kvm_is_error_hva(hva)) {
r = -EFAULT;
break;
}
pgstev = bits[i];
pgstev = pgstev << 24;
mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT;
set_pgste_bits(kvm->mm, hva, mask, pgstev);
}
srcu_read_unlock(&kvm->srcu, srcu_idx);
mmap_read_unlock(kvm->mm);
if (!kvm->mm->context.uses_cmm) {
mmap_write_lock(kvm->mm);
kvm->mm->context.uses_cmm = 1;
mmap_write_unlock(kvm->mm);
}
out:
vfree(bits);
return r;
}
/**
* kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to
* non protected.
* @kvm: the VM whose protected vCPUs are to be converted
* @rc: return value for the RC field of the UVC (in case of error)
* @rrc: return value for the RRC field of the UVC (in case of error)
*
* Does not stop in case of error, tries to convert as many
* CPUs as possible. In case of error, the RC and RRC of the last error are
* returned.
*
* Return: 0 in case of success, otherwise -EIO
*/
int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
{
struct kvm_vcpu *vcpu;
unsigned long i;
u16 _rc, _rrc;
int ret = 0;
/*
* We ignore failures and try to destroy as many CPUs as possible.
* At the same time we must not free the assigned resources when
* this fails, as the ultravisor has still access to that memory.
* So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak
* behind.
* We want to return the first failure rc and rrc, though.
*/
kvm_for_each_vcpu(i, vcpu, kvm) {
mutex_lock(&vcpu->mutex);
if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) {
*rc = _rc;
*rrc = _rrc;
ret = -EIO;
}
mutex_unlock(&vcpu->mutex);
}
/* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */
if (use_gisa)
kvm_s390_gisa_enable(kvm);
return ret;
}
/**
* kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM
* to protected.
* @kvm: the VM whose protected vCPUs are to be converted
* @rc: return value for the RC field of the UVC (in case of error)
* @rrc: return value for the RRC field of the UVC (in case of error)
*
* Tries to undo the conversion in case of error.
*
* Return: 0 in case of success, otherwise -EIO
*/
static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
{
unsigned long i;
int r = 0;
u16 dummy;
struct kvm_vcpu *vcpu;
/* Disable the GISA if the ultravisor does not support AIV. */
if (!uv_has_feature(BIT_UV_FEAT_AIV))
kvm_s390_gisa_disable(kvm);
kvm_for_each_vcpu(i, vcpu, kvm) {
mutex_lock(&vcpu->mutex);
r = kvm_s390_pv_create_cpu(vcpu, rc, rrc);
mutex_unlock(&vcpu->mutex);
if (r)
break;
}
if (r)
kvm_s390_cpus_from_pv(kvm, &dummy, &dummy);
return r;
}
/*
* Here we provide user space with a direct interface to query UV
* related data like UV maxima and available features as well as
* feature specific data.
*
* To facilitate future extension of the data structures we'll try to
* write data up to the maximum requested length.
*/
static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info)
{
ssize_t len_min;
switch (info->header.id) {
case KVM_PV_INFO_VM: {
len_min = sizeof(info->header) + sizeof(info->vm);
if (info->header.len_max < len_min)
return -EINVAL;
memcpy(info->vm.inst_calls_list,
uv_info.inst_calls_list,
sizeof(uv_info.inst_calls_list));
/* It's max cpuid not max cpus, so it's off by one */
info->vm.max_cpus = uv_info.max_guest_cpu_id + 1;
info->vm.max_guests = uv_info.max_num_sec_conf;
info->vm.max_guest_addr = uv_info.max_sec_stor_addr;
info->vm.feature_indication = uv_info.uv_feature_indications;
return len_min;
}
case KVM_PV_INFO_DUMP: {
len_min = sizeof(info->header) + sizeof(info->dump);
if (info->header.len_max < len_min)
return -EINVAL;
info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len;
info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len;
info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len;
return len_min;
}
default:
return -EINVAL;
}
}
static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd,
struct kvm_s390_pv_dmp dmp)
{
int r = -EINVAL;
void __user *result_buff = (void __user *)dmp.buff_addr;
switch (dmp.subcmd) {
case KVM_PV_DUMP_INIT: {
if (kvm->arch.pv.dumping)
break;
/*
* Block SIE entry as concurrent dump UVCs could lead
* to validities.
*/
kvm_s390_vcpu_block_all(kvm);
r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc);
KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x",
cmd->rc, cmd->rrc);
if (!r) {
kvm->arch.pv.dumping = true;
} else {
kvm_s390_vcpu_unblock_all(kvm);
r = -EINVAL;
}
break;
}
case KVM_PV_DUMP_CONFIG_STOR_STATE: {
if (!kvm->arch.pv.dumping)
break;
/*
* gaddr is an output parameter since we might stop
* early. As dmp will be copied back in our caller, we
* don't need to do it ourselves.
*/
r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len,
&cmd->rc, &cmd->rrc);
break;
}
case KVM_PV_DUMP_COMPLETE: {
if (!kvm->arch.pv.dumping)
break;
r = -EINVAL;
if (dmp.buff_len < uv_info.conf_dump_finalize_len)
break;
r = kvm_s390_pv_dump_complete(kvm, result_buff,
&cmd->rc, &cmd->rrc);
break;
}
default:
r = -ENOTTY;
break;
}
return r;
}
static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd)
{
const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM);
void __user *argp = (void __user *)cmd->data;
int r = 0;
u16 dummy;
if (need_lock)
mutex_lock(&kvm->lock);
switch (cmd->cmd) {
case KVM_PV_ENABLE: {
r = -EINVAL;
if (kvm_s390_pv_is_protected(kvm))
break;
/*
* FMT 4 SIE needs esca. As we never switch back to bsca from
* esca, we need no cleanup in the error cases below
*/
r = sca_switch_to_extended(kvm);
if (r)
break;
mmap_write_lock(current->mm);
r = gmap_mark_unmergeable();
mmap_write_unlock(current->mm);
if (r)
break;
r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc);
if (r)
break;
r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc);
if (r)
kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy);
/* we need to block service interrupts from now on */
set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
break;
}
case KVM_PV_ASYNC_CLEANUP_PREPARE:
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm) || !async_destroy)
break;
r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
/*
* If a CPU could not be destroyed, destroy VM will also fail.
* There is no point in trying to destroy it. Instead return
* the rc and rrc from the first CPU that failed destroying.
*/
if (r)
break;
r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc);
/* no need to block service interrupts any more */
clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
break;
case KVM_PV_ASYNC_CLEANUP_PERFORM:
r = -EINVAL;
if (!async_destroy)
break;
/* kvm->lock must not be held; this is asserted inside the function. */
r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc);
break;
case KVM_PV_DISABLE: {
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm))
break;
r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
/*
* If a CPU could not be destroyed, destroy VM will also fail.
* There is no point in trying to destroy it. Instead return
* the rc and rrc from the first CPU that failed destroying.
*/
if (r)
break;
r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc);
/* no need to block service interrupts any more */
clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
break;
}
case KVM_PV_SET_SEC_PARMS: {
struct kvm_s390_pv_sec_parm parms = {};
void *hdr;
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm))
break;
r = -EFAULT;
if (copy_from_user(&parms, argp, sizeof(parms)))
break;
/* Currently restricted to 8KB */
r = -EINVAL;
if (parms.length > PAGE_SIZE * 2)
break;
r = -ENOMEM;
hdr = vmalloc(parms.length);
if (!hdr)
break;
r = -EFAULT;
if (!copy_from_user(hdr, (void __user *)parms.origin,
parms.length))
r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length,
&cmd->rc, &cmd->rrc);
vfree(hdr);
break;
}
case KVM_PV_UNPACK: {
struct kvm_s390_pv_unp unp = {};
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm))
break;
r = -EFAULT;
if (copy_from_user(&unp, argp, sizeof(unp)))
break;
r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak,
&cmd->rc, &cmd->rrc);
break;
}
case KVM_PV_VERIFY: {
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm))
break;
r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc);
KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc,
cmd->rrc);
break;
}
case KVM_PV_PREP_RESET: {
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm))
break;
r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc);
KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x",
cmd->rc, cmd->rrc);
break;
}
case KVM_PV_UNSHARE_ALL: {
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm))
break;
r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc);
KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x",
cmd->rc, cmd->rrc);
break;
}
case KVM_PV_INFO: {
struct kvm_s390_pv_info info = {};
ssize_t data_len;
/*
* No need to check the VM protection here.
*
* Maybe user space wants to query some of the data
* when the VM is still unprotected. If we see the
* need to fence a new data command we can still
* return an error in the info handler.
*/
r = -EFAULT;
if (copy_from_user(&info, argp, sizeof(info.header)))
break;
r = -EINVAL;
if (info.header.len_max < sizeof(info.header))
break;
data_len = kvm_s390_handle_pv_info(&info);
if (data_len < 0) {
r = data_len;
break;
}
/*
* If a data command struct is extended (multiple
* times) this can be used to determine how much of it
* is valid.
*/
info.header.len_written = data_len;
r = -EFAULT;
if (copy_to_user(argp, &info, data_len))
break;
r = 0;
break;
}
case KVM_PV_DUMP: {
struct kvm_s390_pv_dmp dmp;
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm))
break;
r = -EFAULT;
if (copy_from_user(&dmp, argp, sizeof(dmp)))
break;
r = kvm_s390_pv_dmp(kvm, cmd, dmp);
if (r)
break;
if (copy_to_user(argp, &dmp, sizeof(dmp))) {
r = -EFAULT;
break;
}
break;
}
default:
r = -ENOTTY;
}
if (need_lock)
mutex_unlock(&kvm->lock);
return r;
}
static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags)
{
if (mop->flags & ~supported_flags || !mop->size)
return -EINVAL;
if (mop->size > MEM_OP_MAX_SIZE)
return -E2BIG;
if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) {
if (mop->key > 0xf