blob: 823843cd261339a3d200d5f2884c98c8a7d442ab [file] [log] [blame]
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include <linux/slab.h>
#include "dm_services.h"
#include "atom.h"
#include "dc_bios_types.h"
#include "include/gpio_service_interface.h"
#include "include/grph_object_ctrl_defs.h"
#include "include/bios_parser_interface.h"
#include "include/i2caux_interface.h"
#include "include/logger_interface.h"
#include "command_table.h"
#include "bios_parser_helper.h"
#include "command_table_helper.h"
#include "bios_parser.h"
#include "bios_parser_types_internal.h"
#include "bios_parser_interface.h"
#include "bios_parser_common.h"
#include "dc.h"
#define THREE_PERCENT_OF_10000 300
#define LAST_RECORD_TYPE 0xff
#define DC_LOGGER \
bp->base.ctx->logger
#define DATA_TABLES(table) (bp->master_data_tbl->ListOfDataTables.table)
static void get_atom_data_table_revision(
ATOM_COMMON_TABLE_HEADER *atom_data_tbl,
struct atom_data_revision *tbl_revision);
static uint32_t get_src_obj_list(struct bios_parser *bp, ATOM_OBJECT *object,
uint16_t **id_list);
static ATOM_OBJECT *get_bios_object(struct bios_parser *bp,
struct graphics_object_id id);
static enum bp_result get_gpio_i2c_info(struct bios_parser *bp,
ATOM_I2C_RECORD *record,
struct graphics_object_i2c_info *info);
static ATOM_HPD_INT_RECORD *get_hpd_record(struct bios_parser *bp,
ATOM_OBJECT *object);
static struct device_id device_type_from_device_id(uint16_t device_id);
static uint32_t signal_to_ss_id(enum as_signal_type signal);
static uint32_t get_support_mask_for_device_id(struct device_id device_id);
static ATOM_ENCODER_CAP_RECORD_V2 *get_encoder_cap_record(
struct bios_parser *bp,
ATOM_OBJECT *object);
#define BIOS_IMAGE_SIZE_OFFSET 2
#define BIOS_IMAGE_SIZE_UNIT 512
/*****************************************************************************/
static bool bios_parser_construct(
struct bios_parser *bp,
struct bp_init_data *init,
enum dce_version dce_version);
static uint8_t bios_parser_get_connectors_number(
struct dc_bios *dcb);
static enum bp_result bios_parser_get_embedded_panel_info(
struct dc_bios *dcb,
struct embedded_panel_info *info);
/*****************************************************************************/
struct dc_bios *bios_parser_create(
struct bp_init_data *init,
enum dce_version dce_version)
{
struct bios_parser *bp = NULL;
bp = kzalloc(sizeof(struct bios_parser), GFP_KERNEL);
if (!bp)
return NULL;
if (bios_parser_construct(bp, init, dce_version))
return &bp->base;
kfree(bp);
BREAK_TO_DEBUGGER();
return NULL;
}
static void destruct(struct bios_parser *bp)
{
kfree(bp->base.bios_local_image);
kfree(bp->base.integrated_info);
}
static void bios_parser_destroy(struct dc_bios **dcb)
{
struct bios_parser *bp = BP_FROM_DCB(*dcb);
if (!bp) {
BREAK_TO_DEBUGGER();
return;
}
destruct(bp);
kfree(bp);
*dcb = NULL;
}
static uint8_t get_number_of_objects(struct bios_parser *bp, uint32_t offset)
{
ATOM_OBJECT_TABLE *table;
uint32_t object_table_offset = bp->object_info_tbl_offset + offset;
table = GET_IMAGE(ATOM_OBJECT_TABLE, object_table_offset);
if (!table)
return 0;
else
return table->ucNumberOfObjects;
}
static uint8_t bios_parser_get_connectors_number(struct dc_bios *dcb)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
return get_number_of_objects(bp,
le16_to_cpu(bp->object_info_tbl.v1_1->usConnectorObjectTableOffset));
}
static struct graphics_object_id bios_parser_get_connector_id(
struct dc_bios *dcb,
uint8_t i)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct graphics_object_id object_id = dal_graphics_object_id_init(
0, ENUM_ID_UNKNOWN, OBJECT_TYPE_UNKNOWN);
uint16_t id;
uint32_t connector_table_offset = bp->object_info_tbl_offset
+ le16_to_cpu(bp->object_info_tbl.v1_1->usConnectorObjectTableOffset);
ATOM_OBJECT_TABLE *tbl =
GET_IMAGE(ATOM_OBJECT_TABLE, connector_table_offset);
if (!tbl) {
dm_error("Can't get connector table from atom bios.\n");
return object_id;
}
if (tbl->ucNumberOfObjects <= i) {
dm_error("Can't find connector id %d in connector table of size %d.\n",
i, tbl->ucNumberOfObjects);
return object_id;
}
id = le16_to_cpu(tbl->asObjects[i].usObjectID);
object_id = object_id_from_bios_object_id(id);
return object_id;
}
static enum bp_result bios_parser_get_src_obj(struct dc_bios *dcb,
struct graphics_object_id object_id, uint32_t index,
struct graphics_object_id *src_object_id)
{
uint32_t number;
uint16_t *id;
ATOM_OBJECT *object;
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!src_object_id)
return BP_RESULT_BADINPUT;
object = get_bios_object(bp, object_id);
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object id */
return BP_RESULT_BADINPUT;
}
number = get_src_obj_list(bp, object, &id);
if (number <= index)
return BP_RESULT_BADINPUT;
*src_object_id = object_id_from_bios_object_id(id[index]);
return BP_RESULT_OK;
}
static enum bp_result bios_parser_get_i2c_info(struct dc_bios *dcb,
struct graphics_object_id id,
struct graphics_object_i2c_info *info)
{
uint32_t offset;
ATOM_OBJECT *object;
ATOM_COMMON_RECORD_HEADER *header;
ATOM_I2C_RECORD *record;
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!info)
return BP_RESULT_BADINPUT;
object = get_bios_object(bp, id);
if (!object)
return BP_RESULT_BADINPUT;
offset = le16_to_cpu(object->usRecordOffset)
+ bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset);
if (!header)
return BP_RESULT_BADBIOSTABLE;
if (LAST_RECORD_TYPE == header->ucRecordType ||
!header->ucRecordSize)
break;
if (ATOM_I2C_RECORD_TYPE == header->ucRecordType
&& sizeof(ATOM_I2C_RECORD) <= header->ucRecordSize) {
/* get the I2C info */
record = (ATOM_I2C_RECORD *) header;
if (get_gpio_i2c_info(bp, record, info) == BP_RESULT_OK)
return BP_RESULT_OK;
}
offset += header->ucRecordSize;
}
return BP_RESULT_NORECORD;
}
static enum bp_result bios_parser_get_hpd_info(struct dc_bios *dcb,
struct graphics_object_id id,
struct graphics_object_hpd_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
ATOM_OBJECT *object;
ATOM_HPD_INT_RECORD *record = NULL;
if (!info)
return BP_RESULT_BADINPUT;
object = get_bios_object(bp, id);
if (!object)
return BP_RESULT_BADINPUT;
record = get_hpd_record(bp, object);
if (record != NULL) {
info->hpd_int_gpio_uid = record->ucHPDIntGPIOID;
info->hpd_active = record->ucPlugged_PinState;
return BP_RESULT_OK;
}
return BP_RESULT_NORECORD;
}
static enum bp_result bios_parser_get_device_tag_record(
struct bios_parser *bp,
ATOM_OBJECT *object,
ATOM_CONNECTOR_DEVICE_TAG_RECORD **record)
{
ATOM_COMMON_RECORD_HEADER *header;
uint32_t offset;
offset = le16_to_cpu(object->usRecordOffset)
+ bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset);
if (!header)
return BP_RESULT_BADBIOSTABLE;
offset += header->ucRecordSize;
if (LAST_RECORD_TYPE == header->ucRecordType ||
!header->ucRecordSize)
break;
if (ATOM_CONNECTOR_DEVICE_TAG_RECORD_TYPE !=
header->ucRecordType)
continue;
if (sizeof(ATOM_CONNECTOR_DEVICE_TAG) > header->ucRecordSize)
continue;
*record = (ATOM_CONNECTOR_DEVICE_TAG_RECORD *) header;
return BP_RESULT_OK;
}
return BP_RESULT_NORECORD;
}
static enum bp_result bios_parser_get_device_tag(
struct dc_bios *dcb,
struct graphics_object_id connector_object_id,
uint32_t device_tag_index,
struct connector_device_tag_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
ATOM_OBJECT *object;
ATOM_CONNECTOR_DEVICE_TAG_RECORD *record = NULL;
ATOM_CONNECTOR_DEVICE_TAG *device_tag;
if (!info)
return BP_RESULT_BADINPUT;
/* getBiosObject will return MXM object */
object = get_bios_object(bp, connector_object_id);
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object id */
return BP_RESULT_BADINPUT;
}
if (bios_parser_get_device_tag_record(bp, object, &record)
!= BP_RESULT_OK)
return BP_RESULT_NORECORD;
if (device_tag_index >= record->ucNumberOfDevice)
return BP_RESULT_NORECORD;
device_tag = &record->asDeviceTag[device_tag_index];
info->acpi_device = le32_to_cpu(device_tag->ulACPIDeviceEnum);
info->dev_id =
device_type_from_device_id(le16_to_cpu(device_tag->usDeviceID));
return BP_RESULT_OK;
}
static enum bp_result get_firmware_info_v1_4(
struct bios_parser *bp,
struct dc_firmware_info *info);
static enum bp_result get_firmware_info_v2_1(
struct bios_parser *bp,
struct dc_firmware_info *info);
static enum bp_result get_firmware_info_v2_2(
struct bios_parser *bp,
struct dc_firmware_info *info);
static enum bp_result bios_parser_get_firmware_info(
struct dc_bios *dcb,
struct dc_firmware_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
enum bp_result result = BP_RESULT_BADBIOSTABLE;
ATOM_COMMON_TABLE_HEADER *header;
struct atom_data_revision revision;
if (info && DATA_TABLES(FirmwareInfo)) {
header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER,
DATA_TABLES(FirmwareInfo));
get_atom_data_table_revision(header, &revision);
switch (revision.major) {
case 1:
switch (revision.minor) {
case 4:
result = get_firmware_info_v1_4(bp, info);
break;
default:
break;
}
break;
case 2:
switch (revision.minor) {
case 1:
result = get_firmware_info_v2_1(bp, info);
break;
case 2:
result = get_firmware_info_v2_2(bp, info);
break;
default:
break;
}
break;
default:
break;
}
}
return result;
}
static enum bp_result get_firmware_info_v1_4(
struct bios_parser *bp,
struct dc_firmware_info *info)
{
ATOM_FIRMWARE_INFO_V1_4 *firmware_info =
GET_IMAGE(ATOM_FIRMWARE_INFO_V1_4,
DATA_TABLES(FirmwareInfo));
if (!info)
return BP_RESULT_BADINPUT;
if (!firmware_info)
return BP_RESULT_BADBIOSTABLE;
memset(info, 0, sizeof(*info));
/* Pixel clock pll information. We need to convert from 10KHz units into
* KHz units */
info->pll_info.crystal_frequency =
le16_to_cpu(firmware_info->usReferenceClock) * 10;
info->pll_info.min_input_pxl_clk_pll_frequency =
le16_to_cpu(firmware_info->usMinPixelClockPLL_Input) * 10;
info->pll_info.max_input_pxl_clk_pll_frequency =
le16_to_cpu(firmware_info->usMaxPixelClockPLL_Input) * 10;
info->pll_info.min_output_pxl_clk_pll_frequency =
le32_to_cpu(firmware_info->ulMinPixelClockPLL_Output) * 10;
info->pll_info.max_output_pxl_clk_pll_frequency =
le32_to_cpu(firmware_info->ulMaxPixelClockPLL_Output) * 10;
if (firmware_info->usFirmwareCapability.sbfAccess.MemoryClockSS_Support)
/* Since there is no information on the SS, report conservative
* value 3% for bandwidth calculation */
/* unit of 0.01% */
info->feature.memory_clk_ss_percentage = THREE_PERCENT_OF_10000;
if (firmware_info->usFirmwareCapability.sbfAccess.EngineClockSS_Support)
/* Since there is no information on the SS,report conservative
* value 3% for bandwidth calculation */
/* unit of 0.01% */
info->feature.engine_clk_ss_percentage = THREE_PERCENT_OF_10000;
return BP_RESULT_OK;
}
static enum bp_result get_ss_info_v3_1(
struct bios_parser *bp,
uint32_t id,
uint32_t index,
struct spread_spectrum_info *ss_info);
static enum bp_result get_firmware_info_v2_1(
struct bios_parser *bp,
struct dc_firmware_info *info)
{
ATOM_FIRMWARE_INFO_V2_1 *firmwareInfo =
GET_IMAGE(ATOM_FIRMWARE_INFO_V2_1, DATA_TABLES(FirmwareInfo));
struct spread_spectrum_info internalSS;
uint32_t index;
if (!info)
return BP_RESULT_BADINPUT;
if (!firmwareInfo)
return BP_RESULT_BADBIOSTABLE;
memset(info, 0, sizeof(*info));
/* Pixel clock pll information. We need to convert from 10KHz units into
* KHz units */
info->pll_info.crystal_frequency =
le16_to_cpu(firmwareInfo->usCoreReferenceClock) * 10;
info->pll_info.min_input_pxl_clk_pll_frequency =
le16_to_cpu(firmwareInfo->usMinPixelClockPLL_Input) * 10;
info->pll_info.max_input_pxl_clk_pll_frequency =
le16_to_cpu(firmwareInfo->usMaxPixelClockPLL_Input) * 10;
info->pll_info.min_output_pxl_clk_pll_frequency =
le32_to_cpu(firmwareInfo->ulMinPixelClockPLL_Output) * 10;
info->pll_info.max_output_pxl_clk_pll_frequency =
le32_to_cpu(firmwareInfo->ulMaxPixelClockPLL_Output) * 10;
info->default_display_engine_pll_frequency =
le32_to_cpu(firmwareInfo->ulDefaultDispEngineClkFreq) * 10;
info->external_clock_source_frequency_for_dp =
le16_to_cpu(firmwareInfo->usUniphyDPModeExtClkFreq) * 10;
info->min_allowed_bl_level = firmwareInfo->ucMinAllowedBL_Level;
/* There should be only one entry in the SS info table for Memory Clock
*/
index = 0;
if (firmwareInfo->usFirmwareCapability.sbfAccess.MemoryClockSS_Support)
/* Since there is no information for external SS, report
* conservative value 3% for bandwidth calculation */
/* unit of 0.01% */
info->feature.memory_clk_ss_percentage = THREE_PERCENT_OF_10000;
else if (get_ss_info_v3_1(bp,
ASIC_INTERNAL_MEMORY_SS, index, &internalSS) == BP_RESULT_OK) {
if (internalSS.spread_spectrum_percentage) {
info->feature.memory_clk_ss_percentage =
internalSS.spread_spectrum_percentage;
if (internalSS.type.CENTER_MODE) {
/* if it is centermode, the exact SS Percentage
* will be round up of half of the percentage
* reported in the SS table */
++info->feature.memory_clk_ss_percentage;
info->feature.memory_clk_ss_percentage /= 2;
}
}
}
/* There should be only one entry in the SS info table for Engine Clock
*/
index = 1;
if (firmwareInfo->usFirmwareCapability.sbfAccess.EngineClockSS_Support)
/* Since there is no information for external SS, report
* conservative value 3% for bandwidth calculation */
/* unit of 0.01% */
info->feature.engine_clk_ss_percentage = THREE_PERCENT_OF_10000;
else if (get_ss_info_v3_1(bp,
ASIC_INTERNAL_ENGINE_SS, index, &internalSS) == BP_RESULT_OK) {
if (internalSS.spread_spectrum_percentage) {
info->feature.engine_clk_ss_percentage =
internalSS.spread_spectrum_percentage;
if (internalSS.type.CENTER_MODE) {
/* if it is centermode, the exact SS Percentage
* will be round up of half of the percentage
* reported in the SS table */
++info->feature.engine_clk_ss_percentage;
info->feature.engine_clk_ss_percentage /= 2;
}
}
}
return BP_RESULT_OK;
}
static enum bp_result get_firmware_info_v2_2(
struct bios_parser *bp,
struct dc_firmware_info *info)
{
ATOM_FIRMWARE_INFO_V2_2 *firmware_info;
struct spread_spectrum_info internal_ss;
uint32_t index;
if (!info)
return BP_RESULT_BADINPUT;
firmware_info = GET_IMAGE(ATOM_FIRMWARE_INFO_V2_2,
DATA_TABLES(FirmwareInfo));
if (!firmware_info)
return BP_RESULT_BADBIOSTABLE;
memset(info, 0, sizeof(*info));
/* Pixel clock pll information. We need to convert from 10KHz units into
* KHz units */
info->pll_info.crystal_frequency =
le16_to_cpu(firmware_info->usCoreReferenceClock) * 10;
info->pll_info.min_input_pxl_clk_pll_frequency =
le16_to_cpu(firmware_info->usMinPixelClockPLL_Input) * 10;
info->pll_info.max_input_pxl_clk_pll_frequency =
le16_to_cpu(firmware_info->usMaxPixelClockPLL_Input) * 10;
info->pll_info.min_output_pxl_clk_pll_frequency =
le32_to_cpu(firmware_info->ulMinPixelClockPLL_Output) * 10;
info->pll_info.max_output_pxl_clk_pll_frequency =
le32_to_cpu(firmware_info->ulMaxPixelClockPLL_Output) * 10;
info->default_display_engine_pll_frequency =
le32_to_cpu(firmware_info->ulDefaultDispEngineClkFreq) * 10;
info->external_clock_source_frequency_for_dp =
le16_to_cpu(firmware_info->usUniphyDPModeExtClkFreq) * 10;
/* There should be only one entry in the SS info table for Memory Clock
*/
index = 0;
if (firmware_info->usFirmwareCapability.sbfAccess.MemoryClockSS_Support)
/* Since there is no information for external SS, report
* conservative value 3% for bandwidth calculation */
/* unit of 0.01% */
info->feature.memory_clk_ss_percentage = THREE_PERCENT_OF_10000;
else if (get_ss_info_v3_1(bp,
ASIC_INTERNAL_MEMORY_SS, index, &internal_ss) == BP_RESULT_OK) {
if (internal_ss.spread_spectrum_percentage) {
info->feature.memory_clk_ss_percentage =
internal_ss.spread_spectrum_percentage;
if (internal_ss.type.CENTER_MODE) {
/* if it is centermode, the exact SS Percentage
* will be round up of half of the percentage
* reported in the SS table */
++info->feature.memory_clk_ss_percentage;
info->feature.memory_clk_ss_percentage /= 2;
}
}
}
/* There should be only one entry in the SS info table for Engine Clock
*/
index = 1;
if (firmware_info->usFirmwareCapability.sbfAccess.EngineClockSS_Support)
/* Since there is no information for external SS, report
* conservative value 3% for bandwidth calculation */
/* unit of 0.01% */
info->feature.engine_clk_ss_percentage = THREE_PERCENT_OF_10000;
else if (get_ss_info_v3_1(bp,
ASIC_INTERNAL_ENGINE_SS, index, &internal_ss) == BP_RESULT_OK) {
if (internal_ss.spread_spectrum_percentage) {
info->feature.engine_clk_ss_percentage =
internal_ss.spread_spectrum_percentage;
if (internal_ss.type.CENTER_MODE) {
/* if it is centermode, the exact SS Percentage
* will be round up of half of the percentage
* reported in the SS table */
++info->feature.engine_clk_ss_percentage;
info->feature.engine_clk_ss_percentage /= 2;
}
}
}
/* Remote Display */
info->remote_display_config = firmware_info->ucRemoteDisplayConfig;
/* Is allowed minimum BL level */
info->min_allowed_bl_level = firmware_info->ucMinAllowedBL_Level;
/* Used starting from CI */
info->smu_gpu_pll_output_freq =
(uint32_t) (le32_to_cpu(firmware_info->ulGPUPLL_OutputFreq) * 10);
return BP_RESULT_OK;
}
static enum bp_result get_ss_info_v3_1(
struct bios_parser *bp,
uint32_t id,
uint32_t index,
struct spread_spectrum_info *ss_info)
{
ATOM_ASIC_INTERNAL_SS_INFO_V3 *ss_table_header_include;
ATOM_ASIC_SS_ASSIGNMENT_V3 *tbl;
uint32_t table_size;
uint32_t i;
uint32_t table_index = 0;
if (!ss_info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(ASIC_InternalSS_Info))
return BP_RESULT_UNSUPPORTED;
ss_table_header_include = GET_IMAGE(ATOM_ASIC_INTERNAL_SS_INFO_V3,
DATA_TABLES(ASIC_InternalSS_Info));
table_size =
(le16_to_cpu(ss_table_header_include->sHeader.usStructureSize)
- sizeof(ATOM_COMMON_TABLE_HEADER))
/ sizeof(ATOM_ASIC_SS_ASSIGNMENT_V3);
tbl = (ATOM_ASIC_SS_ASSIGNMENT_V3 *)
&ss_table_header_include->asSpreadSpectrum[0];
memset(ss_info, 0, sizeof(struct spread_spectrum_info));
for (i = 0; i < table_size; i++) {
if (tbl[i].ucClockIndication != (uint8_t) id)
continue;
if (table_index != index) {
table_index++;
continue;
}
/* VBIOS introduced new defines for Version 3, same values as
* before, so now use these new ones for Version 3.
* Shouldn't affect field VBIOS's V3 as define values are still
* same.
* #define SS_MODE_V3_CENTRE_SPREAD_MASK 0x01
* #define SS_MODE_V3_EXTERNAL_SS_MASK 0x02
* Old VBIOS defines:
* #define ATOM_SS_CENTRE_SPREAD_MODE_MASK 0x00000001
* #define ATOM_EXTERNAL_SS_MASK 0x00000002
*/
if (SS_MODE_V3_EXTERNAL_SS_MASK & tbl[i].ucSpreadSpectrumMode)
ss_info->type.EXTERNAL = true;
if (SS_MODE_V3_CENTRE_SPREAD_MASK & tbl[i].ucSpreadSpectrumMode)
ss_info->type.CENTER_MODE = true;
/* Older VBIOS (in field) always provides SS percentage in 0.01%
* units set Divider to 100 */
ss_info->spread_percentage_divider = 100;
/* #define SS_MODE_V3_PERCENTAGE_DIV_BY_1000_MASK 0x10 */
if (SS_MODE_V3_PERCENTAGE_DIV_BY_1000_MASK
& tbl[i].ucSpreadSpectrumMode)
ss_info->spread_percentage_divider = 1000;
ss_info->type.STEP_AND_DELAY_INFO = false;
/* convert [10KHz] into [KHz] */
ss_info->target_clock_range =
le32_to_cpu(tbl[i].ulTargetClockRange) * 10;
ss_info->spread_spectrum_percentage =
(uint32_t)le16_to_cpu(tbl[i].usSpreadSpectrumPercentage);
ss_info->spread_spectrum_range =
(uint32_t)(le16_to_cpu(tbl[i].usSpreadRateIn10Hz) * 10);
return BP_RESULT_OK;
}
return BP_RESULT_NORECORD;
}
static enum bp_result bios_parser_transmitter_control(
struct dc_bios *dcb,
struct bp_transmitter_control *cntl)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.transmitter_control)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.transmitter_control(bp, cntl);
}
static enum bp_result bios_parser_encoder_control(
struct dc_bios *dcb,
struct bp_encoder_control *cntl)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.dig_encoder_control)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.dig_encoder_control(bp, cntl);
}
static enum bp_result bios_parser_adjust_pixel_clock(
struct dc_bios *dcb,
struct bp_adjust_pixel_clock_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.adjust_display_pll)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.adjust_display_pll(bp, bp_params);
}
static enum bp_result bios_parser_set_pixel_clock(
struct dc_bios *dcb,
struct bp_pixel_clock_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.set_pixel_clock)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.set_pixel_clock(bp, bp_params);
}
static enum bp_result bios_parser_set_dce_clock(
struct dc_bios *dcb,
struct bp_set_dce_clock_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.set_dce_clock)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.set_dce_clock(bp, bp_params);
}
static enum bp_result bios_parser_enable_spread_spectrum_on_ppll(
struct dc_bios *dcb,
struct bp_spread_spectrum_parameters *bp_params,
bool enable)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.enable_spread_spectrum_on_ppll)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.enable_spread_spectrum_on_ppll(
bp, bp_params, enable);
}
static enum bp_result bios_parser_program_crtc_timing(
struct dc_bios *dcb,
struct bp_hw_crtc_timing_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.set_crtc_timing)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.set_crtc_timing(bp, bp_params);
}
static enum bp_result bios_parser_program_display_engine_pll(
struct dc_bios *dcb,
struct bp_pixel_clock_parameters *bp_params)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.program_clock)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.program_clock(bp, bp_params);
}
static enum bp_result bios_parser_enable_crtc(
struct dc_bios *dcb,
enum controller_id id,
bool enable)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.enable_crtc)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.enable_crtc(bp, id, enable);
}
static enum bp_result bios_parser_enable_disp_power_gating(
struct dc_bios *dcb,
enum controller_id controller_id,
enum bp_pipe_control_action action)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
if (!bp->cmd_tbl.enable_disp_power_gating)
return BP_RESULT_FAILURE;
return bp->cmd_tbl.enable_disp_power_gating(bp, controller_id,
action);
}
static bool bios_parser_is_device_id_supported(
struct dc_bios *dcb,
struct device_id id)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
uint32_t mask = get_support_mask_for_device_id(id);
return (le16_to_cpu(bp->object_info_tbl.v1_1->usDeviceSupport) & mask) != 0;
}
static ATOM_HPD_INT_RECORD *get_hpd_record(struct bios_parser *bp,
ATOM_OBJECT *object)
{
ATOM_COMMON_RECORD_HEADER *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = le16_to_cpu(object->usRecordOffset)
+ bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset);
if (!header)
return NULL;
if (LAST_RECORD_TYPE == header->ucRecordType ||
!header->ucRecordSize)
break;
if (ATOM_HPD_INT_RECORD_TYPE == header->ucRecordType
&& sizeof(ATOM_HPD_INT_RECORD) <= header->ucRecordSize)
return (ATOM_HPD_INT_RECORD *) header;
offset += header->ucRecordSize;
}
return NULL;
}
static enum bp_result get_ss_info_from_ss_info_table(
struct bios_parser *bp,
uint32_t id,
struct spread_spectrum_info *ss_info);
static enum bp_result get_ss_info_from_tbl(
struct bios_parser *bp,
uint32_t id,
struct spread_spectrum_info *ss_info);
/**
* bios_parser_get_spread_spectrum_info
* Get spread spectrum information from the ASIC_InternalSS_Info(ver 2.1 or
* ver 3.1) or SS_Info table from the VBIOS. Currently ASIC_InternalSS_Info
* ver 2.1 can co-exist with SS_Info table. Expect ASIC_InternalSS_Info ver 3.1,
* there is only one entry for each signal /ss id. However, there is
* no planning of supporting multiple spread Sprectum entry for EverGreen
* @param [in] this
* @param [in] signal, ASSignalType to be converted to info index
* @param [in] index, number of entries that match the converted info index
* @param [out] ss_info, sprectrum information structure,
* @return Bios parser result code
*/
static enum bp_result bios_parser_get_spread_spectrum_info(
struct dc_bios *dcb,
enum as_signal_type signal,
uint32_t index,
struct spread_spectrum_info *ss_info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
enum bp_result result = BP_RESULT_UNSUPPORTED;
uint32_t clk_id_ss = 0;
ATOM_COMMON_TABLE_HEADER *header;
struct atom_data_revision tbl_revision;
if (!ss_info) /* check for bad input */
return BP_RESULT_BADINPUT;
/* signal translation */
clk_id_ss = signal_to_ss_id(signal);
if (!DATA_TABLES(ASIC_InternalSS_Info))
if (!index)
return get_ss_info_from_ss_info_table(bp, clk_id_ss,
ss_info);
header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER,
DATA_TABLES(ASIC_InternalSS_Info));
get_atom_data_table_revision(header, &tbl_revision);
switch (tbl_revision.major) {
case 2:
switch (tbl_revision.minor) {
case 1:
/* there can not be more then one entry for Internal
* SS Info table version 2.1 */
if (!index)
return get_ss_info_from_tbl(bp, clk_id_ss,
ss_info);
break;
default:
break;
}
break;
case 3:
switch (tbl_revision.minor) {
case 1:
return get_ss_info_v3_1(bp, clk_id_ss, index, ss_info);
default:
break;
}
break;
default:
break;
}
/* there can not be more then one entry for SS Info table */
return result;
}
static enum bp_result get_ss_info_from_internal_ss_info_tbl_V2_1(
struct bios_parser *bp,
uint32_t id,
struct spread_spectrum_info *info);
/**
* get_ss_info_from_table
* Get spread sprectrum information from the ASIC_InternalSS_Info Ver 2.1 or
* SS_Info table from the VBIOS
* There can not be more than 1 entry for ASIC_InternalSS_Info Ver 2.1 or
* SS_Info.
*
* @param this
* @param id, spread sprectrum info index
* @param pSSinfo, sprectrum information structure,
* @return Bios parser result code
*/
static enum bp_result get_ss_info_from_tbl(
struct bios_parser *bp,
uint32_t id,
struct spread_spectrum_info *ss_info)
{
if (!ss_info) /* check for bad input, if ss_info is not NULL */
return BP_RESULT_BADINPUT;
/* for SS_Info table only support DP and LVDS */
if (id == ASIC_INTERNAL_SS_ON_DP || id == ASIC_INTERNAL_SS_ON_LVDS)
return get_ss_info_from_ss_info_table(bp, id, ss_info);
else
return get_ss_info_from_internal_ss_info_tbl_V2_1(bp, id,
ss_info);
}
/**
* get_ss_info_from_internal_ss_info_tbl_V2_1
* Get spread sprectrum information from the ASIC_InternalSS_Info table Ver 2.1
* from the VBIOS
* There will not be multiple entry for Ver 2.1
*
* @param id, spread sprectrum info index
* @param pSSinfo, sprectrum information structure,
* @return Bios parser result code
*/
static enum bp_result get_ss_info_from_internal_ss_info_tbl_V2_1(
struct bios_parser *bp,
uint32_t id,
struct spread_spectrum_info *info)
{
enum bp_result result = BP_RESULT_UNSUPPORTED;
ATOM_ASIC_INTERNAL_SS_INFO_V2 *header;
ATOM_ASIC_SS_ASSIGNMENT_V2 *tbl;
uint32_t tbl_size, i;
if (!DATA_TABLES(ASIC_InternalSS_Info))
return result;
header = GET_IMAGE(ATOM_ASIC_INTERNAL_SS_INFO_V2,
DATA_TABLES(ASIC_InternalSS_Info));
memset(info, 0, sizeof(struct spread_spectrum_info));
tbl_size = (le16_to_cpu(header->sHeader.usStructureSize)
- sizeof(ATOM_COMMON_TABLE_HEADER))
/ sizeof(ATOM_ASIC_SS_ASSIGNMENT_V2);
tbl = (ATOM_ASIC_SS_ASSIGNMENT_V2 *)
&(header->asSpreadSpectrum[0]);
for (i = 0; i < tbl_size; i++) {
result = BP_RESULT_NORECORD;
if (tbl[i].ucClockIndication != (uint8_t)id)
continue;
if (ATOM_EXTERNAL_SS_MASK
& tbl[i].ucSpreadSpectrumMode) {
info->type.EXTERNAL = true;
}
if (ATOM_SS_CENTRE_SPREAD_MODE_MASK
& tbl[i].ucSpreadSpectrumMode) {
info->type.CENTER_MODE = true;
}
info->type.STEP_AND_DELAY_INFO = false;
/* convert [10KHz] into [KHz] */
info->target_clock_range =
le32_to_cpu(tbl[i].ulTargetClockRange) * 10;
info->spread_spectrum_percentage =
(uint32_t)le16_to_cpu(tbl[i].usSpreadSpectrumPercentage);
info->spread_spectrum_range =
(uint32_t)(le16_to_cpu(tbl[i].usSpreadRateIn10Hz) * 10);
result = BP_RESULT_OK;
break;
}
return result;
}
/**
* get_ss_info_from_ss_info_table
* Get spread sprectrum information from the SS_Info table from the VBIOS
* if the pointer to info is NULL, indicate the caller what to know the number
* of entries that matches the id
* for, the SS_Info table, there should not be more than 1 entry match.
*
* @param [in] id, spread sprectrum id
* @param [out] pSSinfo, sprectrum information structure,
* @return Bios parser result code
*/
static enum bp_result get_ss_info_from_ss_info_table(
struct bios_parser *bp,
uint32_t id,
struct spread_spectrum_info *ss_info)
{
enum bp_result result = BP_RESULT_UNSUPPORTED;
ATOM_SPREAD_SPECTRUM_INFO *tbl;
ATOM_COMMON_TABLE_HEADER *header;
uint32_t table_size;
uint32_t i;
uint32_t id_local = SS_ID_UNKNOWN;
struct atom_data_revision revision;
/* exist of the SS_Info table */
/* check for bad input, pSSinfo can not be NULL */
if (!DATA_TABLES(SS_Info) || !ss_info)
return result;
header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER, DATA_TABLES(SS_Info));
get_atom_data_table_revision(header, &revision);
tbl = GET_IMAGE(ATOM_SPREAD_SPECTRUM_INFO, DATA_TABLES(SS_Info));
if (1 != revision.major || 2 > revision.minor)
return result;
/* have to convert from Internal_SS format to SS_Info format */
switch (id) {
case ASIC_INTERNAL_SS_ON_DP:
id_local = SS_ID_DP1;
break;
case ASIC_INTERNAL_SS_ON_LVDS:
{
struct embedded_panel_info panel_info;
if (bios_parser_get_embedded_panel_info(&bp->base, &panel_info)
== BP_RESULT_OK)
id_local = panel_info.ss_id;
break;
}
default:
break;
}
if (id_local == SS_ID_UNKNOWN)
return result;
table_size = (le16_to_cpu(tbl->sHeader.usStructureSize) -
sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_SPREAD_SPECTRUM_ASSIGNMENT);
for (i = 0; i < table_size; i++) {
if (id_local != (uint32_t)tbl->asSS_Info[i].ucSS_Id)
continue;
memset(ss_info, 0, sizeof(struct spread_spectrum_info));
if (ATOM_EXTERNAL_SS_MASK &
tbl->asSS_Info[i].ucSpreadSpectrumType)
ss_info->type.EXTERNAL = true;
if (ATOM_SS_CENTRE_SPREAD_MODE_MASK &
tbl->asSS_Info[i].ucSpreadSpectrumType)
ss_info->type.CENTER_MODE = true;
ss_info->type.STEP_AND_DELAY_INFO = true;
ss_info->spread_spectrum_percentage =
(uint32_t)le16_to_cpu(tbl->asSS_Info[i].usSpreadSpectrumPercentage);
ss_info->step_and_delay_info.step = tbl->asSS_Info[i].ucSS_Step;
ss_info->step_and_delay_info.delay =
tbl->asSS_Info[i].ucSS_Delay;
ss_info->step_and_delay_info.recommended_ref_div =
tbl->asSS_Info[i].ucRecommendedRef_Div;
ss_info->spread_spectrum_range =
(uint32_t)tbl->asSS_Info[i].ucSS_Range * 10000;
/* there will be only one entry for each display type in SS_info
* table */
result = BP_RESULT_OK;
break;
}
return result;
}
static enum bp_result get_embedded_panel_info_v1_2(
struct bios_parser *bp,
struct embedded_panel_info *info);
static enum bp_result get_embedded_panel_info_v1_3(
struct bios_parser *bp,
struct embedded_panel_info *info);
static enum bp_result bios_parser_get_embedded_panel_info(
struct dc_bios *dcb,
struct embedded_panel_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
ATOM_COMMON_TABLE_HEADER *hdr;
if (!DATA_TABLES(LCD_Info))
return BP_RESULT_FAILURE;
hdr = GET_IMAGE(ATOM_COMMON_TABLE_HEADER, DATA_TABLES(LCD_Info));
if (!hdr)
return BP_RESULT_BADBIOSTABLE;
switch (hdr->ucTableFormatRevision) {
case 1:
switch (hdr->ucTableContentRevision) {
case 0:
case 1:
case 2:
return get_embedded_panel_info_v1_2(bp, info);
case 3:
return get_embedded_panel_info_v1_3(bp, info);
default:
break;
}
default:
break;
}
return BP_RESULT_FAILURE;
}
static enum bp_result get_embedded_panel_info_v1_2(
struct bios_parser *bp,
struct embedded_panel_info *info)
{
ATOM_LVDS_INFO_V12 *lvds;
if (!info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(LVDS_Info))
return BP_RESULT_UNSUPPORTED;
lvds =
GET_IMAGE(ATOM_LVDS_INFO_V12, DATA_TABLES(LVDS_Info));
if (!lvds)
return BP_RESULT_BADBIOSTABLE;
if (1 != lvds->sHeader.ucTableFormatRevision
|| 2 > lvds->sHeader.ucTableContentRevision)
return BP_RESULT_UNSUPPORTED;
memset(info, 0, sizeof(struct embedded_panel_info));
/* We need to convert from 10KHz units into KHz units*/
info->lcd_timing.pixel_clk =
le16_to_cpu(lvds->sLCDTiming.usPixClk) * 10;
/* usHActive does not include borders, according to VBIOS team*/
info->lcd_timing.horizontal_addressable =
le16_to_cpu(lvds->sLCDTiming.usHActive);
/* usHBlanking_Time includes borders, so we should really be subtracting
* borders duing this translation, but LVDS generally*/
/* doesn't have borders, so we should be okay leaving this as is for
* now. May need to revisit if we ever have LVDS with borders*/
info->lcd_timing.horizontal_blanking_time =
le16_to_cpu(lvds->sLCDTiming.usHBlanking_Time);
/* usVActive does not include borders, according to VBIOS team*/
info->lcd_timing.vertical_addressable =
le16_to_cpu(lvds->sLCDTiming.usVActive);
/* usVBlanking_Time includes borders, so we should really be subtracting
* borders duing this translation, but LVDS generally*/
/* doesn't have borders, so we should be okay leaving this as is for
* now. May need to revisit if we ever have LVDS with borders*/
info->lcd_timing.vertical_blanking_time =
le16_to_cpu(lvds->sLCDTiming.usVBlanking_Time);
info->lcd_timing.horizontal_sync_offset =
le16_to_cpu(lvds->sLCDTiming.usHSyncOffset);
info->lcd_timing.horizontal_sync_width =
le16_to_cpu(lvds->sLCDTiming.usHSyncWidth);
info->lcd_timing.vertical_sync_offset =
le16_to_cpu(lvds->sLCDTiming.usVSyncOffset);
info->lcd_timing.vertical_sync_width =
le16_to_cpu(lvds->sLCDTiming.usVSyncWidth);
info->lcd_timing.horizontal_border = lvds->sLCDTiming.ucHBorder;
info->lcd_timing.vertical_border = lvds->sLCDTiming.ucVBorder;
info->lcd_timing.misc_info.HORIZONTAL_CUT_OFF =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.HorizontalCutOff;
info->lcd_timing.misc_info.H_SYNC_POLARITY =
~(uint32_t)
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.HSyncPolarity;
info->lcd_timing.misc_info.V_SYNC_POLARITY =
~(uint32_t)
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.VSyncPolarity;
info->lcd_timing.misc_info.VERTICAL_CUT_OFF =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.VerticalCutOff;
info->lcd_timing.misc_info.H_REPLICATION_BY2 =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.H_ReplicationBy2;
info->lcd_timing.misc_info.V_REPLICATION_BY2 =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.V_ReplicationBy2;
info->lcd_timing.misc_info.COMPOSITE_SYNC =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.CompositeSync;
info->lcd_timing.misc_info.INTERLACE =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.Interlace;
info->lcd_timing.misc_info.DOUBLE_CLOCK =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.DoubleClock;
info->ss_id = lvds->ucSS_Id;
{
uint8_t rr = le16_to_cpu(lvds->usSupportedRefreshRate);
/* Get minimum supported refresh rate*/
if (SUPPORTED_LCD_REFRESHRATE_30Hz & rr)
info->supported_rr.REFRESH_RATE_30HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_40Hz & rr)
info->supported_rr.REFRESH_RATE_40HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_48Hz & rr)
info->supported_rr.REFRESH_RATE_48HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_50Hz & rr)
info->supported_rr.REFRESH_RATE_50HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_60Hz & rr)
info->supported_rr.REFRESH_RATE_60HZ = 1;
}
/*Drr panel support can be reported by VBIOS*/
if (LCDPANEL_CAP_DRR_SUPPORTED
& lvds->ucLCDPanel_SpecialHandlingCap)
info->drr_enabled = 1;
if (ATOM_PANEL_MISC_DUAL & lvds->ucLVDS_Misc)
info->lcd_timing.misc_info.DOUBLE_CLOCK = true;
if (ATOM_PANEL_MISC_888RGB & lvds->ucLVDS_Misc)
info->lcd_timing.misc_info.RGB888 = true;
info->lcd_timing.misc_info.GREY_LEVEL =
(uint32_t) (ATOM_PANEL_MISC_GREY_LEVEL &
lvds->ucLVDS_Misc) >> ATOM_PANEL_MISC_GREY_LEVEL_SHIFT;
if (ATOM_PANEL_MISC_SPATIAL & lvds->ucLVDS_Misc)
info->lcd_timing.misc_info.SPATIAL = true;
if (ATOM_PANEL_MISC_TEMPORAL & lvds->ucLVDS_Misc)
info->lcd_timing.misc_info.TEMPORAL = true;
if (ATOM_PANEL_MISC_API_ENABLED & lvds->ucLVDS_Misc)
info->lcd_timing.misc_info.API_ENABLED = true;
return BP_RESULT_OK;
}
static enum bp_result get_embedded_panel_info_v1_3(
struct bios_parser *bp,
struct embedded_panel_info *info)
{
ATOM_LCD_INFO_V13 *lvds;
if (!info)
return BP_RESULT_BADINPUT;
if (!DATA_TABLES(LCD_Info))
return BP_RESULT_UNSUPPORTED;
lvds = GET_IMAGE(ATOM_LCD_INFO_V13, DATA_TABLES(LCD_Info));
if (!lvds)
return BP_RESULT_BADBIOSTABLE;
if (!((1 == lvds->sHeader.ucTableFormatRevision)
&& (3 <= lvds->sHeader.ucTableContentRevision)))
return BP_RESULT_UNSUPPORTED;
memset(info, 0, sizeof(struct embedded_panel_info));
/* We need to convert from 10KHz units into KHz units */
info->lcd_timing.pixel_clk =
le16_to_cpu(lvds->sLCDTiming.usPixClk) * 10;
/* usHActive does not include borders, according to VBIOS team */
info->lcd_timing.horizontal_addressable =
le16_to_cpu(lvds->sLCDTiming.usHActive);
/* usHBlanking_Time includes borders, so we should really be subtracting
* borders duing this translation, but LVDS generally*/
/* doesn't have borders, so we should be okay leaving this as is for
* now. May need to revisit if we ever have LVDS with borders*/
info->lcd_timing.horizontal_blanking_time =
le16_to_cpu(lvds->sLCDTiming.usHBlanking_Time);
/* usVActive does not include borders, according to VBIOS team*/
info->lcd_timing.vertical_addressable =
le16_to_cpu(lvds->sLCDTiming.usVActive);
/* usVBlanking_Time includes borders, so we should really be subtracting
* borders duing this translation, but LVDS generally*/
/* doesn't have borders, so we should be okay leaving this as is for
* now. May need to revisit if we ever have LVDS with borders*/
info->lcd_timing.vertical_blanking_time =
le16_to_cpu(lvds->sLCDTiming.usVBlanking_Time);
info->lcd_timing.horizontal_sync_offset =
le16_to_cpu(lvds->sLCDTiming.usHSyncOffset);
info->lcd_timing.horizontal_sync_width =
le16_to_cpu(lvds->sLCDTiming.usHSyncWidth);
info->lcd_timing.vertical_sync_offset =
le16_to_cpu(lvds->sLCDTiming.usVSyncOffset);
info->lcd_timing.vertical_sync_width =
le16_to_cpu(lvds->sLCDTiming.usVSyncWidth);
info->lcd_timing.horizontal_border = lvds->sLCDTiming.ucHBorder;
info->lcd_timing.vertical_border = lvds->sLCDTiming.ucVBorder;
info->lcd_timing.misc_info.HORIZONTAL_CUT_OFF =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.HorizontalCutOff;
info->lcd_timing.misc_info.H_SYNC_POLARITY =
~(uint32_t)
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.HSyncPolarity;
info->lcd_timing.misc_info.V_SYNC_POLARITY =
~(uint32_t)
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.VSyncPolarity;
info->lcd_timing.misc_info.VERTICAL_CUT_OFF =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.VerticalCutOff;
info->lcd_timing.misc_info.H_REPLICATION_BY2 =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.H_ReplicationBy2;
info->lcd_timing.misc_info.V_REPLICATION_BY2 =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.V_ReplicationBy2;
info->lcd_timing.misc_info.COMPOSITE_SYNC =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.CompositeSync;
info->lcd_timing.misc_info.INTERLACE =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.Interlace;
info->lcd_timing.misc_info.DOUBLE_CLOCK =
lvds->sLCDTiming.susModeMiscInfo.sbfAccess.DoubleClock;
info->ss_id = lvds->ucSS_Id;
/* Drr panel support can be reported by VBIOS*/
if (LCDPANEL_CAP_V13_DRR_SUPPORTED
& lvds->ucLCDPanel_SpecialHandlingCap)
info->drr_enabled = 1;
/* Get supported refresh rate*/
if (info->drr_enabled == 1) {
uint8_t min_rr =
lvds->sRefreshRateSupport.ucMinRefreshRateForDRR;
uint8_t rr = lvds->sRefreshRateSupport.ucSupportedRefreshRate;
if (min_rr != 0) {
if (SUPPORTED_LCD_REFRESHRATE_30Hz & min_rr)
info->supported_rr.REFRESH_RATE_30HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_40Hz & min_rr)
info->supported_rr.REFRESH_RATE_40HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_48Hz & min_rr)
info->supported_rr.REFRESH_RATE_48HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_50Hz & min_rr)
info->supported_rr.REFRESH_RATE_50HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_60Hz & min_rr)
info->supported_rr.REFRESH_RATE_60HZ = 1;
} else {
if (SUPPORTED_LCD_REFRESHRATE_30Hz & rr)
info->supported_rr.REFRESH_RATE_30HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_40Hz & rr)
info->supported_rr.REFRESH_RATE_40HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_48Hz & rr)
info->supported_rr.REFRESH_RATE_48HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_50Hz & rr)
info->supported_rr.REFRESH_RATE_50HZ = 1;
else if (SUPPORTED_LCD_REFRESHRATE_60Hz & rr)
info->supported_rr.REFRESH_RATE_60HZ = 1;
}
}
if (ATOM_PANEL_MISC_V13_DUAL & lvds->ucLCD_Misc)
info->lcd_timing.misc_info.DOUBLE_CLOCK = true;
if (ATOM_PANEL_MISC_V13_8BIT_PER_COLOR & lvds->ucLCD_Misc)
info->lcd_timing.misc_info.RGB888 = true;
info->lcd_timing.misc_info.GREY_LEVEL =
(uint32_t) (ATOM_PANEL_MISC_V13_GREY_LEVEL &
lvds->ucLCD_Misc) >> ATOM_PANEL_MISC_V13_GREY_LEVEL_SHIFT;
return BP_RESULT_OK;
}
/**
* bios_parser_get_encoder_cap_info
*
* @brief
* Get encoder capability information of input object id
*
* @param object_id, Object id
* @param object_id, encoder cap information structure
*
* @return Bios parser result code
*
*/
static enum bp_result bios_parser_get_encoder_cap_info(
struct dc_bios *dcb,
struct graphics_object_id object_id,
struct bp_encoder_cap_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
ATOM_OBJECT *object;
ATOM_ENCODER_CAP_RECORD_V2 *record = NULL;
if (!info)
return BP_RESULT_BADINPUT;
object = get_bios_object(bp, object_id);
if (!object)
return BP_RESULT_BADINPUT;
record = get_encoder_cap_record(bp, object);
if (!record)
return BP_RESULT_NORECORD;
info->DP_HBR2_EN = record->usHBR2En;
info->DP_HBR3_EN = record->usHBR3En;
info->HDMI_6GB_EN = record->usHDMI6GEn;
return BP_RESULT_OK;
}
/**
* get_encoder_cap_record
*
* @brief
* Get encoder cap record for the object
*
* @param object, ATOM object
*
* @return atom encoder cap record
*
* @note
* search all records to find the ATOM_ENCODER_CAP_RECORD_V2 record
*/
static ATOM_ENCODER_CAP_RECORD_V2 *get_encoder_cap_record(
struct bios_parser *bp,
ATOM_OBJECT *object)
{
ATOM_COMMON_RECORD_HEADER *header;
uint32_t offset;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object */
return NULL;
}
offset = le16_to_cpu(object->usRecordOffset)
+ bp->object_info_tbl_offset;
for (;;) {
header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset);
if (!header)
return NULL;
offset += header->ucRecordSize;
if (LAST_RECORD_TYPE == header->ucRecordType ||
!header->ucRecordSize)
break;
if (ATOM_ENCODER_CAP_RECORD_TYPE != header->ucRecordType)
continue;
if (sizeof(ATOM_ENCODER_CAP_RECORD_V2) <= header->ucRecordSize)
return (ATOM_ENCODER_CAP_RECORD_V2 *)header;
}
return NULL;
}
static uint32_t get_ss_entry_number(
struct bios_parser *bp,
uint32_t id);
static uint32_t get_ss_entry_number_from_internal_ss_info_tbl_v2_1(
struct bios_parser *bp,
uint32_t id);
static uint32_t get_ss_entry_number_from_internal_ss_info_tbl_V3_1(
struct bios_parser *bp,
uint32_t id);
static uint32_t get_ss_entry_number_from_ss_info_tbl(
struct bios_parser *bp,
uint32_t id);
/**
* BiosParserObject::GetNumberofSpreadSpectrumEntry
* Get Number of SpreadSpectrum Entry from the ASIC_InternalSS_Info table from
* the VBIOS that match the SSid (to be converted from signal)
*
* @param[in] signal, ASSignalType to be converted to SSid
* @return number of SS Entry that match the signal
*/
static uint32_t bios_parser_get_ss_entry_number(
struct dc_bios *dcb,
enum as_signal_type signal)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
uint32_t ss_id = 0;
ATOM_COMMON_TABLE_HEADER *header;
struct atom_data_revision revision;
ss_id = signal_to_ss_id(signal);
if (!DATA_TABLES(ASIC_InternalSS_Info))
return get_ss_entry_number_from_ss_info_tbl(bp, ss_id);
header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER,
DATA_TABLES(ASIC_InternalSS_Info));
get_atom_data_table_revision(header, &revision);
switch (revision.major) {
case 2:
switch (revision.minor) {
case 1:
return get_ss_entry_number(bp, ss_id);
default:
break;
}
break;
case 3:
switch (revision.minor) {
case 1:
return
get_ss_entry_number_from_internal_ss_info_tbl_V3_1(
bp, ss_id);
default:
break;
}
break;
default:
break;
}
return 0;
}
/**
* get_ss_entry_number_from_ss_info_tbl
* Get Number of spread spectrum entry from the SS_Info table from the VBIOS.
*
* @note There can only be one entry for each id for SS_Info Table
*
* @param [in] id, spread spectrum id
* @return number of SS Entry that match the id
*/
static uint32_t get_ss_entry_number_from_ss_info_tbl(
struct bios_parser *bp,
uint32_t id)
{
ATOM_SPREAD_SPECTRUM_INFO *tbl;
ATOM_COMMON_TABLE_HEADER *header;
uint32_t table_size;
uint32_t i;
uint32_t number = 0;
uint32_t id_local = SS_ID_UNKNOWN;
struct atom_data_revision revision;
/* SS_Info table exist */
if (!DATA_TABLES(SS_Info))
return number;
header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER,
DATA_TABLES(SS_Info));
get_atom_data_table_revision(header, &revision);
tbl = GET_IMAGE(ATOM_SPREAD_SPECTRUM_INFO,
DATA_TABLES(SS_Info));
if (1 != revision.major || 2 > revision.minor)
return number;
/* have to convert from Internal_SS format to SS_Info format */
switch (id) {
case ASIC_INTERNAL_SS_ON_DP:
id_local = SS_ID_DP1;
break;
case ASIC_INTERNAL_SS_ON_LVDS: {
struct embedded_panel_info panel_info;
if (bios_parser_get_embedded_panel_info(&bp->base, &panel_info)
== BP_RESULT_OK)
id_local = panel_info.ss_id;
break;
}
default:
break;
}
if (id_local == SS_ID_UNKNOWN)
return number;
table_size = (le16_to_cpu(tbl->sHeader.usStructureSize) -
sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_SPREAD_SPECTRUM_ASSIGNMENT);
for (i = 0; i < table_size; i++)
if (id_local == (uint32_t)tbl->asSS_Info[i].ucSS_Id) {
number = 1;
break;
}
return number;
}
/**
* get_ss_entry_number
* Get spread sprectrum information from the ASIC_InternalSS_Info Ver 2.1 or
* SS_Info table from the VBIOS
* There can not be more than 1 entry for ASIC_InternalSS_Info Ver 2.1 or
* SS_Info.
*
* @param id, spread sprectrum info index
* @return Bios parser result code
*/
static uint32_t get_ss_entry_number(struct bios_parser *bp, uint32_t id)
{
if (id == ASIC_INTERNAL_SS_ON_DP || id == ASIC_INTERNAL_SS_ON_LVDS)
return get_ss_entry_number_from_ss_info_tbl(bp, id);
return get_ss_entry_number_from_internal_ss_info_tbl_v2_1(bp, id);
}
/**
* get_ss_entry_number_from_internal_ss_info_tbl_v2_1
* Get NUmber of spread sprectrum entry from the ASIC_InternalSS_Info table
* Ver 2.1 from the VBIOS
* There will not be multiple entry for Ver 2.1
*
* @param id, spread sprectrum info index
* @return number of SS Entry that match the id
*/
static uint32_t get_ss_entry_number_from_internal_ss_info_tbl_v2_1(
struct bios_parser *bp,
uint32_t id)
{
ATOM_ASIC_INTERNAL_SS_INFO_V2 *header_include;
ATOM_ASIC_SS_ASSIGNMENT_V2 *tbl;
uint32_t size;
uint32_t i;
if (!DATA_TABLES(ASIC_InternalSS_Info))
return 0;
header_include = GET_IMAGE(ATOM_ASIC_INTERNAL_SS_INFO_V2,
DATA_TABLES(ASIC_InternalSS_Info));
size = (le16_to_cpu(header_include->sHeader.usStructureSize)
- sizeof(ATOM_COMMON_TABLE_HEADER))
/ sizeof(ATOM_ASIC_SS_ASSIGNMENT_V2);
tbl = (ATOM_ASIC_SS_ASSIGNMENT_V2 *)
&header_include->asSpreadSpectrum[0];
for (i = 0; i < size; i++)
if (tbl[i].ucClockIndication == (uint8_t)id)
return 1;
return 0;
}
/**
* get_ss_entry_number_from_internal_ss_info_table_V3_1
* Get Number of SpreadSpectrum Entry from the ASIC_InternalSS_Info table of
* the VBIOS that matches id
*
* @param[in] id, spread sprectrum id
* @return number of SS Entry that match the id
*/
static uint32_t get_ss_entry_number_from_internal_ss_info_tbl_V3_1(
struct bios_parser *bp,
uint32_t id)
{
uint32_t number = 0;
ATOM_ASIC_INTERNAL_SS_INFO_V3 *header_include;
ATOM_ASIC_SS_ASSIGNMENT_V3 *tbl;
uint32_t size;
uint32_t i;
if (!DATA_TABLES(ASIC_InternalSS_Info))
return number;
header_include = GET_IMAGE(ATOM_ASIC_INTERNAL_SS_INFO_V3,
DATA_TABLES(ASIC_InternalSS_Info));
size = (le16_to_cpu(header_include->sHeader.usStructureSize) -
sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_ASIC_SS_ASSIGNMENT_V3);
tbl = (ATOM_ASIC_SS_ASSIGNMENT_V3 *)
&header_include->asSpreadSpectrum[0];
for (i = 0; i < size; i++)
if (tbl[i].ucClockIndication == (uint8_t)id)
number++;
return number;
}
/**
* bios_parser_get_gpio_pin_info
* Get GpioPin information of input gpio id
*
* @param gpio_id, GPIO ID
* @param info, GpioPin information structure
* @return Bios parser result code
* @note
* to get the GPIO PIN INFO, we need:
* 1. get the GPIO_ID from other object table, see GetHPDInfo()
* 2. in DATA_TABLE.GPIO_Pin_LUT, search all records, to get the registerA
* offset/mask
*/
static enum bp_result bios_parser_get_gpio_pin_info(
struct dc_bios *dcb,
uint32_t gpio_id,
struct gpio_pin_info *info)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
ATOM_GPIO_PIN_LUT *header;
uint32_t count = 0;
uint32_t i = 0;
if (!DATA_TABLES(GPIO_Pin_LUT))
return BP_RESULT_BADBIOSTABLE;
header = GET_IMAGE(ATOM_GPIO_PIN_LUT, DATA_TABLES(GPIO_Pin_LUT));
if (!header)
return BP_RESULT_BADBIOSTABLE;
if (sizeof(ATOM_COMMON_TABLE_HEADER) + sizeof(ATOM_GPIO_PIN_LUT)
> le16_to_cpu(header->sHeader.usStructureSize))
return BP_RESULT_BADBIOSTABLE;
if (1 != header->sHeader.ucTableContentRevision)
return BP_RESULT_UNSUPPORTED;
count = (le16_to_cpu(header->sHeader.usStructureSize)
- sizeof(ATOM_COMMON_TABLE_HEADER))
/ sizeof(ATOM_GPIO_PIN_ASSIGNMENT);
for (i = 0; i < count; ++i) {
if (header->asGPIO_Pin[i].ucGPIO_ID != gpio_id)
continue;
info->offset =
(uint32_t) le16_to_cpu(header->asGPIO_Pin[i].usGpioPin_AIndex);
info->offset_y = info->offset + 2;
info->offset_en = info->offset + 1;
info->offset_mask = info->offset - 1;
info->mask = (uint32_t) (1 <<
header->asGPIO_Pin[i].ucGpioPinBitShift);
info->mask_y = info->mask + 2;
info->mask_en = info->mask + 1;
info->mask_mask = info->mask - 1;
return BP_RESULT_OK;
}
return BP_RESULT_NORECORD;
}
static enum bp_result get_gpio_i2c_info(struct bios_parser *bp,
ATOM_I2C_RECORD *record,
struct graphics_object_i2c_info *info)
{
ATOM_GPIO_I2C_INFO *header;
uint32_t count = 0;
if (!info)
return BP_RESULT_BADINPUT;
/* get the GPIO_I2C info */
if (!DATA_TABLES(GPIO_I2C_Info))
return BP_RESULT_BADBIOSTABLE;
header = GET_IMAGE(ATOM_GPIO_I2C_INFO, DATA_TABLES(GPIO_I2C_Info));
if (!header)
return BP_RESULT_BADBIOSTABLE;
if (sizeof(ATOM_COMMON_TABLE_HEADER) + sizeof(ATOM_GPIO_I2C_ASSIGMENT)
> le16_to_cpu(header->sHeader.usStructureSize))
return BP_RESULT_BADBIOSTABLE;
if (1 != header->sHeader.ucTableContentRevision)
return BP_RESULT_UNSUPPORTED;
/* get data count */
count = (le16_to_cpu(header->sHeader.usStructureSize)
- sizeof(ATOM_COMMON_TABLE_HEADER))
/ sizeof(ATOM_GPIO_I2C_ASSIGMENT);
if (count < record->sucI2cId.bfI2C_LineMux)
return BP_RESULT_BADBIOSTABLE;
/* get the GPIO_I2C_INFO */
info->i2c_hw_assist = record->sucI2cId.bfHW_Capable;
info->i2c_line = record->sucI2cId.bfI2C_LineMux;
info->i2c_engine_id = record->sucI2cId.bfHW_EngineID;
info->i2c_slave_address = record->ucI2CAddr;
info->gpio_info.clk_mask_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usClkMaskRegisterIndex);
info->gpio_info.clk_en_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usClkEnRegisterIndex);
info->gpio_info.clk_y_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usClkY_RegisterIndex);
info->gpio_info.clk_a_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usClkA_RegisterIndex);
info->gpio_info.data_mask_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usDataMaskRegisterIndex);
info->gpio_info.data_en_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usDataEnRegisterIndex);
info->gpio_info.data_y_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usDataY_RegisterIndex);
info->gpio_info.data_a_register_index =
le16_to_cpu(header->asGPIO_Info[info->i2c_line].usDataA_RegisterIndex);
info->gpio_info.clk_mask_shift =
header->asGPIO_Info[info->i2c_line].ucClkMaskShift;
info->gpio_info.clk_en_shift =
header->asGPIO_Info[info->i2c_line].ucClkEnShift;
info->gpio_info.clk_y_shift =
header->asGPIO_Info[info->i2c_line].ucClkY_Shift;
info->gpio_info.clk_a_shift =
header->asGPIO_Info[info->i2c_line].ucClkA_Shift;
info->gpio_info.data_mask_shift =
header->asGPIO_Info[info->i2c_line].ucDataMaskShift;
info->gpio_info.data_en_shift =
header->asGPIO_Info[info->i2c_line].ucDataEnShift;
info->gpio_info.data_y_shift =
header->asGPIO_Info[info->i2c_line].ucDataY_Shift;
info->gpio_info.data_a_shift =
header->asGPIO_Info[info->i2c_line].ucDataA_Shift;
return BP_RESULT_OK;
}
static bool dal_graphics_object_id_is_valid(struct graphics_object_id id)
{
bool rc = true;
switch (id.type) {
case OBJECT_TYPE_UNKNOWN:
rc = false;
break;
case OBJECT_TYPE_GPU:
case OBJECT_TYPE_ENGINE:
/* do NOT check for id.id == 0 */
if (id.enum_id == ENUM_ID_UNKNOWN)
rc = false;
break;
default:
if (id.id == 0 || id.enum_id == ENUM_ID_UNKNOWN)
rc = false;
break;
}
return rc;
}
static bool dal_graphics_object_id_is_equal(
struct graphics_object_id id1,
struct graphics_object_id id2)
{
if (false == dal_graphics_object_id_is_valid(id1)) {
dm_output_to_console(
"%s: Warning: comparing invalid object 'id1'!\n", __func__);
return false;
}
if (false == dal_graphics_object_id_is_valid(id2)) {
dm_output_to_console(
"%s: Warning: comparing invalid object 'id2'!\n", __func__);
return false;
}
if (id1.id == id2.id && id1.enum_id == id2.enum_id
&& id1.type == id2.type)
return true;
return false;
}
static ATOM_OBJECT *get_bios_object(struct bios_parser *bp,
struct graphics_object_id id)
{
uint32_t offset;
ATOM_OBJECT_TABLE *tbl;
uint32_t i;
switch (id.type) {
case OBJECT_TYPE_ENCODER:
offset = le16_to_cpu(bp->object_info_tbl.v1_1->usEncoderObjectTableOffset);
break;
case OBJECT_TYPE_CONNECTOR:
offset = le16_to_cpu(bp->object_info_tbl.v1_1->usConnectorObjectTableOffset);
break;
case OBJECT_TYPE_ROUTER:
offset = le16_to_cpu(bp->object_info_tbl.v1_1->usRouterObjectTableOffset);
break;
case OBJECT_TYPE_GENERIC:
if (bp->object_info_tbl.revision.minor < 3)
return NULL;
offset = le16_to_cpu(bp->object_info_tbl.v1_3->usMiscObjectTableOffset);
break;
default:
return NULL;
}
offset += bp->object_info_tbl_offset;
tbl = GET_IMAGE(ATOM_OBJECT_TABLE, offset);
if (!tbl)
return NULL;
for (i = 0; i < tbl->ucNumberOfObjects; i++)
if (dal_graphics_object_id_is_equal(id,
object_id_from_bios_object_id(
le16_to_cpu(tbl->asObjects[i].usObjectID))))
return &tbl->asObjects[i];
return NULL;
}
static uint32_t get_src_obj_list(struct bios_parser *bp, ATOM_OBJECT *object,
uint16_t **id_list)
{
uint32_t offset;
uint8_t *number;
if (!object) {
BREAK_TO_DEBUGGER(); /* Invalid object id */
return 0;
}
offset = le16_to_cpu(object->usSrcDstTableOffset)
+ bp->object_info_tbl_offset;
number = GET_IMAGE(uint8_t, offset);
if (!number)
return 0;
offset += sizeof(uint8_t);
*id_list = (uint16_t *)bios_get_image(&bp->base, offset, *number * sizeof(uint16_t));
if (!*id_list)
return 0;
return *number;
}
static struct device_id device_type_from_device_id(uint16_t device_id)
{
struct device_id result_device_id = {0};
switch (device_id) {
case ATOM_DEVICE_LCD1_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_LCD;
result_device_id.enum_id = 1;
break;
case ATOM_DEVICE_LCD2_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_LCD;
result_device_id.enum_id = 2;
break;
case ATOM_DEVICE_CRT1_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_CRT;
result_device_id.enum_id = 1;
break;
case ATOM_DEVICE_CRT2_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_CRT;
result_device_id.enum_id = 2;
break;
case ATOM_DEVICE_DFP1_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 1;
break;
case ATOM_DEVICE_DFP2_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 2;
break;
case ATOM_DEVICE_DFP3_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 3;
break;
case ATOM_DEVICE_DFP4_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 4;
break;
case ATOM_DEVICE_DFP5_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 5;
break;
case ATOM_DEVICE_DFP6_SUPPORT:
result_device_id.device_type = DEVICE_TYPE_DFP;
result_device_id.enum_id = 6;
break;
default:
BREAK_TO_DEBUGGER(); /* Invalid device Id */
result_device_id.device_type = DEVICE_TYPE_UNKNOWN;
result_device_id.enum_id = 0;
}
return result_device_id;
}
static void get_atom_data_table_revision(
ATOM_COMMON_TABLE_HEADER *atom_data_tbl,
struct atom_data_revision *tbl_revision)
{
if (!tbl_revision)
return;
/* initialize the revision to 0 which is invalid revision */
tbl_revision->major = 0;
tbl_revision->minor = 0;
if (!atom_data_tbl)
return;
tbl_revision->major =
(uint32_t) GET_DATA_TABLE_MAJOR_REVISION(atom_data_tbl);
tbl_revision->minor =
(uint32_t) GET_DATA_TABLE_MINOR_REVISION(atom_data_tbl);
}
static uint32_t signal_to_ss_id(enum as_signal_type signal)
{
uint32_t clk_id_ss = 0;
switch (signal) {
case AS_SIGNAL_TYPE_DVI:
clk_id_ss = ASIC_INTERNAL_SS_ON_TMDS;
break;
case AS_SIGNAL_TYPE_HDMI:
clk_id_ss = ASIC_INTERNAL_SS_ON_HDMI;
break;
case AS_SIGNAL_TYPE_LVDS:
clk_id_ss = ASIC_INTERNAL_SS_ON_LVDS;
break;
case AS_SIGNAL_TYPE_DISPLAY_PORT:
clk_id_ss = ASIC_INTERNAL_SS_ON_DP;
break;
case AS_SIGNAL_TYPE_GPU_PLL:
clk_id_ss = ASIC_INTERNAL_GPUPLL_SS;
break;
default:
break;
}
return clk_id_ss;
}
static uint32_t get_support_mask_for_device_id(struct device_id device_id)
{
enum dal_device_type device_type = device_id.device_type;
uint32_t enum_id = device_id.enum_id;
switch (device_type) {
case DEVICE_TYPE_LCD:
switch (enum_id) {
case 1:
return ATOM_DEVICE_LCD1_SUPPORT;
case 2:
return ATOM_DEVICE_LCD2_SUPPORT;
default:
break;
}
break;
case DEVICE_TYPE_CRT:
switch (enum_id) {
case 1:
return ATOM_DEVICE_CRT1_SUPPORT;
case 2:
return ATOM_DEVICE_CRT2_SUPPORT;
default:
break;
}
break;
case DEVICE_TYPE_DFP:
switch (enum_id) {
case 1:
return ATOM_DEVICE_DFP1_SUPPORT;
case 2:
return ATOM_DEVICE_DFP2_SUPPORT;
case 3:
return ATOM_DEVICE_DFP3_SUPPORT;
case 4:
return ATOM_DEVICE_DFP4_SUPPORT;
case 5:
return ATOM_DEVICE_DFP5_SUPPORT;
case 6:
return ATOM_DEVICE_DFP6_SUPPORT;
default:
break;
}
break;
case DEVICE_TYPE_CV:
switch (enum_id) {
case 1:
return ATOM_DEVICE_CV_SUPPORT;
default:
break;
}
break;
case DEVICE_TYPE_TV:
switch (enum_id) {
case 1:
return ATOM_DEVICE_TV1_SUPPORT;
default:
break;
}
break;
default:
break;
};
/* Unidentified device ID, return empty support mask. */
return 0;
}
/**
* bios_parser_set_scratch_critical_state
*
* @brief
* update critical state bit in VBIOS scratch register
*
* @param
* bool - to set or reset state
*/
static void bios_parser_set_scratch_critical_state(
struct dc_bios *dcb,
bool state)
{
bios_set_scratch_critical_state(dcb, state);
}
/*
* get_integrated_info_v8
*
* @brief
* Get V8 integrated BIOS information
*
* @param
* bios_parser *bp - [in]BIOS parser handler to get master data table
* integrated_info *info - [out] store and output integrated info
*
* @return
* enum bp_result - BP_RESULT_OK if information is available,
* BP_RESULT_BADBIOSTABLE otherwise.
*/
static enum bp_result get_integrated_info_v8(
struct bios_parser *bp,
struct integrated_info *info)
{
ATOM_INTEGRATED_SYSTEM_INFO_V1_8 *info_v8;
uint32_t i;
info_v8 = GET_IMAGE(ATOM_INTEGRATED_SYSTEM_INFO_V1_8,
bp->master_data_tbl->ListOfDataTables.IntegratedSystemInfo);
if (info_v8 == NULL)
return BP_RESULT_BADBIOSTABLE;
info->boot_up_engine_clock = le32_to_cpu(info_v8->ulBootUpEngineClock) * 10;
info->dentist_vco_freq = le32_to_cpu(info_v8->ulDentistVCOFreq) * 10;
info->boot_up_uma_clock = le32_to_cpu(info_v8->ulBootUpUMAClock) * 10;
for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
/* Convert [10KHz] into [KHz] */
info->disp_clk_voltage[i].max_supported_clk =
le32_to_cpu(info_v8->sDISPCLK_Voltage[i].
ulMaximumSupportedCLK) * 10;
info->disp_clk_voltage[i].voltage_index =
le32_to_cpu(info_v8->sDISPCLK_Voltage[i].ulVoltageIndex);
}
info->boot_up_req_display_vector =
le32_to_cpu(info_v8->ulBootUpReqDisplayVector);
info->gpu_cap_info =
le32_to_cpu(info_v8->ulGPUCapInfo);
/*
* system_config: Bit[0] = 0 : PCIE power gating disabled
* = 1 : PCIE power gating enabled
* Bit[1] = 0 : DDR-PLL shut down disabled
* = 1 : DDR-PLL shut down enabled
* Bit[2] = 0 : DDR-PLL power down disabled
* = 1 : DDR-PLL power down enabled
*/
info->system_config = le32_to_cpu(info_v8->ulSystemConfig);
info->cpu_cap_info = le32_to_cpu(info_v8->ulCPUCapInfo);
info->boot_up_nb_voltage =
le16_to_cpu(info_v8->usBootUpNBVoltage);
info->ext_disp_conn_info_offset =
le16_to_cpu(info_v8->usExtDispConnInfoOffset);
info->memory_type = info_v8->ucMemoryType;
info->ma_channel_number = info_v8->ucUMAChannelNumber;
info->gmc_restore_reset_time =
le32_to_cpu(info_v8->ulGMCRestoreResetTime);
info->minimum_n_clk =
le32_to_cpu(info_v8->ulNbpStateNClkFreq[0]);
for (i = 1; i < 4; ++i)
info->minimum_n_clk =
info->minimum_n_clk < le32_to_cpu(info_v8->ulNbpStateNClkFreq[i]) ?
info->minimum_n_clk : le32_to_cpu(info_v8->ulNbpStateNClkFreq[i]);
info->idle_n_clk = le32_to_cpu(info_v8->ulIdleNClk);
info->ddr_dll_power_up_time =
le32_to_cpu(info_v8->ulDDR_DLL_PowerUpTime);
info->ddr_pll_power_up_time =
le32_to_cpu(info_v8->ulDDR_PLL_PowerUpTime);
info->pcie_clk_ss_type = le16_to_cpu(info_v8->usPCIEClkSSType);
info->lvds_ss_percentage =
le16_to_cpu(info_v8->usLvdsSSPercentage);
info->lvds_sspread_rate_in_10hz =
le16_to_cpu(info_v8->usLvdsSSpreadRateIn10Hz);
info->hdmi_ss_percentage =
le16_to_cpu(info_v8->usHDMISSPercentage);
info->hdmi_sspread_rate_in_10hz =
le16_to_cpu(info_v8->usHDMISSpreadRateIn10Hz);
info->dvi_ss_percentage =
le16_to_cpu(info_v8->usDVISSPercentage);
info->dvi_sspread_rate_in_10_hz =
le16_to_cpu(info_v8->usDVISSpreadRateIn10Hz);
info->max_lvds_pclk_freq_in_single_link =
le16_to_cpu(info_v8->usMaxLVDSPclkFreqInSingleLink);
info->lvds_misc = info_v8->ucLvdsMisc;
info->lvds_pwr_on_seq_dig_on_to_de_in_4ms =
info_v8->ucLVDSPwrOnSeqDIGONtoDE_in4Ms;
info->lvds_pwr_on_seq_de_to_vary_bl_in_4ms =
info_v8->ucLVDSPwrOnSeqDEtoVARY_BL_in4Ms;
info->lvds_pwr_on_seq_vary_bl_to_blon_in_4ms =
info_v8->ucLVDSPwrOnSeqVARY_BLtoBLON_in4Ms;
info->lvds_pwr_off_seq_vary_bl_to_de_in4ms =
info_v8->ucLVDSPwrOffSeqVARY_BLtoDE_in4Ms;
info->lvds_pwr_off_seq_de_to_dig_on_in4ms =
info_v8->ucLVDSPwrOffSeqDEtoDIGON_in4Ms;
info->lvds_pwr_off_seq_blon_to_vary_bl_in_4ms =
info_v8->ucLVDSPwrOffSeqBLONtoVARY_BL_in4Ms;
info->lvds_off_to_on_delay_in_4ms =
info_v8->ucLVDSOffToOnDelay_in4Ms;
info->lvds_bit_depth_control_val =
le32_to_cpu(info_v8->ulLCDBitDepthControlVal);
for (i = 0; i < NUMBER_OF_AVAILABLE_SCLK; ++i) {
/* Convert [10KHz] into [KHz] */
info->avail_s_clk[i].supported_s_clk =
le32_to_cpu(info_v8->sAvail_SCLK[i].ulSupportedSCLK) * 10;
info->avail_s_clk[i].voltage_index =
le16_to_cpu(info_v8->sAvail_SCLK[i].usVoltageIndex);
info->avail_s_clk[i].voltage_id =
le16_to_cpu(info_v8->sAvail_SCLK[i].usVoltageID);
}
for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) {
info->ext_disp_conn_info.gu_id[i] =
info_v8->sExtDispConnInfo.ucGuid[i];
}
for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) {
info->ext_disp_conn_info.path[i].device_connector_id =
object_id_from_bios_object_id(
le16_to_cpu(info_v8->sExtDispConnInfo.sPath[i].usDeviceConnector));
info->ext_disp_conn_info.path[i].ext_encoder_obj_id =
object_id_from_bios_object_id(
le16_to_cpu(info_v8->sExtDispConnInfo.sPath[i].usExtEncoderObjId));
info->ext_disp_conn_info.path[i].device_tag =
le16_to_cpu(info_v8->sExtDispConnInfo.sPath[i].usDeviceTag);
info->ext_disp_conn_info.path[i].device_acpi_enum =
le16_to_cpu(info_v8->sExtDispConnInfo.sPath[i].usDeviceACPIEnum);
info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index =
info_v8->sExtDispConnInfo.sPath[i].ucExtAUXDDCLutIndex;
info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index =
info_v8->sExtDispConnInfo.sPath[i].ucExtHPDPINLutIndex;
info->ext_disp_conn_info.path[i].channel_mapping.raw =
info_v8->sExtDispConnInfo.sPath[i].ucChannelMapping;
}
info->ext_disp_conn_info.checksum =
info_v8->sExtDispConnInfo.ucChecksum;
return BP_RESULT_OK;
}
/*
* get_integrated_info_v8
*
* @brief
* Get V8 integrated BIOS information
*
* @param
* bios_parser *bp - [in]BIOS parser handler to get master data table
* integrated_info *info - [out] store and output integrated info
*
* @return
* enum bp_result - BP_RESULT_OK if information is available,
* BP_RESULT_BADBIOSTABLE otherwise.
*/
static enum bp_result get_integrated_info_v9(
struct bios_parser *bp,
struct integrated_info *info)
{
ATOM_INTEGRATED_SYSTEM_INFO_V1_9 *info_v9;
uint32_t i;
info_v9 = GET_IMAGE(ATOM_INTEGRATED_SYSTEM_INFO_V1_9,
bp->master_data_tbl->ListOfDataTables.IntegratedSystemInfo);
if (!info_v9)
return BP_RESULT_BADBIOSTABLE;
info->boot_up_engine_clock = le32_to_cpu(info_v9->ulBootUpEngineClock) * 10;
info->dentist_vco_freq = le32_to_cpu(info_v9->ulDentistVCOFreq) * 10;
info->boot_up_uma_clock = le32_to_cpu(info_v9->ulBootUpUMAClock) * 10;
for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
/* Convert [10KHz] into [KHz] */
info->disp_clk_voltage[i].max_supported_clk =
le32_to_cpu(info_v9->sDISPCLK_Voltage[i].ulMaximumSupportedCLK) * 10;
info->disp_clk_voltage[i].voltage_index =
le32_to_cpu(info_v9->sDISPCLK_Voltage[i].ulVoltageIndex);
}
info->boot_up_req_display_vector =
le32_to_cpu(info_v9->ulBootUpReqDisplayVector);
info->gpu_cap_info = le32_to_cpu(info_v9->ulGPUCapInfo);
/*
* system_config: Bit[0] = 0 : PCIE power gating disabled
* = 1 : PCIE power gating enabled
* Bit[1] = 0 : DDR-PLL shut down disabled
* = 1 : DDR-PLL shut down enabled
* Bit[2] = 0 : DDR-PLL power down disabled
* = 1 : DDR-PLL power down enabled
*/
info->system_config = le32_to_cpu(info_v9->ulSystemConfig);
info->cpu_cap_info = le32_to_cpu(info_v9->ulCPUCapInfo);
info->boot_up_nb_voltage = le16_to_cpu(info_v9->usBootUpNBVoltage);
info->ext_disp_conn_info_offset = le16_to_cpu(info_v9->usExtDispConnInfoOffset);
info->memory_type = info_v9->ucMemoryType;
info->ma_channel_number = info_v9->ucUMAChannelNumber;
info->gmc_restore_reset_time = le32_to_cpu(info_v9->ulGMCRestoreResetTime);
info->minimum_n_clk = le32_to_cpu(info_v9->ulNbpStateNClkFreq[0]);
for (i = 1; i < 4; ++i)
info->minimum_n_clk =
info->minimum_n_clk < le32_to_cpu(info_v9->ulNbpStateNClkFreq[i]) ?
info->minimum_n_clk : le32_to_cpu(info_v9->ulNbpStateNClkFreq[i]);
info->idle_n_clk = le32_to_cpu(info_v9->ulIdleNClk);
info->ddr_dll_power_up_time = le32_to_cpu(info_v9->ulDDR_DLL_PowerUpTime);
info->ddr_pll_power_up_time = le32_to_cpu(info_v9->ulDDR_PLL_PowerUpTime);
info->pcie_clk_ss_type = le16_to_cpu(info_v9->usPCIEClkSSType);
info->lvds_ss_percentage = le16_to_cpu(info_v9->usLvdsSSPercentage);
info->lvds_sspread_rate_in_10hz = le16_to_cpu(info_v9->usLvdsSSpreadRateIn10Hz);
info->hdmi_ss_percentage = le16_to_cpu(info_v9->usHDMISSPercentage);
info->hdmi_sspread_rate_in_10hz = le16_to_cpu(info_v9->usHDMISSpreadRateIn10Hz);
info->dvi_ss_percentage = le16_to_cpu(info_v9->usDVISSPercentage);
info->dvi_sspread_rate_in_10_hz = le16_to_cpu(info_v9->usDVISSpreadRateIn10Hz);
info->max_lvds_pclk_freq_in_single_link =
le16_to_cpu(info_v9->usMaxLVDSPclkFreqInSingleLink);
info->lvds_misc = info_v9->ucLvdsMisc;
info->lvds_pwr_on_seq_dig_on_to_de_in_4ms =
info_v9->ucLVDSPwrOnSeqDIGONtoDE_in4Ms;
info->lvds_pwr_on_seq_de_to_vary_bl_in_4ms =
info_v9->ucLVDSPwrOnSeqDEtoVARY_BL_in4Ms;
info->lvds_pwr_on_seq_vary_bl_to_blon_in_4ms =
info_v9->ucLVDSPwrOnSeqVARY_BLtoBLON_in4Ms;
info->lvds_pwr_off_seq_vary_bl_to_de_in4ms =
info_v9->ucLVDSPwrOffSeqVARY_BLtoDE_in4Ms;
info->lvds_pwr_off_seq_de_to_dig_on_in4ms =
info_v9->ucLVDSPwrOffSeqDEtoDIGON_in4Ms;
info->lvds_pwr_off_seq_blon_to_vary_bl_in_4ms =
info_v9->ucLVDSPwrOffSeqBLONtoVARY_BL_in4Ms;
info->lvds_off_to_on_delay_in_4ms =
info_v9->ucLVDSOffToOnDelay_in4Ms;
info->lvds_bit_depth_control_val =
le32_to_cpu(info_v9->ulLCDBitDepthControlVal);
for (i = 0; i < NUMBER_OF_AVAILABLE_SCLK; ++i) {
/* Convert [10KHz] into [KHz] */
info->avail_s_clk[i].supported_s_clk =
le32_to_cpu(info_v9->sAvail_SCLK[i].ulSupportedSCLK) * 10;
info->avail_s_clk[i].voltage_index =
le16_to_cpu(info_v9->sAvail_SCLK[i].usVoltageIndex);
info->avail_s_clk[i].voltage_id =
le16_to_cpu(info_v9->sAvail_SCLK[i].usVoltageID);
}
for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) {
info->ext_disp_conn_info.gu_id[i] =
info_v9->sExtDispConnInfo.ucGuid[i];
}
for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) {
info->ext_disp_conn_info.path[i].device_connector_id =
object_id_from_bios_object_id(
le16_to_cpu(info_v9->sExtDispConnInfo.sPath[i].usDeviceConnector));
info->ext_disp_conn_info.path[i].ext_encoder_obj_id =
object_id_from_bios_object_id(
le16_to_cpu(info_v9->sExtDispConnInfo.sPath[i].usExtEncoderObjId));
info->ext_disp_conn_info.path[i].device_tag =
le16_to_cpu(info_v9->sExtDispConnInfo.sPath[i].usDeviceTag);
info->ext_disp_conn_info.path[i].device_acpi_enum =
le16_to_cpu(info_v9->sExtDispConnInfo.sPath[i].usDeviceACPIEnum);
info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index =
info_v9->sExtDispConnInfo.sPath[i].ucExtAUXDDCLutIndex;
info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index =
info_v9->sExtDispConnInfo.sPath[i].ucExtHPDPINLutIndex;
info->ext_disp_conn_info.path[i].channel_mapping.raw =
info_v9->sExtDispConnInfo.sPath[i].ucChannelMapping;
}
info->ext_disp_conn_info.checksum =
info_v9->sExtDispConnInfo.ucChecksum;
return BP_RESULT_OK;
}
/*
* construct_integrated_info
*
* @brief
* Get integrated BIOS information based on table revision
*
* @param
* bios_parser *bp - [in]BIOS parser handler to get master data table
* integrated_info *info - [out] store and output integrated info
*
* @return
* enum bp_result - BP_RESULT_OK if information is available,
* BP_RESULT_BADBIOSTABLE otherwise.
*/
static enum bp_result construct_integrated_info(
struct bios_parser *bp,
struct integrated_info *info)
{
enum bp_result result = BP_RESULT_BADBIOSTABLE;
ATOM_COMMON_TABLE_HEADER *header;
struct atom_data_revision revision;
if (bp->master_data_tbl->ListOfDataTables.IntegratedSystemInfo) {
header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER,
bp->master_data_tbl->ListOfDataTables.IntegratedSystemInfo);
get_atom_data_table_revision(header, &revision);
/* Don't need to check major revision as they are all 1 */
switch (revision.minor) {
case 8:
result = get_integrated_info_v8(bp, info);
break;
case 9:
result = get_integrated_info_v9(bp, info);
break;
default:
return result;
}
}
/* Sort voltage table from low to high*/
if (result == BP_RESULT_OK) {
uint32_t i;
uint32_t j;
for (i = 1; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
for (j = i; j > 0; --j) {
if (
info->disp_clk_voltage[j].max_supported_clk <
info->disp_clk_voltage[j-1].max_supported_clk) {
/* swap j and j - 1*/
swap(info->disp_clk_voltage[j - 1],
info->disp_clk_voltage[j]);
}
}
}
}
return result;
}
static struct integrated_info *bios_parser_create_integrated_info(
struct dc_bios *dcb)
{
struct bios_parser *bp = BP_FROM_DCB(dcb);
struct integrated_info *info = NULL;
info = kzalloc(sizeof(struct integrated_info), GFP_KERNEL);
if (info == NULL) {
ASSERT_CRITICAL(0);
return NULL;
}
if (construct_integrated_info(bp, info) == BP_RESULT_OK)
return info;
kfree(info);
return NULL;
}
enum bp_result update_slot_layout_info(
struct dc_bios *dcb,
unsigned int i,
struct slot_layout_info *slot_layout_info,
unsigned int record_offset)
{
unsigned int j;
struct bios_parser *bp;
ATOM_BRACKET_LAYOUT_RECORD *record;
ATOM_COMMON_RECORD_HEADER *record_header;
enum bp_result result = BP_RESULT_NORECORD;
bp = BP_FROM_DCB(dcb);
record = NULL;
record_header = NULL;
for (;;) {
record_header = (ATOM_COMMON_RECORD_HEADER *)
GET_IMAGE(ATOM_COMMON_RECORD_HEADER, record_offset);
if (record_header == NULL) {
result = BP_RESULT_BADBIOSTABLE;
break;
}
/* the end of the list */
if (record_header->ucRecordType == 0xff ||
record_header->ucRecordSize == 0) {
break;
}
if (record_header->ucRecordType ==
ATOM_BRACKET_LAYOUT_RECORD_TYPE &&
sizeof(ATOM_BRACKET_LAYOUT_RECORD)
<= record_header->ucRecordSize) {
record = (ATOM_BRACKET_LAYOUT_RECORD *)
(record_header);
result = BP_RESULT_OK;
break;
}
record_offset += record_header->ucRecordSize;
}
/* return if the record not found */
if (result != BP_RESULT_OK)
return result;
/* get slot sizes */
slot_layout_info->length = record->ucLength;
slot_layout_info->width = record->ucWidth;
/* get info for each connector in the slot */
slot_layout_info->num_of_connectors = record->ucConnNum;
for (j = 0; j < slot_layout_info->num_of_connectors; ++j) {
slot_layout_info->connectors[j].connector_type =
(enum connector_layout_type)
(record->asConnInfo[j].ucConnectorType);
switch (record->asConnInfo[j].ucConnectorType) {
case CONNECTOR_TYPE_DVI_D:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_DVI_D;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_DVI;
break;
case CONNECTOR_TYPE_HDMI:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_HDMI;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_HDMI;
break;
case CONNECTOR_TYPE_DISPLAY_PORT:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_DP;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_DP;
break;
case CONNECTOR_TYPE_MINI_DISPLAY_PORT:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_MINI_DP;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_MINI_DP;
break;
default:
slot_layout_info->connectors[j].connector_type =
CONNECTOR_LAYOUT_TYPE_UNKNOWN;
slot_layout_info->connectors[j].length =
CONNECTOR_SIZE_UNKNOWN;
}
slot_layout_info->connectors[j].position =
record->asConnInfo[j].ucPosition;
slot_layout_info->connectors[j].connector_id =
object_id_from_bios_object_id(
record->asConnInfo[j].usConnectorObjectId);
}
return result;
}
enum bp_result get_bracket_layout_record(
struct dc_bios *dcb,
unsigned int bracket_layout_id,
struct slot_layout_info *slot_layout_info)
{
unsigned int i;
unsigned int record_offset;
struct bios_parser *bp;
enum bp_result result;
ATOM_OBJECT *object;
ATOM_OBJECT_TABLE *object_table;
unsigned int genericTableOffset;
bp = BP_FROM_DCB(dcb);
object = NULL;
if (slot_layout_info == NULL) {
DC_LOG_DETECTION_EDID_PARSER("Invalid slot_layout_info\n");
return BP_RESULT_BADINPUT;
}
genericTableOffset = bp->object_info_tbl_offset +
bp->object_info_tbl.v1_3->usMiscObjectTableOffset;
object_table = (ATOM_OBJECT_TABLE *)
GET_IMAGE(ATOM_OBJECT_TABLE, genericTableOffset);
if (!object_table)
return BP_RESULT_FAILURE;
result = BP_RESULT_NORECORD;
for (i = 0; i < object_table->ucNumberOfObjects; ++i) {
if (bracket_layout_id ==
object_table->asObjects[i].usObjectID) {
object = &object_table->asObjects[i];
record_offset = object->usRecordOffset +
bp->object_info_tbl_offset;
result = update_slot_layout_info(dcb, i,
slot_layout_info, record_offset);
break;
}
}
return result;
}
static enum bp_result bios_get_board_layout_info(
struct dc_bios *dcb,
struct board_layout_info *board_layout_info)
{
unsigned int i;
struct bios_parser *bp;
enum bp_result record_result;
const unsigned int slot_index_to_vbios_id[MAX_BOARD_SLOTS] = {
GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1,
GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2,
0, 0
};
bp = BP_FROM_DCB(dcb);
if (board_layout_info == NULL) {
DC_LOG_DETECTION_EDID_PARSER("Invalid board_layout_info\n");
return BP_RESULT_BADINPUT;
}
board_layout_info->num_of_slots = 0;
for (i = 0; i < MAX_BOARD_SLOTS; ++i) {
record_result = get_bracket_layout_record(dcb,
slot_index_to_vbios_id[i],
&board_layout_info->slots[i]);
if (record_result == BP_RESULT_NORECORD && i > 0)
break; /* no more slots present in bios */
else if (record_result != BP_RESULT_OK)
return record_result; /* fail */
++board_layout_info->num_of_slots;
}
/* all data is valid */
board_layout_info->is_number_of_slots_valid = 1;
board_layout_info->is_slots_size_valid = 1;
board_layout_info->is_connector_offsets_valid = 1;
board_layout_info->is_connector_lengths_valid = 1;
return BP_RESULT_OK;
}
/******************************************************************************/
static const struct dc_vbios_funcs vbios_funcs = {
.get_connectors_number = bios_parser_get_connectors_number,
.get_connector_id = bios_parser_get_connector_id,
.get_src_obj = bios_parser_get_src_obj,
.get_i2c_info = bios_parser_get_i2c_info,
.get_hpd_info = bios_parser_get_hpd_info,
.get_device_tag = bios_parser_get_device_tag,
.get_spread_spectrum_info = bios_parser_get_spread_spectrum_info,
.get_ss_entry_number = bios_parser_get_ss_entry_number,
.get_embedded_panel_info = bios_parser_get_embedded_panel_info,
.get_gpio_pin_info = bios_parser_get_gpio_pin_info,
.get_encoder_cap_info = bios_parser_get_encoder_cap_info,
/* bios scratch register communication */
.is_accelerated_mode = bios_is_accelerated_mode,
.set_scratch_critical_state = bios_parser_set_scratch_critical_state,
.is_device_id_supported = bios_parser_is_device_id_supported,
/* COMMANDS */
.encoder_control = bios_parser_encoder_control,
.transmitter_control = bios_parser_transmitter_control,
.enable_crtc = bios_parser_enable_crtc,