blob: cc71a1078a7a69204d6f2ba295a425c7f4fb9777 [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "pp_debug.h"
#include <linux/firmware.h>
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "smu_internal.h"
#include "atomfirmware.h"
#include "amdgpu_atomfirmware.h"
#include "smu_v11_0.h"
#include "smu11_driver_if_arcturus.h"
#include "soc15_common.h"
#include "atom.h"
#include "power_state.h"
#include "arcturus_ppt.h"
#include "smu_v11_0_pptable.h"
#include "arcturus_ppsmc.h"
#include "nbio/nbio_7_4_sh_mask.h"
#include "amdgpu_xgmi.h"
#include <linux/i2c.h>
#include <linux/pci.h>
#include "amdgpu_ras.h"
#define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control.eeprom_accessor))->adev
#define CTF_OFFSET_EDGE 5
#define CTF_OFFSET_HOTSPOT 5
#define CTF_OFFSET_HBM 5
#define MSG_MAP(msg, index) \
[SMU_MSG_##msg] = {1, (index)}
#define ARCTURUS_FEA_MAP(smu_feature, arcturus_feature) \
[smu_feature] = {1, (arcturus_feature)}
#define SMU_FEATURES_LOW_MASK 0x00000000FFFFFFFF
#define SMU_FEATURES_LOW_SHIFT 0
#define SMU_FEATURES_HIGH_MASK 0xFFFFFFFF00000000
#define SMU_FEATURES_HIGH_SHIFT 32
#define SMC_DPM_FEATURE ( \
FEATURE_DPM_PREFETCHER_MASK | \
FEATURE_DPM_GFXCLK_MASK | \
FEATURE_DPM_UCLK_MASK | \
FEATURE_DPM_SOCCLK_MASK | \
FEATURE_DPM_MP0CLK_MASK | \
FEATURE_DPM_FCLK_MASK | \
FEATURE_DPM_XGMI_MASK)
/* possible frequency drift (1Mhz) */
#define EPSILON 1
static struct smu_11_0_cmn2aisc_mapping arcturus_message_map[SMU_MSG_MAX_COUNT] = {
MSG_MAP(TestMessage, PPSMC_MSG_TestMessage),
MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion),
MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion),
MSG_MAP(SetAllowedFeaturesMaskLow, PPSMC_MSG_SetAllowedFeaturesMaskLow),
MSG_MAP(SetAllowedFeaturesMaskHigh, PPSMC_MSG_SetAllowedFeaturesMaskHigh),
MSG_MAP(EnableAllSmuFeatures, PPSMC_MSG_EnableAllSmuFeatures),
MSG_MAP(DisableAllSmuFeatures, PPSMC_MSG_DisableAllSmuFeatures),
MSG_MAP(EnableSmuFeaturesLow, PPSMC_MSG_EnableSmuFeaturesLow),
MSG_MAP(EnableSmuFeaturesHigh, PPSMC_MSG_EnableSmuFeaturesHigh),
MSG_MAP(DisableSmuFeaturesLow, PPSMC_MSG_DisableSmuFeaturesLow),
MSG_MAP(DisableSmuFeaturesHigh, PPSMC_MSG_DisableSmuFeaturesHigh),
MSG_MAP(GetEnabledSmuFeaturesLow, PPSMC_MSG_GetEnabledSmuFeaturesLow),
MSG_MAP(GetEnabledSmuFeaturesHigh, PPSMC_MSG_GetEnabledSmuFeaturesHigh),
MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh),
MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow),
MSG_MAP(SetToolsDramAddrHigh, PPSMC_MSG_SetToolsDramAddrHigh),
MSG_MAP(SetToolsDramAddrLow, PPSMC_MSG_SetToolsDramAddrLow),
MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram),
MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu),
MSG_MAP(UseDefaultPPTable, PPSMC_MSG_UseDefaultPPTable),
MSG_MAP(UseBackupPPTable, PPSMC_MSG_UseBackupPPTable),
MSG_MAP(SetSystemVirtualDramAddrHigh, PPSMC_MSG_SetSystemVirtualDramAddrHigh),
MSG_MAP(SetSystemVirtualDramAddrLow, PPSMC_MSG_SetSystemVirtualDramAddrLow),
MSG_MAP(EnterBaco, PPSMC_MSG_EnterBaco),
MSG_MAP(ExitBaco, PPSMC_MSG_ExitBaco),
MSG_MAP(ArmD3, PPSMC_MSG_ArmD3),
MSG_MAP(SetSoftMinByFreq, PPSMC_MSG_SetSoftMinByFreq),
MSG_MAP(SetSoftMaxByFreq, PPSMC_MSG_SetSoftMaxByFreq),
MSG_MAP(SetHardMinByFreq, PPSMC_MSG_SetHardMinByFreq),
MSG_MAP(SetHardMaxByFreq, PPSMC_MSG_SetHardMaxByFreq),
MSG_MAP(GetMinDpmFreq, PPSMC_MSG_GetMinDpmFreq),
MSG_MAP(GetMaxDpmFreq, PPSMC_MSG_GetMaxDpmFreq),
MSG_MAP(GetDpmFreqByIndex, PPSMC_MSG_GetDpmFreqByIndex),
MSG_MAP(SetWorkloadMask, PPSMC_MSG_SetWorkloadMask),
MSG_MAP(SetDfSwitchType, PPSMC_MSG_SetDfSwitchType),
MSG_MAP(GetVoltageByDpm, PPSMC_MSG_GetVoltageByDpm),
MSG_MAP(GetVoltageByDpmOverdrive, PPSMC_MSG_GetVoltageByDpmOverdrive),
MSG_MAP(SetPptLimit, PPSMC_MSG_SetPptLimit),
MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit),
MSG_MAP(PowerUpVcn0, PPSMC_MSG_PowerUpVcn0),
MSG_MAP(PowerDownVcn0, PPSMC_MSG_PowerDownVcn0),
MSG_MAP(PowerUpVcn1, PPSMC_MSG_PowerUpVcn1),
MSG_MAP(PowerDownVcn1, PPSMC_MSG_PowerDownVcn1),
MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload),
MSG_MAP(PrepareMp1ForReset, PPSMC_MSG_PrepareMp1ForReset),
MSG_MAP(PrepareMp1ForShutdown, PPSMC_MSG_PrepareMp1ForShutdown),
MSG_MAP(SoftReset, PPSMC_MSG_SoftReset),
MSG_MAP(RunAfllBtc, PPSMC_MSG_RunAfllBtc),
MSG_MAP(RunDcBtc, PPSMC_MSG_RunDcBtc),
MSG_MAP(DramLogSetDramAddrHigh, PPSMC_MSG_DramLogSetDramAddrHigh),
MSG_MAP(DramLogSetDramAddrLow, PPSMC_MSG_DramLogSetDramAddrLow),
MSG_MAP(DramLogSetDramSize, PPSMC_MSG_DramLogSetDramSize),
MSG_MAP(GetDebugData, PPSMC_MSG_GetDebugData),
MSG_MAP(WaflTest, PPSMC_MSG_WaflTest),
MSG_MAP(SetXgmiMode, PPSMC_MSG_SetXgmiMode),
MSG_MAP(SetMemoryChannelEnable, PPSMC_MSG_SetMemoryChannelEnable),
};
static struct smu_11_0_cmn2aisc_mapping arcturus_clk_map[SMU_CLK_COUNT] = {
CLK_MAP(GFXCLK, PPCLK_GFXCLK),
CLK_MAP(SCLK, PPCLK_GFXCLK),
CLK_MAP(SOCCLK, PPCLK_SOCCLK),
CLK_MAP(FCLK, PPCLK_FCLK),
CLK_MAP(UCLK, PPCLK_UCLK),
CLK_MAP(MCLK, PPCLK_UCLK),
CLK_MAP(DCLK, PPCLK_DCLK),
CLK_MAP(VCLK, PPCLK_VCLK),
};
static struct smu_11_0_cmn2aisc_mapping arcturus_feature_mask_map[SMU_FEATURE_COUNT] = {
FEA_MAP(DPM_PREFETCHER),
FEA_MAP(DPM_GFXCLK),
FEA_MAP(DPM_UCLK),
FEA_MAP(DPM_SOCCLK),
FEA_MAP(DPM_FCLK),
FEA_MAP(DPM_MP0CLK),
ARCTURUS_FEA_MAP(SMU_FEATURE_XGMI_BIT, FEATURE_DPM_XGMI_BIT),
FEA_MAP(DS_GFXCLK),
FEA_MAP(DS_SOCCLK),
FEA_MAP(DS_LCLK),
FEA_MAP(DS_FCLK),
FEA_MAP(DS_UCLK),
FEA_MAP(GFX_ULV),
ARCTURUS_FEA_MAP(SMU_FEATURE_VCN_PG_BIT, FEATURE_DPM_VCN_BIT),
FEA_MAP(RSMU_SMN_CG),
FEA_MAP(WAFL_CG),
FEA_MAP(PPT),
FEA_MAP(TDC),
FEA_MAP(APCC_PLUS),
FEA_MAP(VR0HOT),
FEA_MAP(VR1HOT),
FEA_MAP(FW_CTF),
FEA_MAP(FAN_CONTROL),
FEA_MAP(THERMAL),
FEA_MAP(OUT_OF_BAND_MONITOR),
FEA_MAP(TEMP_DEPENDENT_VMIN),
};
static struct smu_11_0_cmn2aisc_mapping arcturus_table_map[SMU_TABLE_COUNT] = {
TAB_MAP(PPTABLE),
TAB_MAP(AVFS),
TAB_MAP(AVFS_PSM_DEBUG),
TAB_MAP(AVFS_FUSE_OVERRIDE),
TAB_MAP(PMSTATUSLOG),
TAB_MAP(SMU_METRICS),
TAB_MAP(DRIVER_SMU_CONFIG),
TAB_MAP(OVERDRIVE),
TAB_MAP(I2C_COMMANDS),
};
static struct smu_11_0_cmn2aisc_mapping arcturus_pwr_src_map[SMU_POWER_SOURCE_COUNT] = {
PWR_MAP(AC),
PWR_MAP(DC),
};
static struct smu_11_0_cmn2aisc_mapping arcturus_workload_map[PP_SMC_POWER_PROFILE_COUNT] = {
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT, WORKLOAD_PPLIB_DEFAULT_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING, WORKLOAD_PPLIB_POWER_SAVING_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_COMPUTE_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT),
};
static int arcturus_get_smu_msg_index(struct smu_context *smc, uint32_t index)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (index >= SMU_MSG_MAX_COUNT)
return -EINVAL;
mapping = arcturus_message_map[index];
if (!(mapping.valid_mapping))
return -EINVAL;
return mapping.map_to;
}
static int arcturus_get_smu_clk_index(struct smu_context *smc, uint32_t index)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (index >= SMU_CLK_COUNT)
return -EINVAL;
mapping = arcturus_clk_map[index];
if (!(mapping.valid_mapping)) {
pr_warn("Unsupported SMU clk: %d\n", index);
return -EINVAL;
}
return mapping.map_to;
}
static int arcturus_get_smu_feature_index(struct smu_context *smc, uint32_t index)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (index >= SMU_FEATURE_COUNT)
return -EINVAL;
mapping = arcturus_feature_mask_map[index];
if (!(mapping.valid_mapping)) {
return -EINVAL;
}
return mapping.map_to;
}
static int arcturus_get_smu_table_index(struct smu_context *smc, uint32_t index)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (index >= SMU_TABLE_COUNT)
return -EINVAL;
mapping = arcturus_table_map[index];
if (!(mapping.valid_mapping)) {
pr_warn("Unsupported SMU table: %d\n", index);
return -EINVAL;
}
return mapping.map_to;
}
static int arcturus_get_pwr_src_index(struct smu_context *smc, uint32_t index)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (index >= SMU_POWER_SOURCE_COUNT)
return -EINVAL;
mapping = arcturus_pwr_src_map[index];
if (!(mapping.valid_mapping)) {
pr_warn("Unsupported SMU power source: %d\n", index);
return -EINVAL;
}
return mapping.map_to;
}
static int arcturus_get_workload_type(struct smu_context *smu, enum PP_SMC_POWER_PROFILE profile)
{
struct smu_11_0_cmn2aisc_mapping mapping;
if (profile > PP_SMC_POWER_PROFILE_CUSTOM)
return -EINVAL;
mapping = arcturus_workload_map[profile];
if (!(mapping.valid_mapping)) {
pr_warn("Unsupported SMU power source: %d\n", profile);
return -EINVAL;
}
return mapping.map_to;
}
static int arcturus_tables_init(struct smu_context *smu, struct smu_table *tables)
{
struct smu_table_context *smu_table = &smu->smu_table;
SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_I2C_COMMANDS, sizeof(SwI2cRequest_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
if (!smu_table->metrics_table)
return -ENOMEM;
smu_table->metrics_time = 0;
return 0;
}
static int arcturus_allocate_dpm_context(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
if (smu_dpm->dpm_context)
return -EINVAL;
smu_dpm->dpm_context = kzalloc(sizeof(struct arcturus_dpm_table),
GFP_KERNEL);
if (!smu_dpm->dpm_context)
return -ENOMEM;
if (smu_dpm->golden_dpm_context)
return -EINVAL;
smu_dpm->golden_dpm_context = kzalloc(sizeof(struct arcturus_dpm_table),
GFP_KERNEL);
if (!smu_dpm->golden_dpm_context)
return -ENOMEM;
smu_dpm->dpm_context_size = sizeof(struct arcturus_dpm_table);
smu_dpm->dpm_current_power_state = kzalloc(sizeof(struct smu_power_state),
GFP_KERNEL);
if (!smu_dpm->dpm_current_power_state)
return -ENOMEM;
smu_dpm->dpm_request_power_state = kzalloc(sizeof(struct smu_power_state),
GFP_KERNEL);
if (!smu_dpm->dpm_request_power_state)
return -ENOMEM;
return 0;
}
static int
arcturus_get_allowed_feature_mask(struct smu_context *smu,
uint32_t *feature_mask, uint32_t num)
{
if (num > 2)
return -EINVAL;
/* pptable will handle the features to enable */
memset(feature_mask, 0xFF, sizeof(uint32_t) * num);
return 0;
}
static int
arcturus_set_single_dpm_table(struct smu_context *smu,
struct arcturus_single_dpm_table *single_dpm_table,
PPCLK_e clk_id)
{
int ret = 0;
uint32_t i, num_of_levels = 0, clk;
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_GetDpmFreqByIndex,
(clk_id << 16 | 0xFF));
if (ret) {
pr_err("[%s] failed to get dpm levels!\n", __func__);
return ret;
}
smu_read_smc_arg(smu, &num_of_levels);
if (!num_of_levels) {
pr_err("[%s] number of clk levels is invalid!\n", __func__);
return -EINVAL;
}
single_dpm_table->count = num_of_levels;
for (i = 0; i < num_of_levels; i++) {
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_GetDpmFreqByIndex,
(clk_id << 16 | i));
if (ret) {
pr_err("[%s] failed to get dpm freq by index!\n", __func__);
return ret;
}
smu_read_smc_arg(smu, &clk);
if (!clk) {
pr_err("[%s] clk value is invalid!\n", __func__);
return -EINVAL;
}
single_dpm_table->dpm_levels[i].value = clk;
single_dpm_table->dpm_levels[i].enabled = true;
}
return 0;
}
static void arcturus_init_single_dpm_state(struct arcturus_dpm_state *dpm_state)
{
dpm_state->soft_min_level = 0x0;
dpm_state->soft_max_level = 0xffff;
dpm_state->hard_min_level = 0x0;
dpm_state->hard_max_level = 0xffff;
}
static int arcturus_set_default_dpm_table(struct smu_context *smu)
{
int ret;
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct arcturus_dpm_table *dpm_table = NULL;
struct arcturus_single_dpm_table *single_dpm_table;
dpm_table = smu_dpm->dpm_context;
/* socclk */
single_dpm_table = &(dpm_table->soc_table);
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
ret = arcturus_set_single_dpm_table(smu, single_dpm_table,
PPCLK_SOCCLK);
if (ret) {
pr_err("[%s] failed to get socclk dpm levels!\n", __func__);
return ret;
}
} else {
single_dpm_table->count = 1;
single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100;
}
arcturus_init_single_dpm_state(&(single_dpm_table->dpm_state));
/* gfxclk */
single_dpm_table = &(dpm_table->gfx_table);
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
ret = arcturus_set_single_dpm_table(smu, single_dpm_table,
PPCLK_GFXCLK);
if (ret) {
pr_err("[SetupDefaultDpmTable] failed to get gfxclk dpm levels!");
return ret;
}
} else {
single_dpm_table->count = 1;
single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
}
arcturus_init_single_dpm_state(&(single_dpm_table->dpm_state));
/* memclk */
single_dpm_table = &(dpm_table->mem_table);
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
ret = arcturus_set_single_dpm_table(smu, single_dpm_table,
PPCLK_UCLK);
if (ret) {
pr_err("[SetupDefaultDpmTable] failed to get memclk dpm levels!");
return ret;
}
} else {
single_dpm_table->count = 1;
single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100;
}
arcturus_init_single_dpm_state(&(single_dpm_table->dpm_state));
/* fclk */
single_dpm_table = &(dpm_table->fclk_table);
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT)) {
ret = arcturus_set_single_dpm_table(smu, single_dpm_table,
PPCLK_FCLK);
if (ret) {
pr_err("[SetupDefaultDpmTable] failed to get fclk dpm levels!");
return ret;
}
} else {
single_dpm_table->count = 1;
single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.fclk / 100;
}
arcturus_init_single_dpm_state(&(single_dpm_table->dpm_state));
memcpy(smu_dpm->golden_dpm_context, dpm_table,
sizeof(struct arcturus_dpm_table));
return 0;
}
static int arcturus_check_powerplay_table(struct smu_context *smu)
{
return 0;
}
static int arcturus_store_powerplay_table(struct smu_context *smu)
{
struct smu_11_0_powerplay_table *powerplay_table = NULL;
struct smu_table_context *table_context = &smu->smu_table;
int ret = 0;
if (!table_context->power_play_table)
return -EINVAL;
powerplay_table = table_context->power_play_table;
memcpy(table_context->driver_pptable, &powerplay_table->smc_pptable,
sizeof(PPTable_t));
table_context->thermal_controller_type = powerplay_table->thermal_controller_type;
return ret;
}
static int arcturus_append_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *smc_pptable = table_context->driver_pptable;
struct atom_smc_dpm_info_v4_6 *smc_dpm_table;
int index, ret;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
smc_dpm_info);
ret = smu_get_atom_data_table(smu, index, NULL, NULL, NULL,
(uint8_t **)&smc_dpm_table);
if (ret)
return ret;
pr_info("smc_dpm_info table revision(format.content): %d.%d\n",
smc_dpm_table->table_header.format_revision,
smc_dpm_table->table_header.content_revision);
if ((smc_dpm_table->table_header.format_revision == 4) &&
(smc_dpm_table->table_header.content_revision == 6))
memcpy(&smc_pptable->MaxVoltageStepGfx,
&smc_dpm_table->maxvoltagestepgfx,
sizeof(*smc_dpm_table) - offsetof(struct atom_smc_dpm_info_v4_6, maxvoltagestepgfx));
return 0;
}
static int arcturus_run_btc(struct smu_context *smu)
{
int ret = 0;
ret = smu_send_smc_msg(smu, SMU_MSG_RunAfllBtc);
if (ret) {
pr_err("RunAfllBtc failed!\n");
return ret;
}
return smu_send_smc_msg(smu, SMU_MSG_RunDcBtc);
}
static int arcturus_populate_umd_state_clk(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct arcturus_dpm_table *dpm_table = NULL;
struct arcturus_single_dpm_table *gfx_table = NULL;
struct arcturus_single_dpm_table *mem_table = NULL;
dpm_table = smu_dpm->dpm_context;
gfx_table = &(dpm_table->gfx_table);
mem_table = &(dpm_table->mem_table);
smu->pstate_sclk = gfx_table->dpm_levels[0].value;
smu->pstate_mclk = mem_table->dpm_levels[0].value;
if (gfx_table->count > ARCTURUS_UMD_PSTATE_GFXCLK_LEVEL &&
mem_table->count > ARCTURUS_UMD_PSTATE_MCLK_LEVEL) {
smu->pstate_sclk = gfx_table->dpm_levels[ARCTURUS_UMD_PSTATE_GFXCLK_LEVEL].value;
smu->pstate_mclk = mem_table->dpm_levels[ARCTURUS_UMD_PSTATE_MCLK_LEVEL].value;
}
smu->pstate_sclk = smu->pstate_sclk * 100;
smu->pstate_mclk = smu->pstate_mclk * 100;
return 0;
}
static int arcturus_get_clk_table(struct smu_context *smu,
struct pp_clock_levels_with_latency *clocks,
struct arcturus_single_dpm_table *dpm_table)
{
int i, count;
count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count;
clocks->num_levels = count;
for (i = 0; i < count; i++) {
clocks->data[i].clocks_in_khz =
dpm_table->dpm_levels[i].value * 1000;
clocks->data[i].latency_in_us = 0;
}
return 0;
}
static int arcturus_freqs_in_same_level(int32_t frequency1,
int32_t frequency2)
{
return (abs(frequency1 - frequency2) <= EPSILON);
}
static int arcturus_print_clk_levels(struct smu_context *smu,
enum smu_clk_type type, char *buf)
{
int i, now, size = 0;
int ret = 0;
struct pp_clock_levels_with_latency clocks;
struct arcturus_single_dpm_table *single_dpm_table;
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct arcturus_dpm_table *dpm_table = NULL;
dpm_table = smu_dpm->dpm_context;
switch (type) {
case SMU_SCLK:
ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, &now);
if (ret) {
pr_err("Attempt to get current gfx clk Failed!");
return ret;
}
single_dpm_table = &(dpm_table->gfx_table);
ret = arcturus_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
pr_err("Attempt to get gfx clk levels Failed!");
return ret;
}
/*
* For DPM disabled case, there will be only one clock level.
* And it's safe to assume that is always the current clock.
*/
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n", i,
clocks.data[i].clocks_in_khz / 1000,
(clocks.num_levels == 1) ? "*" :
(arcturus_freqs_in_same_level(
clocks.data[i].clocks_in_khz / 1000,
now / 100) ? "*" : ""));
break;
case SMU_MCLK:
ret = smu_get_current_clk_freq(smu, SMU_UCLK, &now);
if (ret) {
pr_err("Attempt to get current mclk Failed!");
return ret;
}
single_dpm_table = &(dpm_table->mem_table);
ret = arcturus_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
pr_err("Attempt to get memory clk levels Failed!");
return ret;
}
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, clocks.data[i].clocks_in_khz / 1000,
(clocks.num_levels == 1) ? "*" :
(arcturus_freqs_in_same_level(
clocks.data[i].clocks_in_khz / 1000,
now / 100) ? "*" : ""));
break;
case SMU_SOCCLK:
ret = smu_get_current_clk_freq(smu, SMU_SOCCLK, &now);
if (ret) {
pr_err("Attempt to get current socclk Failed!");
return ret;
}
single_dpm_table = &(dpm_table->soc_table);
ret = arcturus_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
pr_err("Attempt to get socclk levels Failed!");
return ret;
}
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, clocks.data[i].clocks_in_khz / 1000,
(clocks.num_levels == 1) ? "*" :
(arcturus_freqs_in_same_level(
clocks.data[i].clocks_in_khz / 1000,
now / 100) ? "*" : ""));
break;
case SMU_FCLK:
ret = smu_get_current_clk_freq(smu, SMU_FCLK, &now);
if (ret) {
pr_err("Attempt to get current fclk Failed!");
return ret;
}
single_dpm_table = &(dpm_table->fclk_table);
ret = arcturus_get_clk_table(smu, &clocks, single_dpm_table);
if (ret) {
pr_err("Attempt to get fclk levels Failed!");
return ret;
}
for (i = 0; i < single_dpm_table->count; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, single_dpm_table->dpm_levels[i].value,
(clocks.num_levels == 1) ? "*" :
(arcturus_freqs_in_same_level(
clocks.data[i].clocks_in_khz / 1000,
now / 100) ? "*" : ""));
break;
default:
break;
}
return size;
}
static int arcturus_upload_dpm_level(struct smu_context *smu, bool max,
uint32_t feature_mask)
{
struct arcturus_single_dpm_table *single_dpm_table;
struct arcturus_dpm_table *dpm_table =
smu->smu_dpm.dpm_context;
uint32_t freq;
int ret = 0;
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT) &&
(feature_mask & FEATURE_DPM_GFXCLK_MASK)) {
single_dpm_table = &(dpm_table->gfx_table);
freq = max ? single_dpm_table->dpm_state.soft_max_level :
single_dpm_table->dpm_state.soft_min_level;
ret = smu_send_smc_msg_with_param(smu,
(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
(PPCLK_GFXCLK << 16) | (freq & 0xffff));
if (ret) {
pr_err("Failed to set soft %s gfxclk !\n",
max ? "max" : "min");
return ret;
}
}
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
(feature_mask & FEATURE_DPM_UCLK_MASK)) {
single_dpm_table = &(dpm_table->mem_table);
freq = max ? single_dpm_table->dpm_state.soft_max_level :
single_dpm_table->dpm_state.soft_min_level;
ret = smu_send_smc_msg_with_param(smu,
(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
(PPCLK_UCLK << 16) | (freq & 0xffff));
if (ret) {
pr_err("Failed to set soft %s memclk !\n",
max ? "max" : "min");
return ret;
}
}
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT) &&
(feature_mask & FEATURE_DPM_SOCCLK_MASK)) {
single_dpm_table = &(dpm_table->soc_table);
freq = max ? single_dpm_table->dpm_state.soft_max_level :
single_dpm_table->dpm_state.soft_min_level;
ret = smu_send_smc_msg_with_param(smu,
(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
(PPCLK_SOCCLK << 16) | (freq & 0xffff));
if (ret) {
pr_err("Failed to set soft %s socclk !\n",
max ? "max" : "min");
return ret;
}
}
return ret;
}
static int arcturus_force_clk_levels(struct smu_context *smu,
enum smu_clk_type type, uint32_t mask)
{
struct arcturus_dpm_table *dpm_table;
struct arcturus_single_dpm_table *single_dpm_table;
uint32_t soft_min_level, soft_max_level;
int ret = 0;
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
dpm_table = smu->smu_dpm.dpm_context;
switch (type) {
case SMU_SCLK:
single_dpm_table = &(dpm_table->gfx_table);
if (soft_max_level >= single_dpm_table->count) {
pr_err("Clock level specified %d is over max allowed %d\n",
soft_max_level, single_dpm_table->count - 1);
ret = -EINVAL;
break;
}
single_dpm_table->dpm_state.soft_min_level =
single_dpm_table->dpm_levels[soft_min_level].value;
single_dpm_table->dpm_state.soft_max_level =
single_dpm_table->dpm_levels[soft_max_level].value;
ret = arcturus_upload_dpm_level(smu, false, FEATURE_DPM_GFXCLK_MASK);
if (ret) {
pr_err("Failed to upload boot level to lowest!\n");
break;
}
ret = arcturus_upload_dpm_level(smu, true, FEATURE_DPM_GFXCLK_MASK);
if (ret)
pr_err("Failed to upload dpm max level to highest!\n");
break;
case SMU_MCLK:
case SMU_SOCCLK:
case SMU_FCLK:
/*
* Should not arrive here since Arcturus does not
* support mclk/socclk/fclk softmin/softmax settings
*/
ret = -EINVAL;
break;
default:
break;
}
return ret;
}
static int arcturus_get_thermal_temperature_range(struct smu_context *smu,
struct smu_temperature_range *range)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
if (!range)
return -EINVAL;
range->max = pptable->TedgeLimit *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->edge_emergency_max = (pptable->TedgeLimit + CTF_OFFSET_EDGE) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->hotspot_crit_max = pptable->ThotspotLimit *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->mem_crit_max = pptable->TmemLimit *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->mem_emergency_max = (pptable->TmemLimit + CTF_OFFSET_HBM)*
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
return 0;
}
static int arcturus_get_metrics_table(struct smu_context *smu,
SmuMetrics_t *metrics_table)
{
struct smu_table_context *smu_table= &smu->smu_table;
int ret = 0;
if (!smu_table->metrics_time ||
time_after(jiffies, smu_table->metrics_time + HZ / 1000)) {
ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0,
(void *)smu_table->metrics_table, false);
if (ret) {
pr_info("Failed to export SMU metrics table!\n");
return ret;
}
smu_table->metrics_time = jiffies;
}
memcpy(metrics_table, smu_table->metrics_table, sizeof(SmuMetrics_t));
return ret;
}
static int arcturus_get_current_activity_percent(struct smu_context *smu,
enum amd_pp_sensors sensor,
uint32_t *value)
{
SmuMetrics_t metrics;
int ret = 0;
if (!value)
return -EINVAL;
ret = arcturus_get_metrics_table(smu, &metrics);
if (ret)
return ret;
switch (sensor) {
case AMDGPU_PP_SENSOR_GPU_LOAD:
*value = metrics.AverageGfxActivity;
break;
case AMDGPU_PP_SENSOR_MEM_LOAD:
*value = metrics.AverageUclkActivity;
break;
default:
pr_err("Invalid sensor for retrieving clock activity\n");
return -EINVAL;
}
return 0;
}
static int arcturus_get_gpu_power(struct smu_context *smu, uint32_t *value)
{
SmuMetrics_t metrics;
int ret = 0;
if (!value)
return -EINVAL;
ret = arcturus_get_metrics_table(smu, &metrics);
if (ret)
return ret;
*value = metrics.AverageSocketPower << 8;
return 0;
}
static int arcturus_thermal_get_temperature(struct smu_context *smu,
enum amd_pp_sensors sensor,
uint32_t *value)
{
SmuMetrics_t metrics;
int ret = 0;
if (!value)
return -EINVAL;
ret = arcturus_get_metrics_table(smu, &metrics);
if (ret)
return ret;
switch (sensor) {
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
*value = metrics.TemperatureHotspot *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case AMDGPU_PP_SENSOR_EDGE_TEMP:
*value = metrics.TemperatureEdge *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case AMDGPU_PP_SENSOR_MEM_TEMP:
*value = metrics.TemperatureHBM *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
default:
pr_err("Invalid sensor for retrieving temp\n");
return -EINVAL;
}
return 0;
}
static int arcturus_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
int ret = 0;
if (!data || !size)
return -EINVAL;
mutex_lock(&smu->sensor_lock);
switch (sensor) {
case AMDGPU_PP_SENSOR_MAX_FAN_RPM:
*(uint32_t *)data = pptable->FanMaximumRpm;
*size = 4;
break;
case AMDGPU_PP_SENSOR_MEM_LOAD:
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = arcturus_get_current_activity_percent(smu,
sensor,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_POWER:
ret = arcturus_get_gpu_power(smu, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
case AMDGPU_PP_SENSOR_EDGE_TEMP:
case AMDGPU_PP_SENSOR_MEM_TEMP:
ret = arcturus_thermal_get_temperature(smu, sensor,
(uint32_t *)data);
*size = 4;
break;
default:
ret = smu_v11_0_read_sensor(smu, sensor, data, size);
}
mutex_unlock(&smu->sensor_lock);
return ret;
}
static int arcturus_get_fan_speed_rpm(struct smu_context *smu,
uint32_t *speed)
{
SmuMetrics_t metrics;
int ret = 0;
if (!speed)
return -EINVAL;
ret = arcturus_get_metrics_table(smu, &metrics);
if (ret)
return ret;
*speed = metrics.CurrFanSpeed;
return ret;
}
static int arcturus_get_fan_speed_percent(struct smu_context *smu,
uint32_t *speed)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
uint32_t percent, current_rpm;
int ret = 0;
if (!speed)
return -EINVAL;
ret = arcturus_get_fan_speed_rpm(smu, &current_rpm);
if (ret)
return ret;
percent = current_rpm * 100 / pptable->FanMaximumRpm;
*speed = percent > 100 ? 100 : percent;
return ret;
}
static int arcturus_get_current_clk_freq_by_table(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *value)
{
static SmuMetrics_t metrics;
int ret = 0, clk_id = 0;
if (!value)
return -EINVAL;
clk_id = smu_clk_get_index(smu, clk_type);
if (clk_id < 0)
return -EINVAL;
ret = arcturus_get_metrics_table(smu, &metrics);
if (ret)
return ret;
switch (clk_id) {
case PPCLK_GFXCLK:
/*
* CurrClock[clk_id] can provide accurate
* output only when the dpm feature is enabled.
* We can use Average_* for dpm disabled case.
* But this is available for gfxclk/uclk/socclk.
*/
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT))
*value = metrics.CurrClock[PPCLK_GFXCLK];
else
*value = metrics.AverageGfxclkFrequency;
break;
case PPCLK_UCLK:
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT))
*value = metrics.CurrClock[PPCLK_UCLK];
else
*value = metrics.AverageUclkFrequency;
break;
case PPCLK_SOCCLK:
if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT))
*value = metrics.CurrClock[PPCLK_SOCCLK];
else
*value = metrics.AverageSocclkFrequency;
break;
default:
*value = metrics.CurrClock[clk_id];
break;
}
return ret;
}
static uint32_t arcturus_find_lowest_dpm_level(struct arcturus_single_dpm_table *table)
{
uint32_t i;
for (i = 0; i < table->count; i++) {
if (table->dpm_levels[i].enabled)
break;
}
if (i >= table->count) {
i = 0;
table->dpm_levels[i].enabled = true;
}
return i;
}
static uint32_t arcturus_find_highest_dpm_level(struct arcturus_single_dpm_table *table)
{
int i = 0;
if (table->count <= 0) {
pr_err("[%s] DPM Table has no entry!", __func__);
return 0;
}
if (table->count > MAX_DPM_NUMBER) {
pr_err("[%s] DPM Table has too many entries!", __func__);
return MAX_DPM_NUMBER - 1;
}
for (i = table->count - 1; i >= 0; i--) {
if (table->dpm_levels[i].enabled)
break;
}
if (i < 0) {
i = 0;
table->dpm_levels[i].enabled = true;
}
return i;
}
static int arcturus_force_dpm_limit_value(struct smu_context *smu, bool highest)
{
struct arcturus_dpm_table *dpm_table =
(struct arcturus_dpm_table *)smu->smu_dpm.dpm_context;
struct amdgpu_hive_info *hive = amdgpu_get_xgmi_hive(smu->adev, 0);
uint32_t soft_level;
int ret = 0;
/* gfxclk */
if (highest)
soft_level = arcturus_find_highest_dpm_level(&(dpm_table->gfx_table));
else
soft_level = arcturus_find_lowest_dpm_level(&(dpm_table->gfx_table));
dpm_table->gfx_table.dpm_state.soft_min_level =
dpm_table->gfx_table.dpm_state.soft_max_level =
dpm_table->gfx_table.dpm_levels[soft_level].value;
ret = arcturus_upload_dpm_level(smu, false, FEATURE_DPM_GFXCLK_MASK);
if (ret) {
pr_err("Failed to upload boot level to %s!\n",
highest ? "highest" : "lowest");
return ret;
}
ret = arcturus_upload_dpm_level(smu, true, FEATURE_DPM_GFXCLK_MASK);
if (ret) {
pr_err("Failed to upload dpm max level to %s!\n!",
highest ? "highest" : "lowest");
return ret;
}
if (hive)
/*
* Force XGMI Pstate to highest or lowest
* TODO: revise this when xgmi dpm is functional
*/
ret = smu_v11_0_set_xgmi_pstate(smu, highest ? 1 : 0);
return ret;
}
static int arcturus_unforce_dpm_levels(struct smu_context *smu)
{
struct arcturus_dpm_table *dpm_table =
(struct arcturus_dpm_table *)smu->smu_dpm.dpm_context;
struct amdgpu_hive_info *hive = amdgpu_get_xgmi_hive(smu->adev, 0);
uint32_t soft_min_level, soft_max_level;
int ret = 0;
/* gfxclk */
soft_min_level = arcturus_find_lowest_dpm_level(&(dpm_table->gfx_table));
soft_max_level = arcturus_find_highest_dpm_level(&(dpm_table->gfx_table));
dpm_table->gfx_table.dpm_state.soft_min_level =
dpm_table->gfx_table.dpm_levels[soft_min_level].value;
dpm_table->gfx_table.dpm_state.soft_max_level =
dpm_table->gfx_table.dpm_levels[soft_max_level].value;
ret = arcturus_upload_dpm_level(smu, false, FEATURE_DPM_GFXCLK_MASK);
if (ret) {
pr_err("Failed to upload DPM Bootup Levels!");
return ret;
}
ret = arcturus_upload_dpm_level(smu, true, FEATURE_DPM_GFXCLK_MASK);
if (ret) {
pr_err("Failed to upload DPM Max Levels!");
return ret;
}
if (hive)
/*
* Reset XGMI Pstate back to default
* TODO: revise this when xgmi dpm is functional
*/
ret = smu_v11_0_set_xgmi_pstate(smu, 0);
return ret;
}
static int
arcturus_get_profiling_clk_mask(struct smu_context *smu,
enum amd_dpm_forced_level level,
uint32_t *sclk_mask,
uint32_t *mclk_mask,
uint32_t *soc_mask)
{
struct arcturus_dpm_table *dpm_table =
(struct arcturus_dpm_table *)smu->smu_dpm.dpm_context;
struct arcturus_single_dpm_table *gfx_dpm_table;
struct arcturus_single_dpm_table *mem_dpm_table;
struct arcturus_single_dpm_table *soc_dpm_table;
if (!smu->smu_dpm.dpm_context)
return -EINVAL;
gfx_dpm_table = &dpm_table->gfx_table;
mem_dpm_table = &dpm_table->mem_table;
soc_dpm_table = &dpm_table->soc_table;
*sclk_mask = 0;
*mclk_mask = 0;
*soc_mask = 0;
if (gfx_dpm_table->count > ARCTURUS_UMD_PSTATE_GFXCLK_LEVEL &&
mem_dpm_table->count > ARCTURUS_UMD_PSTATE_MCLK_LEVEL &&
soc_dpm_table->count > ARCTURUS_UMD_PSTATE_SOCCLK_LEVEL) {
*sclk_mask = ARCTURUS_UMD_PSTATE_GFXCLK_LEVEL;
*mclk_mask = ARCTURUS_UMD_PSTATE_MCLK_LEVEL;
*soc_mask = ARCTURUS_UMD_PSTATE_SOCCLK_LEVEL;
}
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
*sclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
*mclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
*sclk_mask = gfx_dpm_table->count - 1;
*mclk_mask = mem_dpm_table->count - 1;
*soc_mask = soc_dpm_table->count - 1;
}
return 0;
}
static int arcturus_get_power_limit(struct smu_context *smu,
uint32_t *limit,
bool cap)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
uint32_t asic_default_power_limit = 0;
int ret = 0;
int power_src;
if (!smu->power_limit) {
if (smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
power_src = smu_power_get_index(smu, SMU_POWER_SOURCE_AC);
if (power_src < 0)
return -EINVAL;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetPptLimit,
power_src << 16);
if (ret) {
pr_err("[%s] get PPT limit failed!", __func__);
return ret;
}
smu_read_smc_arg(smu, &asic_default_power_limit);
} else {
/* the last hope to figure out the ppt limit */
if (!pptable) {
pr_err("Cannot get PPT limit due to pptable missing!");
return -EINVAL;
}
asic_default_power_limit =
pptable->SocketPowerLimitAc[PPT_THROTTLER_PPT0];
}
smu->power_limit = asic_default_power_limit;
}
if (cap)
*limit = smu_v11_0_get_max_power_limit(smu);
else
*limit = smu->power_limit;
return 0;
}
static int arcturus_get_power_profile_mode(struct smu_context *smu,
char *buf)
{
static const char *profile_name[] = {
"BOOTUP_DEFAULT",
"3D_FULL_SCREEN",
"POWER_SAVING",
"VIDEO",
"VR",
"COMPUTE",
"CUSTOM"};
static const char *title[] = {
"PROFILE_INDEX(NAME)"};
uint32_t i, size = 0;
int16_t workload_type = 0;
if (!smu->pm_enabled || !buf)
return -EINVAL;
size += sprintf(buf + size, "%16s\n",
title[0]);
for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
/*
* Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT
* Not all profile modes are supported on arcturus.
*/
workload_type = smu_workload_get_type(smu, i);
if (workload_type < 0)
continue;
size += sprintf(buf + size, "%2d %14s%s\n",
i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
}
return size;
}
static int arcturus_set_power_profile_mode(struct smu_context *smu,
long *input,
uint32_t size)
{
int workload_type = 0;
uint32_t profile_mode = input[size];
int ret = 0;
if (!smu->pm_enabled)
return -EINVAL;
if (profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
pr_err("Invalid power profile mode %d\n", profile_mode);
return -EINVAL;
}
/*
* Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT
* Not all profile modes are supported on arcturus.
*/
workload_type = smu_workload_get_type(smu, profile_mode);
if (workload_type < 0) {
pr_err("Unsupported power profile mode %d on arcturus\n", profile_mode);
return -EINVAL;
}
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetWorkloadMask,
1 << workload_type);
if (ret) {
pr_err("Fail to set workload type %d\n", workload_type);
return ret;
}
smu->power_profile_mode = profile_mode;
return 0;
}
static void arcturus_dump_pptable(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
int i;
pr_info("Dumped PPTable:\n");
pr_info("Version = 0x%08x\n", pptable->Version);
pr_info("FeaturesToRun[0] = 0x%08x\n", pptable->FeaturesToRun[0]);
pr_info("FeaturesToRun[1] = 0x%08x\n", pptable->FeaturesToRun[1]);
for (i = 0; i < PPT_THROTTLER_COUNT; i++) {
pr_info("SocketPowerLimitAc[%d] = %d\n", i, pptable->SocketPowerLimitAc[i]);
pr_info("SocketPowerLimitAcTau[%d] = %d\n", i, pptable->SocketPowerLimitAcTau[i]);
}
pr_info("TdcLimitSoc = %d\n", pptable->TdcLimitSoc);
pr_info("TdcLimitSocTau = %d\n", pptable->TdcLimitSocTau);
pr_info("TdcLimitGfx = %d\n", pptable->TdcLimitGfx);
pr_info("TdcLimitGfxTau = %d\n", pptable->TdcLimitGfxTau);
pr_info("TedgeLimit = %d\n", pptable->TedgeLimit);
pr_info("ThotspotLimit = %d\n", pptable->ThotspotLimit);
pr_info("TmemLimit = %d\n", pptable->TmemLimit);
pr_info("Tvr_gfxLimit = %d\n", pptable->Tvr_gfxLimit);
pr_info("Tvr_memLimit = %d\n", pptable->Tvr_memLimit);
pr_info("Tvr_socLimit = %d\n", pptable->Tvr_socLimit);
pr_info("FitLimit = %d\n", pptable->FitLimit);
pr_info("PpmPowerLimit = %d\n", pptable->PpmPowerLimit);
pr_info("PpmTemperatureThreshold = %d\n", pptable->PpmTemperatureThreshold);
pr_info("ThrottlerControlMask = %d\n", pptable->ThrottlerControlMask);
pr_info("UlvVoltageOffsetGfx = %d\n", pptable->UlvVoltageOffsetGfx);
pr_info("UlvPadding = 0x%08x\n", pptable->UlvPadding);
pr_info("UlvGfxclkBypass = %d\n", pptable->UlvGfxclkBypass);
pr_info("Padding234[0] = 0x%02x\n", pptable->Padding234[0]);
pr_info("Padding234[1] = 0x%02x\n", pptable->Padding234[1]);
pr_info("Padding234[2] = 0x%02x\n", pptable->Padding234[2]);
pr_info("MinVoltageGfx = %d\n", pptable->MinVoltageGfx);
pr_info("MinVoltageSoc = %d\n", pptable->MinVoltageSoc);
pr_info("MaxVoltageGfx = %d\n", pptable->MaxVoltageGfx);
pr_info("MaxVoltageSoc = %d\n", pptable->MaxVoltageSoc);
pr_info("LoadLineResistanceGfx = %d\n", pptable->LoadLineResistanceGfx);
pr_info("LoadLineResistanceSoc = %d\n", pptable->LoadLineResistanceSoc);
pr_info("[PPCLK_GFXCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_GFXCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_GFXCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_GFXCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_GFXCLK].padding,
pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_GFXCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_GFXCLK].Padding16);
pr_info("[PPCLK_VCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_VCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_VCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_VCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_VCLK].padding,
pptable->DpmDescriptor[PPCLK_VCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_VCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_VCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_VCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_VCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_VCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_VCLK].Padding16);
pr_info("[PPCLK_DCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_DCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_DCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_DCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_DCLK].padding,
pptable->DpmDescriptor[PPCLK_DCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_DCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_DCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_DCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_DCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_DCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_DCLK].Padding16);
pr_info("[PPCLK_SOCCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_SOCCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_SOCCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_SOCCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_SOCCLK].padding,
pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_SOCCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_SOCCLK].Padding16);
pr_info("[PPCLK_UCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_UCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_UCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_UCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_UCLK].padding,
pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_UCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_UCLK].Padding16);
pr_info("[PPCLK_FCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_FCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_FCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_FCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_FCLK].padding,
pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_FCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_FCLK].Padding16);
pr_info("FreqTableGfx\n");
for (i = 0; i < NUM_GFXCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTableGfx[i]);
pr_info("FreqTableVclk\n");
for (i = 0; i < NUM_VCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTableVclk[i]);
pr_info("FreqTableDclk\n");
for (i = 0; i < NUM_DCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTableDclk[i]);
pr_info("FreqTableSocclk\n");
for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTableSocclk[i]);
pr_info("FreqTableUclk\n");
for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTableUclk[i]);
pr_info("FreqTableFclk\n");
for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++)
pr_info(" .[%02d] = %d\n", i, pptable->FreqTableFclk[i]);
pr_info("Mp0clkFreq\n");
for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->Mp0clkFreq[i]);
pr_info("Mp0DpmVoltage\n");
for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->Mp0DpmVoltage[i]);
pr_info("GfxclkFidle = 0x%x\n", pptable->GfxclkFidle);
pr_info("GfxclkSlewRate = 0x%x\n", pptable->GfxclkSlewRate);
pr_info("Padding567[0] = 0x%x\n", pptable->Padding567[0]);
pr_info("Padding567[1] = 0x%x\n", pptable->Padding567[1]);
pr_info("Padding567[2] = 0x%x\n", pptable->Padding567[2]);
pr_info("Padding567[3] = 0x%x\n", pptable->Padding567[3]);
pr_info("GfxclkDsMaxFreq = %d\n", pptable->GfxclkDsMaxFreq);
pr_info("GfxclkSource = 0x%x\n", pptable->GfxclkSource);
pr_info("Padding456 = 0x%x\n", pptable->Padding456);
pr_info("EnableTdpm = %d\n", pptable->EnableTdpm);
pr_info("TdpmHighHystTemperature = %d\n", pptable->TdpmHighHystTemperature);
pr_info("TdpmLowHystTemperature = %d\n", pptable->TdpmLowHystTemperature);
pr_info("GfxclkFreqHighTempLimit = %d\n", pptable->GfxclkFreqHighTempLimit);
pr_info("FanStopTemp = %d\n", pptable->FanStopTemp);
pr_info("FanStartTemp = %d\n", pptable->FanStartTemp);
pr_info("FanGainEdge = %d\n", pptable->FanGainEdge);
pr_info("FanGainHotspot = %d\n", pptable->FanGainHotspot);
pr_info("FanGainVrGfx = %d\n", pptable->FanGainVrGfx);
pr_info("FanGainVrSoc = %d\n", pptable->FanGainVrSoc);
pr_info("FanGainVrMem = %d\n", pptable->FanGainVrMem);
pr_info("FanGainHbm = %d\n", pptable->FanGainHbm);
pr_info("FanPwmMin = %d\n", pptable->FanPwmMin);
pr_info("FanAcousticLimitRpm = %d\n", pptable->FanAcousticLimitRpm);
pr_info("FanThrottlingRpm = %d\n", pptable->FanThrottlingRpm);
pr_info("FanMaximumRpm = %d\n", pptable->FanMaximumRpm);
pr_info("FanTargetTemperature = %d\n", pptable->FanTargetTemperature);
pr_info("FanTargetGfxclk = %d\n", pptable->FanTargetGfxclk);
pr_info("FanZeroRpmEnable = %d\n", pptable->FanZeroRpmEnable);
pr_info("FanTachEdgePerRev = %d\n", pptable->FanTachEdgePerRev);
pr_info("FanTempInputSelect = %d\n", pptable->FanTempInputSelect);
pr_info("FuzzyFan_ErrorSetDelta = %d\n", pptable->FuzzyFan_ErrorSetDelta);
pr_info("FuzzyFan_ErrorRateSetDelta = %d\n", pptable->FuzzyFan_ErrorRateSetDelta);
pr_info("FuzzyFan_PwmSetDelta = %d\n", pptable->FuzzyFan_PwmSetDelta);
pr_info("FuzzyFan_Reserved = %d\n", pptable->FuzzyFan_Reserved);
pr_info("OverrideAvfsGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_GFX]);
pr_info("OverrideAvfsGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_SOC]);
pr_info("Padding8_Avfs[0] = %d\n", pptable->Padding8_Avfs[0]);
pr_info("Padding8_Avfs[1] = %d\n", pptable->Padding8_Avfs[1]);
pr_info("dBtcGbGfxPll{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->dBtcGbGfxPll.a,
pptable->dBtcGbGfxPll.b,
pptable->dBtcGbGfxPll.c);
pr_info("dBtcGbGfxAfll{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->dBtcGbGfxAfll.a,
pptable->dBtcGbGfxAfll.b,
pptable->dBtcGbGfxAfll.c);
pr_info("dBtcGbSoc{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->dBtcGbSoc.a,
pptable->dBtcGbSoc.b,
pptable->dBtcGbSoc.c);
pr_info("qAgingGb[AVFS_VOLTAGE_GFX]{m = 0x%x b = 0x%x}\n",
pptable->qAgingGb[AVFS_VOLTAGE_GFX].m,
pptable->qAgingGb[AVFS_VOLTAGE_GFX].b);
pr_info("qAgingGb[AVFS_VOLTAGE_SOC]{m = 0x%x b = 0x%x}\n",
pptable->qAgingGb[AVFS_VOLTAGE_SOC].m,
pptable->qAgingGb[AVFS_VOLTAGE_SOC].b);
pr_info("qStaticVoltageOffset[AVFS_VOLTAGE_GFX]{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].a,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].b,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].c);
pr_info("qStaticVoltageOffset[AVFS_VOLTAGE_SOC]{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].a,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].b,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].c);
pr_info("DcTol[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_GFX]);
pr_info("DcTol[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_SOC]);
pr_info("DcBtcEnabled[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_GFX]);
pr_info("DcBtcEnabled[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_SOC]);
pr_info("Padding8_GfxBtc[0] = 0x%x\n", pptable->Padding8_GfxBtc[0]);
pr_info("Padding8_GfxBtc[1] = 0x%x\n", pptable->Padding8_GfxBtc[1]);
pr_info("DcBtcMin[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_GFX]);
pr_info("DcBtcMin[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_SOC]);
pr_info("DcBtcMax[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_GFX]);
pr_info("DcBtcMax[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_SOC]);
pr_info("DcBtcGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_GFX]);
pr_info("DcBtcGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_SOC]);
pr_info("XgmiDpmPstates\n");
for (i = 0; i < NUM_XGMI_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->XgmiDpmPstates[i]);
pr_info("XgmiDpmSpare[0] = 0x%02x\n", pptable->XgmiDpmSpare[0]);
pr_info("XgmiDpmSpare[1] = 0x%02x\n", pptable->XgmiDpmSpare[1]);
pr_info("VDDGFX_TVmin = %d\n", pptable->VDDGFX_TVmin);
pr_info("VDDSOC_TVmin = %d\n", pptable->VDDSOC_TVmin);
pr_info("VDDGFX_Vmin_HiTemp = %d\n", pptable->VDDGFX_Vmin_HiTemp);
pr_info("VDDGFX_Vmin_LoTemp = %d\n", pptable->VDDGFX_Vmin_LoTemp);
pr_info("VDDSOC_Vmin_HiTemp = %d\n", pptable->VDDSOC_Vmin_HiTemp);
pr_info("VDDSOC_Vmin_LoTemp = %d\n", pptable->VDDSOC_Vmin_LoTemp);
pr_info("VDDGFX_TVminHystersis = %d\n", pptable->VDDGFX_TVminHystersis);
pr_info("VDDSOC_TVminHystersis = %d\n", pptable->VDDSOC_TVminHystersis);
pr_info("DebugOverrides = 0x%x\n", pptable->DebugOverrides);
pr_info("ReservedEquation0{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation0.a,
pptable->ReservedEquation0.b,
pptable->ReservedEquation0.c);
pr_info("ReservedEquation1{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation1.a,
pptable->ReservedEquation1.b,
pptable->ReservedEquation1.c);
pr_info("ReservedEquation2{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation2.a,
pptable->ReservedEquation2.b,
pptable->ReservedEquation2.c);
pr_info("ReservedEquation3{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation3.a,
pptable->ReservedEquation3.b,
pptable->ReservedEquation3.c);
pr_info("MinVoltageUlvGfx = %d\n", pptable->MinVoltageUlvGfx);
pr_info("PaddingUlv = %d\n", pptable->PaddingUlv);
pr_info("TotalPowerConfig = %d\n", pptable->TotalPowerConfig);
pr_info("TotalPowerSpare1 = %d\n", pptable->TotalPowerSpare1);
pr_info("TotalPowerSpare2 = %d\n", pptable->TotalPowerSpare2);
pr_info("PccThresholdLow = %d\n", pptable->PccThresholdLow);
pr_info("PccThresholdHigh = %d\n", pptable->PccThresholdHigh);
pr_info("Board Parameters:\n");
pr_info("MaxVoltageStepGfx = 0x%x\n", pptable->MaxVoltageStepGfx);
pr_info("MaxVoltageStepSoc = 0x%x\n", pptable->MaxVoltageStepSoc);
pr_info("VddGfxVrMapping = 0x%x\n", pptable->VddGfxVrMapping);
pr_info("VddSocVrMapping = 0x%x\n", pptable->VddSocVrMapping);
pr_info("VddMemVrMapping = 0x%x\n", pptable->VddMemVrMapping);
pr_info("BoardVrMapping = 0x%x\n", pptable->BoardVrMapping);
pr_info("GfxUlvPhaseSheddingMask = 0x%x\n", pptable->GfxUlvPhaseSheddingMask);
pr_info("ExternalSensorPresent = 0x%x\n", pptable->ExternalSensorPresent);
pr_info("GfxMaxCurrent = 0x%x\n", pptable->GfxMaxCurrent);
pr_info("GfxOffset = 0x%x\n", pptable->GfxOffset);
pr_info("Padding_TelemetryGfx = 0x%x\n", pptable->Padding_TelemetryGfx);
pr_info("SocMaxCurrent = 0x%x\n", pptable->SocMaxCurrent);
pr_info("SocOffset = 0x%x\n", pptable->SocOffset);
pr_info("Padding_TelemetrySoc = 0x%x\n", pptable->Padding_TelemetrySoc);
pr_info("MemMaxCurrent = 0x%x\n", pptable->MemMaxCurrent);
pr_info("MemOffset = 0x%x\n", pptable->MemOffset);
pr_info("Padding_TelemetryMem = 0x%x\n", pptable->Padding_TelemetryMem);
pr_info("BoardMaxCurrent = 0x%x\n", pptable->BoardMaxCurrent);
pr_info("BoardOffset = 0x%x\n", pptable->BoardOffset);
pr_info("Padding_TelemetryBoardInput = 0x%x\n", pptable->Padding_TelemetryBoardInput);
pr_info("VR0HotGpio = %d\n", pptable->VR0HotGpio);
pr_info("VR0HotPolarity = %d\n", pptable->VR0HotPolarity);
pr_info("VR1HotGpio = %d\n", pptable->VR1HotGpio);
pr_info("VR1HotPolarity = %d\n", pptable->VR1HotPolarity);
pr_info("PllGfxclkSpreadEnabled = %d\n", pptable->PllGfxclkSpreadEnabled);
pr_info("PllGfxclkSpreadPercent = %d\n", pptable->PllGfxclkSpreadPercent);
pr_info("PllGfxclkSpreadFreq = %d\n", pptable->PllGfxclkSpreadFreq);
pr_info("UclkSpreadEnabled = %d\n", pptable->UclkSpreadEnabled);
pr_info("UclkSpreadPercent = %d\n", pptable->UclkSpreadPercent);
pr_info("UclkSpreadFreq = %d\n", pptable->UclkSpreadFreq);
pr_info("FclkSpreadEnabled = %d\n", pptable->FclkSpreadEnabled);
pr_info("FclkSpreadPercent = %d\n", pptable->FclkSpreadPercent);
pr_info("FclkSpreadFreq = %d\n", pptable->FclkSpreadFreq);
pr_info("FllGfxclkSpreadEnabled = %d\n", pptable->FllGfxclkSpreadEnabled);
pr_info("FllGfxclkSpreadPercent = %d\n", pptable->FllGfxclkSpreadPercent);
pr_info("FllGfxclkSpreadFreq = %d\n", pptable->FllGfxclkSpreadFreq);
for (i = 0; i < NUM_I2C_CONTROLLERS; i++) {
pr_info("I2cControllers[%d]:\n", i);
pr_info(" .Enabled = %d\n",
pptable->I2cControllers[i].Enabled);
pr_info(" .SlaveAddress = 0x%x\n",
pptable->I2cControllers[i].SlaveAddress);
pr_info(" .ControllerPort = %d\n",
pptable->I2cControllers[i].ControllerPort);
pr_info(" .ControllerName = %d\n",
pptable->I2cControllers[i].ControllerName);
pr_info(" .ThermalThrottler = %d\n",
pptable->I2cControllers[i].ThermalThrotter);
pr_info(" .I2cProtocol = %d\n",
pptable->I2cControllers[i].I2cProtocol);
pr_info(" .Speed = %d\n",
pptable->I2cControllers[i].Speed);
}
pr_info("MemoryChannelEnabled = %d\n", pptable->MemoryChannelEnabled);
pr_info("DramBitWidth = %d\n", pptable->DramBitWidth);
pr_info("TotalBoardPower = %d\n", pptable->TotalBoardPower);
pr_info("XgmiLinkSpeed\n");
for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->XgmiLinkSpeed[i]);
pr_info("XgmiLinkWidth\n");
for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->XgmiLinkWidth[i]);
pr_info("XgmiFclkFreq\n");
for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->XgmiFclkFreq[i]);
pr_info("XgmiSocVoltage\n");
for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++)
pr_info(" .[%d] = %d\n", i, pptable->XgmiSocVoltage[i]);
}
static bool arcturus_is_dpm_running(struct smu_context *smu)
{
int ret = 0;
uint32_t feature_mask[2];
unsigned long feature_enabled;
ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
feature_enabled = (unsigned long)((uint64_t)feature_mask[0] |
((uint64_t)feature_mask[1] << 32));
return !!(feature_enabled & SMC_DPM_FEATURE);
}
static int arcturus_dpm_set_uvd_enable(struct smu_context *smu, bool enable)
{
struct smu_power_context *smu_power = &smu->smu_power;
struct smu_power_gate *power_gate = &smu_power->power_gate;
int ret = 0;
if (enable) {
if (!smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
ret = smu_feature_set_enabled(smu, SMU_FEATURE_VCN_PG_BIT, 1);
if (ret) {
pr_err("[EnableVCNDPM] failed!\n");
return ret;
}
}
power_gate->vcn_gated = false;
} else {
if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
ret = smu_feature_set_enabled(smu, SMU_FEATURE_VCN_PG_BIT, 0);
if (ret) {
pr_err("[DisableVCNDPM] failed!\n");
return ret;
}
}
power_gate->vcn_gated = true;
}
return ret;
}
static void arcturus_fill_eeprom_i2c_req(SwI2cRequest_t *req, bool write,
uint8_t address, uint32_t numbytes,
uint8_t *data)
{
int i;
BUG_ON(numbytes > MAX_SW_I2C_COMMANDS);
req->I2CcontrollerPort = 0;
req->I2CSpeed = 2;
req->SlaveAddress = address;
req->NumCmds = numbytes;
for (i = 0; i < numbytes; i++) {
SwI2cCmd_t *cmd = &req->SwI2cCmds[i];
/* First 2 bytes are always write for lower 2b EEPROM address */
if (i < 2)
cmd->Cmd = 1;
else
cmd->Cmd = write;
/* Add RESTART for read after address filled */
cmd->CmdConfig |= (i == 2 && !write) ? CMDCONFIG_RESTART_MASK : 0;
/* Add STOP in the end */
cmd->CmdConfig |= (i == (numbytes - 1)) ? CMDCONFIG_STOP_MASK : 0;
/* Fill with data regardless if read or write to simplify code */
cmd->RegisterAddr = data[i];
}
}
static int arcturus_i2c_eeprom_read_data(struct i2c_adapter *control,
uint8_t address,
uint8_t *data,
uint32_t numbytes)
{
uint32_t i, ret = 0;
SwI2cRequest_t req;
struct amdgpu_device *adev = to_amdgpu_device(control);
struct smu_table_context *smu_table = &adev->smu.smu_table;
struct smu_table *table = &smu_table->tables[SMU_TABLE_I2C_COMMANDS];
memset(&req, 0, sizeof(req));
arcturus_fill_eeprom_i2c_req(&req, false, address, numbytes, data);
mutex_lock(&adev->smu.mutex);
/* Now read data starting with that address */
ret = smu_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req,
true);
mutex_unlock(&adev->smu.mutex);
if (!ret) {
SwI2cRequest_t *res = (SwI2cRequest_t *)table->cpu_addr;
/* Assume SMU fills res.SwI2cCmds[i].Data with read bytes */
for (i = 0; i < numbytes; i++)
data[i] = res->SwI2cCmds[i].Data;
pr_debug("arcturus_i2c_eeprom_read_data, address = %x, bytes = %d, data :",
(uint16_t)address, numbytes);
print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE,
8, 1, data, numbytes, false);
} else
pr_err("arcturus_i2c_eeprom_read_data - error occurred :%x", ret);
return ret;
}
static int arcturus_i2c_eeprom_write_data(struct i2c_adapter *control,
uint8_t address,
uint8_t *data,
uint32_t numbytes)
{
uint32_t ret;
SwI2cRequest_t req;
struct amdgpu_device *adev = to_amdgpu_device(control);
memset(&req, 0, sizeof(req));
arcturus_fill_eeprom_i2c_req(&req, true, address, numbytes, data);
mutex_lock(&adev->smu.mutex);
ret = smu_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req, true);
mutex_unlock(&adev->smu.mutex);
if (!ret) {
pr_debug("arcturus_i2c_write(), address = %x, bytes = %d , data: ",
(uint16_t)address, numbytes);
print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE,
8, 1, data, numbytes, false);
/*
* According to EEPROM spec there is a MAX of 10 ms required for
* EEPROM to flush internal RX buffer after STOP was issued at the
* end of write transaction. During this time the EEPROM will not be
* responsive to any more commands - so wait a bit more.
*/
msleep(10);
} else
pr_err("arcturus_i2c_write- error occurred :%x", ret);
return ret;
}
static int arcturus_i2c_eeprom_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg *msgs, int num)
{
uint32_t i, j, ret, data_size, data_chunk_size, next_eeprom_addr = 0;
uint8_t *data_ptr, data_chunk[MAX_SW_I2C_COMMANDS] = { 0 };
for (i = 0; i < num; i++) {
/*
* SMU interface allows at most MAX_SW_I2C_COMMANDS bytes of data at
* once and hence the data needs to be spliced into chunks and sent each
* chunk separately
*/
data_size = msgs[i].len - 2;
data_chunk_size = MAX_SW_I2C_COMMANDS - 2;
next_eeprom_addr = (msgs[i].buf[0] << 8 & 0xff00) | (msgs[i].buf[1] & 0xff);
data_ptr = msgs[i].buf + 2;
for (j = 0; j < data_size / data_chunk_size; j++) {
/* Insert the EEPROM dest addess, bits 0-15 */
data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff);
data_chunk[1] = (next_eeprom_addr & 0xff);
if (msgs[i].flags & I2C_M_RD) {
ret = arcturus_i2c_eeprom_read_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, MAX_SW_I2C_COMMANDS);
memcpy(data_ptr, data_chunk + 2, data_chunk_size);
} else {
memcpy(data_chunk + 2, data_ptr, data_chunk_size);
ret = arcturus_i2c_eeprom_write_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, MAX_SW_I2C_COMMANDS);
}
if (ret) {
num = -EIO;
goto fail;
}
next_eeprom_addr += data_chunk_size;
data_ptr += data_chunk_size;
}
if (data_size % data_chunk_size) {
data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff);
data_chunk[1] = (next_eeprom_addr & 0xff);
if (msgs[i].flags & I2C_M_RD) {
ret = arcturus_i2c_eeprom_read_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, (data_size % data_chunk_size) + 2);
memcpy(data_ptr, data_chunk + 2, data_size % data_chunk_size);
} else {
memcpy(data_chunk + 2, data_ptr, data_size % data_chunk_size);
ret = arcturus_i2c_eeprom_write_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, (data_size % data_chunk_size) + 2);
}
if (ret) {
num = -EIO;
goto fail;
}
}
}
fail:
return num;
}
static u32 arcturus_i2c_eeprom_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm arcturus_i2c_eeprom_i2c_algo = {
.master_xfer = arcturus_i2c_eeprom_i2c_xfer,
.functionality = arcturus_i2c_eeprom_i2c_func,
};
static int arcturus_i2c_eeprom_control_init(struct i2c_adapter *control)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
int res;
control->owner = THIS_MODULE;
control->class = I2C_CLASS_SPD;
control->dev.parent = &adev->pdev->dev;
control->algo = &arcturus_i2c_eeprom_i2c_algo;
snprintf(control->name, sizeof(control->name), "RAS EEPROM");
res = i2c_add_adapter(control);
if (res)
DRM_ERROR("Failed to register hw i2c, err: %d\n", res);
return res;
}
static void arcturus_i2c_eeprom_control_fini(struct i2c_adapter *control)
{
i2c_del_adapter(control);
}
static uint32_t arcturus_get_pptable_power_limit(struct smu_context *smu)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
return pptable->SocketPowerLimitAc[PPT_THROTTLER_PPT0];
}
static const struct pptable_funcs arcturus_ppt_funcs = {
/* translate smu index into arcturus specific index */
.get_smu_msg_index = arcturus_get_smu_msg_index,
.get_smu_clk_index = arcturus_get_smu_clk_index,
.get_smu_feature_index = arcturus_get_smu_feature_index,
.get_smu_table_index = arcturus_get_smu_table_index,
.get_smu_power_index= arcturus_get_pwr_src_index,
.get_workload_type = arcturus_get_workload_type,
/* internal structurs allocations */
.tables_init = arcturus_tables_init,
.alloc_dpm_context = arcturus_allocate_dpm_context,
/* pptable related */
.check_powerplay_table = arcturus_check_powerplay_table,
.store_powerplay_table = arcturus_store_powerplay_table,
.append_powerplay_table = arcturus_append_powerplay_table,
/* init dpm */
.get_allowed_feature_mask = arcturus_get_allowed_feature_mask,
/* btc */
.run_btc = arcturus_run_btc,
/* dpm/clk tables */
.set_default_dpm_table = arcturus_set_default_dpm_table,
.populate_umd_state_clk = arcturus_populate_umd_state_clk,
.get_thermal_temperature_range = arcturus_get_thermal_temperature_range,
.get_current_clk_freq_by_table = arcturus_get_current_clk_freq_by_table,
.print_clk_levels = arcturus_print_clk_levels,
.force_clk_levels = arcturus_force_clk_levels,
.read_sensor = arcturus_read_sensor,
.get_fan_speed_percent = arcturus_get_fan_speed_percent,
.get_fan_speed_rpm = arcturus_get_fan_speed_rpm,
.force_dpm_limit_value = arcturus_force_dpm_limit_value,
.unforce_dpm_levels = arcturus_unforce_dpm_levels,
.get_profiling_clk_mask = arcturus_get_profiling_clk_mask,
.get_power_profile_mode = arcturus_get_power_profile_mode,
.set_power_profile_mode = arcturus_set_power_profile_mode,
/* debug (internal used) */
.dump_pptable = arcturus_dump_pptable,
.get_power_limit = arcturus_get_power_limit,
.is_dpm_running = arcturus_is_dpm_running,
.dpm_set_uvd_enable = arcturus_dpm_set_uvd_enable,
.i2c_eeprom_init = arcturus_i2c_eeprom_control_init,
.i2c_eeprom_fini = arcturus_i2c_eeprom_control_fini,
.init_microcode = smu_v11_0_init_microcode,
.load_microcode = smu_v11_0_load_microcode,
.init_smc_tables = smu_v11_0_init_smc_tables,
.fini_smc_tables = smu_v11_0_fini_smc_tables,
.init_power = smu_v11_0_init_power,
.fini_power = smu_v11_0_fini_power,
.check_fw_status = smu_v11_0_check_fw_status,
.setup_pptable = smu_v11_0_setup_pptable,
.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
.get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios,
.check_pptable = smu_v11_0_check_pptable,
.parse_pptable = smu_v11_0_parse_pptable,
.populate_smc_tables = smu_v11_0_populate_smc_pptable,
.check_fw_version = smu_v11_0_check_fw_version,
.write_pptable = smu_v11_0_write_pptable,
.set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep,
.set_tool_table_location = smu_v11_0_set_tool_table_location,
.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
.system_features_control = smu_v11_0_system_features_control,
.send_smc_msg_with_param = smu_v11_0_send_msg_with_param,
.read_smc_arg = smu_v11_0_read_arg,
.init_display_count = smu_v11_0_init_display_count,
.set_allowed_mask = smu_v11_0_set_allowed_mask,
.get_enabled_mask = smu_v11_0_get_enabled_mask,
.notify_display_change = smu_v11_0_notify_display_change,
.set_power_limit = smu_v11_0_set_power_limit,
.get_current_clk_freq = smu_v11_0_get_current_clk_freq,
.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
.start_thermal_control = smu_v11_0_start_thermal_control,
.stop_thermal_control = smu_v11_0_stop_thermal_control,
.set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk,
.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
.set_fan_speed_percent = smu_v11_0_set_fan_speed_percent,
.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
.gfx_off_control = smu_v11_0_gfx_off_control,
.register_irq_handler = smu_v11_0_register_irq_handler,
.set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme,
.get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc,
.baco_is_support= smu_v11_0_baco_is_support,
.baco_get_state = smu_v11_0_baco_get_state,
.baco_set_state = smu_v11_0_baco_set_state,
.baco_reset = smu_v11_0_baco_reset,
.get_dpm_ultimate_freq = smu_v11_0_get_dpm_ultimate_freq,
.set_soft_freq_limited_range = smu_v11_0_set_soft_freq_limited_range,
.override_pcie_parameters = smu_v11_0_override_pcie_parameters,
.get_pptable_power_limit = arcturus_get_pptable_power_limit,
};
void arcturus_set_ppt_funcs(struct smu_context *smu)
{
smu->ppt_funcs = &arcturus_ppt_funcs;
}