blob: 1af9da8acf4cf8f9a7b6aa00a47b49464e03d506 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/dmi.h>
#include <linux/efi.h>
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <media/v4l2-subdev.h>
#include <linux/mfd/intel_soc_pmic.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio.h>
#include <linux/platform_device.h>
#include "../../include/linux/atomisp_platform.h"
#include "../../include/linux/atomisp_gmin_platform.h"
#define MAX_SUBDEVS 8
enum clock_rate {
VLV2_CLK_XTAL_25_0MHz = 0,
VLV2_CLK_PLL_19P2MHZ = 1
};
#define CLK_RATE_19_2MHZ 19200000
#define CLK_RATE_25_0MHZ 25000000
/* X-Powers AXP288 register set */
#define ALDO1_SEL_REG 0x28
#define ALDO1_CTRL3_REG 0x13
#define ALDO1_2P8V 0x16
#define ALDO1_CTRL3_SHIFT 0x05
#define ELDO_CTRL_REG 0x12
#define ELDO1_SEL_REG 0x19
#define ELDO1_1P8V 0x16
#define ELDO1_CTRL_SHIFT 0x00
#define ELDO2_SEL_REG 0x1a
#define ELDO2_1P8V 0x16
#define ELDO2_CTRL_SHIFT 0x01
/* TI SND9039 PMIC register set */
#define LDO9_REG 0x49
#define LDO10_REG 0x4a
#define LDO11_REG 0x4b
#define LDO_2P8V_ON 0x2f /* 0x2e selects 2.85V ... */
#define LDO_2P8V_OFF 0x2e /* ... bottom bit is "enabled" */
#define LDO_1P8V_ON 0x59 /* 0x58 selects 1.80V ... */
#define LDO_1P8V_OFF 0x58 /* ... bottom bit is "enabled" */
/* CRYSTAL COVE PMIC register set */
#define CRYSTAL_1P8V_REG 0x57
#define CRYSTAL_2P8V_REG 0x5d
#define CRYSTAL_ON 0x63
#define CRYSTAL_OFF 0x62
struct gmin_subdev {
struct v4l2_subdev *subdev;
int clock_num;
enum clock_rate clock_src;
bool clock_on;
struct clk *pmc_clk;
struct gpio_desc *gpio0;
struct gpio_desc *gpio1;
struct regulator *v1p8_reg;
struct regulator *v2p8_reg;
struct regulator *v1p2_reg;
struct regulator *v2p8_vcm_reg;
enum atomisp_camera_port csi_port;
unsigned int csi_lanes;
enum atomisp_input_format csi_fmt;
enum atomisp_bayer_order csi_bayer;
bool v1p8_on;
bool v2p8_on;
bool v1p2_on;
bool v2p8_vcm_on;
u8 pwm_i2c_addr;
/* For PMIC AXP */
int eldo1_sel_reg, eldo1_1p8v, eldo1_ctrl_shift;
int eldo2_sel_reg, eldo2_1p8v, eldo2_ctrl_shift;
};
static struct gmin_subdev gmin_subdevs[MAX_SUBDEVS];
/* ACPI HIDs for the PMICs that could be used by this driver */
#define PMIC_ACPI_AXP "INT33F4:00" /* XPower AXP288 PMIC */
#define PMIC_ACPI_TI "INT33F5:00" /* Dollar Cove TI PMIC */
#define PMIC_ACPI_CRYSTALCOVE "INT33FD:00" /* Crystal Cove PMIC */
#define PMIC_PLATFORM_TI "intel_soc_pmic_chtdc_ti"
static enum {
PMIC_UNSET = 0,
PMIC_REGULATOR,
PMIC_AXP,
PMIC_TI,
PMIC_CRYSTALCOVE
} pmic_id;
static const char *pmic_name[] = {
[PMIC_UNSET] = "unset",
[PMIC_REGULATOR] = "regulator driver",
[PMIC_AXP] = "XPower AXP288 PMIC",
[PMIC_TI] = "Dollar Cove TI PMIC",
[PMIC_CRYSTALCOVE] = "Crystal Cove PMIC",
};
/* The atomisp uses type==0 for the end-of-list marker, so leave space. */
static struct intel_v4l2_subdev_table pdata_subdevs[MAX_SUBDEVS + 1];
static const struct atomisp_platform_data pdata = {
.subdevs = pdata_subdevs,
};
/*
* Something of a hack. The ECS E7 board drives camera 2.8v from an
* external regulator instead of the PMIC. There's a gmin_CamV2P8
* config variable that specifies the GPIO to handle this particular
* case, but this needs a broader architecture for handling camera
* power.
*/
enum { V2P8_GPIO_UNSET = -2, V2P8_GPIO_NONE = -1 };
static int v2p8_gpio = V2P8_GPIO_UNSET;
/*
* Something of a hack. The CHT RVP board drives camera 1.8v from an
* external regulator instead of the PMIC just like ECS E7 board, see the
* comments above.
*/
enum { V1P8_GPIO_UNSET = -2, V1P8_GPIO_NONE = -1 };
static int v1p8_gpio = V1P8_GPIO_UNSET;
static LIST_HEAD(vcm_devices);
static DEFINE_MUTEX(vcm_lock);
static struct gmin_subdev *find_gmin_subdev(struct v4l2_subdev *subdev);
/*
* Legacy/stub behavior copied from upstream platform_camera.c. The
* atomisp driver relies on these values being non-NULL in a few
* places, even though they are hard-coded in all current
* implementations.
*/
const struct atomisp_camera_caps *atomisp_get_default_camera_caps(void)
{
static const struct atomisp_camera_caps caps = {
.sensor_num = 1,
.sensor = {
{ .stream_num = 1, },
},
};
return &caps;
}
EXPORT_SYMBOL_GPL(atomisp_get_default_camera_caps);
const struct atomisp_platform_data *atomisp_get_platform_data(void)
{
return &pdata;
}
EXPORT_SYMBOL_GPL(atomisp_get_platform_data);
int atomisp_register_i2c_module(struct v4l2_subdev *subdev,
struct camera_sensor_platform_data *plat_data,
enum intel_v4l2_subdev_type type)
{
int i;
struct i2c_board_info *bi;
struct gmin_subdev *gs;
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct acpi_device *adev = ACPI_COMPANION(&client->dev);
dev_info(&client->dev, "register atomisp i2c module type %d\n", type);
/* The windows driver model (and thus most BIOSes by default)
* uses ACPI runtime power management for camera devices, but
* we don't. Disable it, or else the rails will be needlessly
* tickled during suspend/resume. This has caused power and
* performance issues on multiple devices.
*/
adev->power.flags.power_resources = 0;
for (i = 0; i < MAX_SUBDEVS; i++)
if (!pdata.subdevs[i].type)
break;
if (pdata.subdevs[i].type)
return -ENOMEM;
/* Note subtlety of initialization order: at the point where
* this registration API gets called, the platform data
* callbacks have probably already been invoked, so the
* gmin_subdev struct is already initialized for us.
*/
gs = find_gmin_subdev(subdev);
pdata.subdevs[i].type = type;
pdata.subdevs[i].port = gs->csi_port;
pdata.subdevs[i].subdev = subdev;
pdata.subdevs[i].v4l2_subdev.i2c_adapter_id = client->adapter->nr;
/* Convert i2c_client to i2c_board_info */
bi = &pdata.subdevs[i].v4l2_subdev.board_info;
memcpy(bi->type, client->name, I2C_NAME_SIZE);
bi->flags = client->flags;
bi->addr = client->addr;
bi->irq = client->irq;
bi->platform_data = plat_data;
return 0;
}
EXPORT_SYMBOL_GPL(atomisp_register_i2c_module);
struct v4l2_subdev *atomisp_gmin_find_subdev(struct i2c_adapter *adapter,
struct i2c_board_info *board_info)
{
int i;
for (i = 0; i < MAX_SUBDEVS && pdata.subdevs[i].type; i++) {
struct intel_v4l2_subdev_table *sd = &pdata.subdevs[i];
if (sd->v4l2_subdev.i2c_adapter_id == adapter->nr &&
sd->v4l2_subdev.board_info.addr == board_info->addr)
return sd->subdev;
}
return NULL;
}
EXPORT_SYMBOL_GPL(atomisp_gmin_find_subdev);
int atomisp_gmin_remove_subdev(struct v4l2_subdev *sd)
{
int i, j;
if (!sd)
return 0;
for (i = 0; i < MAX_SUBDEVS; i++) {
if (pdata.subdevs[i].subdev == sd) {
for (j = i + 1; j <= MAX_SUBDEVS; j++)
pdata.subdevs[j - 1] = pdata.subdevs[j];
}
if (gmin_subdevs[i].subdev == sd) {
if (gmin_subdevs[i].gpio0)
gpiod_put(gmin_subdevs[i].gpio0);
gmin_subdevs[i].gpio0 = NULL;
if (gmin_subdevs[i].gpio1)
gpiod_put(gmin_subdevs[i].gpio1);
gmin_subdevs[i].gpio1 = NULL;
if (pmic_id == PMIC_REGULATOR) {
regulator_put(gmin_subdevs[i].v1p8_reg);
regulator_put(gmin_subdevs[i].v2p8_reg);
regulator_put(gmin_subdevs[i].v1p2_reg);
regulator_put(gmin_subdevs[i].v2p8_vcm_reg);
}
gmin_subdevs[i].subdev = NULL;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(atomisp_gmin_remove_subdev);
struct gmin_cfg_var {
const char *name, *val;
};
static struct gmin_cfg_var ffrd8_vars[] = {
{ "INTCF1B:00_ImxId", "0x134" },
{ "INTCF1B:00_CsiPort", "1" },
{ "INTCF1B:00_CsiLanes", "4" },
{ "INTCF1B:00_CamClk", "0" },
{},
};
/* Cribbed from MCG defaults in the mt9m114 driver, not actually verified
* vs. T100 hardware
*/
static struct gmin_cfg_var t100_vars[] = {
{ "INT33F0:00_CsiPort", "0" },
{ "INT33F0:00_CsiLanes", "1" },
{ "INT33F0:00_CamClk", "1" },
{},
};
static struct gmin_cfg_var mrd7_vars[] = {
{"INT33F8:00_CamType", "1"},
{"INT33F8:00_CsiPort", "1"},
{"INT33F8:00_CsiLanes", "2"},
{"INT33F8:00_CsiFmt", "13"},
{"INT33F8:00_CsiBayer", "0"},
{"INT33F8:00_CamClk", "0"},
{"INT33F9:00_CamType", "1"},
{"INT33F9:00_CsiPort", "0"},
{"INT33F9:00_CsiLanes", "1"},
{"INT33F9:00_CsiFmt", "13"},
{"INT33F9:00_CsiBayer", "0"},
{"INT33F9:00_CamClk", "1"},
{},
};
static struct gmin_cfg_var ecs7_vars[] = {
{"INT33BE:00_CsiPort", "1"},
{"INT33BE:00_CsiLanes", "2"},
{"INT33BE:00_CsiFmt", "13"},
{"INT33BE:00_CsiBayer", "2"},
{"INT33BE:00_CamClk", "0"},
{"INT33F0:00_CsiPort", "0"},
{"INT33F0:00_CsiLanes", "1"},
{"INT33F0:00_CsiFmt", "13"},
{"INT33F0:00_CsiBayer", "0"},
{"INT33F0:00_CamClk", "1"},
{"gmin_V2P8GPIO", "402"},
{},
};
static struct gmin_cfg_var i8880_vars[] = {
{"XXOV2680:00_CsiPort", "1"},
{"XXOV2680:00_CsiLanes", "1"},
{"XXOV2680:00_CamClk", "0"},
{"XXGC0310:00_CsiPort", "0"},
{"XXGC0310:00_CsiLanes", "1"},
{"XXGC0310:00_CamClk", "1"},
{},
};
static const struct dmi_system_id gmin_vars[] = {
{
.ident = "BYT-T FFD8",
.matches = {
DMI_MATCH(DMI_BOARD_NAME, "BYT-T FFD8"),
},
.driver_data = ffrd8_vars,
},
{
.ident = "T100TA",
.matches = {
DMI_MATCH(DMI_BOARD_NAME, "T100TA"),
},
.driver_data = t100_vars,
},
{
.ident = "MRD7",
.matches = {
DMI_MATCH(DMI_BOARD_NAME, "TABLET"),
DMI_MATCH(DMI_BOARD_VERSION, "MRD 7"),
},
.driver_data = mrd7_vars,
},
{
.ident = "ST70408",
.matches = {
DMI_MATCH(DMI_BOARD_NAME, "ST70408"),
},
.driver_data = ecs7_vars,
},
{
.ident = "VTA0803",
.matches = {
DMI_MATCH(DMI_BOARD_NAME, "VTA0803"),
},
.driver_data = i8880_vars,
},
{}
};
#define GMIN_CFG_VAR_EFI_GUID EFI_GUID(0xecb54cd9, 0xe5ae, 0x4fdc, \
0xa9, 0x71, 0xe8, 0x77, \
0x75, 0x60, 0x68, 0xf7)
static const guid_t atomisp_dsm_guid = GUID_INIT(0xdc2f6c4f, 0x045b, 0x4f1d,
0x97, 0xb9, 0x88, 0x2a,
0x68, 0x60, 0xa4, 0xbe);
#define CFG_VAR_NAME_MAX 64
#define GMIN_PMC_CLK_NAME 14 /* "pmc_plt_clk_[0..5]" */
static char gmin_pmc_clk_name[GMIN_PMC_CLK_NAME];
static int gmin_i2c_match_one(struct device *dev, const void *data)
{
const char *name = data;
struct i2c_client *client;
if (dev->type != &i2c_client_type)
return 0;
client = to_i2c_client(dev);
return (!strcmp(name, client->name));
}
static struct i2c_client *gmin_i2c_dev_exists(struct device *dev, char *name,
struct i2c_client **client)
{
struct device *d;
while ((d = bus_find_device(&i2c_bus_type, NULL, name,
gmin_i2c_match_one))) {
*client = to_i2c_client(d);
dev_dbg(dev, "found '%s' at address 0x%02x, adapter %d\n",
(*client)->name, (*client)->addr,
(*client)->adapter->nr);
return *client;
}
return NULL;
}
static int gmin_i2c_write(struct device *dev, u16 i2c_addr, u8 reg,
u32 value, u32 mask)
{
int ret;
/*
* FIXME: Right now, the intel_pmic driver just write values
* directly at the regmap, instead of properly implementing
* i2c_transfer() mechanism. Let's use the same interface here,
* as otherwise we may face issues.
*/
dev_dbg(dev,
"I2C write, addr: 0x%02x, reg: 0x%02x, value: 0x%02x, mask: 0x%02x\n",
i2c_addr, reg, value, mask);
ret = intel_soc_pmic_exec_mipi_pmic_seq_element(i2c_addr, reg,
value, mask);
if (ret == -EOPNOTSUPP) {
dev_err(dev,
"ACPI didn't mapped the OpRegion needed to access I2C address 0x%02x.\n"
"Need to compile the Kernel using CONFIG_*_PMIC_OPREGION settings\n",
i2c_addr);
return ret;
}
return ret;
}
static struct gmin_subdev *gmin_subdev_add(struct v4l2_subdev *subdev)
{
struct i2c_client *power = NULL, *client = v4l2_get_subdevdata(subdev);
struct acpi_device *adev;
acpi_handle handle;
struct device *dev;
int i, ret;
if (!client)
return NULL;
dev = &client->dev;
handle = ACPI_HANDLE(dev);
// FIXME: may need to release resources allocated by acpi_bus_get_device()
if (!handle || acpi_bus_get_device(handle, &adev)) {
dev_err(dev, "Error could not get ACPI device\n");
return NULL;
}
dev_info(&client->dev, "%s: ACPI detected it on bus ID=%s, HID=%s\n",
__func__, acpi_device_bid(adev), acpi_device_hid(adev));
if (!pmic_id) {
if (gmin_i2c_dev_exists(dev, PMIC_ACPI_TI, &power))
pmic_id = PMIC_TI;
else if (gmin_i2c_dev_exists(dev, PMIC_ACPI_AXP, &power))
pmic_id = PMIC_AXP;
else if (gmin_i2c_dev_exists(dev, PMIC_ACPI_CRYSTALCOVE, &power))
pmic_id = PMIC_CRYSTALCOVE;
else
pmic_id = PMIC_REGULATOR;
}
for (i = 0; i < MAX_SUBDEVS && gmin_subdevs[i].subdev; i++)
;
if (i >= MAX_SUBDEVS)
return NULL;
if (power) {
gmin_subdevs[i].pwm_i2c_addr = power->addr;
dev_info(dev,
"gmin: power management provided via %s (i2c addr 0x%02x)\n",
pmic_name[pmic_id], power->addr);
} else {
dev_info(dev, "gmin: power management provided via %s\n",
pmic_name[pmic_id]);
}
gmin_subdevs[i].subdev = subdev;
gmin_subdevs[i].clock_num = gmin_get_var_int(dev, false, "CamClk", 0);
/*WA:CHT requires XTAL clock as PLL is not stable.*/
gmin_subdevs[i].clock_src = gmin_get_var_int(dev, false, "ClkSrc",
VLV2_CLK_PLL_19P2MHZ);
gmin_subdevs[i].csi_port = gmin_get_var_int(dev, false, "CsiPort", 0);
gmin_subdevs[i].csi_lanes = gmin_get_var_int(dev, false, "CsiLanes", 1);
/* get PMC clock with clock framework */
snprintf(gmin_pmc_clk_name,
sizeof(gmin_pmc_clk_name),
"%s_%d", "pmc_plt_clk", gmin_subdevs[i].clock_num);
gmin_subdevs[i].pmc_clk = devm_clk_get(dev, gmin_pmc_clk_name);
if (IS_ERR(gmin_subdevs[i].pmc_clk)) {
ret = PTR_ERR(gmin_subdevs[i].pmc_clk);
dev_err(dev,
"Failed to get clk from %s : %d\n",
gmin_pmc_clk_name,
ret);
return NULL;
}
/*
* The firmware might enable the clock at
* boot (this information may or may not
* be reflected in the enable clock register).
* To change the rate we must disable the clock
* first to cover these cases. Due to common
* clock framework restrictions that do not allow
* to disable a clock that has not been enabled,
* we need to enable the clock first.
*/
ret = clk_prepare_enable(gmin_subdevs[i].pmc_clk);
if (!ret)
clk_disable_unprepare(gmin_subdevs[i].pmc_clk);
gmin_subdevs[i].gpio0 = gpiod_get_index(dev, NULL, 0, GPIOD_OUT_LOW);
if (IS_ERR(gmin_subdevs[i].gpio0))
gmin_subdevs[i].gpio0 = NULL;
gmin_subdevs[i].gpio1 = gpiod_get_index(dev, NULL, 1, GPIOD_OUT_LOW);
if (IS_ERR(gmin_subdevs[i].gpio1))
gmin_subdevs[i].gpio1 = NULL;
switch (pmic_id) {
case PMIC_REGULATOR:
gmin_subdevs[i].v1p8_reg = regulator_get(dev, "V1P8SX");
gmin_subdevs[i].v2p8_reg = regulator_get(dev, "V2P8SX");
gmin_subdevs[i].v1p2_reg = regulator_get(dev, "V1P2A");
gmin_subdevs[i].v2p8_vcm_reg = regulator_get(dev, "VPROG4B");
/* Note: ideally we would initialize v[12]p8_on to the
* output of regulator_is_enabled(), but sadly that
* API is broken with the current drivers, returning
* "1" for a regulator that will then emit a
* "unbalanced disable" WARNing if we try to disable
* it.
*/
break;
case PMIC_AXP:
gmin_subdevs[i].eldo1_1p8v = gmin_get_var_int(dev, false,
"eldo1_1p8v",
ELDO1_1P8V);
gmin_subdevs[i].eldo1_sel_reg = gmin_get_var_int(dev, false,
"eldo1_sel_reg",
ELDO1_SEL_REG);
gmin_subdevs[i].eldo1_ctrl_shift = gmin_get_var_int(dev, false,
"eldo1_ctrl_shift",
ELDO1_CTRL_SHIFT);
gmin_subdevs[i].eldo2_1p8v = gmin_get_var_int(dev, false,
"eldo2_1p8v",
ELDO2_1P8V);
gmin_subdevs[i].eldo2_sel_reg = gmin_get_var_int(dev, false,
"eldo2_sel_reg",
ELDO2_SEL_REG);
gmin_subdevs[i].eldo2_ctrl_shift = gmin_get_var_int(dev, false,
"eldo2_ctrl_shift",
ELDO2_CTRL_SHIFT);
gmin_subdevs[i].pwm_i2c_addr = power->addr;
break;
default:
break;
}
return &gmin_subdevs[i];
}
static struct gmin_subdev *find_gmin_subdev(struct v4l2_subdev *subdev)
{
int i;
for (i = 0; i < MAX_SUBDEVS; i++)
if (gmin_subdevs[i].subdev == subdev)
return &gmin_subdevs[i];
return gmin_subdev_add(subdev);
}
static int axp_regulator_set(struct device *dev, struct gmin_subdev *gs,
int sel_reg, u8 setting,
int ctrl_reg, int shift, bool on)
{
int ret;
int val;
ret = gmin_i2c_write(dev, gs->pwm_i2c_addr, sel_reg, setting, 0xff);
if (ret)
return ret;
val = on ? 1 << shift : 0;
ret = gmin_i2c_write(dev, gs->pwm_i2c_addr, sel_reg, val, 1 << shift);
if (ret)
return ret;
return 0;
}
static int axp_v1p8_on(struct device *dev, struct gmin_subdev *gs)
{
int ret;
ret = axp_regulator_set(dev, gs, gs->eldo2_sel_reg, gs->eldo2_1p8v,
ELDO_CTRL_REG, gs->eldo2_ctrl_shift, true);
if (ret)
return ret;
/*
* This sleep comes out of the gc2235 driver, which is the
* only one I currently see that wants to set both 1.8v rails.
*/
usleep_range(110, 150);
ret = axp_regulator_set(dev, gs, gs->eldo1_sel_reg, gs->eldo1_1p8v,
ELDO_CTRL_REG, gs->eldo1_ctrl_shift, true);
if (ret)
return ret;
ret = axp_regulator_set(dev, gs, gs->eldo2_sel_reg, gs->eldo2_1p8v,
ELDO_CTRL_REG, gs->eldo2_ctrl_shift, false);
return ret;
}
static int axp_v1p8_off(struct device *dev, struct gmin_subdev *gs)
{
int ret;
ret = axp_regulator_set(dev, gs, gs->eldo1_sel_reg, gs->eldo1_1p8v,
ELDO_CTRL_REG, gs->eldo1_ctrl_shift, false);
if (ret)
return ret;
ret = axp_regulator_set(dev, gs, gs->eldo2_sel_reg, gs->eldo2_1p8v,
ELDO_CTRL_REG, gs->eldo2_ctrl_shift, false);
return ret;
}
static int gmin_gpio0_ctrl(struct v4l2_subdev *subdev, int on)
{
struct gmin_subdev *gs = find_gmin_subdev(subdev);
if (gs) {
gpiod_set_value(gs->gpio0, on);
return 0;
}
return -EINVAL;
}
static int gmin_gpio1_ctrl(struct v4l2_subdev *subdev, int on)
{
struct gmin_subdev *gs = find_gmin_subdev(subdev);
if (gs) {
gpiod_set_value(gs->gpio1, on);
return 0;
}
return -EINVAL;
}
static int gmin_v1p2_ctrl(struct v4l2_subdev *subdev, int on)
{
struct gmin_subdev *gs = find_gmin_subdev(subdev);
if (!gs || gs->v1p2_on == on)
return 0;
gs->v1p2_on = on;
/* use regulator for PMIC */
if (gs->v1p2_reg) {
if (on)
return regulator_enable(gs->v1p2_reg);
else
return regulator_disable(gs->v1p2_reg);
}
/* TODO:v1p2 may need to extend to other PMICs */
return -EINVAL;
}
static int gmin_v1p8_ctrl(struct v4l2_subdev *subdev, int on)
{
struct gmin_subdev *gs = find_gmin_subdev(subdev);
int ret;
struct device *dev;
struct i2c_client *client = v4l2_get_subdevdata(subdev);
int value;
dev = &client->dev;
if (v1p8_gpio == V1P8_GPIO_UNSET) {
v1p8_gpio = gmin_get_var_int(dev, true,
"V1P8GPIO", V1P8_GPIO_NONE);
if (v1p8_gpio != V1P8_GPIO_NONE) {
pr_info("atomisp_gmin_platform: 1.8v power on GPIO %d\n",
v1p8_gpio);
ret = gpio_request(v1p8_gpio, "camera_v1p8_en");
if (!ret)
ret = gpio_direction_output(v1p8_gpio, 0);
if (ret)
pr_err("V1P8 GPIO initialization failed\n");
}
}
if (!gs || gs->v1p8_on == on)
return 0;
gs->v1p8_on = on;
if (v1p8_gpio >= 0)
gpio_set_value(v1p8_gpio, on);
if (gs->v1p8_reg) {
regulator_set_voltage(gs->v1p8_reg, 1800000, 1800000);
if (on)
return regulator_enable(gs->v1p8_reg);
else
return regulator_disable(gs->v1p8_reg);
}
switch (pmic_id) {
case PMIC_AXP:
if (on)
return axp_v1p8_on(subdev->dev, gs);
else
return axp_v1p8_off(subdev->dev, gs);
case PMIC_TI:
value = on ? LDO_1P8V_ON : LDO_1P8V_OFF;
return gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
LDO10_REG, value, 0xff);
case PMIC_CRYSTALCOVE:
value = on ? CRYSTAL_ON : CRYSTAL_OFF;
return gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
CRYSTAL_1P8V_REG, value, 0xff);
default:
dev_err(subdev->dev, "Couldn't set power mode for v1p2\n");
}
return -EINVAL;
}
static int gmin_v2p8_ctrl(struct v4l2_subdev *subdev, int on)
{
struct gmin_subdev *gs = find_gmin_subdev(subdev);
int ret;
struct device *dev;
struct i2c_client *client = v4l2_get_subdevdata(subdev);
int value;
dev = &client->dev;
if (v2p8_gpio == V2P8_GPIO_UNSET) {
v2p8_gpio = gmin_get_var_int(dev, true,
"V2P8GPIO", V2P8_GPIO_NONE);
if (v2p8_gpio != V2P8_GPIO_NONE) {
pr_info("atomisp_gmin_platform: 2.8v power on GPIO %d\n",
v2p8_gpio);
ret = gpio_request(v2p8_gpio, "camera_v2p8");
if (!ret)
ret = gpio_direction_output(v2p8_gpio, 0);
if (ret)
pr_err("V2P8 GPIO initialization failed\n");
}
}
if (!gs || gs->v2p8_on == on)
return 0;
gs->v2p8_on = on;
if (v2p8_gpio >= 0)
gpio_set_value(v2p8_gpio, on);
if (gs->v2p8_reg) {
regulator_set_voltage(gs->v2p8_reg, 2900000, 2900000);
if (on)
return regulator_enable(gs->v2p8_reg);
else
return regulator_disable(gs->v2p8_reg);
}
switch (pmic_id) {
case PMIC_AXP:
return axp_regulator_set(subdev->dev, gs, ALDO1_SEL_REG,
ALDO1_2P8V, ALDO1_CTRL3_REG,
ALDO1_CTRL3_SHIFT, on);
case PMIC_TI:
value = on ? LDO_2P8V_ON : LDO_2P8V_OFF;
return gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
LDO9_REG, value, 0xff);
case PMIC_CRYSTALCOVE:
value = on ? CRYSTAL_ON : CRYSTAL_OFF;
return gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
CRYSTAL_2P8V_REG, value, 0xff);
default:
dev_err(subdev->dev, "Couldn't set power mode for v1p2\n");
}
return -EINVAL;
}
static int gmin_flisclk_ctrl(struct v4l2_subdev *subdev, int on)
{
int ret = 0;
struct gmin_subdev *gs = find_gmin_subdev(subdev);
struct i2c_client *client = v4l2_get_subdevdata(subdev);
if (gs->clock_on == !!on)
return 0;
if (on) {
ret = clk_set_rate(gs->pmc_clk,
gs->clock_src ? CLK_RATE_19_2MHZ : CLK_RATE_25_0MHZ);
if (ret)
dev_err(&client->dev, "unable to set PMC rate %d\n",
gs->clock_src);
ret = clk_prepare_enable(gs->pmc_clk);
if (ret == 0)
gs->clock_on = true;
} else {
clk_disable_unprepare(gs->pmc_clk);
gs->clock_on = false;
}
return ret;
}
static int gmin_csi_cfg(struct v4l2_subdev *sd, int flag)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct gmin_subdev *gs = find_gmin_subdev(sd);
if (!client || !gs)
return -ENODEV;
return camera_sensor_csi(sd, gs->csi_port, gs->csi_lanes,
gs->csi_fmt, gs->csi_bayer, flag);
}
static struct camera_vcm_control *gmin_get_vcm_ctrl(struct v4l2_subdev *subdev,
char *camera_module)
{
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct gmin_subdev *gs = find_gmin_subdev(subdev);
struct camera_vcm_control *vcm;
if (!client || !gs)
return NULL;
if (!camera_module)
return NULL;
mutex_lock(&vcm_lock);
list_for_each_entry(vcm, &vcm_devices, list) {
if (!strcmp(camera_module, vcm->camera_module)) {
mutex_unlock(&vcm_lock);
return vcm;
}
}
mutex_unlock(&vcm_lock);
return NULL;
}
static struct camera_sensor_platform_data gmin_plat = {
.gpio0_ctrl = gmin_gpio0_ctrl,
.gpio1_ctrl = gmin_gpio1_ctrl,
.v1p8_ctrl = gmin_v1p8_ctrl,
.v2p8_ctrl = gmin_v2p8_ctrl,
.v1p2_ctrl = gmin_v1p2_ctrl,
.flisclk_ctrl = gmin_flisclk_ctrl,
.csi_cfg = gmin_csi_cfg,
.get_vcm_ctrl = gmin_get_vcm_ctrl,
};
struct camera_sensor_platform_data *gmin_camera_platform_data(
struct v4l2_subdev *subdev,
enum atomisp_input_format csi_format,
enum atomisp_bayer_order csi_bayer)
{
struct gmin_subdev *gs = find_gmin_subdev(subdev);
gs->csi_fmt = csi_format;
gs->csi_bayer = csi_bayer;
return &gmin_plat;
}
EXPORT_SYMBOL_GPL(gmin_camera_platform_data);
int atomisp_gmin_register_vcm_control(struct camera_vcm_control *vcmCtrl)
{
if (!vcmCtrl)
return -EINVAL;
mutex_lock(&vcm_lock);
list_add_tail(&vcmCtrl->list, &vcm_devices);
mutex_unlock(&vcm_lock);
return 0;
}
EXPORT_SYMBOL_GPL(atomisp_gmin_register_vcm_control);
static int gmin_get_hardcoded_var(struct device *dev,
struct gmin_cfg_var *varlist,
const char *var8, char *out, size_t *out_len)
{
struct gmin_cfg_var *gv;
for (gv = varlist; gv->name; gv++) {
size_t vl;
if (strcmp(var8, gv->name))
continue;
dev_info(dev, "Found DMI entry for '%s'\n", var8);
vl = strlen(gv->val);
if (vl > *out_len - 1)
return -ENOSPC;
strscpy(out, gv->val, *out_len);
*out_len = vl;
return 0;
}
return -EINVAL;
}
static int gmin_get_config_dsm_var(struct device *dev,
const char *var,
char *out, size_t *out_len)
{
acpi_handle handle = ACPI_HANDLE(dev);
union acpi_object *obj, *cur = NULL;
int i;
obj = acpi_evaluate_dsm(handle, &atomisp_dsm_guid, 0, 0, NULL);
if (!obj) {
dev_info_once(dev, "Didn't find ACPI _DSM table.\n");
return -EINVAL;
}
#if 0 /* Just for debugging purposes */
for (i = 0; i < obj->package.count; i++) {
union acpi_object *cur = &obj->package.elements[i];
if (cur->type == ACPI_TYPE_INTEGER)
dev_info(dev, "object #%d, type %d, value: %lld\n",
i, cur->type, cur->integer.value);
else if (cur->type == ACPI_TYPE_STRING)
dev_info(dev, "object #%d, type %d, string: %s\n",
i, cur->type, cur->string.pointer);
else
dev_info(dev, "object #%d, type %d\n",
i, cur->type);
}
#endif
/* Seek for the desired var */
for (i = 0; i < obj->package.count - 1; i += 2) {
if (obj->package.elements[i].type == ACPI_TYPE_STRING &&
!strcmp(obj->package.elements[i].string.pointer, var)) {
/* Next element should be the required value */
cur = &obj->package.elements[i + 1];
break;
}
}
if (!cur) {
dev_info(dev, "didn't found _DSM entry for '%s'\n", var);
ACPI_FREE(obj);
return -EINVAL;
}
/*
* While it could be possible to have an ACPI_TYPE_INTEGER,
* and read the value from cur->integer.value, the table
* seen so far uses the string type. So, produce a warning
* if it founds something different than string, letting it
* to fall back to the old code.
*/
if (cur && cur->type != ACPI_TYPE_STRING) {
dev_info(dev, "found non-string _DSM entry for '%s'\n", var);
ACPI_FREE(obj);
return -EINVAL;
}
dev_info(dev, "found _DSM entry for '%s': %s\n", var,
cur->string.pointer);
strscpy(out, cur->string.pointer, *out_len);
*out_len = strlen(cur->string.pointer);
ACPI_FREE(obj);
return 0;
}
/* Retrieves a device-specific configuration variable. The dev
* argument should be a device with an ACPI companion, as all
* configuration is based on firmware ID.
*/
static int gmin_get_config_var(struct device *maindev,
bool is_gmin,
const char *var,
char *out, size_t *out_len)
{
efi_char16_t var16[CFG_VAR_NAME_MAX];
const struct dmi_system_id *id;
struct device *dev = maindev;
char var8[CFG_VAR_NAME_MAX];
struct efivar_entry *ev;
int i, ret;
/* For sensors, try first to use the _DSM table */
if (!is_gmin) {
ret = gmin_get_config_dsm_var(maindev, var, out, out_len);
if (!ret)
return 0;
}
/* Fall-back to other approaches */
if (!is_gmin && ACPI_COMPANION(dev))
dev = &ACPI_COMPANION(dev)->dev;
if (!is_gmin)
ret = snprintf(var8, sizeof(var8), "%s_%s", dev_name(dev), var);
else
ret = snprintf(var8, sizeof(var8), "gmin_%s", var);
if (ret < 0 || ret >= sizeof(var8) - 1)
return -EINVAL;
/* First check a hard-coded list of board-specific variables.
* Some device firmwares lack the ability to set EFI variables at
* runtime.
*/
id = dmi_first_match(gmin_vars);
if (id) {
ret = gmin_get_hardcoded_var(maindev, id->driver_data, var8,
out, out_len);
if (!ret)
return 0;
}
/* Our variable names are ASCII by construction, but EFI names
* are wide chars. Convert and zero-pad.
*/
memset(var16, 0, sizeof(var16));
for (i = 0; i < sizeof(var8) && var8[i]; i++)
var16[i] = var8[i];
/* Not sure this API usage is kosher; efivar_entry_get()'s
* implementation simply uses VariableName and VendorGuid from
* the struct and ignores the rest, but it seems like there
* ought to be an "official" efivar_entry registered
* somewhere?
*/
ev = kzalloc(sizeof(*ev), GFP_KERNEL);
if (!ev)
return -ENOMEM;
memcpy(&ev->var.VariableName, var16, sizeof(var16));
ev->var.VendorGuid = GMIN_CFG_VAR_EFI_GUID;
ev->var.DataSize = *out_len;
ret = efivar_entry_get(ev, &ev->var.Attributes,
&ev->var.DataSize, ev->var.Data);
if (ret == 0) {
memcpy(out, ev->var.Data, ev->var.DataSize);
*out_len = ev->var.DataSize;
dev_info(maindev, "found EFI entry for '%s'\n", var8);
} else if (is_gmin) {
dev_info(maindev, "Failed to find EFI gmin variable %s\n", var8);
} else {
dev_info(maindev, "Failed to find EFI variable %s\n", var8);
}
kfree(ev);
return ret;
}
int gmin_get_var_int(struct device *dev, bool is_gmin, const char *var, int def)
{
char val[CFG_VAR_NAME_MAX];
size_t len = sizeof(val);
long result;
int ret;
ret = gmin_get_config_var(dev, is_gmin, var, val, &len);
if (!ret) {
val[len] = 0;
ret = kstrtol(val, 0, &result);
} else {
dev_info(dev, "%s: using default (%d)\n", var, def);
}
return ret ? def : result;
}
EXPORT_SYMBOL_GPL(gmin_get_var_int);
int camera_sensor_csi(struct v4l2_subdev *sd, u32 port,
u32 lanes, u32 format, u32 bayer_order, int flag)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct camera_mipi_info *csi = NULL;
if (flag) {
csi = kzalloc(sizeof(*csi), GFP_KERNEL);
if (!csi)
return -ENOMEM;
csi->port = port;
csi->num_lanes = lanes;
csi->input_format = format;
csi->raw_bayer_order = bayer_order;
v4l2_set_subdev_hostdata(sd, (void *)csi);
csi->metadata_format = ATOMISP_INPUT_FORMAT_EMBEDDED;
csi->metadata_effective_width = NULL;
dev_info(&client->dev,
"camera pdata: port: %d lanes: %d order: %8.8x\n",
port, lanes, bayer_order);
} else {
csi = v4l2_get_subdev_hostdata(sd);
kfree(csi);
}
return 0;
}
EXPORT_SYMBOL_GPL(camera_sensor_csi);
/* PCI quirk: The BYT ISP advertises PCI runtime PM but it doesn't
* work. Disable so the kernel framework doesn't hang the device
* trying. The driver itself does direct calls to the PUNIT to manage
* ISP power.
*/
static void isp_pm_cap_fixup(struct pci_dev *dev)
{
dev_info(&dev->dev, "Disabling PCI power management on camera ISP\n");
dev->pm_cap = 0;
}
DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, 0x0f38, isp_pm_cap_fixup);
MODULE_DESCRIPTION("Ancillary routines for binding ACPI devices");
MODULE_LICENSE("GPL");