| // SPDX-License-Identifier: GPL-2.0 |
| /****************************************************************************** |
| * |
| * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. |
| * |
| ******************************************************************************/ |
| #include <linux/crc32.h> |
| #include <drv_types.h> |
| #include <rtw_debug.h> |
| #include <crypto/aes.h> |
| |
| static const char * const _security_type_str[] = { |
| "N/A", |
| "WEP40", |
| "TKIP", |
| "TKIP_WM", |
| "AES", |
| "WEP104", |
| "SMS4", |
| "WEP_WPA", |
| "BIP", |
| }; |
| |
| const char *security_type_str(u8 value) |
| { |
| if (value <= _BIP_) |
| return _security_type_str[value]; |
| return NULL; |
| } |
| |
| /* WEP related ===== */ |
| |
| /* |
| Need to consider the fragment situation |
| */ |
| void rtw_wep_encrypt(struct adapter *padapter, u8 *pxmitframe) |
| { /* exclude ICV */ |
| union { |
| __le32 f0; |
| unsigned char f1[4]; |
| } crc; |
| |
| signed int curfragnum, length; |
| u32 keylength; |
| |
| u8 *pframe, *payload, *iv; /* wepkey */ |
| u8 wepkey[16]; |
| u8 hw_hdr_offset = 0; |
| struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib; |
| struct security_priv *psecuritypriv = &padapter->securitypriv; |
| struct xmit_priv *pxmitpriv = &padapter->xmitpriv; |
| struct arc4_ctx *ctx = &psecuritypriv->xmit_arc4_ctx; |
| |
| if (!((struct xmit_frame *)pxmitframe)->buf_addr) |
| return; |
| |
| hw_hdr_offset = TXDESC_OFFSET; |
| pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset; |
| |
| /* start to encrypt each fragment */ |
| if ((pattrib->encrypt == _WEP40_) || (pattrib->encrypt == _WEP104_)) { |
| keylength = psecuritypriv->dot11DefKeylen[psecuritypriv->dot11PrivacyKeyIndex]; |
| |
| for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) { |
| iv = pframe+pattrib->hdrlen; |
| memcpy(&wepkey[0], iv, 3); |
| memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[psecuritypriv->dot11PrivacyKeyIndex].skey[0], keylength); |
| payload = pframe+pattrib->iv_len+pattrib->hdrlen; |
| |
| if ((curfragnum+1) == pattrib->nr_frags) { /* the last fragment */ |
| |
| length = pattrib->last_txcmdsz-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len; |
| |
| crc.f0 = cpu_to_le32(~crc32_le(~0, payload, length)); |
| |
| arc4_setkey(ctx, wepkey, 3 + keylength); |
| arc4_crypt(ctx, payload, payload, length); |
| arc4_crypt(ctx, payload + length, crc.f1, 4); |
| |
| } else { |
| length = pxmitpriv->frag_len-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len; |
| crc.f0 = cpu_to_le32(~crc32_le(~0, payload, length)); |
| arc4_setkey(ctx, wepkey, 3 + keylength); |
| arc4_crypt(ctx, payload, payload, length); |
| arc4_crypt(ctx, payload + length, crc.f1, 4); |
| |
| pframe += pxmitpriv->frag_len; |
| pframe = (u8 *)round_up((SIZE_PTR)(pframe), 4); |
| } |
| } |
| } |
| } |
| |
| void rtw_wep_decrypt(struct adapter *padapter, u8 *precvframe) |
| { |
| /* exclude ICV */ |
| u8 crc[4]; |
| signed int length; |
| u32 keylength; |
| u8 *pframe, *payload, *iv, wepkey[16]; |
| u8 keyindex; |
| struct rx_pkt_attrib *prxattrib = &(((union recv_frame *)precvframe)->u.hdr.attrib); |
| struct security_priv *psecuritypriv = &padapter->securitypriv; |
| struct arc4_ctx *ctx = &psecuritypriv->recv_arc4_ctx; |
| |
| pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data; |
| |
| /* start to decrypt recvframe */ |
| if ((prxattrib->encrypt == _WEP40_) || (prxattrib->encrypt == _WEP104_)) { |
| iv = pframe+prxattrib->hdrlen; |
| /* keyindex =(iv[3]&0x3); */ |
| keyindex = prxattrib->key_index; |
| keylength = psecuritypriv->dot11DefKeylen[keyindex]; |
| memcpy(&wepkey[0], iv, 3); |
| /* memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[psecuritypriv->dot11PrivacyKeyIndex].skey[0], keylength); */ |
| memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[keyindex].skey[0], keylength); |
| length = ((union recv_frame *)precvframe)->u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len; |
| |
| payload = pframe+prxattrib->iv_len+prxattrib->hdrlen; |
| |
| /* decrypt payload include icv */ |
| arc4_setkey(ctx, wepkey, 3 + keylength); |
| arc4_crypt(ctx, payload, payload, length); |
| |
| /* calculate icv and compare the icv */ |
| *((u32 *)crc) = ~crc32_le(~0, payload, length - 4); |
| |
| } |
| } |
| |
| /* 3 =====TKIP related ===== */ |
| |
| static u32 secmicgetuint32(u8 *p) |
| /* Convert from Byte[] to Us3232 in a portable way */ |
| { |
| s32 i; |
| u32 res = 0; |
| |
| for (i = 0; i < 4; i++) |
| res |= ((u32)(*p++)) << (8 * i); |
| |
| return res; |
| } |
| |
| static void secmicputuint32(u8 *p, u32 val) |
| /* Convert from Us3232 to Byte[] in a portable way */ |
| { |
| long i; |
| |
| for (i = 0; i < 4; i++) { |
| *p++ = (u8) (val & 0xff); |
| val >>= 8; |
| } |
| } |
| |
| static void secmicclear(struct mic_data *pmicdata) |
| { |
| /* Reset the state to the empty message. */ |
| pmicdata->L = pmicdata->K0; |
| pmicdata->R = pmicdata->K1; |
| pmicdata->nBytesInM = 0; |
| pmicdata->M = 0; |
| } |
| |
| void rtw_secmicsetkey(struct mic_data *pmicdata, u8 *key) |
| { |
| /* Set the key */ |
| pmicdata->K0 = secmicgetuint32(key); |
| pmicdata->K1 = secmicgetuint32(key + 4); |
| /* and reset the message */ |
| secmicclear(pmicdata); |
| } |
| |
| void rtw_secmicappendbyte(struct mic_data *pmicdata, u8 b) |
| { |
| /* Append the byte to our word-sized buffer */ |
| pmicdata->M |= ((unsigned long)b) << (8*pmicdata->nBytesInM); |
| pmicdata->nBytesInM++; |
| /* Process the word if it is full. */ |
| if (pmicdata->nBytesInM >= 4) { |
| pmicdata->L ^= pmicdata->M; |
| pmicdata->R ^= ROL32(pmicdata->L, 17); |
| pmicdata->L += pmicdata->R; |
| pmicdata->R ^= ((pmicdata->L & 0xff00ff00) >> 8) | ((pmicdata->L & 0x00ff00ff) << 8); |
| pmicdata->L += pmicdata->R; |
| pmicdata->R ^= ROL32(pmicdata->L, 3); |
| pmicdata->L += pmicdata->R; |
| pmicdata->R ^= ROR32(pmicdata->L, 2); |
| pmicdata->L += pmicdata->R; |
| /* Clear the buffer */ |
| pmicdata->M = 0; |
| pmicdata->nBytesInM = 0; |
| } |
| } |
| |
| void rtw_secmicappend(struct mic_data *pmicdata, u8 *src, u32 nbytes) |
| { |
| /* This is simple */ |
| while (nbytes > 0) { |
| rtw_secmicappendbyte(pmicdata, *src++); |
| nbytes--; |
| } |
| } |
| |
| void rtw_secgetmic(struct mic_data *pmicdata, u8 *dst) |
| { |
| /* Append the minimum padding */ |
| rtw_secmicappendbyte(pmicdata, 0x5a); |
| rtw_secmicappendbyte(pmicdata, 0); |
| rtw_secmicappendbyte(pmicdata, 0); |
| rtw_secmicappendbyte(pmicdata, 0); |
| rtw_secmicappendbyte(pmicdata, 0); |
| /* and then zeroes until the length is a multiple of 4 */ |
| while (pmicdata->nBytesInM != 0) |
| rtw_secmicappendbyte(pmicdata, 0); |
| /* The appendByte function has already computed the result. */ |
| secmicputuint32(dst, pmicdata->L); |
| secmicputuint32(dst + 4, pmicdata->R); |
| /* Reset to the empty message. */ |
| secmicclear(pmicdata); |
| } |
| |
| |
| void rtw_seccalctkipmic(u8 *key, u8 *header, u8 *data, u32 data_len, u8 *mic_code, u8 pri) |
| { |
| |
| struct mic_data micdata; |
| u8 priority[4] = {0x0, 0x0, 0x0, 0x0}; |
| |
| rtw_secmicsetkey(&micdata, key); |
| priority[0] = pri; |
| |
| /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */ |
| if (header[1] & 1) { /* ToDS == 1 */ |
| rtw_secmicappend(&micdata, &header[16], 6); /* DA */ |
| if (header[1] & 2) /* From Ds == 1 */ |
| rtw_secmicappend(&micdata, &header[24], 6); |
| else |
| rtw_secmicappend(&micdata, &header[10], 6); |
| } else { /* ToDS == 0 */ |
| rtw_secmicappend(&micdata, &header[4], 6); /* DA */ |
| if (header[1] & 2) /* From Ds == 1 */ |
| rtw_secmicappend(&micdata, &header[16], 6); |
| else |
| rtw_secmicappend(&micdata, &header[10], 6); |
| } |
| rtw_secmicappend(&micdata, &priority[0], 4); |
| |
| |
| rtw_secmicappend(&micdata, data, data_len); |
| |
| rtw_secgetmic(&micdata, mic_code); |
| } |
| |
| /* macros for extraction/creation of unsigned char/unsigned short values */ |
| #define RotR1(v16) ((((v16) >> 1) & 0x7FFF) ^ (((v16) & 1) << 15)) |
| #define Lo8(v16) ((u8)((v16) & 0x00FF)) |
| #define Hi8(v16) ((u8)(((v16) >> 8) & 0x00FF)) |
| #define Lo16(v32) ((u16)((v32) & 0xFFFF)) |
| #define Hi16(v32) ((u16)(((v32) >> 16) & 0xFFFF)) |
| #define Mk16(hi, lo) ((lo) ^ (((u16)(hi)) << 8)) |
| |
| /* select the Nth 16-bit word of the temporal key unsigned char array TK[] */ |
| #define TK16(N) Mk16(tk[2*(N)+1], tk[2*(N)]) |
| |
| /* S-box lookup: 16 bits --> 16 bits */ |
| #define _S_(v16) (Sbox1[0][Lo8(v16)] ^ Sbox1[1][Hi8(v16)]) |
| |
| /* fixed algorithm "parameters" */ |
| #define PHASE1_LOOP_CNT 8 /* this needs to be "big enough" */ |
| |
| /* 2-unsigned char by 2-unsigned char subset of the full AES S-box table */ |
| static const unsigned short Sbox1[2][256] = { /* Sbox for hash (can be in ROM) */ |
| { |
| 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154, |
| 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A, |
| 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B, |
| 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B, |
| 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F, |
| 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F, |
| 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5, |
| 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F, |
| 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB, |
| 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397, |
| 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED, |
| 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A, |
| 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194, |
| 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3, |
| 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104, |
| 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D, |
| 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39, |
| 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695, |
| 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83, |
| 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76, |
| 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4, |
| 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B, |
| 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0, |
| 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018, |
| 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751, |
| 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85, |
| 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12, |
| 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9, |
| 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7, |
| 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A, |
| 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8, |
| 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A, |
| }, |
| |
| |
| { /* second half of table is unsigned char-reversed version of first! */ |
| 0xA5C6, 0x84F8, 0x99EE, 0x8DF6, 0x0DFF, 0xBDD6, 0xB1DE, 0x5491, |
| 0x5060, 0x0302, 0xA9CE, 0x7D56, 0x19E7, 0x62B5, 0xE64D, 0x9AEC, |
| 0x458F, 0x9D1F, 0x4089, 0x87FA, 0x15EF, 0xEBB2, 0xC98E, 0x0BFB, |
| 0xEC41, 0x67B3, 0xFD5F, 0xEA45, 0xBF23, 0xF753, 0x96E4, 0x5B9B, |
| 0xC275, 0x1CE1, 0xAE3D, 0x6A4C, 0x5A6C, 0x417E, 0x02F5, 0x4F83, |
| 0x5C68, 0xF451, 0x34D1, 0x08F9, 0x93E2, 0x73AB, 0x5362, 0x3F2A, |
| 0x0C08, 0x5295, 0x6546, 0x5E9D, 0x2830, 0xA137, 0x0F0A, 0xB52F, |
| 0x090E, 0x3624, 0x9B1B, 0x3DDF, 0x26CD, 0x694E, 0xCD7F, 0x9FEA, |
| 0x1B12, 0x9E1D, 0x7458, 0x2E34, 0x2D36, 0xB2DC, 0xEEB4, 0xFB5B, |
| 0xF6A4, 0x4D76, 0x61B7, 0xCE7D, 0x7B52, 0x3EDD, 0x715E, 0x9713, |
| 0xF5A6, 0x68B9, 0x0000, 0x2CC1, 0x6040, 0x1FE3, 0xC879, 0xEDB6, |
| 0xBED4, 0x468D, 0xD967, 0x4B72, 0xDE94, 0xD498, 0xE8B0, 0x4A85, |
| 0x6BBB, 0x2AC5, 0xE54F, 0x16ED, 0xC586, 0xD79A, 0x5566, 0x9411, |
| 0xCF8A, 0x10E9, 0x0604, 0x81FE, 0xF0A0, 0x4478, 0xBA25, 0xE34B, |
| 0xF3A2, 0xFE5D, 0xC080, 0x8A05, 0xAD3F, 0xBC21, 0x4870, 0x04F1, |
| 0xDF63, 0xC177, 0x75AF, 0x6342, 0x3020, 0x1AE5, 0x0EFD, 0x6DBF, |
| 0x4C81, 0x1418, 0x3526, 0x2FC3, 0xE1BE, 0xA235, 0xCC88, 0x392E, |
| 0x5793, 0xF255, 0x82FC, 0x477A, 0xACC8, 0xE7BA, 0x2B32, 0x95E6, |
| 0xA0C0, 0x9819, 0xD19E, 0x7FA3, 0x6644, 0x7E54, 0xAB3B, 0x830B, |
| 0xCA8C, 0x29C7, 0xD36B, 0x3C28, 0x79A7, 0xE2BC, 0x1D16, 0x76AD, |
| 0x3BDB, 0x5664, 0x4E74, 0x1E14, 0xDB92, 0x0A0C, 0x6C48, 0xE4B8, |
| 0x5D9F, 0x6EBD, 0xEF43, 0xA6C4, 0xA839, 0xA431, 0x37D3, 0x8BF2, |
| 0x32D5, 0x438B, 0x596E, 0xB7DA, 0x8C01, 0x64B1, 0xD29C, 0xE049, |
| 0xB4D8, 0xFAAC, 0x07F3, 0x25CF, 0xAFCA, 0x8EF4, 0xE947, 0x1810, |
| 0xD56F, 0x88F0, 0x6F4A, 0x725C, 0x2438, 0xF157, 0xC773, 0x5197, |
| 0x23CB, 0x7CA1, 0x9CE8, 0x213E, 0xDD96, 0xDC61, 0x860D, 0x850F, |
| 0x90E0, 0x427C, 0xC471, 0xAACC, 0xD890, 0x0506, 0x01F7, 0x121C, |
| 0xA3C2, 0x5F6A, 0xF9AE, 0xD069, 0x9117, 0x5899, 0x273A, 0xB927, |
| 0x38D9, 0x13EB, 0xB32B, 0x3322, 0xBBD2, 0x70A9, 0x8907, 0xA733, |
| 0xB62D, 0x223C, 0x9215, 0x20C9, 0x4987, 0xFFAA, 0x7850, 0x7AA5, |
| 0x8F03, 0xF859, 0x8009, 0x171A, 0xDA65, 0x31D7, 0xC684, 0xB8D0, |
| 0xC382, 0xB029, 0x775A, 0x111E, 0xCB7B, 0xFCA8, 0xD66D, 0x3A2C, |
| } |
| }; |
| |
| /* |
| ********************************************************************** |
| * Routine: Phase 1 -- generate P1K, given TA, TK, IV32 |
| * |
| * Inputs: |
| * tk[] = temporal key [128 bits] |
| * ta[] = transmitter's MAC address [ 48 bits] |
| * iv32 = upper 32 bits of IV [ 32 bits] |
| * Output: |
| * p1k[] = Phase 1 key [ 80 bits] |
| * |
| * Note: |
| * This function only needs to be called every 2**16 packets, |
| * although in theory it could be called every packet. |
| * |
| ********************************************************************** |
| */ |
| static void phase1(u16 *p1k, const u8 *tk, const u8 *ta, u32 iv32) |
| { |
| signed int i; |
| |
| /* Initialize the 80 bits of P1K[] from IV32 and TA[0..5] */ |
| p1k[0] = Lo16(iv32); |
| p1k[1] = Hi16(iv32); |
| p1k[2] = Mk16(ta[1], ta[0]); /* use TA[] as little-endian */ |
| p1k[3] = Mk16(ta[3], ta[2]); |
| p1k[4] = Mk16(ta[5], ta[4]); |
| |
| /* Now compute an unbalanced Feistel cipher with 80-bit block */ |
| /* size on the 80-bit block P1K[], using the 128-bit key TK[] */ |
| for (i = 0; i < PHASE1_LOOP_CNT; i++) { |
| /* Each add operation here is mod 2**16 */ |
| p1k[0] += _S_(p1k[4] ^ TK16((i&1)+0)); |
| p1k[1] += _S_(p1k[0] ^ TK16((i&1)+2)); |
| p1k[2] += _S_(p1k[1] ^ TK16((i&1)+4)); |
| p1k[3] += _S_(p1k[2] ^ TK16((i&1)+6)); |
| p1k[4] += _S_(p1k[3] ^ TK16((i&1)+0)); |
| p1k[4] += (unsigned short)i; /* avoid "slide attacks" */ |
| } |
| } |
| |
| |
| /* |
| ********************************************************************** |
| * Routine: Phase 2 -- generate RC4KEY, given TK, P1K, IV16 |
| * |
| * Inputs: |
| * tk[] = Temporal key [128 bits] |
| * p1k[] = Phase 1 output key [ 80 bits] |
| * iv16 = low 16 bits of IV counter [ 16 bits] |
| * Output: |
| * rc4key[] = the key used to encrypt the packet [128 bits] |
| * |
| * Note: |
| * The value {TA, IV32, IV16} for Phase1/Phase2 must be unique |
| * across all packets using the same key TK value. Then, for a |
| * given value of TK[], this TKIP48 construction guarantees that |
| * the final RC4KEY value is unique across all packets. |
| * |
| * Suggested implementation optimization: if PPK[] is "overlaid" |
| * appropriately on RC4KEY[], there is no need for the final |
| * for loop below that copies the PPK[] result into RC4KEY[]. |
| * |
| ********************************************************************** |
| */ |
| static void phase2(u8 *rc4key, const u8 *tk, const u16 *p1k, u16 iv16) |
| { |
| signed int i; |
| u16 PPK[6]; /* temporary key for mixing */ |
| |
| /* Note: all adds in the PPK[] equations below are mod 2**16 */ |
| for (i = 0; i < 5; i++) |
| PPK[i] = p1k[i]; /* first, copy P1K to PPK */ |
| |
| PPK[5] = p1k[4]+iv16; /* next, add in IV16 */ |
| |
| /* Bijective non-linear mixing of the 96 bits of PPK[0..5] */ |
| PPK[0] += _S_(PPK[5] ^ TK16(0)); /* Mix key in each "round" */ |
| PPK[1] += _S_(PPK[0] ^ TK16(1)); |
| PPK[2] += _S_(PPK[1] ^ TK16(2)); |
| PPK[3] += _S_(PPK[2] ^ TK16(3)); |
| PPK[4] += _S_(PPK[3] ^ TK16(4)); |
| PPK[5] += _S_(PPK[4] ^ TK16(5)); /* Total # S-box lookups == 6 */ |
| |
| /* Final sweep: bijective, "linear". Rotates kill LSB correlations */ |
| PPK[0] += RotR1(PPK[5] ^ TK16(6)); |
| PPK[1] += RotR1(PPK[0] ^ TK16(7)); /* Use all of TK[] in Phase2 */ |
| PPK[2] += RotR1(PPK[1]); |
| PPK[3] += RotR1(PPK[2]); |
| PPK[4] += RotR1(PPK[3]); |
| PPK[5] += RotR1(PPK[4]); |
| /* Note: At this point, for a given key TK[0..15], the 96-bit output */ |
| /* value PPK[0..5] is guaranteed to be unique, as a function */ |
| /* of the 96-bit "input" value {TA, IV32, IV16}. That is, P1K */ |
| /* is now a keyed permutation of {TA, IV32, IV16}. */ |
| |
| /* Set RC4KEY[0..3], which includes "cleartext" portion of RC4 key */ |
| rc4key[0] = Hi8(iv16); /* RC4KEY[0..2] is the WEP IV */ |
| rc4key[1] = (Hi8(iv16) | 0x20) & 0x7F; /* Help avoid weak (FMS) keys */ |
| rc4key[2] = Lo8(iv16); |
| rc4key[3] = Lo8((PPK[5] ^ TK16(0)) >> 1); |
| |
| |
| /* Copy 96 bits of PPK[0..5] to RC4KEY[4..15] (little-endian) */ |
| for (i = 0; i < 6; i++) { |
| rc4key[4+2*i] = Lo8(PPK[i]); |
| rc4key[5+2*i] = Hi8(PPK[i]); |
| } |
| } |
| |
| |
| /* The hlen isn't include the IV */ |
| u32 rtw_tkip_encrypt(struct adapter *padapter, u8 *pxmitframe) |
| { /* exclude ICV */ |
| u16 pnl; |
| u32 pnh; |
| u8 rc4key[16]; |
| u8 ttkey[16]; |
| union { |
| __le32 f0; |
| u8 f1[4]; |
| } crc; |
| u8 hw_hdr_offset = 0; |
| signed int curfragnum, length; |
| |
| u8 *pframe, *payload, *iv, *prwskey; |
| union pn48 dot11txpn; |
| struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib; |
| struct security_priv *psecuritypriv = &padapter->securitypriv; |
| struct xmit_priv *pxmitpriv = &padapter->xmitpriv; |
| struct arc4_ctx *ctx = &psecuritypriv->xmit_arc4_ctx; |
| u32 res = _SUCCESS; |
| |
| if (!((struct xmit_frame *)pxmitframe)->buf_addr) |
| return _FAIL; |
| |
| hw_hdr_offset = TXDESC_OFFSET; |
| pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset; |
| |
| /* 4 start to encrypt each fragment */ |
| if (pattrib->encrypt == _TKIP_) { |
| |
| { |
| if (IS_MCAST(pattrib->ra)) |
| prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; |
| else |
| prwskey = pattrib->dot118021x_UncstKey.skey; |
| |
| for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) { |
| iv = pframe+pattrib->hdrlen; |
| payload = pframe+pattrib->iv_len+pattrib->hdrlen; |
| |
| GET_TKIP_PN(iv, dot11txpn); |
| |
| pnl = (u16)(dot11txpn.val); |
| pnh = (u32)(dot11txpn.val>>16); |
| |
| phase1((u16 *)&ttkey[0], prwskey, &pattrib->ta[0], pnh); |
| |
| phase2(&rc4key[0], prwskey, (u16 *)&ttkey[0], pnl); |
| |
| if ((curfragnum+1) == pattrib->nr_frags) { /* 4 the last fragment */ |
| length = pattrib->last_txcmdsz-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len; |
| crc.f0 = cpu_to_le32(~crc32_le(~0, payload, length)); |
| |
| arc4_setkey(ctx, rc4key, 16); |
| arc4_crypt(ctx, payload, payload, length); |
| arc4_crypt(ctx, payload + length, crc.f1, 4); |
| |
| } else { |
| length = pxmitpriv->frag_len-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len; |
| crc.f0 = cpu_to_le32(~crc32_le(~0, payload, length)); |
| |
| arc4_setkey(ctx, rc4key, 16); |
| arc4_crypt(ctx, payload, payload, length); |
| arc4_crypt(ctx, payload + length, crc.f1, 4); |
| |
| pframe += pxmitpriv->frag_len; |
| pframe = (u8 *)round_up((SIZE_PTR)(pframe), 4); |
| } |
| } |
| } |
| } |
| return res; |
| } |
| |
| |
| /* The hlen isn't include the IV */ |
| u32 rtw_tkip_decrypt(struct adapter *padapter, u8 *precvframe) |
| { /* exclude ICV */ |
| u16 pnl; |
| u32 pnh; |
| u8 rc4key[16]; |
| u8 ttkey[16]; |
| u8 crc[4]; |
| signed int length; |
| |
| u8 *pframe, *payload, *iv, *prwskey; |
| union pn48 dot11txpn; |
| struct sta_info *stainfo; |
| struct rx_pkt_attrib *prxattrib = &((union recv_frame *)precvframe)->u.hdr.attrib; |
| struct security_priv *psecuritypriv = &padapter->securitypriv; |
| struct arc4_ctx *ctx = &psecuritypriv->recv_arc4_ctx; |
| u32 res = _SUCCESS; |
| |
| pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data; |
| |
| /* 4 start to decrypt recvframe */ |
| if (prxattrib->encrypt == _TKIP_) { |
| stainfo = rtw_get_stainfo(&padapter->stapriv, &prxattrib->ta[0]); |
| if (stainfo) { |
| if (IS_MCAST(prxattrib->ra)) { |
| static unsigned long start; |
| static u32 no_gkey_bc_cnt; |
| static u32 no_gkey_mc_cnt; |
| |
| if (!psecuritypriv->binstallGrpkey) { |
| res = _FAIL; |
| |
| if (start == 0) |
| start = jiffies; |
| |
| if (is_broadcast_mac_addr(prxattrib->ra)) |
| no_gkey_bc_cnt++; |
| else |
| no_gkey_mc_cnt++; |
| |
| if (jiffies_to_msecs(jiffies - start) > 1000) { |
| if (no_gkey_bc_cnt || no_gkey_mc_cnt) { |
| netdev_dbg(padapter->pnetdev, |
| FUNC_ADPT_FMT " no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n", |
| FUNC_ADPT_ARG(padapter), |
| no_gkey_bc_cnt, |
| no_gkey_mc_cnt); |
| } |
| start = jiffies; |
| no_gkey_bc_cnt = 0; |
| no_gkey_mc_cnt = 0; |
| } |
| goto exit; |
| } |
| |
| if (no_gkey_bc_cnt || no_gkey_mc_cnt) { |
| netdev_dbg(padapter->pnetdev, |
| FUNC_ADPT_FMT " gkey installed. no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n", |
| FUNC_ADPT_ARG(padapter), |
| no_gkey_bc_cnt, |
| no_gkey_mc_cnt); |
| } |
| start = 0; |
| no_gkey_bc_cnt = 0; |
| no_gkey_mc_cnt = 0; |
| |
| prwskey = psecuritypriv->dot118021XGrpKey[prxattrib->key_index].skey; |
| } else { |
| prwskey = &stainfo->dot118021x_UncstKey.skey[0]; |
| } |
| |
| iv = pframe+prxattrib->hdrlen; |
| payload = pframe+prxattrib->iv_len+prxattrib->hdrlen; |
| length = ((union recv_frame *)precvframe)->u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len; |
| |
| GET_TKIP_PN(iv, dot11txpn); |
| |
| pnl = (u16)(dot11txpn.val); |
| pnh = (u32)(dot11txpn.val>>16); |
| |
| phase1((u16 *)&ttkey[0], prwskey, &prxattrib->ta[0], pnh); |
| phase2(&rc4key[0], prwskey, (unsigned short *)&ttkey[0], pnl); |
| |
| /* 4 decrypt payload include icv */ |
| |
| arc4_setkey(ctx, rc4key, 16); |
| arc4_crypt(ctx, payload, payload, length); |
| |
| *((u32 *)crc) = ~crc32_le(~0, payload, length - 4); |
| |
| if (crc[3] != payload[length - 1] || crc[2] != payload[length - 2] || |
| crc[1] != payload[length - 3] || crc[0] != payload[length - 4]) |
| res = _FAIL; |
| } else { |
| res = _FAIL; |
| } |
| } |
| exit: |
| return res; |
| } |
| |
| |
| /* 3 =====AES related ===== */ |
| |
| |
| |
| #define MAX_MSG_SIZE 2048 |
| |
| /*****************************/ |
| /**** Function Prototypes ****/ |
| /*****************************/ |
| |
| static void bitwise_xor(u8 *ina, u8 *inb, u8 *out); |
| static void construct_mic_iv(u8 *mic_header1, |
| signed int qc_exists, |
| signed int a4_exists, |
| u8 *mpdu, |
| uint payload_length, |
| u8 *pn_vector, |
| uint frtype); /* add for CONFIG_IEEE80211W, none 11w also can use */ |
| static void construct_mic_header1(u8 *mic_header1, |
| signed int header_length, |
| u8 *mpdu, |
| uint frtype); /* for CONFIG_IEEE80211W, none 11w also can use */ |
| static void construct_mic_header2(u8 *mic_header2, |
| u8 *mpdu, |
| signed int a4_exists, |
| signed int qc_exists); |
| static void construct_ctr_preload(u8 *ctr_preload, |
| signed int a4_exists, |
| signed int qc_exists, |
| u8 *mpdu, |
| u8 *pn_vector, |
| signed int c, |
| uint frtype); /* for CONFIG_IEEE80211W, none 11w also can use */ |
| |
| static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext); |
| |
| |
| /****************************************/ |
| /* aes128k128d() */ |
| /* Performs a 128 bit AES encrypt with */ |
| /* 128 bit data. */ |
| /****************************************/ |
| static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext) |
| { |
| struct crypto_aes_ctx ctx; |
| |
| aes_expandkey(&ctx, key, 16); |
| aes_encrypt(&ctx, ciphertext, data); |
| memzero_explicit(&ctx, sizeof(ctx)); |
| } |
| |
| /************************************************/ |
| /* construct_mic_iv() */ |
| /* Builds the MIC IV from header fields and PN */ |
| /* Baron think the function is construct CCM */ |
| /* nonce */ |
| /************************************************/ |
| static void construct_mic_iv(u8 *mic_iv, |
| signed int qc_exists, |
| signed int a4_exists, |
| u8 *mpdu, |
| uint payload_length, |
| u8 *pn_vector, |
| uint frtype) /* add for CONFIG_IEEE80211W, none 11w also can use */ |
| { |
| signed int i; |
| |
| mic_iv[0] = 0x59; |
| |
| if (qc_exists && a4_exists) |
| mic_iv[1] = mpdu[30] & 0x0f; /* QoS_TC */ |
| |
| if (qc_exists && !a4_exists) |
| mic_iv[1] = mpdu[24] & 0x0f; /* mute bits 7-4 */ |
| |
| if (!qc_exists) |
| mic_iv[1] = 0x00; |
| |
| /* 802.11w management frame should set management bit(4) */ |
| if (frtype == WIFI_MGT_TYPE) |
| mic_iv[1] |= BIT(4); |
| |
| for (i = 2; i < 8; i++) |
| mic_iv[i] = mpdu[i + 8]; /* mic_iv[2:7] = A2[0:5] = mpdu[10:15] */ |
| #ifdef CONSISTENT_PN_ORDER |
| for (i = 8; i < 14; i++) |
| mic_iv[i] = pn_vector[i - 8]; /* mic_iv[8:13] = PN[0:5] */ |
| #else |
| for (i = 8; i < 14; i++) |
| mic_iv[i] = pn_vector[13 - i]; /* mic_iv[8:13] = PN[5:0] */ |
| #endif |
| mic_iv[14] = (unsigned char) (payload_length / 256); |
| mic_iv[15] = (unsigned char) (payload_length % 256); |
| } |
| |
| /************************************************/ |
| /* construct_mic_header1() */ |
| /* Builds the first MIC header block from */ |
| /* header fields. */ |
| /* Build AAD SC, A1, A2 */ |
| /************************************************/ |
| static void construct_mic_header1(u8 *mic_header1, |
| signed int header_length, |
| u8 *mpdu, |
| uint frtype) /* for CONFIG_IEEE80211W, none 11w also can use */ |
| { |
| mic_header1[0] = (u8)((header_length - 2) / 256); |
| mic_header1[1] = (u8)((header_length - 2) % 256); |
| |
| /* 802.11w management frame don't AND subtype bits 4, 5, 6 of frame control field */ |
| if (frtype == WIFI_MGT_TYPE) |
| mic_header1[2] = mpdu[0]; |
| else |
| mic_header1[2] = mpdu[0] & 0xcf; /* Mute CF poll & CF ack bits */ |
| |
| mic_header1[3] = mpdu[1] & 0xc7; /* Mute retry, more data and pwr mgt bits */ |
| mic_header1[4] = mpdu[4]; /* A1 */ |
| mic_header1[5] = mpdu[5]; |
| mic_header1[6] = mpdu[6]; |
| mic_header1[7] = mpdu[7]; |
| mic_header1[8] = mpdu[8]; |
| mic_header1[9] = mpdu[9]; |
| mic_header1[10] = mpdu[10]; /* A2 */ |
| mic_header1[11] = mpdu[11]; |
| mic_header1[12] = mpdu[12]; |
| mic_header1[13] = mpdu[13]; |
| mic_header1[14] = mpdu[14]; |
| mic_header1[15] = mpdu[15]; |
| } |
| |
| /************************************************/ |
| /* construct_mic_header2() */ |
| /* Builds the last MIC header block from */ |
| /* header fields. */ |
| /************************************************/ |
| static void construct_mic_header2(u8 *mic_header2, |
| u8 *mpdu, |
| signed int a4_exists, |
| signed int qc_exists) |
| { |
| signed int i; |
| |
| for (i = 0; i < 16; i++) |
| mic_header2[i] = 0x00; |
| |
| mic_header2[0] = mpdu[16]; /* A3 */ |
| mic_header2[1] = mpdu[17]; |
| mic_header2[2] = mpdu[18]; |
| mic_header2[3] = mpdu[19]; |
| mic_header2[4] = mpdu[20]; |
| mic_header2[5] = mpdu[21]; |
| |
| mic_header2[6] = 0x00; |
| mic_header2[7] = 0x00; /* mpdu[23]; */ |
| |
| if (!qc_exists && a4_exists) { |
| for (i = 0; i < 6; i++) |
| mic_header2[8+i] = mpdu[24+i]; /* A4 */ |
| } |
| |
| if (qc_exists && !a4_exists) { |
| mic_header2[8] = mpdu[24] & 0x0f; /* mute bits 15 - 4 */ |
| mic_header2[9] = mpdu[25] & 0x00; |
| } |
| |
| if (qc_exists && a4_exists) { |
| for (i = 0; i < 6; i++) |
| mic_header2[8+i] = mpdu[24+i]; /* A4 */ |
| |
| mic_header2[14] = mpdu[30] & 0x0f; |
| mic_header2[15] = mpdu[31] & 0x00; |
| } |
| } |
| |
| /************************************************/ |
| /* construct_mic_header2() */ |
| /* Builds the last MIC header block from */ |
| /* header fields. */ |
| /* Baron think the function is construct CCM */ |
| /* nonce */ |
| /************************************************/ |
| static void construct_ctr_preload(u8 *ctr_preload, |
| signed int a4_exists, |
| signed int qc_exists, |
| u8 *mpdu, |
| u8 *pn_vector, |
| signed int c, |
| uint frtype) /* for CONFIG_IEEE80211W, none 11w also can use */ |
| { |
| signed int i = 0; |
| |
| for (i = 0; i < 16; i++) |
| ctr_preload[i] = 0x00; |
| i = 0; |
| |
| ctr_preload[0] = 0x01; /* flag */ |
| if (qc_exists && a4_exists) |
| ctr_preload[1] = mpdu[30] & 0x0f; /* QoC_Control */ |
| if (qc_exists && !a4_exists) |
| ctr_preload[1] = mpdu[24] & 0x0f; |
| |
| /* 802.11w management frame should set management bit(4) */ |
| if (frtype == WIFI_MGT_TYPE) |
| ctr_preload[1] |= BIT(4); |
| |
| for (i = 2; i < 8; i++) |
| ctr_preload[i] = mpdu[i + 8]; /* ctr_preload[2:7] = A2[0:5] = mpdu[10:15] */ |
| #ifdef CONSISTENT_PN_ORDER |
| for (i = 8; i < 14; i++) |
| ctr_preload[i] = pn_vector[i - 8]; /* ctr_preload[8:13] = PN[0:5] */ |
| #else |
| for (i = 8; i < 14; i++) |
| ctr_preload[i] = pn_vector[13 - i]; /* ctr_preload[8:13] = PN[5:0] */ |
| #endif |
| ctr_preload[14] = (unsigned char) (c / 256); /* Ctr */ |
| ctr_preload[15] = (unsigned char) (c % 256); |
| } |
| |
| /************************************/ |
| /* bitwise_xor() */ |
| /* A 128 bit, bitwise exclusive or */ |
| /************************************/ |
| static void bitwise_xor(u8 *ina, u8 *inb, u8 *out) |
| { |
| signed int i; |
| |
| for (i = 0; i < 16; i++) |
| out[i] = ina[i] ^ inb[i]; |
| } |
| |
| static signed int aes_cipher(u8 *key, uint hdrlen, |
| u8 *pframe, uint plen) |
| { |
| uint qc_exists, a4_exists, i, j, payload_remainder, |
| num_blocks, payload_index; |
| |
| u8 pn_vector[6]; |
| u8 mic_iv[16]; |
| u8 mic_header1[16]; |
| u8 mic_header2[16]; |
| u8 ctr_preload[16]; |
| |
| /* Intermediate Buffers */ |
| u8 chain_buffer[16]; |
| u8 aes_out[16]; |
| u8 padded_buffer[16]; |
| u8 mic[8]; |
| uint frtype = GetFrameType(pframe); |
| uint frsubtype = GetFrameSubType(pframe); |
| |
| frsubtype = frsubtype>>4; |
| |
| memset((void *)mic_iv, 0, 16); |
| memset((void *)mic_header1, 0, 16); |
| memset((void *)mic_header2, 0, 16); |
| memset((void *)ctr_preload, 0, 16); |
| memset((void *)chain_buffer, 0, 16); |
| memset((void *)aes_out, 0, 16); |
| memset((void *)padded_buffer, 0, 16); |
| |
| if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen == WLAN_HDR_A3_QOS_LEN)) |
| a4_exists = 0; |
| else |
| a4_exists = 1; |
| |
| if (((frtype|frsubtype) == WIFI_DATA_CFACK) || |
| ((frtype|frsubtype) == WIFI_DATA_CFPOLL) || |
| ((frtype|frsubtype) == WIFI_DATA_CFACKPOLL)) { |
| qc_exists = 1; |
| if (hdrlen != WLAN_HDR_A3_QOS_LEN) |
| hdrlen += 2; |
| |
| } else if ((frtype == WIFI_DATA) && /* add for CONFIG_IEEE80211W, none 11w also can use */ |
| ((frsubtype == 0x08) || |
| (frsubtype == 0x09) || |
| (frsubtype == 0x0a) || |
| (frsubtype == 0x0b))) { |
| if (hdrlen != WLAN_HDR_A3_QOS_LEN) |
| hdrlen += 2; |
| |
| qc_exists = 1; |
| } else { |
| qc_exists = 0; |
| } |
| |
| pn_vector[0] = pframe[hdrlen]; |
| pn_vector[1] = pframe[hdrlen+1]; |
| pn_vector[2] = pframe[hdrlen+4]; |
| pn_vector[3] = pframe[hdrlen+5]; |
| pn_vector[4] = pframe[hdrlen+6]; |
| pn_vector[5] = pframe[hdrlen+7]; |
| |
| construct_mic_iv(mic_iv, |
| qc_exists, |
| a4_exists, |
| pframe, /* message, */ |
| plen, |
| pn_vector, |
| frtype); /* add for CONFIG_IEEE80211W, none 11w also can use */ |
| |
| construct_mic_header1(mic_header1, |
| hdrlen, |
| pframe, /* message */ |
| frtype); /* add for CONFIG_IEEE80211W, none 11w also can use */ |
| |
| construct_mic_header2(mic_header2, |
| pframe, /* message, */ |
| a4_exists, |
| qc_exists); |
| |
| payload_remainder = plen % 16; |
| num_blocks = plen / 16; |
| |
| /* Find start of payload */ |
| payload_index = (hdrlen + 8); |
| |
| /* Calculate MIC */ |
| aes128k128d(key, mic_iv, aes_out); |
| bitwise_xor(aes_out, mic_header1, chain_buffer); |
| aes128k128d(key, chain_buffer, aes_out); |
| bitwise_xor(aes_out, mic_header2, chain_buffer); |
| aes128k128d(key, chain_buffer, aes_out); |
| |
| for (i = 0; i < num_blocks; i++) { |
| bitwise_xor(aes_out, &pframe[payload_index], chain_buffer); |
| |
| payload_index += 16; |
| aes128k128d(key, chain_buffer, aes_out); |
| } |
| |
| /* Add on the final payload block if it needs padding */ |
| if (payload_remainder > 0) { |
| for (j = 0; j < 16; j++) |
| padded_buffer[j] = 0x00; |
| for (j = 0; j < payload_remainder; j++) |
| padded_buffer[j] = pframe[payload_index++]; |
| |
| bitwise_xor(aes_out, padded_buffer, chain_buffer); |
| aes128k128d(key, chain_buffer, aes_out); |
| } |
| |
| for (j = 0 ; j < 8; j++) |
| mic[j] = aes_out[j]; |
| |
| /* Insert MIC into payload */ |
| for (j = 0; j < 8; j++) |
| pframe[payload_index+j] = mic[j]; |
| |
| payload_index = hdrlen + 8; |
| for (i = 0; i < num_blocks; i++) { |
| construct_ctr_preload(ctr_preload, a4_exists, qc_exists, pframe, /* message, */ |
| pn_vector, i+1, frtype); |
| /* add for CONFIG_IEEE80211W, none 11w also can use */ |
| aes128k128d(key, ctr_preload, aes_out); |
| bitwise_xor(aes_out, &pframe[payload_index], chain_buffer); |
| for (j = 0; j < 16; j++) |
| pframe[payload_index++] = chain_buffer[j]; |
| } |
| |
| if (payload_remainder > 0) { |
| /* If there is a short final block, then pad it,*/ |
| /* encrypt it and copy the unpadded part back */ |
| construct_ctr_preload(ctr_preload, a4_exists, qc_exists, pframe, /* message, */ |
| pn_vector, num_blocks+1, frtype); |
| /* add for CONFIG_IEEE80211W, none 11w also can use */ |
| |
| for (j = 0; j < 16; j++) |
| padded_buffer[j] = 0x00; |
| for (j = 0; j < payload_remainder; j++) |
| padded_buffer[j] = pframe[payload_index+j]; |
| |
| aes128k128d(key, ctr_preload, aes_out); |
| bitwise_xor(aes_out, padded_buffer, chain_buffer); |
| for (j = 0; j < payload_remainder; j++) |
| pframe[payload_index++] = chain_buffer[j]; |
| } |
| |
| /* Encrypt the MIC */ |
| construct_ctr_preload(ctr_preload, a4_exists, qc_exists, pframe, /* message, */ |
| pn_vector, 0, frtype); |
| /* add for CONFIG_IEEE80211W, none 11w also can use */ |
| |
| for (j = 0; j < 16; j++) |
| padded_buffer[j] = 0x00; |
| for (j = 0; j < 8; j++) |
| padded_buffer[j] = pframe[j+hdrlen+8+plen]; |
| |
| aes128k128d(key, ctr_preload, aes_out); |
| bitwise_xor(aes_out, padded_buffer, chain_buffer); |
| for (j = 0; j < 8; j++) |
| pframe[payload_index++] = chain_buffer[j]; |
| |
| return _SUCCESS; |
| } |
| |
| u32 rtw_aes_encrypt(struct adapter *padapter, u8 *pxmitframe) |
| { /* exclude ICV */ |
| |
| /*static*/ |
| /* unsigned char message[MAX_MSG_SIZE]; */ |
| |
| /* Intermediate Buffers */ |
| signed int curfragnum, length; |
| u8 *pframe, *prwskey; /* *payload,*iv */ |
| u8 hw_hdr_offset = 0; |
| struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib; |
| struct security_priv *psecuritypriv = &padapter->securitypriv; |
| struct xmit_priv *pxmitpriv = &padapter->xmitpriv; |
| |
| u32 res = _SUCCESS; |
| |
| if (!((struct xmit_frame *)pxmitframe)->buf_addr) |
| return _FAIL; |
| |
| hw_hdr_offset = TXDESC_OFFSET; |
| pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset; |
| |
| /* 4 start to encrypt each fragment */ |
| if (pattrib->encrypt == _AES_) { |
| if (IS_MCAST(pattrib->ra)) |
| prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; |
| else |
| prwskey = pattrib->dot118021x_UncstKey.skey; |
| |
| for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) { |
| if ((curfragnum+1) == pattrib->nr_frags) { /* 4 the last fragment */ |
| length = pattrib->last_txcmdsz-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len; |
| |
| aes_cipher(prwskey, pattrib->hdrlen, pframe, length); |
| } else { |
| length = pxmitpriv->frag_len-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len; |
| |
| aes_cipher(prwskey, pattrib->hdrlen, pframe, length); |
| pframe += pxmitpriv->frag_len; |
| pframe = (u8 *)round_up((SIZE_PTR)(pframe), 4); |
| } |
| } |
| } |
| return res; |
| } |
| |
| static signed int aes_decipher(u8 *key, uint hdrlen, |
| u8 *pframe, uint plen) |
| { |
| static u8 message[MAX_MSG_SIZE]; |
| uint qc_exists, a4_exists, i, j, payload_remainder, |
| num_blocks, payload_index; |
| signed int res = _SUCCESS; |
| u8 pn_vector[6]; |
| u8 mic_iv[16]; |
| u8 mic_header1[16]; |
| u8 mic_header2[16]; |
| u8 ctr_preload[16]; |
| |
| /* Intermediate Buffers */ |
| u8 chain_buffer[16]; |
| u8 aes_out[16]; |
| u8 padded_buffer[16]; |
| u8 mic[8]; |
| |
| uint frtype = GetFrameType(pframe); |
| uint frsubtype = GetFrameSubType(pframe); |
| |
| frsubtype = frsubtype>>4; |
| |
| memset((void *)mic_iv, 0, 16); |
| memset((void *)mic_header1, 0, 16); |
| memset((void *)mic_header2, 0, 16); |
| memset((void *)ctr_preload, 0, 16); |
| memset((void *)chain_buffer, 0, 16); |
| memset((void *)aes_out, 0, 16); |
| memset((void *)padded_buffer, 0, 16); |
| |
| /* start to decrypt the payload */ |
| |
| num_blocks = (plen-8) / 16; /* plen including LLC, payload_length and mic) */ |
| |
| payload_remainder = (plen-8) % 16; |
| |
| pn_vector[0] = pframe[hdrlen]; |
| pn_vector[1] = pframe[hdrlen + 1]; |
| pn_vector[2] = pframe[hdrlen + 4]; |
| pn_vector[3] = pframe[hdrlen + 5]; |
| pn_vector[4] = pframe[hdrlen + 6]; |
| pn_vector[5] = pframe[hdrlen + 7]; |
| |
| if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen == WLAN_HDR_A3_QOS_LEN)) |
| a4_exists = 0; |
| else |
| a4_exists = 1; |
| |
| if (((frtype|frsubtype) == WIFI_DATA_CFACK) || |
| ((frtype|frsubtype) == WIFI_DATA_CFPOLL) || |
| ((frtype|frsubtype) == WIFI_DATA_CFACKPOLL)) { |
| qc_exists = 1; |
| if (hdrlen != WLAN_HDR_A3_QOS_LEN) |
| hdrlen += 2; |
| |
| } else if ((frtype == WIFI_DATA) && /* only for data packet . add for CONFIG_IEEE80211W, none 11w also can use */ |
| ((frsubtype == 0x08) || |
| (frsubtype == 0x09) || |
| (frsubtype == 0x0a) || |
| (frsubtype == 0x0b))) { |
| if (hdrlen != WLAN_HDR_A3_QOS_LEN) |
| hdrlen += 2; |
| |
| qc_exists = 1; |
| } else { |
| qc_exists = 0; |
| } |
| |
| /* now, decrypt pframe with hdrlen offset and plen long */ |
| |
| payload_index = hdrlen + 8; /* 8 is for extiv */ |
| |
| for (i = 0; i < num_blocks; i++) { |
| construct_ctr_preload(ctr_preload, a4_exists, |
| qc_exists, pframe, |
| pn_vector, i + 1, |
| frtype); /* add for CONFIG_IEEE80211W, none 11w also can use */ |
| |
| aes128k128d(key, ctr_preload, aes_out); |
| bitwise_xor(aes_out, &pframe[payload_index], chain_buffer); |
| |
| for (j = 0; j < 16; j++) |
| pframe[payload_index++] = chain_buffer[j]; |
| } |
| |
| if (payload_remainder > 0) { |
| /* If there is a short final block, then pad it,*/ |
| /* encrypt it and copy the unpadded part back */ |
| construct_ctr_preload(ctr_preload, a4_exists, qc_exists, pframe, pn_vector, |
| num_blocks+1, frtype); |
| /* add for CONFIG_IEEE80211W, none 11w also can use */ |
| |
| for (j = 0; j < 16; j++) |
| padded_buffer[j] = 0x00; |
| for (j = 0; j < payload_remainder; j++) |
| padded_buffer[j] = pframe[payload_index+j]; |
| |
| aes128k128d(key, ctr_preload, aes_out); |
| bitwise_xor(aes_out, padded_buffer, chain_buffer); |
| for (j = 0; j < payload_remainder; j++) |
| pframe[payload_index++] = chain_buffer[j]; |
| } |
| |
| /* start to calculate the mic */ |
| if ((hdrlen + plen+8) <= MAX_MSG_SIZE) |
| memcpy((void *)message, pframe, (hdrlen + plen+8)); /* 8 is for ext iv len */ |
| |
| pn_vector[0] = pframe[hdrlen]; |
| pn_vector[1] = pframe[hdrlen+1]; |
| pn_vector[2] = pframe[hdrlen+4]; |
| pn_vector[3] = pframe[hdrlen+5]; |
| pn_vector[4] = pframe[hdrlen+6]; |
| pn_vector[5] = pframe[hdrlen+7]; |
| |
| construct_mic_iv(mic_iv, qc_exists, a4_exists, message, plen-8, pn_vector, frtype); |
| /* add for CONFIG_IEEE80211W, none 11w also can use */ |
| |
| construct_mic_header1(mic_header1, hdrlen, message, frtype); |
| /* add for CONFIG_IEEE80211W, none 11w also can use */ |
| construct_mic_header2(mic_header2, message, a4_exists, qc_exists); |
| |
| payload_remainder = (plen-8) % 16; |
| num_blocks = (plen-8) / 16; |
| |
| /* Find start of payload */ |
| payload_index = (hdrlen + 8); |
| |
| /* Calculate MIC */ |
| aes128k128d(key, mic_iv, aes_out); |
| bitwise_xor(aes_out, mic_header1, chain_buffer); |
| aes128k128d(key, chain_buffer, aes_out); |
| bitwise_xor(aes_out, mic_header2, chain_buffer); |
| aes128k128d(key, chain_buffer, aes_out); |
| |
| for (i = 0; i < num_blocks; i++) { |
| bitwise_xor(aes_out, &message[payload_index], chain_buffer); |
| |
| payload_index += 16; |
| aes128k128d(key, chain_buffer, aes_out); |
| } |
| |
| /* Add on the final payload block if it needs padding */ |
| if (payload_remainder > 0) { |
| for (j = 0; j < 16; j++) |
| padded_buffer[j] = 0x00; |
| for (j = 0; j < payload_remainder; j++) |
| padded_buffer[j] = message[payload_index++]; |
| |
| bitwise_xor(aes_out, padded_buffer, chain_buffer); |
| aes128k128d(key, chain_buffer, aes_out); |
| } |
| |
| for (j = 0; j < 8; j++) |
| mic[j] = aes_out[j]; |
| |
| /* Insert MIC into payload */ |
| for (j = 0; j < 8; j++) |
| message[payload_index+j] = mic[j]; |
| |
| payload_index = hdrlen + 8; |
| for (i = 0; i < num_blocks; i++) { |
| construct_ctr_preload(ctr_preload, a4_exists, qc_exists, message, pn_vector, i+1, |
| frtype); |
| /* add for CONFIG_IEEE80211W, none 11w also can use */ |
| aes128k128d(key, ctr_preload, aes_out); |
| bitwise_xor(aes_out, &message[payload_index], chain_buffer); |
| for (j = 0; j < 16; j++) |
| message[payload_index++] = chain_buffer[j]; |
| } |
| |
| if (payload_remainder > 0) { |
| /* If there is a short final block, then pad it,*/ |
| /* encrypt it and copy the unpadded part back */ |
| construct_ctr_preload(ctr_preload, a4_exists, qc_exists, message, pn_vector, |
| num_blocks+1, frtype); |
| /* add for CONFIG_IEEE80211W, none 11w also can use */ |
| |
| for (j = 0; j < 16; j++) |
| padded_buffer[j] = 0x00; |
| for (j = 0; j < payload_remainder; j++) |
| padded_buffer[j] = message[payload_index+j]; |
| |
| aes128k128d(key, ctr_preload, aes_out); |
| bitwise_xor(aes_out, padded_buffer, chain_buffer); |
| for (j = 0; j < payload_remainder; j++) |
| message[payload_index++] = chain_buffer[j]; |
| } |
| |
| /* Encrypt the MIC */ |
| construct_ctr_preload(ctr_preload, a4_exists, qc_exists, message, pn_vector, 0, frtype); |
| /* add for CONFIG_IEEE80211W, none 11w also can use */ |
| |
| for (j = 0; j < 16; j++) |
| padded_buffer[j] = 0x00; |
| for (j = 0; j < 8; j++) |
| padded_buffer[j] = message[j+hdrlen+8+plen-8]; |
| |
| aes128k128d(key, ctr_preload, aes_out); |
| bitwise_xor(aes_out, padded_buffer, chain_buffer); |
| for (j = 0; j < 8; j++) |
| message[payload_index++] = chain_buffer[j]; |
| |
| /* compare the mic */ |
| for (i = 0; i < 8; i++) { |
| if (pframe[hdrlen + 8 + plen - 8 + i] != message[hdrlen + 8 + plen - 8 + i]) |
| res = _FAIL; |
| } |
| return res; |
| } |
| |
| u32 rtw_aes_decrypt(struct adapter *padapter, u8 *precvframe) |
| { /* exclude ICV */ |
| |
| /*static*/ |
| /* unsigned char message[MAX_MSG_SIZE]; */ |
| |
| /* Intermediate Buffers */ |
| |
| signed int length; |
| u8 *pframe, *prwskey; /* *payload,*iv */ |
| struct sta_info *stainfo; |
| struct rx_pkt_attrib *prxattrib = &((union recv_frame *)precvframe)->u.hdr.attrib; |
| struct security_priv *psecuritypriv = &padapter->securitypriv; |
| u32 res = _SUCCESS; |
| |
| pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data; |
| /* 4 start to encrypt each fragment */ |
| if (prxattrib->encrypt == _AES_) { |
| stainfo = rtw_get_stainfo(&padapter->stapriv, &prxattrib->ta[0]); |
| if (stainfo) { |
| if (IS_MCAST(prxattrib->ra)) { |
| static unsigned long start; |
| static u32 no_gkey_bc_cnt; |
| static u32 no_gkey_mc_cnt; |
| |
| if (!psecuritypriv->binstallGrpkey) { |
| res = _FAIL; |
| |
| if (start == 0) |
| start = jiffies; |
| |
| if (is_broadcast_mac_addr(prxattrib->ra)) |
| no_gkey_bc_cnt++; |
| else |
| no_gkey_mc_cnt++; |
| |
| if (jiffies_to_msecs(jiffies - start) > 1000) { |
| if (no_gkey_bc_cnt || no_gkey_mc_cnt) { |
| netdev_dbg(padapter->pnetdev, |
| FUNC_ADPT_FMT " no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n", |
| FUNC_ADPT_ARG(padapter), |
| no_gkey_bc_cnt, |
| no_gkey_mc_cnt); |
| } |
| start = jiffies; |
| no_gkey_bc_cnt = 0; |
| no_gkey_mc_cnt = 0; |
| } |
| |
| goto exit; |
| } |
| |
| if (no_gkey_bc_cnt || no_gkey_mc_cnt) { |
| netdev_dbg(padapter->pnetdev, |
| FUNC_ADPT_FMT " gkey installed. no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n", |
| FUNC_ADPT_ARG(padapter), |
| no_gkey_bc_cnt, |
| no_gkey_mc_cnt); |
| } |
| start = 0; |
| no_gkey_bc_cnt = 0; |
| no_gkey_mc_cnt = 0; |
| |
| prwskey = psecuritypriv->dot118021XGrpKey[prxattrib->key_index].skey; |
| if (psecuritypriv->dot118021XGrpKeyid != prxattrib->key_index) { |
| res = _FAIL; |
| goto exit; |
| } |
| } else { |
| prwskey = &stainfo->dot118021x_UncstKey.skey[0]; |
| } |
| |
| length = ((union recv_frame *)precvframe)->u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len; |
| |
| res = aes_decipher(prwskey, prxattrib->hdrlen, pframe, length); |
| |
| } else { |
| res = _FAIL; |
| } |
| } |
| exit: |
| return res; |
| } |
| |
| u32 rtw_BIP_verify(struct adapter *padapter, u8 *precvframe) |
| { |
| struct rx_pkt_attrib *pattrib = &((union recv_frame *)precvframe)->u.hdr.attrib; |
| u8 *pframe; |
| u8 *BIP_AAD, *p; |
| u32 res = _FAIL; |
| uint len, ori_len; |
| struct ieee80211_hdr *pwlanhdr; |
| u8 mic[16]; |
| struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; |
| __le16 le_tmp; |
| __le64 le_tmp64; |
| |
| ori_len = pattrib->pkt_len-WLAN_HDR_A3_LEN+BIP_AAD_SIZE; |
| BIP_AAD = rtw_zmalloc(ori_len); |
| |
| if (!BIP_AAD) |
| return _FAIL; |
| |
| /* PKT start */ |
| pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data; |
| /* mapping to wlan header */ |
| pwlanhdr = (struct ieee80211_hdr *)pframe; |
| /* save the frame body + MME */ |
| memcpy(BIP_AAD+BIP_AAD_SIZE, pframe+WLAN_HDR_A3_LEN, pattrib->pkt_len-WLAN_HDR_A3_LEN); |
| /* find MME IE pointer */ |
| p = rtw_get_ie(BIP_AAD+BIP_AAD_SIZE, WLAN_EID_MMIE, &len, pattrib->pkt_len-WLAN_HDR_A3_LEN); |
| /* Baron */ |
| if (p) { |
| u16 keyid = 0; |
| u64 temp_ipn = 0; |
| /* save packet number */ |
| memcpy(&le_tmp64, p+4, 6); |
| temp_ipn = le64_to_cpu(le_tmp64); |
| /* BIP packet number should bigger than previous BIP packet */ |
| if (temp_ipn <= pmlmeext->mgnt_80211w_IPN_rx) |
| goto BIP_exit; |
| |
| /* copy key index */ |
| memcpy(&le_tmp, p+2, 2); |
| keyid = le16_to_cpu(le_tmp); |
| if (keyid != padapter->securitypriv.dot11wBIPKeyid) |
| goto BIP_exit; |
| |
| /* clear the MIC field of MME to zero */ |
| memset(p+2+len-8, 0, 8); |
| |
| /* conscruct AAD, copy frame control field */ |
| memcpy(BIP_AAD, &pwlanhdr->frame_control, 2); |
| ClearRetry(BIP_AAD); |
| ClearPwrMgt(BIP_AAD); |
| ClearMData(BIP_AAD); |
| /* conscruct AAD, copy address 1 to address 3 */ |
| memcpy(BIP_AAD+2, pwlanhdr->addr1, 18); |
| |
| if (omac1_aes_128(padapter->securitypriv.dot11wBIPKey[padapter->securitypriv.dot11wBIPKeyid].skey |
| , BIP_AAD, ori_len, mic)) |
| goto BIP_exit; |
| |
| /* MIC field should be last 8 bytes of packet (packet without FCS) */ |
| if (!memcmp(mic, pframe+pattrib->pkt_len-8, 8)) { |
| pmlmeext->mgnt_80211w_IPN_rx = temp_ipn; |
| res = _SUCCESS; |
| } else { |
| } |
| |
| } else { |
| res = RTW_RX_HANDLED; |
| } |
| BIP_exit: |
| |
| kfree(BIP_AAD); |
| return res; |
| } |
| |
| static void gf_mulx(u8 *pad) |
| { |
| int i, carry; |
| |
| carry = pad[0] & 0x80; |
| for (i = 0; i < AES_BLOCK_SIZE - 1; i++) |
| pad[i] = (pad[i] << 1) | (pad[i + 1] >> 7); |
| |
| pad[AES_BLOCK_SIZE - 1] <<= 1; |
| if (carry) |
| pad[AES_BLOCK_SIZE - 1] ^= 0x87; |
| } |
| |
| /** |
| * omac1_aes_128_vector - One-Key CBC MAC (OMAC1) hash with AES-128 |
| * @key: 128-bit key for the hash operation |
| * @num_elem: Number of elements in the data vector |
| * @addr: Pointers to the data areas |
| * @len: Lengths of the data blocks |
| * @mac: Buffer for MAC (128 bits, i.e., 16 bytes) |
| * Returns: 0 on success, -1 on failure |
| * |
| * This is a mode for using block cipher (AES in this case) for authentication. |
| * OMAC1 was standardized with the name CMAC by NIST in a Special Publication |
| * (SP) 800-38B. |
| */ |
| static int omac1_aes_128_vector(u8 *key, size_t num_elem, |
| u8 *addr[], size_t *len, u8 *mac) |
| { |
| struct crypto_aes_ctx ctx; |
| u8 cbc[AES_BLOCK_SIZE], pad[AES_BLOCK_SIZE]; |
| u8 *pos, *end; |
| size_t i, e, left, total_len; |
| int ret; |
| |
| ret = aes_expandkey(&ctx, key, 16); |
| if (ret) |
| return -1; |
| memset(cbc, 0, AES_BLOCK_SIZE); |
| |
| total_len = 0; |
| for (e = 0; e < num_elem; e++) |
| total_len += len[e]; |
| left = total_len; |
| |
| e = 0; |
| pos = addr[0]; |
| end = pos + len[0]; |
| |
| while (left >= AES_BLOCK_SIZE) { |
| for (i = 0; i < AES_BLOCK_SIZE; i++) { |
| cbc[i] ^= *pos++; |
| if (pos >= end) { |
| e++; |
| pos = addr[e]; |
| end = pos + len[e]; |
| } |
| } |
| if (left > AES_BLOCK_SIZE) |
| aes_encrypt(&ctx, cbc, cbc); |
| left -= AES_BLOCK_SIZE; |
| } |
| |
| memset(pad, 0, AES_BLOCK_SIZE); |
| aes_encrypt(&ctx, pad, pad); |
| gf_mulx(pad); |
| |
| if (left || total_len == 0) { |
| for (i = 0; i < left; i++) { |
| cbc[i] ^= *pos++; |
| if (pos >= end) { |
| e++; |
| pos = addr[e]; |
| end = pos + len[e]; |
| } |
| } |
| cbc[left] ^= 0x80; |
| gf_mulx(pad); |
| } |
| |
| for (i = 0; i < AES_BLOCK_SIZE; i++) |
| pad[i] ^= cbc[i]; |
| aes_encrypt(&ctx, pad, mac); |
| memzero_explicit(&ctx, sizeof(ctx)); |
| return 0; |
| } |
| |
| /** |
| * omac1_aes_128 - One-Key CBC MAC (OMAC1) hash with AES-128 (aka AES-CMAC) |
| * @key: 128-bit key for the hash operation |
| * @data: Data buffer for which a MAC is determined |
| * @data_len: Length of data buffer in bytes |
| * @mac: Buffer for MAC (128 bits, i.e., 16 bytes) |
| * Returns: 0 on success, -1 on failure |
| * |
| * This is a mode for using block cipher (AES in this case) for authentication. |
| * OMAC1 was standardized with the name CMAC by NIST in a Special Publication |
| * (SP) 800-38B. |
| * modify for CONFIG_IEEE80211W */ |
| int omac1_aes_128(u8 *key, u8 *data, size_t data_len, u8 *mac) |
| { |
| return omac1_aes_128_vector(key, 1, &data, &data_len, mac); |
| } |
| |
| /* Restore HW wep key setting according to key_mask */ |
| void rtw_sec_restore_wep_key(struct adapter *adapter) |
| { |
| struct security_priv *securitypriv = &(adapter->securitypriv); |
| signed int keyid; |
| |
| if ((_WEP40_ == securitypriv->dot11PrivacyAlgrthm) || (_WEP104_ == securitypriv->dot11PrivacyAlgrthm)) { |
| for (keyid = 0; keyid < 4; keyid++) { |
| if (securitypriv->key_mask & BIT(keyid)) { |
| if (keyid == securitypriv->dot11PrivacyKeyIndex) |
| rtw_set_key(adapter, securitypriv, keyid, 1, false); |
| else |
| rtw_set_key(adapter, securitypriv, keyid, 0, false); |
| } |
| } |
| } |
| } |
| |
| u8 rtw_handle_tkip_countermeasure(struct adapter *adapter, const char *caller) |
| { |
| struct security_priv *securitypriv = &(adapter->securitypriv); |
| u8 status = _SUCCESS; |
| |
| if (securitypriv->btkip_countermeasure) { |
| unsigned long passing_ms = jiffies_to_msecs(jiffies - securitypriv->btkip_countermeasure_time); |
| |
| if (passing_ms > 60*1000) { |
| netdev_dbg(adapter->pnetdev, |
| "%s(%s) countermeasure time:%lus > 60s\n", |
| caller, ADPT_ARG(adapter), |
| passing_ms / 1000); |
| securitypriv->btkip_countermeasure = false; |
| securitypriv->btkip_countermeasure_time = 0; |
| } else { |
| netdev_dbg(adapter->pnetdev, |
| "%s(%s) countermeasure time:%lus < 60s\n", |
| caller, ADPT_ARG(adapter), |
| passing_ms / 1000); |
| status = _FAIL; |
| } |
| } |
| |
| return status; |
| } |