| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * MMU support |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Avi Kivity <avi@qumranet.com> |
| */ |
| |
| #include "irq.h" |
| #include "ioapic.h" |
| #include "mmu.h" |
| #include "mmu_internal.h" |
| #include "tdp_mmu.h" |
| #include "x86.h" |
| #include "kvm_cache_regs.h" |
| #include "kvm_emulate.h" |
| #include "cpuid.h" |
| #include "spte.h" |
| |
| #include <linux/kvm_host.h> |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/moduleparam.h> |
| #include <linux/export.h> |
| #include <linux/swap.h> |
| #include <linux/hugetlb.h> |
| #include <linux/compiler.h> |
| #include <linux/srcu.h> |
| #include <linux/slab.h> |
| #include <linux/sched/signal.h> |
| #include <linux/uaccess.h> |
| #include <linux/hash.h> |
| #include <linux/kern_levels.h> |
| #include <linux/kthread.h> |
| |
| #include <asm/page.h> |
| #include <asm/memtype.h> |
| #include <asm/cmpxchg.h> |
| #include <asm/io.h> |
| #include <asm/set_memory.h> |
| #include <asm/vmx.h> |
| #include <asm/kvm_page_track.h> |
| #include "trace.h" |
| |
| #include "paging.h" |
| |
| extern bool itlb_multihit_kvm_mitigation; |
| |
| int __read_mostly nx_huge_pages = -1; |
| #ifdef CONFIG_PREEMPT_RT |
| /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ |
| static uint __read_mostly nx_huge_pages_recovery_ratio = 0; |
| #else |
| static uint __read_mostly nx_huge_pages_recovery_ratio = 60; |
| #endif |
| |
| static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); |
| static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); |
| |
| static const struct kernel_param_ops nx_huge_pages_ops = { |
| .set = set_nx_huge_pages, |
| .get = param_get_bool, |
| }; |
| |
| static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { |
| .set = set_nx_huge_pages_recovery_ratio, |
| .get = param_get_uint, |
| }; |
| |
| module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); |
| __MODULE_PARM_TYPE(nx_huge_pages, "bool"); |
| module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, |
| &nx_huge_pages_recovery_ratio, 0644); |
| __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); |
| |
| static bool __read_mostly force_flush_and_sync_on_reuse; |
| module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); |
| |
| /* |
| * When setting this variable to true it enables Two-Dimensional-Paging |
| * where the hardware walks 2 page tables: |
| * 1. the guest-virtual to guest-physical |
| * 2. while doing 1. it walks guest-physical to host-physical |
| * If the hardware supports that we don't need to do shadow paging. |
| */ |
| bool tdp_enabled = false; |
| |
| static int max_huge_page_level __read_mostly; |
| static int max_tdp_level __read_mostly; |
| |
| enum { |
| AUDIT_PRE_PAGE_FAULT, |
| AUDIT_POST_PAGE_FAULT, |
| AUDIT_PRE_PTE_WRITE, |
| AUDIT_POST_PTE_WRITE, |
| AUDIT_PRE_SYNC, |
| AUDIT_POST_SYNC |
| }; |
| |
| #ifdef MMU_DEBUG |
| bool dbg = 0; |
| module_param(dbg, bool, 0644); |
| #endif |
| |
| #define PTE_PREFETCH_NUM 8 |
| |
| #define PT32_LEVEL_BITS 10 |
| |
| #define PT32_LEVEL_SHIFT(level) \ |
| (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) |
| |
| #define PT32_LVL_OFFSET_MASK(level) \ |
| (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ |
| * PT32_LEVEL_BITS))) - 1)) |
| |
| #define PT32_INDEX(address, level)\ |
| (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) |
| |
| |
| #define PT32_BASE_ADDR_MASK PAGE_MASK |
| #define PT32_DIR_BASE_ADDR_MASK \ |
| (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) |
| #define PT32_LVL_ADDR_MASK(level) \ |
| (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ |
| * PT32_LEVEL_BITS))) - 1)) |
| |
| #include <trace/events/kvm.h> |
| |
| /* make pte_list_desc fit well in cache line */ |
| #define PTE_LIST_EXT 3 |
| |
| struct pte_list_desc { |
| u64 *sptes[PTE_LIST_EXT]; |
| struct pte_list_desc *more; |
| }; |
| |
| struct kvm_shadow_walk_iterator { |
| u64 addr; |
| hpa_t shadow_addr; |
| u64 *sptep; |
| int level; |
| unsigned index; |
| }; |
| |
| #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ |
| for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ |
| (_root), (_addr)); \ |
| shadow_walk_okay(&(_walker)); \ |
| shadow_walk_next(&(_walker))) |
| |
| #define for_each_shadow_entry(_vcpu, _addr, _walker) \ |
| for (shadow_walk_init(&(_walker), _vcpu, _addr); \ |
| shadow_walk_okay(&(_walker)); \ |
| shadow_walk_next(&(_walker))) |
| |
| #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ |
| for (shadow_walk_init(&(_walker), _vcpu, _addr); \ |
| shadow_walk_okay(&(_walker)) && \ |
| ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ |
| __shadow_walk_next(&(_walker), spte)) |
| |
| static struct kmem_cache *pte_list_desc_cache; |
| struct kmem_cache *mmu_page_header_cache; |
| static struct percpu_counter kvm_total_used_mmu_pages; |
| |
| static void mmu_spte_set(u64 *sptep, u64 spte); |
| static union kvm_mmu_page_role |
| kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); |
| |
| struct kvm_mmu_role_regs { |
| const unsigned long cr0; |
| const unsigned long cr4; |
| const u64 efer; |
| }; |
| |
| #define CREATE_TRACE_POINTS |
| #include "mmutrace.h" |
| |
| /* |
| * Yes, lot's of underscores. They're a hint that you probably shouldn't be |
| * reading from the role_regs. Once the mmu_role is constructed, it becomes |
| * the single source of truth for the MMU's state. |
| */ |
| #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ |
| static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\ |
| { \ |
| return !!(regs->reg & flag); \ |
| } |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); |
| BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); |
| |
| /* |
| * The MMU itself (with a valid role) is the single source of truth for the |
| * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The |
| * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, |
| * and the vCPU may be incorrect/irrelevant. |
| */ |
| #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ |
| static inline bool is_##reg##_##name(struct kvm_mmu *mmu) \ |
| { \ |
| return !!(mmu->mmu_role. base_or_ext . reg##_##name); \ |
| } |
| BUILD_MMU_ROLE_ACCESSOR(ext, cr0, pg); |
| BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); |
| BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); |
| BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pae); |
| BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); |
| BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); |
| BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); |
| BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); |
| BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); |
| |
| static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu_role_regs regs = { |
| .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), |
| .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), |
| .efer = vcpu->arch.efer, |
| }; |
| |
| return regs; |
| } |
| |
| static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs) |
| { |
| if (!____is_cr0_pg(regs)) |
| return 0; |
| else if (____is_efer_lma(regs)) |
| return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL : |
| PT64_ROOT_4LEVEL; |
| else if (____is_cr4_pae(regs)) |
| return PT32E_ROOT_LEVEL; |
| else |
| return PT32_ROOT_LEVEL; |
| } |
| |
| static inline bool kvm_available_flush_tlb_with_range(void) |
| { |
| return kvm_x86_ops.tlb_remote_flush_with_range; |
| } |
| |
| static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, |
| struct kvm_tlb_range *range) |
| { |
| int ret = -ENOTSUPP; |
| |
| if (range && kvm_x86_ops.tlb_remote_flush_with_range) |
| ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); |
| |
| if (ret) |
| kvm_flush_remote_tlbs(kvm); |
| } |
| |
| void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, |
| u64 start_gfn, u64 pages) |
| { |
| struct kvm_tlb_range range; |
| |
| range.start_gfn = start_gfn; |
| range.pages = pages; |
| |
| kvm_flush_remote_tlbs_with_range(kvm, &range); |
| } |
| |
| static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, |
| unsigned int access) |
| { |
| u64 spte = make_mmio_spte(vcpu, gfn, access); |
| |
| trace_mark_mmio_spte(sptep, gfn, spte); |
| mmu_spte_set(sptep, spte); |
| } |
| |
| static gfn_t get_mmio_spte_gfn(u64 spte) |
| { |
| u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; |
| |
| gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) |
| & shadow_nonpresent_or_rsvd_mask; |
| |
| return gpa >> PAGE_SHIFT; |
| } |
| |
| static unsigned get_mmio_spte_access(u64 spte) |
| { |
| return spte & shadow_mmio_access_mask; |
| } |
| |
| static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) |
| { |
| u64 kvm_gen, spte_gen, gen; |
| |
| gen = kvm_vcpu_memslots(vcpu)->generation; |
| if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) |
| return false; |
| |
| kvm_gen = gen & MMIO_SPTE_GEN_MASK; |
| spte_gen = get_mmio_spte_generation(spte); |
| |
| trace_check_mmio_spte(spte, kvm_gen, spte_gen); |
| return likely(kvm_gen == spte_gen); |
| } |
| |
| static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, |
| struct x86_exception *exception) |
| { |
| /* Check if guest physical address doesn't exceed guest maximum */ |
| if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) { |
| exception->error_code |= PFERR_RSVD_MASK; |
| return UNMAPPED_GVA; |
| } |
| |
| return gpa; |
| } |
| |
| static int is_cpuid_PSE36(void) |
| { |
| return 1; |
| } |
| |
| static gfn_t pse36_gfn_delta(u32 gpte) |
| { |
| int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; |
| |
| return (gpte & PT32_DIR_PSE36_MASK) << shift; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static void __set_spte(u64 *sptep, u64 spte) |
| { |
| WRITE_ONCE(*sptep, spte); |
| } |
| |
| static void __update_clear_spte_fast(u64 *sptep, u64 spte) |
| { |
| WRITE_ONCE(*sptep, spte); |
| } |
| |
| static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) |
| { |
| return xchg(sptep, spte); |
| } |
| |
| static u64 __get_spte_lockless(u64 *sptep) |
| { |
| return READ_ONCE(*sptep); |
| } |
| #else |
| union split_spte { |
| struct { |
| u32 spte_low; |
| u32 spte_high; |
| }; |
| u64 spte; |
| }; |
| |
| static void count_spte_clear(u64 *sptep, u64 spte) |
| { |
| struct kvm_mmu_page *sp = sptep_to_sp(sptep); |
| |
| if (is_shadow_present_pte(spte)) |
| return; |
| |
| /* Ensure the spte is completely set before we increase the count */ |
| smp_wmb(); |
| sp->clear_spte_count++; |
| } |
| |
| static void __set_spte(u64 *sptep, u64 spte) |
| { |
| union split_spte *ssptep, sspte; |
| |
| ssptep = (union split_spte *)sptep; |
| sspte = (union split_spte)spte; |
| |
| ssptep->spte_high = sspte.spte_high; |
| |
| /* |
| * If we map the spte from nonpresent to present, We should store |
| * the high bits firstly, then set present bit, so cpu can not |
| * fetch this spte while we are setting the spte. |
| */ |
| smp_wmb(); |
| |
| WRITE_ONCE(ssptep->spte_low, sspte.spte_low); |
| } |
| |
| static void __update_clear_spte_fast(u64 *sptep, u64 spte) |
| { |
| union split_spte *ssptep, sspte; |
| |
| ssptep = (union split_spte *)sptep; |
| sspte = (union split_spte)spte; |
| |
| WRITE_ONCE(ssptep->spte_low, sspte.spte_low); |
| |
| /* |
| * If we map the spte from present to nonpresent, we should clear |
| * present bit firstly to avoid vcpu fetch the old high bits. |
| */ |
| smp_wmb(); |
| |
| ssptep->spte_high = sspte.spte_high; |
| count_spte_clear(sptep, spte); |
| } |
| |
| static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) |
| { |
| union split_spte *ssptep, sspte, orig; |
| |
| ssptep = (union split_spte *)sptep; |
| sspte = (union split_spte)spte; |
| |
| /* xchg acts as a barrier before the setting of the high bits */ |
| orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); |
| orig.spte_high = ssptep->spte_high; |
| ssptep->spte_high = sspte.spte_high; |
| count_spte_clear(sptep, spte); |
| |
| return orig.spte; |
| } |
| |
| /* |
| * The idea using the light way get the spte on x86_32 guest is from |
| * gup_get_pte (mm/gup.c). |
| * |
| * An spte tlb flush may be pending, because kvm_set_pte_rmapp |
| * coalesces them and we are running out of the MMU lock. Therefore |
| * we need to protect against in-progress updates of the spte. |
| * |
| * Reading the spte while an update is in progress may get the old value |
| * for the high part of the spte. The race is fine for a present->non-present |
| * change (because the high part of the spte is ignored for non-present spte), |
| * but for a present->present change we must reread the spte. |
| * |
| * All such changes are done in two steps (present->non-present and |
| * non-present->present), hence it is enough to count the number of |
| * present->non-present updates: if it changed while reading the spte, |
| * we might have hit the race. This is done using clear_spte_count. |
| */ |
| static u64 __get_spte_lockless(u64 *sptep) |
| { |
| struct kvm_mmu_page *sp = sptep_to_sp(sptep); |
| union split_spte spte, *orig = (union split_spte *)sptep; |
| int count; |
| |
| retry: |
| count = sp->clear_spte_count; |
| smp_rmb(); |
| |
| spte.spte_low = orig->spte_low; |
| smp_rmb(); |
| |
| spte.spte_high = orig->spte_high; |
| smp_rmb(); |
| |
| if (unlikely(spte.spte_low != orig->spte_low || |
| count != sp->clear_spte_count)) |
| goto retry; |
| |
| return spte.spte; |
| } |
| #endif |
| |
| static bool spte_has_volatile_bits(u64 spte) |
| { |
| if (!is_shadow_present_pte(spte)) |
| return false; |
| |
| /* |
| * Always atomically update spte if it can be updated |
| * out of mmu-lock, it can ensure dirty bit is not lost, |
| * also, it can help us to get a stable is_writable_pte() |
| * to ensure tlb flush is not missed. |
| */ |
| if (spte_can_locklessly_be_made_writable(spte) || |
| is_access_track_spte(spte)) |
| return true; |
| |
| if (spte_ad_enabled(spte)) { |
| if ((spte & shadow_accessed_mask) == 0 || |
| (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Rules for using mmu_spte_set: |
| * Set the sptep from nonpresent to present. |
| * Note: the sptep being assigned *must* be either not present |
| * or in a state where the hardware will not attempt to update |
| * the spte. |
| */ |
| static void mmu_spte_set(u64 *sptep, u64 new_spte) |
| { |
| WARN_ON(is_shadow_present_pte(*sptep)); |
| __set_spte(sptep, new_spte); |
| } |
| |
| /* |
| * Update the SPTE (excluding the PFN), but do not track changes in its |
| * accessed/dirty status. |
| */ |
| static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) |
| { |
| u64 old_spte = *sptep; |
| |
| WARN_ON(!is_shadow_present_pte(new_spte)); |
| |
| if (!is_shadow_present_pte(old_spte)) { |
| mmu_spte_set(sptep, new_spte); |
| return old_spte; |
| } |
| |
| if (!spte_has_volatile_bits(old_spte)) |
| __update_clear_spte_fast(sptep, new_spte); |
| else |
| old_spte = __update_clear_spte_slow(sptep, new_spte); |
| |
| WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); |
| |
| return old_spte; |
| } |
| |
| /* Rules for using mmu_spte_update: |
| * Update the state bits, it means the mapped pfn is not changed. |
| * |
| * Whenever we overwrite a writable spte with a read-only one we |
| * should flush remote TLBs. Otherwise rmap_write_protect |
| * will find a read-only spte, even though the writable spte |
| * might be cached on a CPU's TLB, the return value indicates this |
| * case. |
| * |
| * Returns true if the TLB needs to be flushed |
| */ |
| static bool mmu_spte_update(u64 *sptep, u64 new_spte) |
| { |
| bool flush = false; |
| u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); |
| |
| if (!is_shadow_present_pte(old_spte)) |
| return false; |
| |
| /* |
| * For the spte updated out of mmu-lock is safe, since |
| * we always atomically update it, see the comments in |
| * spte_has_volatile_bits(). |
| */ |
| if (spte_can_locklessly_be_made_writable(old_spte) && |
| !is_writable_pte(new_spte)) |
| flush = true; |
| |
| /* |
| * Flush TLB when accessed/dirty states are changed in the page tables, |
| * to guarantee consistency between TLB and page tables. |
| */ |
| |
| if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { |
| flush = true; |
| kvm_set_pfn_accessed(spte_to_pfn(old_spte)); |
| } |
| |
| if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { |
| flush = true; |
| kvm_set_pfn_dirty(spte_to_pfn(old_spte)); |
| } |
| |
| return flush; |
| } |
| |
| /* |
| * Rules for using mmu_spte_clear_track_bits: |
| * It sets the sptep from present to nonpresent, and track the |
| * state bits, it is used to clear the last level sptep. |
| * Returns non-zero if the PTE was previously valid. |
| */ |
| static int mmu_spte_clear_track_bits(u64 *sptep) |
| { |
| kvm_pfn_t pfn; |
| u64 old_spte = *sptep; |
| |
| if (!spte_has_volatile_bits(old_spte)) |
| __update_clear_spte_fast(sptep, 0ull); |
| else |
| old_spte = __update_clear_spte_slow(sptep, 0ull); |
| |
| if (!is_shadow_present_pte(old_spte)) |
| return 0; |
| |
| pfn = spte_to_pfn(old_spte); |
| |
| /* |
| * KVM does not hold the refcount of the page used by |
| * kvm mmu, before reclaiming the page, we should |
| * unmap it from mmu first. |
| */ |
| WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); |
| |
| if (is_accessed_spte(old_spte)) |
| kvm_set_pfn_accessed(pfn); |
| |
| if (is_dirty_spte(old_spte)) |
| kvm_set_pfn_dirty(pfn); |
| |
| return 1; |
| } |
| |
| /* |
| * Rules for using mmu_spte_clear_no_track: |
| * Directly clear spte without caring the state bits of sptep, |
| * it is used to set the upper level spte. |
| */ |
| static void mmu_spte_clear_no_track(u64 *sptep) |
| { |
| __update_clear_spte_fast(sptep, 0ull); |
| } |
| |
| static u64 mmu_spte_get_lockless(u64 *sptep) |
| { |
| return __get_spte_lockless(sptep); |
| } |
| |
| /* Restore an acc-track PTE back to a regular PTE */ |
| static u64 restore_acc_track_spte(u64 spte) |
| { |
| u64 new_spte = spte; |
| u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) |
| & SHADOW_ACC_TRACK_SAVED_BITS_MASK; |
| |
| WARN_ON_ONCE(spte_ad_enabled(spte)); |
| WARN_ON_ONCE(!is_access_track_spte(spte)); |
| |
| new_spte &= ~shadow_acc_track_mask; |
| new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << |
| SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); |
| new_spte |= saved_bits; |
| |
| return new_spte; |
| } |
| |
| /* Returns the Accessed status of the PTE and resets it at the same time. */ |
| static bool mmu_spte_age(u64 *sptep) |
| { |
| u64 spte = mmu_spte_get_lockless(sptep); |
| |
| if (!is_accessed_spte(spte)) |
| return false; |
| |
| if (spte_ad_enabled(spte)) { |
| clear_bit((ffs(shadow_accessed_mask) - 1), |
| (unsigned long *)sptep); |
| } else { |
| /* |
| * Capture the dirty status of the page, so that it doesn't get |
| * lost when the SPTE is marked for access tracking. |
| */ |
| if (is_writable_pte(spte)) |
| kvm_set_pfn_dirty(spte_to_pfn(spte)); |
| |
| spte = mark_spte_for_access_track(spte); |
| mmu_spte_update_no_track(sptep, spte); |
| } |
| |
| return true; |
| } |
| |
| static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Prevent page table teardown by making any free-er wait during |
| * kvm_flush_remote_tlbs() IPI to all active vcpus. |
| */ |
| local_irq_disable(); |
| |
| /* |
| * Make sure a following spte read is not reordered ahead of the write |
| * to vcpu->mode. |
| */ |
| smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); |
| } |
| |
| static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Make sure the write to vcpu->mode is not reordered in front of |
| * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us |
| * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. |
| */ |
| smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); |
| local_irq_enable(); |
| } |
| |
| static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) |
| { |
| int r; |
| |
| /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ |
| r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, |
| 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); |
| if (r) |
| return r; |
| r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, |
| PT64_ROOT_MAX_LEVEL); |
| if (r) |
| return r; |
| if (maybe_indirect) { |
| r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, |
| PT64_ROOT_MAX_LEVEL); |
| if (r) |
| return r; |
| } |
| return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, |
| PT64_ROOT_MAX_LEVEL); |
| } |
| |
| static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) |
| { |
| kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); |
| kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); |
| kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); |
| kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); |
| } |
| |
| static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) |
| { |
| return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); |
| } |
| |
| static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) |
| { |
| kmem_cache_free(pte_list_desc_cache, pte_list_desc); |
| } |
| |
| static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) |
| { |
| if (!sp->role.direct) |
| return sp->gfns[index]; |
| |
| return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); |
| } |
| |
| static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) |
| { |
| if (!sp->role.direct) { |
| sp->gfns[index] = gfn; |
| return; |
| } |
| |
| if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) |
| pr_err_ratelimited("gfn mismatch under direct page %llx " |
| "(expected %llx, got %llx)\n", |
| sp->gfn, |
| kvm_mmu_page_get_gfn(sp, index), gfn); |
| } |
| |
| /* |
| * Return the pointer to the large page information for a given gfn, |
| * handling slots that are not large page aligned. |
| */ |
| static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, |
| const struct kvm_memory_slot *slot, int level) |
| { |
| unsigned long idx; |
| |
| idx = gfn_to_index(gfn, slot->base_gfn, level); |
| return &slot->arch.lpage_info[level - 2][idx]; |
| } |
| |
| static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, |
| gfn_t gfn, int count) |
| { |
| struct kvm_lpage_info *linfo; |
| int i; |
| |
| for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { |
| linfo = lpage_info_slot(gfn, slot, i); |
| linfo->disallow_lpage += count; |
| WARN_ON(linfo->disallow_lpage < 0); |
| } |
| } |
| |
| void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) |
| { |
| update_gfn_disallow_lpage_count(slot, gfn, 1); |
| } |
| |
| void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) |
| { |
| update_gfn_disallow_lpage_count(slot, gfn, -1); |
| } |
| |
| static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *slot; |
| gfn_t gfn; |
| |
| kvm->arch.indirect_shadow_pages++; |
| gfn = sp->gfn; |
| slots = kvm_memslots_for_spte_role(kvm, sp->role); |
| slot = __gfn_to_memslot(slots, gfn); |
| |
| /* the non-leaf shadow pages are keeping readonly. */ |
| if (sp->role.level > PG_LEVEL_4K) |
| return kvm_slot_page_track_add_page(kvm, slot, gfn, |
| KVM_PAGE_TRACK_WRITE); |
| |
| kvm_mmu_gfn_disallow_lpage(slot, gfn); |
| } |
| |
| void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| if (sp->lpage_disallowed) |
| return; |
| |
| ++kvm->stat.nx_lpage_splits; |
| list_add_tail(&sp->lpage_disallowed_link, |
| &kvm->arch.lpage_disallowed_mmu_pages); |
| sp->lpage_disallowed = true; |
| } |
| |
| static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *slot; |
| gfn_t gfn; |
| |
| kvm->arch.indirect_shadow_pages--; |
| gfn = sp->gfn; |
| slots = kvm_memslots_for_spte_role(kvm, sp->role); |
| slot = __gfn_to_memslot(slots, gfn); |
| if (sp->role.level > PG_LEVEL_4K) |
| return kvm_slot_page_track_remove_page(kvm, slot, gfn, |
| KVM_PAGE_TRACK_WRITE); |
| |
| kvm_mmu_gfn_allow_lpage(slot, gfn); |
| } |
| |
| void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| --kvm->stat.nx_lpage_splits; |
| sp->lpage_disallowed = false; |
| list_del(&sp->lpage_disallowed_link); |
| } |
| |
| static struct kvm_memory_slot * |
| gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, |
| bool no_dirty_log) |
| { |
| struct kvm_memory_slot *slot; |
| |
| slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
| if (!slot || slot->flags & KVM_MEMSLOT_INVALID) |
| return NULL; |
| if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) |
| return NULL; |
| |
| return slot; |
| } |
| |
| /* |
| * About rmap_head encoding: |
| * |
| * If the bit zero of rmap_head->val is clear, then it points to the only spte |
| * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct |
| * pte_list_desc containing more mappings. |
| */ |
| |
| /* |
| * Returns the number of pointers in the rmap chain, not counting the new one. |
| */ |
| static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, |
| struct kvm_rmap_head *rmap_head) |
| { |
| struct pte_list_desc *desc; |
| int i, count = 0; |
| |
| if (!rmap_head->val) { |
| rmap_printk("%p %llx 0->1\n", spte, *spte); |
| rmap_head->val = (unsigned long)spte; |
| } else if (!(rmap_head->val & 1)) { |
| rmap_printk("%p %llx 1->many\n", spte, *spte); |
| desc = mmu_alloc_pte_list_desc(vcpu); |
| desc->sptes[0] = (u64 *)rmap_head->val; |
| desc->sptes[1] = spte; |
| rmap_head->val = (unsigned long)desc | 1; |
| ++count; |
| } else { |
| rmap_printk("%p %llx many->many\n", spte, *spte); |
| desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
| while (desc->sptes[PTE_LIST_EXT-1]) { |
| count += PTE_LIST_EXT; |
| |
| if (!desc->more) { |
| desc->more = mmu_alloc_pte_list_desc(vcpu); |
| desc = desc->more; |
| break; |
| } |
| desc = desc->more; |
| } |
| for (i = 0; desc->sptes[i]; ++i) |
| ++count; |
| desc->sptes[i] = spte; |
| } |
| return count; |
| } |
| |
| static void |
| pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, |
| struct pte_list_desc *desc, int i, |
| struct pte_list_desc *prev_desc) |
| { |
| int j; |
| |
| for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) |
| ; |
| desc->sptes[i] = desc->sptes[j]; |
| desc->sptes[j] = NULL; |
| if (j != 0) |
| return; |
| if (!prev_desc && !desc->more) |
| rmap_head->val = 0; |
| else |
| if (prev_desc) |
| prev_desc->more = desc->more; |
| else |
| rmap_head->val = (unsigned long)desc->more | 1; |
| mmu_free_pte_list_desc(desc); |
| } |
| |
| static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) |
| { |
| struct pte_list_desc *desc; |
| struct pte_list_desc *prev_desc; |
| int i; |
| |
| if (!rmap_head->val) { |
| pr_err("%s: %p 0->BUG\n", __func__, spte); |
| BUG(); |
| } else if (!(rmap_head->val & 1)) { |
| rmap_printk("%p 1->0\n", spte); |
| if ((u64 *)rmap_head->val != spte) { |
| pr_err("%s: %p 1->BUG\n", __func__, spte); |
| BUG(); |
| } |
| rmap_head->val = 0; |
| } else { |
| rmap_printk("%p many->many\n", spte); |
| desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
| prev_desc = NULL; |
| while (desc) { |
| for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { |
| if (desc->sptes[i] == spte) { |
| pte_list_desc_remove_entry(rmap_head, |
| desc, i, prev_desc); |
| return; |
| } |
| } |
| prev_desc = desc; |
| desc = desc->more; |
| } |
| pr_err("%s: %p many->many\n", __func__, spte); |
| BUG(); |
| } |
| } |
| |
| static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep) |
| { |
| mmu_spte_clear_track_bits(sptep); |
| __pte_list_remove(sptep, rmap_head); |
| } |
| |
| static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, |
| struct kvm_memory_slot *slot) |
| { |
| unsigned long idx; |
| |
| idx = gfn_to_index(gfn, slot->base_gfn, level); |
| return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; |
| } |
| |
| static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, |
| struct kvm_mmu_page *sp) |
| { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *slot; |
| |
| slots = kvm_memslots_for_spte_role(kvm, sp->role); |
| slot = __gfn_to_memslot(slots, gfn); |
| return __gfn_to_rmap(gfn, sp->role.level, slot); |
| } |
| |
| static bool rmap_can_add(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu_memory_cache *mc; |
| |
| mc = &vcpu->arch.mmu_pte_list_desc_cache; |
| return kvm_mmu_memory_cache_nr_free_objects(mc); |
| } |
| |
| static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) |
| { |
| struct kvm_mmu_page *sp; |
| struct kvm_rmap_head *rmap_head; |
| |
| sp = sptep_to_sp(spte); |
| kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); |
| rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); |
| return pte_list_add(vcpu, spte, rmap_head); |
| } |
| |
| static void rmap_remove(struct kvm *kvm, u64 *spte) |
| { |
| struct kvm_mmu_page *sp; |
| gfn_t gfn; |
| struct kvm_rmap_head *rmap_head; |
| |
| sp = sptep_to_sp(spte); |
| gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); |
| rmap_head = gfn_to_rmap(kvm, gfn, sp); |
| __pte_list_remove(spte, rmap_head); |
| } |
| |
| /* |
| * Used by the following functions to iterate through the sptes linked by a |
| * rmap. All fields are private and not assumed to be used outside. |
| */ |
| struct rmap_iterator { |
| /* private fields */ |
| struct pte_list_desc *desc; /* holds the sptep if not NULL */ |
| int pos; /* index of the sptep */ |
| }; |
| |
| /* |
| * Iteration must be started by this function. This should also be used after |
| * removing/dropping sptes from the rmap link because in such cases the |
| * information in the iterator may not be valid. |
| * |
| * Returns sptep if found, NULL otherwise. |
| */ |
| static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, |
| struct rmap_iterator *iter) |
| { |
| u64 *sptep; |
| |
| if (!rmap_head->val) |
| return NULL; |
| |
| if (!(rmap_head->val & 1)) { |
| iter->desc = NULL; |
| sptep = (u64 *)rmap_head->val; |
| goto out; |
| } |
| |
| iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
| iter->pos = 0; |
| sptep = iter->desc->sptes[iter->pos]; |
| out: |
| BUG_ON(!is_shadow_present_pte(*sptep)); |
| return sptep; |
| } |
| |
| /* |
| * Must be used with a valid iterator: e.g. after rmap_get_first(). |
| * |
| * Returns sptep if found, NULL otherwise. |
| */ |
| static u64 *rmap_get_next(struct rmap_iterator *iter) |
| { |
| u64 *sptep; |
| |
| if (iter->desc) { |
| if (iter->pos < PTE_LIST_EXT - 1) { |
| ++iter->pos; |
| sptep = iter->desc->sptes[iter->pos]; |
| if (sptep) |
| goto out; |
| } |
| |
| iter->desc = iter->desc->more; |
| |
| if (iter->desc) { |
| iter->pos = 0; |
| /* desc->sptes[0] cannot be NULL */ |
| sptep = iter->desc->sptes[iter->pos]; |
| goto out; |
| } |
| } |
| |
| return NULL; |
| out: |
| BUG_ON(!is_shadow_present_pte(*sptep)); |
| return sptep; |
| } |
| |
| #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ |
| for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ |
| _spte_; _spte_ = rmap_get_next(_iter_)) |
| |
| static void drop_spte(struct kvm *kvm, u64 *sptep) |
| { |
| if (mmu_spte_clear_track_bits(sptep)) |
| rmap_remove(kvm, sptep); |
| } |
| |
| |
| static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) |
| { |
| if (is_large_pte(*sptep)) { |
| WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); |
| drop_spte(kvm, sptep); |
| --kvm->stat.lpages; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) |
| { |
| if (__drop_large_spte(vcpu->kvm, sptep)) { |
| struct kvm_mmu_page *sp = sptep_to_sp(sptep); |
| |
| kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, |
| KVM_PAGES_PER_HPAGE(sp->role.level)); |
| } |
| } |
| |
| /* |
| * Write-protect on the specified @sptep, @pt_protect indicates whether |
| * spte write-protection is caused by protecting shadow page table. |
| * |
| * Note: write protection is difference between dirty logging and spte |
| * protection: |
| * - for dirty logging, the spte can be set to writable at anytime if |
| * its dirty bitmap is properly set. |
| * - for spte protection, the spte can be writable only after unsync-ing |
| * shadow page. |
| * |
| * Return true if tlb need be flushed. |
| */ |
| static bool spte_write_protect(u64 *sptep, bool pt_protect) |
| { |
| u64 spte = *sptep; |
| |
| if (!is_writable_pte(spte) && |
| !(pt_protect && spte_can_locklessly_be_made_writable(spte))) |
| return false; |
| |
| rmap_printk("spte %p %llx\n", sptep, *sptep); |
| |
| if (pt_protect) |
| spte &= ~shadow_mmu_writable_mask; |
| spte = spte & ~PT_WRITABLE_MASK; |
| |
| return mmu_spte_update(sptep, spte); |
| } |
| |
| static bool __rmap_write_protect(struct kvm *kvm, |
| struct kvm_rmap_head *rmap_head, |
| bool pt_protect) |
| { |
| u64 *sptep; |
| struct rmap_iterator iter; |
| bool flush = false; |
| |
| for_each_rmap_spte(rmap_head, &iter, sptep) |
| flush |= spte_write_protect(sptep, pt_protect); |
| |
| return flush; |
| } |
| |
| static bool spte_clear_dirty(u64 *sptep) |
| { |
| u64 spte = *sptep; |
| |
| rmap_printk("spte %p %llx\n", sptep, *sptep); |
| |
| MMU_WARN_ON(!spte_ad_enabled(spte)); |
| spte &= ~shadow_dirty_mask; |
| return mmu_spte_update(sptep, spte); |
| } |
| |
| static bool spte_wrprot_for_clear_dirty(u64 *sptep) |
| { |
| bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, |
| (unsigned long *)sptep); |
| if (was_writable && !spte_ad_enabled(*sptep)) |
| kvm_set_pfn_dirty(spte_to_pfn(*sptep)); |
| |
| return was_writable; |
| } |
| |
| /* |
| * Gets the GFN ready for another round of dirty logging by clearing the |
| * - D bit on ad-enabled SPTEs, and |
| * - W bit on ad-disabled SPTEs. |
| * Returns true iff any D or W bits were cleared. |
| */ |
| static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| struct kvm_memory_slot *slot) |
| { |
| u64 *sptep; |
| struct rmap_iterator iter; |
| bool flush = false; |
| |
| for_each_rmap_spte(rmap_head, &iter, sptep) |
| if (spte_ad_need_write_protect(*sptep)) |
| flush |= spte_wrprot_for_clear_dirty(sptep); |
| else |
| flush |= spte_clear_dirty(sptep); |
| |
| return flush; |
| } |
| |
| /** |
| * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages |
| * @kvm: kvm instance |
| * @slot: slot to protect |
| * @gfn_offset: start of the BITS_PER_LONG pages we care about |
| * @mask: indicates which pages we should protect |
| * |
| * Used when we do not need to care about huge page mappings. |
| */ |
| static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, |
| struct kvm_memory_slot *slot, |
| gfn_t gfn_offset, unsigned long mask) |
| { |
| struct kvm_rmap_head *rmap_head; |
| |
| if (is_tdp_mmu_enabled(kvm)) |
| kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, |
| slot->base_gfn + gfn_offset, mask, true); |
| |
| if (!kvm_memslots_have_rmaps(kvm)) |
| return; |
| |
| while (mask) { |
| rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), |
| PG_LEVEL_4K, slot); |
| __rmap_write_protect(kvm, rmap_head, false); |
| |
| /* clear the first set bit */ |
| mask &= mask - 1; |
| } |
| } |
| |
| /** |
| * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write |
| * protect the page if the D-bit isn't supported. |
| * @kvm: kvm instance |
| * @slot: slot to clear D-bit |
| * @gfn_offset: start of the BITS_PER_LONG pages we care about |
| * @mask: indicates which pages we should clear D-bit |
| * |
| * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. |
| */ |
| static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, |
| struct kvm_memory_slot *slot, |
| gfn_t gfn_offset, unsigned long mask) |
| { |
| struct kvm_rmap_head *rmap_head; |
| |
| if (is_tdp_mmu_enabled(kvm)) |
| kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, |
| slot->base_gfn + gfn_offset, mask, false); |
| |
| if (!kvm_memslots_have_rmaps(kvm)) |
| return; |
| |
| while (mask) { |
| rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), |
| PG_LEVEL_4K, slot); |
| __rmap_clear_dirty(kvm, rmap_head, slot); |
| |
| /* clear the first set bit */ |
| mask &= mask - 1; |
| } |
| } |
| |
| /** |
| * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected |
| * PT level pages. |
| * |
| * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to |
| * enable dirty logging for them. |
| * |
| * We need to care about huge page mappings: e.g. during dirty logging we may |
| * have such mappings. |
| */ |
| void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, |
| struct kvm_memory_slot *slot, |
| gfn_t gfn_offset, unsigned long mask) |
| { |
| /* |
| * Huge pages are NOT write protected when we start dirty logging in |
| * initially-all-set mode; must write protect them here so that they |
| * are split to 4K on the first write. |
| * |
| * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn |
| * of memslot has no such restriction, so the range can cross two large |
| * pages. |
| */ |
| if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { |
| gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); |
| gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); |
| |
| kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); |
| |
| /* Cross two large pages? */ |
| if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != |
| ALIGN(end << PAGE_SHIFT, PMD_SIZE)) |
| kvm_mmu_slot_gfn_write_protect(kvm, slot, end, |
| PG_LEVEL_2M); |
| } |
| |
| /* Now handle 4K PTEs. */ |
| if (kvm_x86_ops.cpu_dirty_log_size) |
| kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); |
| else |
| kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); |
| } |
| |
| int kvm_cpu_dirty_log_size(void) |
| { |
| return kvm_x86_ops.cpu_dirty_log_size; |
| } |
| |
| bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, |
| struct kvm_memory_slot *slot, u64 gfn, |
| int min_level) |
| { |
| struct kvm_rmap_head *rmap_head; |
| int i; |
| bool write_protected = false; |
| |
| if (kvm_memslots_have_rmaps(kvm)) { |
| for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { |
| rmap_head = __gfn_to_rmap(gfn, i, slot); |
| write_protected |= __rmap_write_protect(kvm, rmap_head, true); |
| } |
| } |
| |
| if (is_tdp_mmu_enabled(kvm)) |
| write_protected |= |
| kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); |
| |
| return write_protected; |
| } |
| |
| static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) |
| { |
| struct kvm_memory_slot *slot; |
| |
| slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
| return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); |
| } |
| |
| static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| struct kvm_memory_slot *slot) |
| { |
| u64 *sptep; |
| struct rmap_iterator iter; |
| bool flush = false; |
| |
| while ((sptep = rmap_get_first(rmap_head, &iter))) { |
| rmap_printk("spte %p %llx.\n", sptep, *sptep); |
| |
| pte_list_remove(rmap_head, sptep); |
| flush = true; |
| } |
| |
| return flush; |
| } |
| |
| static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| struct kvm_memory_slot *slot, gfn_t gfn, int level, |
| pte_t unused) |
| { |
| return kvm_zap_rmapp(kvm, rmap_head, slot); |
| } |
| |
| static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| struct kvm_memory_slot *slot, gfn_t gfn, int level, |
| pte_t pte) |
| { |
| u64 *sptep; |
| struct rmap_iterator iter; |
| int need_flush = 0; |
| u64 new_spte; |
| kvm_pfn_t new_pfn; |
| |
| WARN_ON(pte_huge(pte)); |
| new_pfn = pte_pfn(pte); |
| |
| restart: |
| for_each_rmap_spte(rmap_head, &iter, sptep) { |
| rmap_printk("spte %p %llx gfn %llx (%d)\n", |
| sptep, *sptep, gfn, level); |
| |
| need_flush = 1; |
| |
| if (pte_write(pte)) { |
| pte_list_remove(rmap_head, sptep); |
| goto restart; |
| } else { |
| new_spte = kvm_mmu_changed_pte_notifier_make_spte( |
| *sptep, new_pfn); |
| |
| mmu_spte_clear_track_bits(sptep); |
| mmu_spte_set(sptep, new_spte); |
| } |
| } |
| |
| if (need_flush && kvm_available_flush_tlb_with_range()) { |
| kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); |
| return 0; |
| } |
| |
| return need_flush; |
| } |
| |
| struct slot_rmap_walk_iterator { |
| /* input fields. */ |
| struct kvm_memory_slot *slot; |
| gfn_t start_gfn; |
| gfn_t end_gfn; |
| int start_level; |
| int end_level; |
| |
| /* output fields. */ |
| gfn_t gfn; |
| struct kvm_rmap_head *rmap; |
| int level; |
| |
| /* private field. */ |
| struct kvm_rmap_head *end_rmap; |
| }; |
| |
| static void |
| rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) |
| { |
| iterator->level = level; |
| iterator->gfn = iterator->start_gfn; |
| iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); |
| iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, |
| iterator->slot); |
| } |
| |
| static void |
| slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, |
| struct kvm_memory_slot *slot, int start_level, |
| int end_level, gfn_t start_gfn, gfn_t end_gfn) |
| { |
| iterator->slot = slot; |
| iterator->start_level = start_level; |
| iterator->end_level = end_level; |
| iterator->start_gfn = start_gfn; |
| iterator->end_gfn = end_gfn; |
| |
| rmap_walk_init_level(iterator, iterator->start_level); |
| } |
| |
| static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) |
| { |
| return !!iterator->rmap; |
| } |
| |
| static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) |
| { |
| if (++iterator->rmap <= iterator->end_rmap) { |
| iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); |
| return; |
| } |
| |
| if (++iterator->level > iterator->end_level) { |
| iterator->rmap = NULL; |
| return; |
| } |
| |
| rmap_walk_init_level(iterator, iterator->level); |
| } |
| |
| #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ |
| _start_gfn, _end_gfn, _iter_) \ |
| for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ |
| _end_level_, _start_gfn, _end_gfn); \ |
| slot_rmap_walk_okay(_iter_); \ |
| slot_rmap_walk_next(_iter_)) |
| |
| typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| struct kvm_memory_slot *slot, gfn_t gfn, |
| int level, pte_t pte); |
| |
| static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, |
| struct kvm_gfn_range *range, |
| rmap_handler_t handler) |
| { |
| struct slot_rmap_walk_iterator iterator; |
| bool ret = false; |
| |
| for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, |
| range->start, range->end - 1, &iterator) |
| ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, |
| iterator.level, range->pte); |
| |
| return ret; |
| } |
| |
| bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) |
| { |
| bool flush = false; |
| |
| if (kvm_memslots_have_rmaps(kvm)) |
| flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp); |
| |
| if (is_tdp_mmu_enabled(kvm)) |
| flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); |
| |
| return flush; |
| } |
| |
| bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) |
| { |
| bool flush = false; |
| |
| if (kvm_memslots_have_rmaps(kvm)) |
| flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp); |
| |
| if (is_tdp_mmu_enabled(kvm)) |
| flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); |
| |
| return flush; |
| } |
| |
| static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| struct kvm_memory_slot *slot, gfn_t gfn, int level, |
| pte_t unused) |
| { |
| u64 *sptep; |
| struct rmap_iterator iter; |
| int young = 0; |
| |
| for_each_rmap_spte(rmap_head, &iter, sptep) |
| young |= mmu_spte_age(sptep); |
| |
| return young; |
| } |
| |
| static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| struct kvm_memory_slot *slot, gfn_t gfn, |
| int level, pte_t unused) |
| { |
| u64 *sptep; |
| struct rmap_iterator iter; |
| |
| for_each_rmap_spte(rmap_head, &iter, sptep) |
| if (is_accessed_spte(*sptep)) |
| return 1; |
| return 0; |
| } |
| |
| #define RMAP_RECYCLE_THRESHOLD 1000 |
| |
| static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) |
| { |
| struct kvm_rmap_head *rmap_head; |
| struct kvm_mmu_page *sp; |
| |
| sp = sptep_to_sp(spte); |
| |
| rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); |
| |
| kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0)); |
| kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, |
| KVM_PAGES_PER_HPAGE(sp->role.level)); |
| } |
| |
| bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) |
| { |
| bool young = false; |
| |
| if (kvm_memslots_have_rmaps(kvm)) |
| young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp); |
| |
| if (is_tdp_mmu_enabled(kvm)) |
| young |= kvm_tdp_mmu_age_gfn_range(kvm, range); |
| |
| return young; |
| } |
| |
| bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) |
| { |
| bool young = false; |
| |
| if (kvm_memslots_have_rmaps(kvm)) |
| young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp); |
| |
| if (is_tdp_mmu_enabled(kvm)) |
| young |= kvm_tdp_mmu_test_age_gfn(kvm, range); |
| |
| return young; |
| } |
| |
| #ifdef MMU_DEBUG |
| static int is_empty_shadow_page(u64 *spt) |
| { |
| u64 *pos; |
| u64 *end; |
| |
| for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) |
| if (is_shadow_present_pte(*pos)) { |
| printk(KERN_ERR "%s: %p %llx\n", __func__, |
| pos, *pos); |
| return 0; |
| } |
| return 1; |
| } |
| #endif |
| |
| /* |
| * This value is the sum of all of the kvm instances's |
| * kvm->arch.n_used_mmu_pages values. We need a global, |
| * aggregate version in order to make the slab shrinker |
| * faster |
| */ |
| static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr) |
| { |
| kvm->arch.n_used_mmu_pages += nr; |
| percpu_counter_add(&kvm_total_used_mmu_pages, nr); |
| } |
| |
| static void kvm_mmu_free_page(struct kvm_mmu_page *sp) |
| { |
| MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); |
| hlist_del(&sp->hash_link); |
| list_del(&sp->link); |
| free_page((unsigned long)sp->spt); |
| if (!sp->role.direct) |
| free_page((unsigned long)sp->gfns); |
| kmem_cache_free(mmu_page_header_cache, sp); |
| } |
| |
| static unsigned kvm_page_table_hashfn(gfn_t gfn) |
| { |
| return hash_64(gfn, KVM_MMU_HASH_SHIFT); |
| } |
| |
| static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp, u64 *parent_pte) |
| { |
| if (!parent_pte) |
| return; |
| |
| pte_list_add(vcpu, parent_pte, &sp->parent_ptes); |
| } |
| |
| static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, |
| u64 *parent_pte) |
| { |
| __pte_list_remove(parent_pte, &sp->parent_ptes); |
| } |
| |
| static void drop_parent_pte(struct kvm_mmu_page *sp, |
| u64 *parent_pte) |
| { |
| mmu_page_remove_parent_pte(sp, parent_pte); |
| mmu_spte_clear_no_track(parent_pte); |
| } |
| |
| static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) |
| { |
| struct kvm_mmu_page *sp; |
| |
| sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); |
| sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); |
| if (!direct) |
| sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); |
| set_page_private(virt_to_page(sp->spt), (unsigned long)sp); |
| |
| /* |
| * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() |
| * depends on valid pages being added to the head of the list. See |
| * comments in kvm_zap_obsolete_pages(). |
| */ |
| sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; |
| list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); |
| kvm_mod_used_mmu_pages(vcpu->kvm, +1); |
| return sp; |
| } |
| |
| static void mark_unsync(u64 *spte); |
| static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) |
| { |
| u64 *sptep; |
| struct rmap_iterator iter; |
| |
| for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { |
| mark_unsync(sptep); |
| } |
| } |
| |
| static void mark_unsync(u64 *spte) |
| { |
| struct kvm_mmu_page *sp; |
| unsigned int index; |
| |
| sp = sptep_to_sp(spte); |
| index = spte - sp->spt; |
| if (__test_and_set_bit(index, sp->unsync_child_bitmap)) |
| return; |
| if (sp->unsync_children++) |
| return; |
| kvm_mmu_mark_parents_unsync(sp); |
| } |
| |
| static int nonpaging_sync_page(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp) |
| { |
| return 0; |
| } |
| |
| #define KVM_PAGE_ARRAY_NR 16 |
| |
| struct kvm_mmu_pages { |
| struct mmu_page_and_offset { |
| struct kvm_mmu_page *sp; |
| unsigned int idx; |
| } page[KVM_PAGE_ARRAY_NR]; |
| unsigned int nr; |
| }; |
| |
| static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, |
| int idx) |
| { |
| int i; |
| |
| if (sp->unsync) |
| for (i=0; i < pvec->nr; i++) |
| if (pvec->page[i].sp == sp) |
| return 0; |
| |
| pvec->page[pvec->nr].sp = sp; |
| pvec->page[pvec->nr].idx = idx; |
| pvec->nr++; |
| return (pvec->nr == KVM_PAGE_ARRAY_NR); |
| } |
| |
| static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) |
| { |
| --sp->unsync_children; |
| WARN_ON((int)sp->unsync_children < 0); |
| __clear_bit(idx, sp->unsync_child_bitmap); |
| } |
| |
| static int __mmu_unsync_walk(struct kvm_mmu_page *sp, |
| struct kvm_mmu_pages *pvec) |
| { |
| int i, ret, nr_unsync_leaf = 0; |
| |
| for_each_set_bit(i, sp->unsync_child_bitmap, 512) { |
| struct kvm_mmu_page *child; |
| u64 ent = sp->spt[i]; |
| |
| if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { |
| clear_unsync_child_bit(sp, i); |
| continue; |
| } |
| |
| child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); |
| |
| if (child->unsync_children) { |
| if (mmu_pages_add(pvec, child, i)) |
| return -ENOSPC; |
| |
| ret = __mmu_unsync_walk(child, pvec); |
| if (!ret) { |
| clear_unsync_child_bit(sp, i); |
| continue; |
| } else if (ret > 0) { |
| nr_unsync_leaf += ret; |
| } else |
| return ret; |
| } else if (child->unsync) { |
| nr_unsync_leaf++; |
| if (mmu_pages_add(pvec, child, i)) |
| return -ENOSPC; |
| } else |
| clear_unsync_child_bit(sp, i); |
| } |
| |
| return nr_unsync_leaf; |
| } |
| |
| #define INVALID_INDEX (-1) |
| |
| static int mmu_unsync_walk(struct kvm_mmu_page *sp, |
| struct kvm_mmu_pages *pvec) |
| { |
| pvec->nr = 0; |
| if (!sp->unsync_children) |
| return 0; |
| |
| mmu_pages_add(pvec, sp, INVALID_INDEX); |
| return __mmu_unsync_walk(sp, pvec); |
| } |
| |
| static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| WARN_ON(!sp->unsync); |
| trace_kvm_mmu_sync_page(sp); |
| sp->unsync = 0; |
| --kvm->stat.mmu_unsync; |
| } |
| |
| static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, |
| struct list_head *invalid_list); |
| static void kvm_mmu_commit_zap_page(struct kvm *kvm, |
| struct list_head *invalid_list); |
| |
| #define for_each_valid_sp(_kvm, _sp, _list) \ |
| hlist_for_each_entry(_sp, _list, hash_link) \ |
| if (is_obsolete_sp((_kvm), (_sp))) { \ |
| } else |
| |
| #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ |
| for_each_valid_sp(_kvm, _sp, \ |
| &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ |
| if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else |
| |
| static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
| struct list_head *invalid_list) |
| { |
| if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { |
| kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, |
| struct list_head *invalid_list, |
| bool remote_flush) |
| { |
| if (!remote_flush && list_empty(invalid_list)) |
| return false; |
| |
| if (!list_empty(invalid_list)) |
| kvm_mmu_commit_zap_page(kvm, invalid_list); |
| else |
| kvm_flush_remote_tlbs(kvm); |
| return true; |
| } |
| |
| static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, |
| struct list_head *invalid_list, |
| bool remote_flush, bool local_flush) |
| { |
| if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush)) |
| return; |
| |
| if (local_flush) |
| kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); |
| } |
| |
| #ifdef CONFIG_KVM_MMU_AUDIT |
| #include "mmu_audit.c" |
| #else |
| static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } |
| static void mmu_audit_disable(void) { } |
| #endif |
| |
| static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| return sp->role.invalid || |
| unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); |
| } |
| |
| struct mmu_page_path { |
| struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; |
| unsigned int idx[PT64_ROOT_MAX_LEVEL]; |
| }; |
| |
| #define for_each_sp(pvec, sp, parents, i) \ |
| for (i = mmu_pages_first(&pvec, &parents); \ |
| i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ |
| i = mmu_pages_next(&pvec, &parents, i)) |
| |
| static int mmu_pages_next(struct kvm_mmu_pages *pvec, |
| struct mmu_page_path *parents, |
| int i) |
| { |
| int n; |
| |
| for (n = i+1; n < pvec->nr; n++) { |
| struct kvm_mmu_page *sp = pvec->page[n].sp; |
| unsigned idx = pvec->page[n].idx; |
| int level = sp->role.level; |
| |
| parents->idx[level-1] = idx; |
| if (level == PG_LEVEL_4K) |
| break; |
| |
| parents->parent[level-2] = sp; |
| } |
| |
| return n; |
| } |
| |
| static int mmu_pages_first(struct kvm_mmu_pages *pvec, |
| struct mmu_page_path *parents) |
| { |
| struct kvm_mmu_page *sp; |
| int level; |
| |
| if (pvec->nr == 0) |
| return 0; |
| |
| WARN_ON(pvec->page[0].idx != INVALID_INDEX); |
| |
| sp = pvec->page[0].sp; |
| level = sp->role.level; |
| WARN_ON(level == PG_LEVEL_4K); |
| |
| parents->parent[level-2] = sp; |
| |
| /* Also set up a sentinel. Further entries in pvec are all |
| * children of sp, so this element is never overwritten. |
| */ |
| parents->parent[level-1] = NULL; |
| return mmu_pages_next(pvec, parents, 0); |
| } |
| |
| static void mmu_pages_clear_parents(struct mmu_page_path *parents) |
| { |
| struct kvm_mmu_page *sp; |
| unsigned int level = 0; |
| |
| do { |
| unsigned int idx = parents->idx[level]; |
| sp = parents->parent[level]; |
| if (!sp) |
| return; |
| |
| WARN_ON(idx == INVALID_INDEX); |
| clear_unsync_child_bit(sp, idx); |
| level++; |
| } while (!sp->unsync_children); |
| } |
| |
| static void mmu_sync_children(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *parent) |
| { |
| int i; |
| struct kvm_mmu_page *sp; |
| struct mmu_page_path parents; |
| struct kvm_mmu_pages pages; |
| LIST_HEAD(invalid_list); |
| bool flush = false; |
| |
| while (mmu_unsync_walk(parent, &pages)) { |
| bool protected = false; |
| |
| for_each_sp(pages, sp, parents, i) |
| protected |= rmap_write_protect(vcpu, sp->gfn); |
| |
| if (protected) { |
| kvm_flush_remote_tlbs(vcpu->kvm); |
| flush = false; |
| } |
| |
| for_each_sp(pages, sp, parents, i) { |
| kvm_unlink_unsync_page(vcpu->kvm, sp); |
| flush |= kvm_sync_page(vcpu, sp, &invalid_list); |
| mmu_pages_clear_parents(&parents); |
| } |
| if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { |
| kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); |
| cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); |
| flush = false; |
| } |
| } |
| |
| kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); |
| } |
| |
| static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) |
| { |
| atomic_set(&sp->write_flooding_count, 0); |
| } |
| |
| static void clear_sp_write_flooding_count(u64 *spte) |
| { |
| __clear_sp_write_flooding_count(sptep_to_sp(spte)); |
| } |
| |
| static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, |
| gfn_t gfn, |
| gva_t gaddr, |
| unsigned level, |
| int direct, |
| unsigned int access) |
| { |
| bool direct_mmu = vcpu->arch.mmu->direct_map; |
| union kvm_mmu_page_role role; |
| struct hlist_head *sp_list; |
| unsigned quadrant; |
| struct kvm_mmu_page *sp; |
| int collisions = 0; |
| LIST_HEAD(invalid_list); |
| |
| role = vcpu->arch.mmu->mmu_role.base; |
| role.level = level; |
| role.direct = direct; |
| if (role.direct) |
| role.gpte_is_8_bytes = true; |
| role.access = access; |
| if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { |
| quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); |
| quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; |
| role.quadrant = quadrant; |
| } |
| |
| sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; |
| for_each_valid_sp(vcpu->kvm, sp, sp_list) { |
| if (sp->gfn != gfn) { |
| collisions++; |
| continue; |
| } |
| |
| if (sp->role.word != role.word) { |
| /* |
| * If the guest is creating an upper-level page, zap |
| * unsync pages for the same gfn. While it's possible |
| * the guest is using recursive page tables, in all |
| * likelihood the guest has stopped using the unsync |
| * page and is installing a completely unrelated page. |
| * Unsync pages must not be left as is, because the new |
| * upper-level page will be write-protected. |
| */ |
| if (level > PG_LEVEL_4K && sp->unsync) |
| kvm_mmu_prepare_zap_page(vcpu->kvm, sp, |
| &invalid_list); |
| continue; |
| } |
| |
| if (direct_mmu) |
| goto trace_get_page; |
| |
| if (sp->unsync) { |
| /* |
| * The page is good, but is stale. kvm_sync_page does |
| * get the latest guest state, but (unlike mmu_unsync_children) |
| * it doesn't write-protect the page or mark it synchronized! |
| * This way the validity of the mapping is ensured, but the |
| * overhead of write protection is not incurred until the |
| * guest invalidates the TLB mapping. This allows multiple |
| * SPs for a single gfn to be unsync. |
| * |
| * If the sync fails, the page is zapped. If so, break |
| * in order to rebuild it. |
| */ |
| if (!kvm_sync_page(vcpu, sp, &invalid_list)) |
| break; |
| |
| WARN_ON(!list_empty(&invalid_list)); |
| kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); |
| } |
| |
| if (sp->unsync_children) |
| kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); |
| |
| __clear_sp_write_flooding_count(sp); |
| |
| trace_get_page: |
| trace_kvm_mmu_get_page(sp, false); |
| goto out; |
| } |
| |
| ++vcpu->kvm->stat.mmu_cache_miss; |
| |
| sp = kvm_mmu_alloc_page(vcpu, direct); |
| |
| sp->gfn = gfn; |
| sp->role = role; |
| hlist_add_head(&sp->hash_link, sp_list); |
| if (!direct) { |
| account_shadowed(vcpu->kvm, sp); |
| if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) |
| kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); |
| } |
| trace_kvm_mmu_get_page(sp, true); |
| out: |
| kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
| |
| if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) |
| vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; |
| return sp; |
| } |
| |
| static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, |
| struct kvm_vcpu *vcpu, hpa_t root, |
| u64 addr) |
| { |
| iterator->addr = addr; |
| iterator->shadow_addr = root; |
| iterator->level = vcpu->arch.mmu->shadow_root_level; |
| |
| if (iterator->level == PT64_ROOT_4LEVEL && |
| vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && |
| !vcpu->arch.mmu->direct_map) |
| --iterator->level; |
| |
| if (iterator->level == PT32E_ROOT_LEVEL) { |
| /* |
| * prev_root is currently only used for 64-bit hosts. So only |
| * the active root_hpa is valid here. |
| */ |
| BUG_ON(root != vcpu->arch.mmu->root_hpa); |
| |
| iterator->shadow_addr |
| = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; |
| iterator->shadow_addr &= PT64_BASE_ADDR_MASK; |
| --iterator->level; |
| if (!iterator->shadow_addr) |
| iterator->level = 0; |
| } |
| } |
| |
| static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, |
| struct kvm_vcpu *vcpu, u64 addr) |
| { |
| shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, |
| addr); |
| } |
| |
| static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) |
| { |
| if (iterator->level < PG_LEVEL_4K) |
| return false; |
| |
| iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); |
| iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; |
| return true; |
| } |
| |
| static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, |
| u64 spte) |
| { |
| if (is_last_spte(spte, iterator->level)) { |
| iterator->level = 0; |
| return; |
| } |
| |
| iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; |
| --iterator->level; |
| } |
| |
| static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) |
| { |
| __shadow_walk_next(iterator, *iterator->sptep); |
| } |
| |
| static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, |
| struct kvm_mmu_page *sp) |
| { |
| u64 spte; |
| |
| BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); |
| |
| spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); |
| |
| mmu_spte_set(sptep, spte); |
| |
| mmu_page_add_parent_pte(vcpu, sp, sptep); |
| |
| if (sp->unsync_children || sp->unsync) |
| mark_unsync(sptep); |
| } |
| |
| static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, |
| unsigned direct_access) |
| { |
| if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { |
| struct kvm_mmu_page *child; |
| |
| /* |
| * For the direct sp, if the guest pte's dirty bit |
| * changed form clean to dirty, it will corrupt the |
| * sp's access: allow writable in the read-only sp, |
| * so we should update the spte at this point to get |
| * a new sp with the correct access. |
| */ |
| child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); |
| if (child->role.access == direct_access) |
| return; |
| |
| drop_parent_pte(child, sptep); |
| kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); |
| } |
| } |
| |
| /* Returns the number of zapped non-leaf child shadow pages. */ |
| static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, |
| u64 *spte, struct list_head *invalid_list) |
| { |
| u64 pte; |
| struct kvm_mmu_page *child; |
| |
| pte = *spte; |
| if (is_shadow_present_pte(pte)) { |
| if (is_last_spte(pte, sp->role.level)) { |
| drop_spte(kvm, spte); |
| if (is_large_pte(pte)) |
| --kvm->stat.lpages; |
| } else { |
| child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); |
| drop_parent_pte(child, spte); |
| |
| /* |
| * Recursively zap nested TDP SPs, parentless SPs are |
| * unlikely to be used again in the near future. This |
| * avoids retaining a large number of stale nested SPs. |
| */ |
| if (tdp_enabled && invalid_list && |
| child->role.guest_mode && !child->parent_ptes.val) |
| return kvm_mmu_prepare_zap_page(kvm, child, |
| invalid_list); |
| } |
| } else if (is_mmio_spte(pte)) { |
| mmu_spte_clear_no_track(spte); |
| } |
| return 0; |
| } |
| |
| static int kvm_mmu_page_unlink_children(struct kvm *kvm, |
| struct kvm_mmu_page *sp, |
| struct list_head *invalid_list) |
| { |
| int zapped = 0; |
| unsigned i; |
| |
| for (i = 0; i < PT64_ENT_PER_PAGE; ++i) |
| zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); |
| |
| return zapped; |
| } |
| |
| static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) |
| { |
| u64 *sptep; |
| struct rmap_iterator iter; |
| |
| while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) |
| drop_parent_pte(sp, sptep); |
| } |
| |
| static int mmu_zap_unsync_children(struct kvm *kvm, |
| struct kvm_mmu_page *parent, |
| struct list_head *invalid_list) |
| { |
| int i, zapped = 0; |
| struct mmu_page_path parents; |
| struct kvm_mmu_pages pages; |
| |
| if (parent->role.level == PG_LEVEL_4K) |
| return 0; |
| |
| while (mmu_unsync_walk(parent, &pages)) { |
| struct kvm_mmu_page *sp; |
| |
| for_each_sp(pages, sp, parents, i) { |
| kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); |
| mmu_pages_clear_parents(&parents); |
| zapped++; |
| } |
| } |
| |
| return zapped; |
| } |
| |
| static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, |
| struct kvm_mmu_page *sp, |
| struct list_head *invalid_list, |
| int *nr_zapped) |
| { |
| bool list_unstable; |
| |
| trace_kvm_mmu_prepare_zap_page(sp); |
| ++kvm->stat.mmu_shadow_zapped; |
| *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); |
| *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); |
| kvm_mmu_unlink_parents(kvm, sp); |
| |
| /* Zapping children means active_mmu_pages has become unstable. */ |
| list_unstable = *nr_zapped; |
| |
| if (!sp->role.invalid && !sp->role.direct) |
| unaccount_shadowed(kvm, sp); |
| |
| if (sp->unsync) |
| kvm_unlink_unsync_page(kvm, sp); |
| if (!sp->root_count) { |
| /* Count self */ |
| (*nr_zapped)++; |
| |
| /* |
| * Already invalid pages (previously active roots) are not on |
| * the active page list. See list_del() in the "else" case of |
| * !sp->root_count. |
| */ |
| if (sp->role.invalid) |
| list_add(&sp->link, invalid_list); |
| else |
| list_move(&sp->link, invalid_list); |
| kvm_mod_used_mmu_pages(kvm, -1); |
| } else { |
| /* |
| * Remove the active root from the active page list, the root |
| * will be explicitly freed when the root_count hits zero. |
| */ |
| list_del(&sp->link); |
| |
| /* |
| * Obsolete pages cannot be used on any vCPUs, see the comment |
| * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also |
| * treats invalid shadow pages as being obsolete. |
| */ |
| if (!is_obsolete_sp(kvm, sp)) |
| kvm_reload_remote_mmus(kvm); |
| } |
| |
| if (sp->lpage_disallowed) |
| unaccount_huge_nx_page(kvm, sp); |
| |
| sp->role.invalid = 1; |
| return list_unstable; |
| } |
| |
| static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, |
| struct list_head *invalid_list) |
| { |
| int nr_zapped; |
| |
| __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); |
| return nr_zapped; |
| } |
| |
| static void kvm_mmu_commit_zap_page(struct kvm *kvm, |
| struct list_head *invalid_list) |
| { |
| struct kvm_mmu_page *sp, *nsp; |
| |
| if (list_empty(invalid_list)) |
| return; |
| |
| /* |
| * We need to make sure everyone sees our modifications to |
| * the page tables and see changes to vcpu->mode here. The barrier |
| * in the kvm_flush_remote_tlbs() achieves this. This pairs |
| * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. |
| * |
| * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit |
| * guest mode and/or lockless shadow page table walks. |
| */ |
| kvm_flush_remote_tlbs(kvm); |
| |
| list_for_each_entry_safe(sp, nsp, invalid_list, link) { |
| WARN_ON(!sp->role.invalid || sp->root_count); |
| kvm_mmu_free_page(sp); |
| } |
| } |
| |
| static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, |
| unsigned long nr_to_zap) |
| { |
| unsigned long total_zapped = 0; |
| struct kvm_mmu_page *sp, *tmp; |
| LIST_HEAD(invalid_list); |
| bool unstable; |
| int nr_zapped; |
| |
| if (list_empty(&kvm->arch.active_mmu_pages)) |
| return 0; |
| |
| restart: |
| list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { |
| /* |
| * Don't zap active root pages, the page itself can't be freed |
| * and zapping it will just force vCPUs to realloc and reload. |
| */ |
| if (sp->root_count) |
| continue; |
| |
| unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, |
| &nr_zapped); |
| total_zapped += nr_zapped; |
| if (total_zapped >= nr_to_zap) |
| break; |
| |
| if (unstable) |
| goto restart; |
| } |
| |
| kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| |
| kvm->stat.mmu_recycled += total_zapped; |
| return total_zapped; |
| } |
| |
| static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) |
| { |
| if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) |
| return kvm->arch.n_max_mmu_pages - |
| kvm->arch.n_used_mmu_pages; |
| |
| return 0; |
| } |
| |
| static int make_mmu_pages_available(struct kvm_vcpu *vcpu) |
| { |
| unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); |
| |
| if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) |
| return 0; |
| |
| kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); |
| |
| /* |
| * Note, this check is intentionally soft, it only guarantees that one |
| * page is available, while the caller may end up allocating as many as |
| * four pages, e.g. for PAE roots or for 5-level paging. Temporarily |
| * exceeding the (arbitrary by default) limit will not harm the host, |
| * being too aggressive may unnecessarily kill the guest, and getting an |
| * exact count is far more trouble than it's worth, especially in the |
| * page fault paths. |
| */ |
| if (!kvm_mmu_available_pages(vcpu->kvm)) |
| return -ENOSPC; |
| return 0; |
| } |
| |
| /* |
| * Changing the number of mmu pages allocated to the vm |
| * Note: if goal_nr_mmu_pages is too small, you will get dead lock |
| */ |
| void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) |
| { |
| write_lock(&kvm->mmu_lock); |
| |
| if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { |
| kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - |
| goal_nr_mmu_pages); |
| |
| goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; |
| } |
| |
| kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; |
| |
| write_unlock(&kvm->mmu_lock); |
| } |
| |
| int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) |
| { |
| struct kvm_mmu_page *sp; |
| LIST_HEAD(invalid_list); |
| int r; |
| |
| pgprintk("%s: looking for gfn %llx\n", __func__, gfn); |
| r = 0; |
| write_lock(&kvm->mmu_lock); |
| for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { |
| pgprintk("%s: gfn %llx role %x\n", __func__, gfn, |
| sp->role.word); |
| r = 1; |
| kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); |
| } |
| kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| write_unlock(&kvm->mmu_lock); |
| |
| return r; |
| } |
| |
| static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) |
| { |
| gpa_t gpa; |
| int r; |
| |
| if (vcpu->arch.mmu->direct_map) |
| return 0; |
| |
| gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); |
| |
| r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); |
| |
| return r; |
| } |
| |
| static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) |
| { |
| trace_kvm_mmu_unsync_page(sp); |
| ++vcpu->kvm->stat.mmu_unsync; |
| sp->unsync = 1; |
| |
| kvm_mmu_mark_parents_unsync(sp); |
| } |
| |
| /* |
| * Attempt to unsync any shadow pages that can be reached by the specified gfn, |
| * KVM is creating a writable mapping for said gfn. Returns 0 if all pages |
| * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must |
| * be write-protected. |
| */ |
| int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync) |
| { |
| struct kvm_mmu_page *sp; |
| |
| /* |
| * Force write-protection if the page is being tracked. Note, the page |
| * track machinery is used to write-protect upper-level shadow pages, |
| * i.e. this guards the role.level == 4K assertion below! |
| */ |
| if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) |
| return -EPERM; |
| |
| /* |
| * The page is not write-tracked, mark existing shadow pages unsync |
| * unless KVM is synchronizing an unsync SP (can_unsync = false). In |
| * that case, KVM must complete emulation of the guest TLB flush before |
| * allowing shadow pages to become unsync (writable by the guest). |
| */ |
| for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { |
| if (!can_unsync) |
| return -EPERM; |
| |
| if (sp->unsync) |
| continue; |
| |
| WARN_ON(sp->role.level != PG_LEVEL_4K); |
| kvm_unsync_page(vcpu, sp); |
| } |
| |
| /* |
| * We need to ensure that the marking of unsync pages is visible |
| * before the SPTE is updated to allow writes because |
| * kvm_mmu_sync_roots() checks the unsync flags without holding |
| * the MMU lock and so can race with this. If the SPTE was updated |
| * before the page had been marked as unsync-ed, something like the |
| * following could happen: |
| * |
| * CPU 1 CPU 2 |
| * --------------------------------------------------------------------- |
| * 1.2 Host updates SPTE |
| * to be writable |
| * 2.1 Guest writes a GPTE for GVA X. |
| * (GPTE being in the guest page table shadowed |
| * by the SP from CPU 1.) |
| * This reads SPTE during the page table walk. |
| * Since SPTE.W is read as 1, there is no |
| * fault. |
| * |
| * 2.2 Guest issues TLB flush. |
| * That causes a VM Exit. |
| * |
| * 2.3 Walking of unsync pages sees sp->unsync is |
| * false and skips the page. |
| * |
| * 2.4 Guest accesses GVA X. |
| * Since the mapping in the SP was not updated, |
| * so the old mapping for GVA X incorrectly |
| * gets used. |
| * 1.1 Host marks SP |
| * as unsync |
| * (sp->unsync = true) |
| * |
| * The write barrier below ensures that 1.1 happens before 1.2 and thus |
| * the situation in 2.4 does not arise. The implicit barrier in 2.2 |
| * pairs with this write barrier. |
| */ |
| smp_wmb(); |
| |
| return 0; |
| } |
| |
| static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, |
| unsigned int pte_access, int level, |
| gfn_t gfn, kvm_pfn_t pfn, bool speculative, |
| bool can_unsync, bool host_writable) |
| { |
| u64 spte; |
| struct kvm_mmu_page *sp; |
| int ret; |
| |
| sp = sptep_to_sp(sptep); |
| |
| ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative, |
| can_unsync, host_writable, sp_ad_disabled(sp), &spte); |
| |
| if (spte & PT_WRITABLE_MASK) |
| kvm_vcpu_mark_page_dirty(vcpu, gfn); |
| |
| if (*sptep == spte) |
| ret |= SET_SPTE_SPURIOUS; |
| else if (mmu_spte_update(sptep, spte)) |
| ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; |
| return ret; |
| } |
| |
| static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, |
| unsigned int pte_access, bool write_fault, int level, |
| gfn_t gfn, kvm_pfn_t pfn, bool speculative, |
| bool host_writable) |
| { |
| int was_rmapped = 0; |
| int rmap_count; |
| int set_spte_ret; |
| int ret = RET_PF_FIXED; |
| bool flush = false; |
| |
| pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, |
| *sptep, write_fault, gfn); |
| |
| if (unlikely(is_noslot_pfn(pfn))) { |
| mark_mmio_spte(vcpu, sptep, gfn, pte_access); |
| return RET_PF_EMULATE; |
| } |
| |
| if (is_shadow_present_pte(*sptep)) { |
| /* |
| * If we overwrite a PTE page pointer with a 2MB PMD, unlink |
| * the parent of the now unreachable PTE. |
| */ |
| if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { |
| struct kvm_mmu_page *child; |
| u64 pte = *sptep; |
| |
| child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); |
| drop_parent_pte(child, sptep); |
| flush = true; |
| } else if (pfn != spte_to_pfn(*sptep)) { |
| pgprintk("hfn old %llx new %llx\n", |
| spte_to_pfn(*sptep), pfn); |
| drop_spte(vcpu->kvm, sptep); |
| flush = true; |
| } else |
| was_rmapped = 1; |
| } |
| |
| set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, |
| speculative, true, host_writable); |
| if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { |
| if (write_fault) |
| ret = RET_PF_EMULATE; |
| kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); |
| } |
| |
| if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) |
| kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, |
| KVM_PAGES_PER_HPAGE(level)); |
| |
| /* |
| * The fault is fully spurious if and only if the new SPTE and old SPTE |
| * are identical, and emulation is not required. |
| */ |
| if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) { |
| WARN_ON_ONCE(!was_rmapped); |
| return RET_PF_SPURIOUS; |
| } |
| |
| pgprintk("%s: setting spte %llx\n", __func__, *sptep); |
| trace_kvm_mmu_set_spte(level, gfn, sptep); |
| if (!was_rmapped && is_large_pte(*sptep)) |
| ++vcpu->kvm->stat.lpages; |
| |
| if (is_shadow_present_pte(*sptep)) { |
| if (!was_rmapped) { |
| rmap_count = rmap_add(vcpu, sptep, gfn); |
| if (rmap_count > RMAP_RECYCLE_THRESHOLD) |
| rmap_recycle(vcpu, sptep, gfn); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, |
| bool no_dirty_log) |
| { |
| struct kvm_memory_slot *slot; |
| |
| slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); |
| if (!slot) |
| return KVM_PFN_ERR_FAULT; |
| |
| return gfn_to_pfn_memslot_atomic(slot, gfn); |
| } |
| |
| static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp, |
| u64 *start, u64 *end) |
| { |
| struct page *pages[PTE_PREFETCH_NUM]; |
| struct kvm_memory_slot *slot; |
| unsigned int access = sp->role.access; |
| int i, ret; |
| gfn_t gfn; |
| |
| gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); |
| slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); |
| if (!slot) |
| return -1; |
| |
| ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); |
| if (ret <= 0) |
| return -1; |
| |
| for (i = 0; i < ret; i++, gfn++, start++) { |
| mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn, |
| page_to_pfn(pages[i]), true, true); |
| put_page(pages[i]); |
| } |
| |
| return 0; |
| } |
| |
| static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp, u64 *sptep) |
| { |
| u64 *spte, *start = NULL; |
| int i; |
| |
| WARN_ON(!sp->role.direct); |
| |
| i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); |
| spte = sp->spt + i; |
| |
| for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { |
| if (is_shadow_present_pte(*spte) || spte == sptep) { |
| if (!start) |
| continue; |
| if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) |
| break; |
| start = NULL; |
| } else if (!start) |
| start = spte; |
| } |
| } |
| |
| static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) |
| { |
| struct kvm_mmu_page *sp; |
| |
| sp = sptep_to_sp(sptep); |
| |
| /* |
| * Without accessed bits, there's no way to distinguish between |
| * actually accessed translations and prefetched, so disable pte |
| * prefetch if accessed bits aren't available. |
| */ |
| if (sp_ad_disabled(sp)) |
| return; |
| |
| if (sp->role.level > PG_LEVEL_4K) |
| return; |
| |
| /* |
| * If addresses are being invalidated, skip prefetching to avoid |
| * accidentally prefetching those addresses. |
| */ |
| if (unlikely(vcpu->kvm->mmu_notifier_count)) |
| return; |
| |
| __direct_pte_prefetch(vcpu, sp, sptep); |
| } |
| |
| static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, |
| const struct kvm_memory_slot *slot) |
| { |
| unsigned long hva; |
| pte_t *pte; |
| int level; |
| |
| if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) |
| return PG_LEVEL_4K; |
| |
| /* |
| * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() |
| * is not solely for performance, it's also necessary to avoid the |
| * "writable" check in __gfn_to_hva_many(), which will always fail on |
| * read-only memslots due to gfn_to_hva() assuming writes. Earlier |
| * page fault steps have already verified the guest isn't writing a |
| * read-only memslot. |
| */ |
| hva = __gfn_to_hva_memslot(slot, gfn); |
| |
| pte = lookup_address_in_mm(kvm->mm, hva, &level); |
| if (unlikely(!pte)) |
| return PG_LEVEL_4K; |
| |
| return level; |
| } |
| |
| int kvm_mmu_max_mapping_level(struct kvm *kvm, |
| const struct kvm_memory_slot *slot, gfn_t gfn, |
| kvm_pfn_t pfn, int max_level) |
| { |
| struct kvm_lpage_info *linfo; |
| |
| max_level = min(max_level, max_huge_page_level); |
| for ( ; max_level > PG_LEVEL_4K; max_level--) { |
| linfo = lpage_info_slot(gfn, slot, max_level); |
| if (!linfo->disallow_lpage) |
| break; |
| } |
| |
| if (max_level == PG_LEVEL_4K) |
| return PG_LEVEL_4K; |
| |
| return host_pfn_mapping_level(kvm, gfn, pfn, slot); |
| } |
| |
| int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn, |
| int max_level, kvm_pfn_t *pfnp, |
| bool huge_page_disallowed, int *req_level) |
| { |
| struct kvm_memory_slot *slot; |
| kvm_pfn_t pfn = *pfnp; |
| kvm_pfn_t mask; |
| int level; |
| |
| *req_level = PG_LEVEL_4K; |
| |
| if (unlikely(max_level == PG_LEVEL_4K)) |
| return PG_LEVEL_4K; |
| |
| if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn)) |
| return PG_LEVEL_4K; |
| |
| slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true); |
| if (!slot) |
| return PG_LEVEL_4K; |
| |
| level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level); |
| if (level == PG_LEVEL_4K) |
| return level; |
| |
| *req_level = level = min(level, max_level); |
| |
| /* |
| * Enforce the iTLB multihit workaround after capturing the requested |
| * level, which will be used to do precise, accurate accounting. |
| */ |
| if (huge_page_disallowed) |
| return PG_LEVEL_4K; |
| |
| /* |
| * mmu_notifier_retry() was successful and mmu_lock is held, so |
| * the pmd can't be split from under us. |
| */ |
| mask = KVM_PAGES_PER_HPAGE(level) - 1; |
| VM_BUG_ON((gfn & mask) != (pfn & mask)); |
| *pfnp = pfn & ~mask; |
| |
| return level; |
| } |
| |
| void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level, |
| kvm_pfn_t *pfnp, int *goal_levelp) |
| { |
| int level = *goal_levelp; |
| |
| if (cur_level == level && level > PG_LEVEL_4K && |
| is_shadow_present_pte(spte) && |
| !is_large_pte(spte)) { |
| /* |
| * A small SPTE exists for this pfn, but FNAME(fetch) |
| * and __direct_map would like to create a large PTE |
| * instead: just force them to go down another level, |
| * patching back for them into pfn the next 9 bits of |
| * the address. |
| */ |
| u64 page_mask = KVM_PAGES_PER_HPAGE(level) - |
| KVM_PAGES_PER_HPAGE(level - 1); |
| *pfnp |= gfn & page_mask; |
| (*goal_levelp)--; |
| } |
| } |
| |
| static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, |
| int map_writable, int max_level, kvm_pfn_t pfn, |
| bool prefault, bool is_tdp) |
| { |
| bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(); |
| bool write = error_code & PFERR_WRITE_MASK; |
| bool exec = error_code & PFERR_FETCH_MASK; |
| bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled; |
| struct kvm_shadow_walk_iterator it; |
| struct kvm_mmu_page *sp; |
| int level, req_level, ret; |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| gfn_t base_gfn = gfn; |
| |
| level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn, |
| huge_page_disallowed, &req_level); |
| |
| trace_kvm_mmu_spte_requested(gpa, level, pfn); |
| for_each_shadow_entry(vcpu, gpa, it) { |
| /* |
| * We cannot overwrite existing page tables with an NX |
| * large page, as the leaf could be executable. |
| */ |
| if (nx_huge_page_workaround_enabled) |
| disallowed_hugepage_adjust(*it.sptep, gfn, it.level, |
| &pfn, &level); |
| |
| base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); |
| if (it.level == level) |
| break; |
| |
| drop_large_spte(vcpu, it.sptep); |
| if (!is_shadow_present_pte(*it.sptep)) { |
| sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, |
| it.level - 1, true, ACC_ALL); |
| |
| link_shadow_page(vcpu, it.sptep, sp); |
| if (is_tdp && huge_page_disallowed && |
| req_level >= it.level) |
| account_huge_nx_page(vcpu->kvm, sp); |
| } |
| } |
| |
| ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, |
| write, level, base_gfn, pfn, prefault, |
| map_writable); |
| if (ret == RET_PF_SPURIOUS) |
| return ret; |
| |
| direct_pte_prefetch(vcpu, it.sptep); |
| ++vcpu->stat.pf_fixed; |
| return ret; |
| } |
| |
| static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) |
| { |
| send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); |
| } |
| |
| static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) |
| { |
| /* |
| * Do not cache the mmio info caused by writing the readonly gfn |
| * into the spte otherwise read access on readonly gfn also can |
| * caused mmio page fault and treat it as mmio access. |
| */ |
| if (pfn == KVM_PFN_ERR_RO_FAULT) |
| return RET_PF_EMULATE; |
| |
| if (pfn == KVM_PFN_ERR_HWPOISON) { |
| kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); |
| return RET_PF_RETRY; |
| } |
| |
| return -EFAULT; |
| } |
| |
| static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, |
| kvm_pfn_t pfn, unsigned int access, |
| int *ret_val) |
| { |
| /* The pfn is invalid, report the error! */ |
| if (unlikely(is_error_pfn(pfn))) { |
| *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); |
| return true; |
| } |
| |
| if (unlikely(is_noslot_pfn(pfn))) { |
| vcpu_cache_mmio_info(vcpu, gva, gfn, |
| access & shadow_mmio_access_mask); |
| /* |
| * If MMIO caching is disabled, emulate immediately without |
| * touching the shadow page tables as attempting to install an |
| * MMIO SPTE will just be an expensive nop. |
| */ |
| if (unlikely(!shadow_mmio_value)) { |
| *ret_val = RET_PF_EMULATE; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool page_fault_can_be_fast(u32 error_code) |
| { |
| /* |
| * Do not fix the mmio spte with invalid generation number which |
| * need to be updated by slow page fault path. |
| */ |
| if (unlikely(error_code & PFERR_RSVD_MASK)) |
| return false; |
| |
| /* See if the page fault is due to an NX violation */ |
| if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) |
| == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) |
| return false; |
| |
| /* |
| * #PF can be fast if: |
| * 1. The shadow page table entry is not present, which could mean that |
| * the fault is potentially caused by access tracking (if enabled). |
| * 2. The shadow page table entry is present and the fault |
| * is caused by write-protect, that means we just need change the W |
| * bit of the spte which can be done out of mmu-lock. |
| * |
| * However, if access tracking is disabled we know that a non-present |
| * page must be a genuine page fault where we have to create a new SPTE. |
| * So, if access tracking is disabled, we return true only for write |
| * accesses to a present page. |
| */ |
| |
| return shadow_acc_track_mask != 0 || |
| ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) |
| == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); |
| } |
| |
| /* |
| * Returns true if the SPTE was fixed successfully. Otherwise, |
| * someone else modified the SPTE from its original value. |
| */ |
| static bool |
| fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
| u64 *sptep, u64 old_spte, u64 new_spte) |
| { |
| gfn_t gfn; |
| |
| WARN_ON(!sp->role.direct); |
| |
| /* |
| * Theoretically we could also set dirty bit (and flush TLB) here in |
| * order to eliminate unnecessary PML logging. See comments in |
| * set_spte. But fast_page_fault is very unlikely to happen with PML |
| * enabled, so we do not do this. This might result in the same GPA |
| * to be logged in PML buffer again when the write really happens, and |
| * eventually to be called by mark_page_dirty twice. But it's also no |
| * harm. This also avoids the TLB flush needed after setting dirty bit |
| * so non-PML cases won't be impacted. |
| * |
| * Compare with set_spte where instead shadow_dirty_mask is set. |
| */ |
| if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) |
| return false; |
| |
| if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { |
| /* |
| * The gfn of direct spte is stable since it is |
| * calculated by sp->gfn. |
| */ |
| gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); |
| kvm_vcpu_mark_page_dirty(vcpu, gfn); |
| } |
| |
| return true; |
| } |
| |
| static bool is_access_allowed(u32 fault_err_code, u64 spte) |
| { |
| if (fault_err_code & PFERR_FETCH_MASK) |
| return is_executable_pte(spte); |
| |
| if (fault_err_code & PFERR_WRITE_MASK) |
| return is_writable_pte(spte); |
| |
| /* Fault was on Read access */ |
| return spte & PT_PRESENT_MASK; |
| } |
| |
| /* |
| * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. |
| */ |
| static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, |
| u32 error_code) |
| { |
| struct kvm_shadow_walk_iterator iterator; |
| struct kvm_mmu_page *sp; |
| int ret = RET_PF_INVALID; |
| u64 spte = 0ull; |
| uint retry_count = 0; |
| |
| if (!page_fault_can_be_fast(error_code)) |
| return ret; |
| |
| walk_shadow_page_lockless_begin(vcpu); |
| |
| do { |
| u64 new_spte; |
| |
| for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte) |
| if (!is_shadow_present_pte(spte)) |
| break; |
| |
| if (!is_shadow_present_pte(spte)) |
| break; |
| |
| sp = sptep_to_sp(iterator.sptep); |
| if (!is_last_spte(spte, sp->role.level)) |
| break; |
| |
| /* |
| * Check whether the memory access that caused the fault would |
| * still cause it if it were to be performed right now. If not, |
| * then this is a spurious fault caused by TLB lazily flushed, |
| * or some other CPU has already fixed the PTE after the |
| * current CPU took the fault. |
| * |
| * Need not check the access of upper level table entries since |
| * they are always ACC_ALL. |
| */ |
| if (is_access_allowed(error_code, spte)) { |
| ret = RET_PF_SPURIOUS; |
| break; |
| } |
| |
| new_spte = spte; |
| |
| if (is_access_track_spte(spte)) |
| new_spte = restore_acc_track_spte(new_spte); |
| |
| /* |
| * Currently, to simplify the code, write-protection can |
| * be removed in the fast path only if the SPTE was |
| * write-protected for dirty-logging or access tracking. |
| */ |
| if ((error_code & PFERR_WRITE_MASK) && |
| spte_can_locklessly_be_made_writable(spte)) { |
| new_spte |= PT_WRITABLE_MASK; |
| |
| /* |
| * Do not fix write-permission on the large spte. Since |
| * we only dirty the first page into the dirty-bitmap in |
| * fast_pf_fix_direct_spte(), other pages are missed |
| * if its slot has dirty logging enabled. |
| * |
| * Instead, we let the slow page fault path create a |
| * normal spte to fix the access. |
| * |
| * See the comments in kvm_arch_commit_memory_region(). |
| */ |
| if (sp->role.level > PG_LEVEL_4K) |
| break; |
| } |
| |
| /* Verify that the fault can be handled in the fast path */ |
| if (new_spte == |