blob: 28669cbecf77c54ca23756a78d571db9c44062fb [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/*
* Copyright 2015-2016 Freescale Semiconductor Inc.
* Copyright 2017-2019 NXP
*/
#include "compat.h"
#include "regs.h"
#include "caamalg_qi2.h"
#include "dpseci_cmd.h"
#include "desc_constr.h"
#include "error.h"
#include "sg_sw_sec4.h"
#include "sg_sw_qm2.h"
#include "key_gen.h"
#include "caamalg_desc.h"
#include "caamhash_desc.h"
#include "dpseci-debugfs.h"
#include <linux/fsl/mc.h>
#include <soc/fsl/dpaa2-io.h>
#include <soc/fsl/dpaa2-fd.h>
#define CAAM_CRA_PRIORITY 2000
/* max key is sum of AES_MAX_KEY_SIZE, max split key size */
#define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE + \
SHA512_DIGEST_SIZE * 2)
/*
* This is a a cache of buffers, from which the users of CAAM QI driver
* can allocate short buffers. It's speedier than doing kmalloc on the hotpath.
* NOTE: A more elegant solution would be to have some headroom in the frames
* being processed. This can be added by the dpaa2-eth driver. This would
* pose a problem for userspace application processing which cannot
* know of this limitation. So for now, this will work.
* NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
*/
static struct kmem_cache *qi_cache;
struct caam_alg_entry {
struct device *dev;
int class1_alg_type;
int class2_alg_type;
bool rfc3686;
bool geniv;
bool nodkp;
};
struct caam_aead_alg {
struct aead_alg aead;
struct caam_alg_entry caam;
bool registered;
};
struct caam_skcipher_alg {
struct skcipher_alg skcipher;
struct caam_alg_entry caam;
bool registered;
};
/**
* caam_ctx - per-session context
* @flc: Flow Contexts array
* @key: [authentication key], encryption key
* @flc_dma: I/O virtual addresses of the Flow Contexts
* @key_dma: I/O virtual address of the key
* @dir: DMA direction for mapping key and Flow Contexts
* @dev: dpseci device
* @adata: authentication algorithm details
* @cdata: encryption algorithm details
* @authsize: authentication tag (a.k.a. ICV / MAC) size
*/
struct caam_ctx {
struct caam_flc flc[NUM_OP];
u8 key[CAAM_MAX_KEY_SIZE];
dma_addr_t flc_dma[NUM_OP];
dma_addr_t key_dma;
enum dma_data_direction dir;
struct device *dev;
struct alginfo adata;
struct alginfo cdata;
unsigned int authsize;
};
static void *dpaa2_caam_iova_to_virt(struct dpaa2_caam_priv *priv,
dma_addr_t iova_addr)
{
phys_addr_t phys_addr;
phys_addr = priv->domain ? iommu_iova_to_phys(priv->domain, iova_addr) :
iova_addr;
return phys_to_virt(phys_addr);
}
/*
* qi_cache_zalloc - Allocate buffers from CAAM-QI cache
*
* Allocate data on the hotpath. Instead of using kzalloc, one can use the
* services of the CAAM QI memory cache (backed by kmem_cache). The buffers
* will have a size of CAAM_QI_MEMCACHE_SIZE, which should be sufficient for
* hosting 16 SG entries.
*
* @flags - flags that would be used for the equivalent kmalloc(..) call
*
* Returns a pointer to a retrieved buffer on success or NULL on failure.
*/
static inline void *qi_cache_zalloc(gfp_t flags)
{
return kmem_cache_zalloc(qi_cache, flags);
}
/*
* qi_cache_free - Frees buffers allocated from CAAM-QI cache
*
* @obj - buffer previously allocated by qi_cache_zalloc
*
* No checking is being done, the call is a passthrough call to
* kmem_cache_free(...)
*/
static inline void qi_cache_free(void *obj)
{
kmem_cache_free(qi_cache, obj);
}
static struct caam_request *to_caam_req(struct crypto_async_request *areq)
{
switch (crypto_tfm_alg_type(areq->tfm)) {
case CRYPTO_ALG_TYPE_SKCIPHER:
return skcipher_request_ctx(skcipher_request_cast(areq));
case CRYPTO_ALG_TYPE_AEAD:
return aead_request_ctx(container_of(areq, struct aead_request,
base));
case CRYPTO_ALG_TYPE_AHASH:
return ahash_request_ctx(ahash_request_cast(areq));
default:
return ERR_PTR(-EINVAL);
}
}
static void caam_unmap(struct device *dev, struct scatterlist *src,
struct scatterlist *dst, int src_nents,
int dst_nents, dma_addr_t iv_dma, int ivsize,
enum dma_data_direction iv_dir, dma_addr_t qm_sg_dma,
int qm_sg_bytes)
{
if (dst != src) {
if (src_nents)
dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE);
if (dst_nents)
dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE);
} else {
dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL);
}
if (iv_dma)
dma_unmap_single(dev, iv_dma, ivsize, iv_dir);
if (qm_sg_bytes)
dma_unmap_single(dev, qm_sg_dma, qm_sg_bytes, DMA_TO_DEVICE);
}
static int aead_set_sh_desc(struct crypto_aead *aead)
{
struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
typeof(*alg), aead);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
struct device *dev = ctx->dev;
struct dpaa2_caam_priv *priv = dev_get_drvdata(dev);
struct caam_flc *flc;
u32 *desc;
u32 ctx1_iv_off = 0;
u32 *nonce = NULL;
unsigned int data_len[2];
u32 inl_mask;
const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) ==
OP_ALG_AAI_CTR_MOD128);
const bool is_rfc3686 = alg->caam.rfc3686;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
/*
* AES-CTR needs to load IV in CONTEXT1 reg
* at an offset of 128bits (16bytes)
* CONTEXT1[255:128] = IV
*/
if (ctr_mode)
ctx1_iv_off = 16;
/*
* RFC3686 specific:
* CONTEXT1[255:128] = {NONCE, IV, COUNTER}
*/
if (is_rfc3686) {
ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
nonce = (u32 *)((void *)ctx->key + ctx->adata.keylen_pad +
ctx->cdata.keylen - CTR_RFC3686_NONCE_SIZE);
}
/*
* In case |user key| > |derived key|, using DKP<imm,imm> would result
* in invalid opcodes (last bytes of user key) in the resulting
* descriptor. Use DKP<ptr,imm> instead => both virtual and dma key
* addresses are needed.
*/
ctx->adata.key_virt = ctx->key;
ctx->adata.key_dma = ctx->key_dma;
ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;
data_len[0] = ctx->adata.keylen_pad;
data_len[1] = ctx->cdata.keylen;
/* aead_encrypt shared descriptor */
if (desc_inline_query((alg->caam.geniv ? DESC_QI_AEAD_GIVENC_LEN :
DESC_QI_AEAD_ENC_LEN) +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
DESC_JOB_IO_LEN, data_len, &inl_mask,
ARRAY_SIZE(data_len)) < 0)
return -EINVAL;
ctx->adata.key_inline = !!(inl_mask & 1);
ctx->cdata.key_inline = !!(inl_mask & 2);
flc = &ctx->flc[ENCRYPT];
desc = flc->sh_desc;
if (alg->caam.geniv)
cnstr_shdsc_aead_givencap(desc, &ctx->cdata, &ctx->adata,
ivsize, ctx->authsize, is_rfc3686,
nonce, ctx1_iv_off, true,
priv->sec_attr.era);
else
cnstr_shdsc_aead_encap(desc, &ctx->cdata, &ctx->adata,
ivsize, ctx->authsize, is_rfc3686, nonce,
ctx1_iv_off, true, priv->sec_attr.era);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
/* aead_decrypt shared descriptor */
if (desc_inline_query(DESC_QI_AEAD_DEC_LEN +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
DESC_JOB_IO_LEN, data_len, &inl_mask,
ARRAY_SIZE(data_len)) < 0)
return -EINVAL;
ctx->adata.key_inline = !!(inl_mask & 1);
ctx->cdata.key_inline = !!(inl_mask & 2);
flc = &ctx->flc[DECRYPT];
desc = flc->sh_desc;
cnstr_shdsc_aead_decap(desc, &ctx->cdata, &ctx->adata,
ivsize, ctx->authsize, alg->caam.geniv,
is_rfc3686, nonce, ctx1_iv_off, true,
priv->sec_attr.era);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
return 0;
}
static int aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
aead_set_sh_desc(authenc);
return 0;
}
static int aead_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *dev = ctx->dev;
struct crypto_authenc_keys keys;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
goto badkey;
dev_dbg(dev, "keylen %d enckeylen %d authkeylen %d\n",
keys.authkeylen + keys.enckeylen, keys.enckeylen,
keys.authkeylen);
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
ctx->adata.keylen = keys.authkeylen;
ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
OP_ALG_ALGSEL_MASK);
if (ctx->adata.keylen_pad + keys.enckeylen > CAAM_MAX_KEY_SIZE)
goto badkey;
memcpy(ctx->key, keys.authkey, keys.authkeylen);
memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey, keys.enckeylen);
dma_sync_single_for_device(dev, ctx->key_dma, ctx->adata.keylen_pad +
keys.enckeylen, ctx->dir);
print_hex_dump_debug("ctx.key@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
ctx->adata.keylen_pad + keys.enckeylen, 1);
ctx->cdata.keylen = keys.enckeylen;
memzero_explicit(&keys, sizeof(keys));
return aead_set_sh_desc(aead);
badkey:
memzero_explicit(&keys, sizeof(keys));
return -EINVAL;
}
static int des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct crypto_authenc_keys keys;
int err;
err = crypto_authenc_extractkeys(&keys, key, keylen);
if (unlikely(err))
goto out;
err = -EINVAL;
if (keys.enckeylen != DES3_EDE_KEY_SIZE)
goto out;
err = crypto_des3_ede_verify_key(crypto_aead_tfm(aead), keys.enckey) ?:
aead_setkey(aead, key, keylen);
out:
memzero_explicit(&keys, sizeof(keys));
return err;
}
static struct aead_edesc *aead_edesc_alloc(struct aead_request *req,
bool encrypt)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_request *req_ctx = aead_request_ctx(req);
struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
typeof(*alg), aead);
struct device *dev = ctx->dev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
int src_len, dst_len = 0;
struct aead_edesc *edesc;
dma_addr_t qm_sg_dma, iv_dma = 0;
int ivsize = 0;
unsigned int authsize = ctx->authsize;
int qm_sg_index = 0, qm_sg_nents = 0, qm_sg_bytes;
int in_len, out_len;
struct dpaa2_sg_entry *sg_table;
/* allocate space for base edesc, link tables and IV */
edesc = qi_cache_zalloc(GFP_DMA | flags);
if (unlikely(!edesc)) {
dev_err(dev, "could not allocate extended descriptor\n");
return ERR_PTR(-ENOMEM);
}
if (unlikely(req->dst != req->src)) {
src_len = req->assoclen + req->cryptlen;
dst_len = src_len + (encrypt ? authsize : (-authsize));
src_nents = sg_nents_for_len(req->src, src_len);
if (unlikely(src_nents < 0)) {
dev_err(dev, "Insufficient bytes (%d) in src S/G\n",
src_len);
qi_cache_free(edesc);
return ERR_PTR(src_nents);
}
dst_nents = sg_nents_for_len(req->dst, dst_len);
if (unlikely(dst_nents < 0)) {
dev_err(dev, "Insufficient bytes (%d) in dst S/G\n",
dst_len);
qi_cache_free(edesc);
return ERR_PTR(dst_nents);
}
if (src_nents) {
mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
DMA_TO_DEVICE);
if (unlikely(!mapped_src_nents)) {
dev_err(dev, "unable to map source\n");
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
} else {
mapped_src_nents = 0;
}
if (dst_nents) {
mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents,
DMA_FROM_DEVICE);
if (unlikely(!mapped_dst_nents)) {
dev_err(dev, "unable to map destination\n");
dma_unmap_sg(dev, req->src, src_nents,
DMA_TO_DEVICE);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
} else {
mapped_dst_nents = 0;
}
} else {
src_len = req->assoclen + req->cryptlen +
(encrypt ? authsize : 0);
src_nents = sg_nents_for_len(req->src, src_len);
if (unlikely(src_nents < 0)) {
dev_err(dev, "Insufficient bytes (%d) in src S/G\n",
src_len);
qi_cache_free(edesc);
return ERR_PTR(src_nents);
}
mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
DMA_BIDIRECTIONAL);
if (unlikely(!mapped_src_nents)) {
dev_err(dev, "unable to map source\n");
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
}
if ((alg->caam.rfc3686 && encrypt) || !alg->caam.geniv)
ivsize = crypto_aead_ivsize(aead);
/*
* Create S/G table: req->assoclen, [IV,] req->src [, req->dst].
* Input is not contiguous.
* HW reads 4 S/G entries at a time; make sure the reads don't go beyond
* the end of the table by allocating more S/G entries. Logic:
* if (src != dst && output S/G)
* pad output S/G, if needed
* else if (src == dst && S/G)
* overlapping S/Gs; pad one of them
* else if (input S/G) ...
* pad input S/G, if needed
*/
qm_sg_nents = 1 + !!ivsize + mapped_src_nents;
if (mapped_dst_nents > 1)
qm_sg_nents += pad_sg_nents(mapped_dst_nents);
else if ((req->src == req->dst) && (mapped_src_nents > 1))
qm_sg_nents = max(pad_sg_nents(qm_sg_nents),
1 + !!ivsize +
pad_sg_nents(mapped_src_nents));
else
qm_sg_nents = pad_sg_nents(qm_sg_nents);
sg_table = &edesc->sgt[0];
qm_sg_bytes = qm_sg_nents * sizeof(*sg_table);
if (unlikely(offsetof(struct aead_edesc, sgt) + qm_sg_bytes + ivsize >
CAAM_QI_MEMCACHE_SIZE)) {
dev_err(dev, "No space for %d S/G entries and/or %dB IV\n",
qm_sg_nents, ivsize);
caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
if (ivsize) {
u8 *iv = (u8 *)(sg_table + qm_sg_nents);
/* Make sure IV is located in a DMAable area */
memcpy(iv, req->iv, ivsize);
iv_dma = dma_map_single(dev, iv, ivsize, DMA_TO_DEVICE);
if (dma_mapping_error(dev, iv_dma)) {
dev_err(dev, "unable to map IV\n");
caam_unmap(dev, req->src, req->dst, src_nents,
dst_nents, 0, 0, DMA_NONE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->iv_dma = iv_dma;
if ((alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK) ==
OP_ALG_ALGSEL_CHACHA20 && ivsize != CHACHAPOLY_IV_SIZE)
/*
* The associated data comes already with the IV but we need
* to skip it when we authenticate or encrypt...
*/
edesc->assoclen = cpu_to_caam32(req->assoclen - ivsize);
else
edesc->assoclen = cpu_to_caam32(req->assoclen);
edesc->assoclen_dma = dma_map_single(dev, &edesc->assoclen, 4,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, edesc->assoclen_dma)) {
dev_err(dev, "unable to map assoclen\n");
caam_unmap(dev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, DMA_TO_DEVICE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
dma_to_qm_sg_one(sg_table, edesc->assoclen_dma, 4, 0);
qm_sg_index++;
if (ivsize) {
dma_to_qm_sg_one(sg_table + qm_sg_index, iv_dma, ivsize, 0);
qm_sg_index++;
}
sg_to_qm_sg_last(req->src, src_len, sg_table + qm_sg_index, 0);
qm_sg_index += mapped_src_nents;
if (mapped_dst_nents > 1)
sg_to_qm_sg_last(req->dst, dst_len, sg_table + qm_sg_index, 0);
qm_sg_dma = dma_map_single(dev, sg_table, qm_sg_bytes, DMA_TO_DEVICE);
if (dma_mapping_error(dev, qm_sg_dma)) {
dev_err(dev, "unable to map S/G table\n");
dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
caam_unmap(dev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, DMA_TO_DEVICE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->qm_sg_dma = qm_sg_dma;
edesc->qm_sg_bytes = qm_sg_bytes;
out_len = req->assoclen + req->cryptlen +
(encrypt ? ctx->authsize : (-ctx->authsize));
in_len = 4 + ivsize + req->assoclen + req->cryptlen;
memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
dpaa2_fl_set_final(in_fle, true);
dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
dpaa2_fl_set_addr(in_fle, qm_sg_dma);
dpaa2_fl_set_len(in_fle, in_len);
if (req->dst == req->src) {
if (mapped_src_nents == 1) {
dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(out_fle, sg_dma_address(req->src));
} else {
dpaa2_fl_set_format(out_fle, dpaa2_fl_sg);
dpaa2_fl_set_addr(out_fle, qm_sg_dma +
(1 + !!ivsize) * sizeof(*sg_table));
}
} else if (!mapped_dst_nents) {
/*
* crypto engine requires the output entry to be present when
* "frame list" FD is used.
* Since engine does not support FMT=2'b11 (unused entry type),
* leaving out_fle zeroized is the best option.
*/
goto skip_out_fle;
} else if (mapped_dst_nents == 1) {
dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(out_fle, sg_dma_address(req->dst));
} else {
dpaa2_fl_set_format(out_fle, dpaa2_fl_sg);
dpaa2_fl_set_addr(out_fle, qm_sg_dma + qm_sg_index *
sizeof(*sg_table));
}
dpaa2_fl_set_len(out_fle, out_len);
skip_out_fle:
return edesc;
}
static int chachapoly_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
struct device *dev = ctx->dev;
struct caam_flc *flc;
u32 *desc;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
flc = &ctx->flc[ENCRYPT];
desc = flc->sh_desc;
cnstr_shdsc_chachapoly(desc, &ctx->cdata, &ctx->adata, ivsize,
ctx->authsize, true, true);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
flc = &ctx->flc[DECRYPT];
desc = flc->sh_desc;
cnstr_shdsc_chachapoly(desc, &ctx->cdata, &ctx->adata, ivsize,
ctx->authsize, false, true);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
return 0;
}
static int chachapoly_setauthsize(struct crypto_aead *aead,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
if (authsize != POLY1305_DIGEST_SIZE)
return -EINVAL;
ctx->authsize = authsize;
return chachapoly_set_sh_desc(aead);
}
static int chachapoly_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
unsigned int saltlen = CHACHAPOLY_IV_SIZE - ivsize;
if (keylen != CHACHA_KEY_SIZE + saltlen)
return -EINVAL;
ctx->cdata.key_virt = key;
ctx->cdata.keylen = keylen - saltlen;
return chachapoly_set_sh_desc(aead);
}
static int gcm_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *dev = ctx->dev;
unsigned int ivsize = crypto_aead_ivsize(aead);
struct caam_flc *flc;
u32 *desc;
int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
ctx->cdata.keylen;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
/*
* AES GCM encrypt shared descriptor
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_GCM_ENC_LEN) {
ctx->cdata.key_inline = true;
ctx->cdata.key_virt = ctx->key;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
flc = &ctx->flc[ENCRYPT];
desc = flc->sh_desc;
cnstr_shdsc_gcm_encap(desc, &ctx->cdata, ivsize, ctx->authsize, true);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_GCM_DEC_LEN) {
ctx->cdata.key_inline = true;
ctx->cdata.key_virt = ctx->key;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
flc = &ctx->flc[DECRYPT];
desc = flc->sh_desc;
cnstr_shdsc_gcm_decap(desc, &ctx->cdata, ivsize, ctx->authsize, true);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
return 0;
}
static int gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
int err;
err = crypto_gcm_check_authsize(authsize);
if (err)
return err;
ctx->authsize = authsize;
gcm_set_sh_desc(authenc);
return 0;
}
static int gcm_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *dev = ctx->dev;
int ret;
ret = aes_check_keylen(keylen);
if (ret)
return ret;
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
memcpy(ctx->key, key, keylen);
dma_sync_single_for_device(dev, ctx->key_dma, keylen, ctx->dir);
ctx->cdata.keylen = keylen;
return gcm_set_sh_desc(aead);
}
static int rfc4106_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *dev = ctx->dev;
unsigned int ivsize = crypto_aead_ivsize(aead);
struct caam_flc *flc;
u32 *desc;
int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
ctx->cdata.keylen;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
ctx->cdata.key_virt = ctx->key;
/*
* RFC4106 encrypt shared descriptor
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4106_ENC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
flc = &ctx->flc[ENCRYPT];
desc = flc->sh_desc;
cnstr_shdsc_rfc4106_encap(desc, &ctx->cdata, ivsize, ctx->authsize,
true);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4106_DEC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
flc = &ctx->flc[DECRYPT];
desc = flc->sh_desc;
cnstr_shdsc_rfc4106_decap(desc, &ctx->cdata, ivsize, ctx->authsize,
true);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
return 0;
}
static int rfc4106_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
int err;
err = crypto_rfc4106_check_authsize(authsize);
if (err)
return err;
ctx->authsize = authsize;
rfc4106_set_sh_desc(authenc);
return 0;
}
static int rfc4106_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *dev = ctx->dev;
int ret;
ret = aes_check_keylen(keylen - 4);
if (ret)
return ret;
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
memcpy(ctx->key, key, keylen);
/*
* The last four bytes of the key material are used as the salt value
* in the nonce. Update the AES key length.
*/
ctx->cdata.keylen = keylen - 4;
dma_sync_single_for_device(dev, ctx->key_dma, ctx->cdata.keylen,
ctx->dir);
return rfc4106_set_sh_desc(aead);
}
static int rfc4543_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *dev = ctx->dev;
unsigned int ivsize = crypto_aead_ivsize(aead);
struct caam_flc *flc;
u32 *desc;
int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
ctx->cdata.keylen;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
ctx->cdata.key_virt = ctx->key;
/*
* RFC4543 encrypt shared descriptor
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4543_ENC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
flc = &ctx->flc[ENCRYPT];
desc = flc->sh_desc;
cnstr_shdsc_rfc4543_encap(desc, &ctx->cdata, ivsize, ctx->authsize,
true);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4543_DEC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
flc = &ctx->flc[DECRYPT];
desc = flc->sh_desc;
cnstr_shdsc_rfc4543_decap(desc, &ctx->cdata, ivsize, ctx->authsize,
true);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
return 0;
}
static int rfc4543_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
if (authsize != 16)
return -EINVAL;
ctx->authsize = authsize;
rfc4543_set_sh_desc(authenc);
return 0;
}
static int rfc4543_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *dev = ctx->dev;
int ret;
ret = aes_check_keylen(keylen - 4);
if (ret)
return ret;
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
memcpy(ctx->key, key, keylen);
/*
* The last four bytes of the key material are used as the salt value
* in the nonce. Update the AES key length.
*/
ctx->cdata.keylen = keylen - 4;
dma_sync_single_for_device(dev, ctx->key_dma, ctx->cdata.keylen,
ctx->dir);
return rfc4543_set_sh_desc(aead);
}
static int skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
unsigned int keylen, const u32 ctx1_iv_off)
{
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct caam_skcipher_alg *alg =
container_of(crypto_skcipher_alg(skcipher),
struct caam_skcipher_alg, skcipher);
struct device *dev = ctx->dev;
struct caam_flc *flc;
unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
u32 *desc;
const bool is_rfc3686 = alg->caam.rfc3686;
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
ctx->cdata.keylen = keylen;
ctx->cdata.key_virt = key;
ctx->cdata.key_inline = true;
/* skcipher_encrypt shared descriptor */
flc = &ctx->flc[ENCRYPT];
desc = flc->sh_desc;
cnstr_shdsc_skcipher_encap(desc, &ctx->cdata, ivsize, is_rfc3686,
ctx1_iv_off);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
/* skcipher_decrypt shared descriptor */
flc = &ctx->flc[DECRYPT];
desc = flc->sh_desc;
cnstr_shdsc_skcipher_decap(desc, &ctx->cdata, ivsize, is_rfc3686,
ctx1_iv_off);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
return 0;
}
static int aes_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
int err;
err = aes_check_keylen(keylen);
if (err)
return err;
return skcipher_setkey(skcipher, key, keylen, 0);
}
static int rfc3686_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
u32 ctx1_iv_off;
int err;
/*
* RFC3686 specific:
* | CONTEXT1[255:128] = {NONCE, IV, COUNTER}
* | *key = {KEY, NONCE}
*/
ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
keylen -= CTR_RFC3686_NONCE_SIZE;
err = aes_check_keylen(keylen);
if (err)
return err;
return skcipher_setkey(skcipher, key, keylen, ctx1_iv_off);
}
static int ctr_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
u32 ctx1_iv_off;
int err;
/*
* AES-CTR needs to load IV in CONTEXT1 reg
* at an offset of 128bits (16bytes)
* CONTEXT1[255:128] = IV
*/
ctx1_iv_off = 16;
err = aes_check_keylen(keylen);
if (err)
return err;
return skcipher_setkey(skcipher, key, keylen, ctx1_iv_off);
}
static int chacha20_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
if (keylen != CHACHA_KEY_SIZE)
return -EINVAL;
return skcipher_setkey(skcipher, key, keylen, 0);
}
static int des_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
return verify_skcipher_des_key(skcipher, key) ?:
skcipher_setkey(skcipher, key, keylen, 0);
}
static int des3_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
return verify_skcipher_des3_key(skcipher, key) ?:
skcipher_setkey(skcipher, key, keylen, 0);
}
static int xts_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
unsigned int keylen)
{
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct device *dev = ctx->dev;
struct caam_flc *flc;
u32 *desc;
if (keylen != 2 * AES_MIN_KEY_SIZE && keylen != 2 * AES_MAX_KEY_SIZE) {
dev_err(dev, "key size mismatch\n");
return -EINVAL;
}
ctx->cdata.keylen = keylen;
ctx->cdata.key_virt = key;
ctx->cdata.key_inline = true;
/* xts_skcipher_encrypt shared descriptor */
flc = &ctx->flc[ENCRYPT];
desc = flc->sh_desc;
cnstr_shdsc_xts_skcipher_encap(desc, &ctx->cdata);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
/* xts_skcipher_decrypt shared descriptor */
flc = &ctx->flc[DECRYPT];
desc = flc->sh_desc;
cnstr_shdsc_xts_skcipher_decap(desc, &ctx->cdata);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
sizeof(flc->flc) + desc_bytes(desc),
ctx->dir);
return 0;
}
static struct skcipher_edesc *skcipher_edesc_alloc(struct skcipher_request *req)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_request *req_ctx = skcipher_request_ctx(req);
struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct device *dev = ctx->dev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
struct skcipher_edesc *edesc;
dma_addr_t iv_dma;
u8 *iv;
int ivsize = crypto_skcipher_ivsize(skcipher);
int dst_sg_idx, qm_sg_ents, qm_sg_bytes;
struct dpaa2_sg_entry *sg_table;
src_nents = sg_nents_for_len(req->src, req->cryptlen);
if (unlikely(src_nents < 0)) {
dev_err(dev, "Insufficient bytes (%d) in src S/G\n",
req->cryptlen);
return ERR_PTR(src_nents);
}
if (unlikely(req->dst != req->src)) {
dst_nents = sg_nents_for_len(req->dst, req->cryptlen);
if (unlikely(dst_nents < 0)) {
dev_err(dev, "Insufficient bytes (%d) in dst S/G\n",
req->cryptlen);
return ERR_PTR(dst_nents);
}
mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
DMA_TO_DEVICE);
if (unlikely(!mapped_src_nents)) {
dev_err(dev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents,
DMA_FROM_DEVICE);
if (unlikely(!mapped_dst_nents)) {
dev_err(dev, "unable to map destination\n");
dma_unmap_sg(dev, req->src, src_nents, DMA_TO_DEVICE);
return ERR_PTR(-ENOMEM);
}
} else {
mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
DMA_BIDIRECTIONAL);
if (unlikely(!mapped_src_nents)) {
dev_err(dev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
}
qm_sg_ents = 1 + mapped_src_nents;
dst_sg_idx = qm_sg_ents;
/*
* Input, output HW S/G tables: [IV, src][dst, IV]
* IV entries point to the same buffer
* If src == dst, S/G entries are reused (S/G tables overlap)
*
* HW reads 4 S/G entries at a time; make sure the reads don't go beyond
* the end of the table by allocating more S/G entries.
*/
if (req->src != req->dst)
qm_sg_ents += pad_sg_nents(mapped_dst_nents + 1);
else
qm_sg_ents = 1 + pad_sg_nents(qm_sg_ents);
qm_sg_bytes = qm_sg_ents * sizeof(struct dpaa2_sg_entry);
if (unlikely(offsetof(struct skcipher_edesc, sgt) + qm_sg_bytes +
ivsize > CAAM_QI_MEMCACHE_SIZE)) {
dev_err(dev, "No space for %d S/G entries and/or %dB IV\n",
qm_sg_ents, ivsize);
caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
return ERR_PTR(-ENOMEM);
}
/* allocate space for base edesc, link tables and IV */
edesc = qi_cache_zalloc(GFP_DMA | flags);
if (unlikely(!edesc)) {
dev_err(dev, "could not allocate extended descriptor\n");
caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
return ERR_PTR(-ENOMEM);
}
/* Make sure IV is located in a DMAable area */
sg_table = &edesc->sgt[0];
iv = (u8 *)(sg_table + qm_sg_ents);
memcpy(iv, req->iv, ivsize);
iv_dma = dma_map_single(dev, iv, ivsize, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, iv_dma)) {
dev_err(dev, "unable to map IV\n");
caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->iv_dma = iv_dma;
edesc->qm_sg_bytes = qm_sg_bytes;
dma_to_qm_sg_one(sg_table, iv_dma, ivsize, 0);
sg_to_qm_sg(req->src, req->cryptlen, sg_table + 1, 0);
if (req->src != req->dst)
sg_to_qm_sg(req->dst, req->cryptlen, sg_table + dst_sg_idx, 0);
dma_to_qm_sg_one(sg_table + dst_sg_idx + mapped_dst_nents, iv_dma,
ivsize, 0);
edesc->qm_sg_dma = dma_map_single(dev, sg_table, edesc->qm_sg_bytes,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, edesc->qm_sg_dma)) {
dev_err(dev, "unable to map S/G table\n");
caam_unmap(dev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, DMA_BIDIRECTIONAL, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
dpaa2_fl_set_final(in_fle, true);
dpaa2_fl_set_len(in_fle, req->cryptlen + ivsize);
dpaa2_fl_set_len(out_fle, req->cryptlen + ivsize);
dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
dpaa2_fl_set_format(out_fle, dpaa2_fl_sg);
if (req->src == req->dst)
dpaa2_fl_set_addr(out_fle, edesc->qm_sg_dma +
sizeof(*sg_table));
else
dpaa2_fl_set_addr(out_fle, edesc->qm_sg_dma + dst_sg_idx *
sizeof(*sg_table));
return edesc;
}
static void aead_unmap(struct device *dev, struct aead_edesc *edesc,
struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
int ivsize = crypto_aead_ivsize(aead);
caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
edesc->iv_dma, ivsize, DMA_TO_DEVICE, edesc->qm_sg_dma,
edesc->qm_sg_bytes);
dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
}
static void skcipher_unmap(struct device *dev, struct skcipher_edesc *edesc,
struct skcipher_request *req)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
int ivsize = crypto_skcipher_ivsize(skcipher);
caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
edesc->iv_dma, ivsize, DMA_BIDIRECTIONAL, edesc->qm_sg_dma,
edesc->qm_sg_bytes);
}
static void aead_encrypt_done(void *cbk_ctx, u32 status)
{
struct crypto_async_request *areq = cbk_ctx;
struct aead_request *req = container_of(areq, struct aead_request,
base);
struct caam_request *req_ctx = to_caam_req(areq);
struct aead_edesc *edesc = req_ctx->edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
int ecode = 0;
dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
if (unlikely(status))
ecode = caam_qi2_strstatus(ctx->dev, status);
aead_unmap(ctx->dev, edesc, req);
qi_cache_free(edesc);
aead_request_complete(req, ecode);
}
static void aead_decrypt_done(void *cbk_ctx, u32 status)
{
struct crypto_async_request *areq = cbk_ctx;
struct aead_request *req = container_of(areq, struct aead_request,
base);
struct caam_request *req_ctx = to_caam_req(areq);
struct aead_edesc *edesc = req_ctx->edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
int ecode = 0;
dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
if (unlikely(status))
ecode = caam_qi2_strstatus(ctx->dev, status);
aead_unmap(ctx->dev, edesc, req);
qi_cache_free(edesc);
aead_request_complete(req, ecode);
}
static int aead_encrypt(struct aead_request *req)
{
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct caam_request *caam_req = aead_request_ctx(req);
int ret;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, true);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
caam_req->flc = &ctx->flc[ENCRYPT];
caam_req->flc_dma = ctx->flc_dma[ENCRYPT];
caam_req->cbk = aead_encrypt_done;
caam_req->ctx = &req->base;
caam_req->edesc = edesc;
ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
if (ret != -EINPROGRESS &&
!(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
aead_unmap(ctx->dev, edesc, req);
qi_cache_free(edesc);
}
return ret;
}
static int aead_decrypt(struct aead_request *req)
{
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct caam_request *caam_req = aead_request_ctx(req);
int ret;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, false);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
caam_req->flc = &ctx->flc[DECRYPT];
caam_req->flc_dma = ctx->flc_dma[DECRYPT];
caam_req->cbk = aead_decrypt_done;
caam_req->ctx = &req->base;
caam_req->edesc = edesc;
ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
if (ret != -EINPROGRESS &&
!(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
aead_unmap(ctx->dev, edesc, req);
qi_cache_free(edesc);
}
return ret;
}
static int ipsec_gcm_encrypt(struct aead_request *req)
{
return crypto_ipsec_check_assoclen(req->assoclen) ? : aead_encrypt(req);
}
static int ipsec_gcm_decrypt(struct aead_request *req)
{
return crypto_ipsec_check_assoclen(req->assoclen) ? : aead_decrypt(req);
}
static void skcipher_encrypt_done(void *cbk_ctx, u32 status)
{
struct crypto_async_request *areq = cbk_ctx;
struct skcipher_request *req = skcipher_request_cast(areq);
struct caam_request *req_ctx = to_caam_req(areq);
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct skcipher_edesc *edesc = req_ctx->edesc;
int ecode = 0;
int ivsize = crypto_skcipher_ivsize(skcipher);
dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
if (unlikely(status))
ecode = caam_qi2_strstatus(ctx->dev, status);
print_hex_dump_debug("dstiv @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
edesc->src_nents > 1 ? 100 : ivsize, 1);
caam_dump_sg("dst @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->cryptlen, 1);
skcipher_unmap(ctx->dev, edesc, req);
/*
* The crypto API expects us to set the IV (req->iv) to the last
* ciphertext block (CBC mode) or last counter (CTR mode).
* This is used e.g. by the CTS mode.
*/
if (!ecode)
memcpy(req->iv, (u8 *)&edesc->sgt[0] + edesc->qm_sg_bytes,
ivsize);
qi_cache_free(edesc);
skcipher_request_complete(req, ecode);
}
static void skcipher_decrypt_done(void *cbk_ctx, u32 status)
{
struct crypto_async_request *areq = cbk_ctx;
struct skcipher_request *req = skcipher_request_cast(areq);
struct caam_request *req_ctx = to_caam_req(areq);
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct skcipher_edesc *edesc = req_ctx->edesc;
int ecode = 0;
int ivsize = crypto_skcipher_ivsize(skcipher);
dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
if (unlikely(status))
ecode = caam_qi2_strstatus(ctx->dev, status);
print_hex_dump_debug("dstiv @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
edesc->src_nents > 1 ? 100 : ivsize, 1);
caam_dump_sg("dst @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->cryptlen, 1);
skcipher_unmap(ctx->dev, edesc, req);
/*
* The crypto API expects us to set the IV (req->iv) to the last
* ciphertext block (CBC mode) or last counter (CTR mode).
* This is used e.g. by the CTS mode.
*/
if (!ecode)
memcpy(req->iv, (u8 *)&edesc->sgt[0] + edesc->qm_sg_bytes,
ivsize);
qi_cache_free(edesc);
skcipher_request_complete(req, ecode);
}
static int skcipher_encrypt(struct skcipher_request *req)
{
struct skcipher_edesc *edesc;
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct caam_request *caam_req = skcipher_request_ctx(req);
int ret;
if (!req->cryptlen)
return 0;
/* allocate extended descriptor */
edesc = skcipher_edesc_alloc(req);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
caam_req->flc = &ctx->flc[ENCRYPT];
caam_req->flc_dma = ctx->flc_dma[ENCRYPT];
caam_req->cbk = skcipher_encrypt_done;
caam_req->ctx = &req->base;
caam_req->edesc = edesc;
ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
if (ret != -EINPROGRESS &&
!(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
skcipher_unmap(ctx->dev, edesc, req);
qi_cache_free(edesc);
}
return ret;
}
static int skcipher_decrypt(struct skcipher_request *req)
{
struct skcipher_edesc *edesc;
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct caam_request *caam_req = skcipher_request_ctx(req);
int ret;
if (!req->cryptlen)
return 0;
/* allocate extended descriptor */
edesc = skcipher_edesc_alloc(req);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
caam_req->flc = &ctx->flc[DECRYPT];
caam_req->flc_dma = ctx->flc_dma[DECRYPT];
caam_req->cbk = skcipher_decrypt_done;
caam_req->ctx = &req->base;
caam_req->edesc = edesc;
ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
if (ret != -EINPROGRESS &&
!(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
skcipher_unmap(ctx->dev, edesc, req);
qi_cache_free(edesc);
}
return ret;
}
static int caam_cra_init(struct caam_ctx *ctx, struct caam_alg_entry *caam,
bool uses_dkp)
{
dma_addr_t dma_addr;
int i;
/* copy descriptor header template value */
ctx->cdata.algtype = OP_TYPE_CLASS1_ALG | caam->class1_alg_type;
ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam->class2_alg_type;
ctx->dev = caam->dev;
ctx->dir = uses_dkp ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
dma_addr = dma_map_single_attrs(ctx->dev, ctx->flc,
offsetof(struct caam_ctx, flc_dma),
ctx->dir, DMA_ATTR_SKIP_CPU_SYNC);
if (dma_mapping_error(ctx->dev, dma_addr)) {
dev_err(ctx->dev, "unable to map key, shared descriptors\n");
return -ENOMEM;
}
for (i = 0; i < NUM_OP; i++)
ctx->flc_dma[i] = dma_addr + i * sizeof(ctx->flc[i]);
ctx->key_dma = dma_addr + NUM_OP * sizeof(ctx->flc[0]);
return 0;
}
static int caam_cra_init_skcipher(struct crypto_skcipher *tfm)
{
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct caam_skcipher_alg *caam_alg =
container_of(alg, typeof(*caam_alg), skcipher);
crypto_skcipher_set_reqsize(tfm, sizeof(struct caam_request));
return caam_cra_init(crypto_skcipher_ctx(tfm), &caam_alg->caam, false);
}
static int caam_cra_init_aead(struct crypto_aead *tfm)
{
struct aead_alg *alg = crypto_aead_alg(tfm);
struct caam_aead_alg *caam_alg = container_of(alg, typeof(*caam_alg),
aead);
crypto_aead_set_reqsize(tfm, sizeof(struct caam_request));
return caam_cra_init(crypto_aead_ctx(tfm), &caam_alg->caam,
!caam_alg->caam.nodkp);
}
static void caam_exit_common(struct caam_ctx *ctx)
{
dma_unmap_single_attrs(ctx->dev, ctx->flc_dma[0],
offsetof(struct caam_ctx, flc_dma), ctx->dir,
DMA_ATTR_SKIP_CPU_SYNC);
}
static void caam_cra_exit(struct crypto_skcipher *tfm)
{
caam_exit_common(crypto_skcipher_ctx(tfm));
}
static void caam_cra_exit_aead(struct crypto_aead *tfm)
{
caam_exit_common(crypto_aead_ctx(tfm));
}
static struct caam_skcipher_alg driver_algs[] = {
{
.skcipher = {
.base = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aes_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
},
{
.skcipher = {
.base = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-3des-caam-qi2",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
},
{
.skcipher = {
.base = {
.cra_name = "cbc(des)",
.cra_driver_name = "cbc-des-caam-qi2",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = des_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
},
{
.skcipher = {
.base = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = ctr_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
},
{
.skcipher = {
.base = {
.cra_name = "rfc3686(ctr(aes))",
.cra_driver_name = "rfc3686-ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = rfc3686_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.max_keysize = AES_MAX_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.ivsize = CTR_RFC3686_IV_SIZE,
.chunksize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.rfc3686 = true,
},
},
{
.skcipher = {
.base = {
.cra_name = "xts(aes)",
.cra_driver_name = "xts-aes-caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = xts_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XTS,
},
{
.skcipher = {
.base = {
.cra_name = "chacha20",
.cra_driver_name = "chacha20-caam-qi2",
.cra_blocksize = 1,
},
.setkey = chacha20_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = CHACHA_KEY_SIZE,
.max_keysize = CHACHA_KEY_SIZE,
.ivsize = CHACHA_IV_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_CHACHA20,
},
};
static struct caam_aead_alg driver_aeads[] = {
{
.aead = {
.base = {
.cra_name = "rfc4106(gcm(aes))",
.cra_driver_name = "rfc4106-gcm-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = rfc4106_setkey,
.setauthsize = rfc4106_setauthsize,
.encrypt = ipsec_gcm_encrypt,
.decrypt = ipsec_gcm_decrypt,
.ivsize = 8,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
.nodkp = true,
},
},
{
.aead = {
.base = {
.cra_name = "rfc4543(gcm(aes))",
.cra_driver_name = "rfc4543-gcm-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = rfc4543_setkey,
.setauthsize = rfc4543_setauthsize,
.encrypt = ipsec_gcm_encrypt,
.decrypt = ipsec_gcm_decrypt,
.ivsize = 8,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
.nodkp = true,
},
},
/* Galois Counter Mode */
{
.aead = {
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "gcm-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = gcm_setkey,
.setauthsize = gcm_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = 12,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
.nodkp = true,
}
},
/* single-pass ipsec_esp descriptor */
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(aes))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-aes-caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-aes-caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-aes-caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-cbc-aes-caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-aes-caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-cbc-aes-caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-aes-caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-cbc-aes-"
"caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-aes-caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-cbc-aes-"
"caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-aes-caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-cbc-aes-"
"caam-qi2",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-des3_ede-caam-qi2",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-des3_ede-caam-qi2",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-des3_ede-caam-qi2",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-"
"cbc-des3_ede-caam-qi2",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-des3_ede-caam-qi2",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-"
"cbc-des3_ede-caam-qi2",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-des3_ede-caam-qi2",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-"
"cbc-des3_ede-caam-qi2",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-des3_ede-caam-qi2",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-"
"cbc-des3_ede-caam-qi2",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-des3_ede-caam-qi2",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-"
"cbc-des3_ede-caam-qi2",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-des-caam-qi2",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-des-caam-qi2",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(des))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-des-caam-qi2",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-cbc-des-caam-qi2",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(des))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-des-caam-qi2",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-cbc-des-"
"caam-qi2",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(des))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-des-caam-qi2",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-cbc-des-"
"caam-qi2",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(des))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-des-caam-qi2",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-cbc-des-"
"caam-qi2",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(des))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-des-caam-qi2",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-cbc-des-"
"caam-qi2",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-md5-"
"rfc3686-ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc("
"hmac(md5),rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-md5-"
"rfc3686-ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-sha1-"
"rfc3686-ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc("
"hmac(sha1),rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-sha1-"
"rfc3686-ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-sha224-"
"rfc3686-ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc("
"hmac(sha224),rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-sha224-"
"rfc3686-ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-sha256-"
"rfc3686-ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc(hmac(sha256),"
"rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-sha256-"
"rfc3686-ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-sha384-"
"rfc3686-ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc(hmac(sha384),"
"rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-sha384-"
"rfc3686-ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "rfc7539(chacha20,poly1305)",
.cra_driver_name = "rfc7539-chacha20-poly1305-"
"caam-qi2",
.cra_blocksize = 1,
},
.setkey = chachapoly_setkey,
.setauthsize = chachapoly_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CHACHAPOLY_IV_SIZE,
.maxauthsize = POLY1305_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_CHACHA20 |
OP_ALG_AAI_AEAD,
.class2_alg_type = OP_ALG_ALGSEL_POLY1305 |
OP_ALG_AAI_AEAD,
.nodkp = true,
},
},
{
.aead = {
.base = {
.cra_name = "rfc7539esp(chacha20,poly1305)",
.cra_driver_name = "rfc7539esp-chacha20-"
"poly1305-caam-qi2",
.cra_blocksize = 1,
},
.setkey = chachapoly_setkey,
.setauthsize = chachapoly_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = 8,
.maxauthsize = POLY1305_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_CHACHA20 |
OP_ALG_AAI_AEAD,
.class2_alg_type = OP_ALG_ALGSEL_POLY1305 |
OP_ALG_AAI_AEAD,
.nodkp = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-sha512-"
"rfc3686-ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc(hmac(sha512),"
"rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-sha512-"
"rfc3686-ctr-aes-caam-qi2",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
.geniv = true,
},
},
};
static void caam_skcipher_alg_init(struct caam_skcipher_alg *t_alg)
{
struct skcipher_alg *alg = &t_alg->skcipher;
alg->base.cra_module = THIS_MODULE;
alg->base.cra_priority = CAAM_CRA_PRIORITY;
alg->base.cra_ctxsize = sizeof(struct caam_ctx);
alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
alg->init = caam_cra_init_skcipher;
alg->exit = caam_cra_exit;
}
static void caam_aead_alg_init(struct caam_aead_alg *t_alg)
{
struct aead_alg *alg = &t_alg->aead;
alg->base.cra_module = THIS_MODULE;
alg->base.cra_priority = CAAM_CRA_PRIORITY;
alg->base.cra_ctxsize = sizeof(struct caam_ctx);
alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
alg->init = caam_cra_init_aead;
alg->exit = caam_cra_exit_aead;
}
/* max hash key is max split key size */
#define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
#define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
/* caam context sizes for hashes: running digest + 8 */
#define HASH_MSG_LEN 8
#define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
enum hash_optype {
UPDATE = 0,
UPDATE_FIRST,
FINALIZE,
DIGEST,
HASH_NUM_OP
};
/**
* caam_hash_ctx - ahash per-session context
* @flc: Flow Contexts array
* @key: authentication key
* @flc_dma: I/O virtual addresses of the Flow Contexts
* @dev: dpseci device
* @ctx_len: size of Context Register
* @adata: hashing algorithm details
*/
struct caam_hash_ctx {
struct caam_flc flc[HASH_NUM_OP];
u8 key[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
dma_addr_t flc_dma[HASH_NUM_OP];
struct device *dev;
int ctx_len;
struct alginfo adata;
};
/* ahash state */
struct caam_hash_state {
struct caam_request caam_req;
dma_addr_t buf_dma;
dma_addr_t ctx_dma;
int ctx_dma_len;
u8 buf[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
int buflen;
int next_buflen;
u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned;
int (*update)(struct ahash_request *req);
int (*final)(struct ahash_request *req);
int (*finup)(struct ahash_request *req);
};
struct caam_export_state {
u8 buf[CAAM_MAX_HASH_BLOCK_SIZE];
u8 caam_ctx[MAX_CTX_LEN];
int buflen;
int (*update)(struct ahash_request *req);
int (*final)(struct ahash_request *req);
int (*finup)(struct ahash_request *req);
};
/* Map current buffer in state (if length > 0) and put it in link table */
static inline int buf_map_to_qm_sg(struct device *dev,
struct dpaa2_sg_entry *qm_sg,
struct caam_hash_state *state)
{
int buflen = state->buflen;
if (!buflen)
return 0;
state->buf_dma = dma_map_single(dev, state->buf, buflen,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, state->buf_dma)) {
dev_err(dev, "unable to map buf\n");
state->buf_dma = 0;
return -ENOMEM;
}
dma_to_qm_sg_one(qm_sg, state->buf_dma, buflen, 0);
return 0;
}
/* Map state->caam_ctx, and add it to link table */
static inline int ctx_map_to_qm_sg(struct device *dev,
struct caam_hash_state *state, int ctx_len,
struct dpaa2_sg_entry *qm_sg, u32 flag)
{
state->ctx_dma_len = ctx_len;
state->ctx_dma = dma_map_single(dev, state->caam_ctx, ctx_len, flag);
if (dma_mapping_error(dev, state->ctx_dma)) {
dev_err(dev, "unable to map ctx\n");
state->ctx_dma = 0;
return -ENOMEM;
}
dma_to_qm_sg_one(qm_sg, state->ctx_dma, ctx_len, 0);
return 0;
}
static int ahash_set_sh_desc(struct crypto_ahash *ahash)
{
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
int digestsize = crypto_ahash_digestsize(ahash);
struct dpaa2_caam_priv *priv = dev_get_drvdata(ctx->dev);
struct caam_flc *flc;
u32 *desc;
/* ahash_update shared descriptor */
flc = &ctx->flc[UPDATE];
desc = flc->sh_desc;
cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_UPDATE, ctx->ctx_len,
ctx->ctx_len, true, priv->sec_attr.era);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(ctx->dev, ctx->flc_dma[UPDATE],
desc_bytes(desc), DMA_BIDIRECTIONAL);
print_hex_dump_debug("ahash update shdesc@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
1);
/* ahash_update_first shared descriptor */
flc = &ctx->flc[UPDATE_FIRST];
desc = flc->sh_desc;
cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len,
ctx->ctx_len, false, priv->sec_attr.era);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(ctx->dev, ctx->flc_dma[UPDATE_FIRST],
desc_bytes(desc), DMA_BIDIRECTIONAL);
print_hex_dump_debug("ahash update first shdesc@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
1);
/* ahash_final shared descriptor */
flc = &ctx->flc[FINALIZE];
desc = flc->sh_desc;
cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, digestsize,
ctx->ctx_len, true, priv->sec_attr.era);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(ctx->dev, ctx->flc_dma[FINALIZE],
desc_bytes(desc), DMA_BIDIRECTIONAL);
print_hex_dump_debug("ahash final shdesc@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
1);
/* ahash_digest shared descriptor */
flc = &ctx->flc[DIGEST];
desc = flc->sh_desc;
cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, digestsize,
ctx->ctx_len, false, priv->sec_attr.era);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
dma_sync_single_for_device(ctx->dev, ctx->flc_dma[DIGEST],
desc_bytes(desc), DMA_BIDIRECTIONAL);
print_hex_dump_debug("ahash digest shdesc@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
1);
return 0;
}
struct split_key_sh_result {
struct completion completion;
int err;
struct device *dev;
};
static void split_key_sh_done(void *cbk_ctx, u32 err)
{
struct split_key_sh_result *res = cbk_ctx;
dev_dbg(res->dev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
res->err = err ? caam_qi2_strstatus(res->dev, err) : 0;
complete(&res->completion);
}
/* Digest hash size if it is too large */
static int hash_digest_key(struct caam_hash_ctx *ctx, u32 *keylen, u8 *key,
u32 digestsize)
{
struct caam_request *req_ctx;
u32 *desc;
struct split_key_sh_result result;
dma_addr_t key_dma;
struct caam_flc *flc;
dma_addr_t flc_dma;
int ret = -ENOMEM;
struct dpaa2_fl_entry *in_fle, *out_fle;
req_ctx = kzalloc(sizeof(*req_ctx), GFP_KERNEL | GFP_DMA);
if (!req_ctx)
return -ENOMEM;
in_fle = &req_ctx->fd_flt[1];
out_fle = &req_ctx->fd_flt[0];
flc = kzalloc(sizeof(*flc), GFP_KERNEL | GFP_DMA);
if (!flc)
goto err_flc;
key_dma = dma_map_single(ctx->dev, key, *keylen, DMA_BIDIRECTIONAL);
if (dma_mapping_error(ctx->dev, key_dma)) {
dev_err(ctx->dev, "unable to map key memory\n");
goto err_key_dma;
}
desc = flc->sh_desc;
init_sh_desc(desc, 0);
/* descriptor to perform unkeyed hash on key_in */
append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT |
OP_ALG_AS_INITFINAL);
append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
LDST_SRCDST_BYTE_CONTEXT);
flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
flc_dma = dma_map_single(ctx->dev, flc, sizeof(flc->flc) +
desc_bytes(desc), DMA_TO_DEVICE);
if (dma_mapping_error(ctx->dev, flc_dma)) {
dev_err(ctx->dev, "unable to map shared descriptor\n");
goto err_flc_dma;
}
dpaa2_fl_set_final(in_fle, true);
dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(in_fle, key_dma);
dpaa2_fl_set_len(in_fle, *keylen);
dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(out_fle, key_dma);
dpaa2_fl_set_len(out_fle, digestsize);
print_hex_dump_debug("key_in@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, *keylen, 1);
print_hex_dump_debug("shdesc@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
1);
result.err = 0;
init_completion(&result.completion);
result.dev = ctx->dev;
req_ctx->flc = flc;
req_ctx->flc_dma = flc_dma;
req_ctx->cbk = split_key_sh_done;
req_ctx->ctx = &result;
ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
if (ret == -EINPROGRESS) {
/* in progress */
wait_for_completion(&result.completion);
ret = result.err;
print_hex_dump_debug("digested key@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key,
digestsize, 1);
}
dma_unmap_single(ctx->dev, flc_dma, sizeof(flc->flc) + desc_bytes(desc),
DMA_TO_DEVICE);
err_flc_dma:
dma_unmap_single(ctx->dev, key_dma, *keylen, DMA_BIDIRECTIONAL);
err_key_dma:
kfree(flc);
err_flc:
kfree(req_ctx);
*keylen = digestsize;
return ret;
}
static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
unsigned int keylen)
{
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
unsigned int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
unsigned int digestsize = crypto_ahash_digestsize(ahash);
int ret;
u8 *hashed_key = NULL;
dev_dbg(ctx->dev, "keylen %d blocksize %d\n", keylen, blocksize);
if (keylen > blocksize) {
hashed_key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA);
if (!hashed_key)
return -ENOMEM;
ret = hash_digest_key(ctx, &keylen, hashed_key, digestsize);
if (ret)
goto bad_free_key;
key = hashed_key;
}
ctx->adata.keylen = keylen;
ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
OP_ALG_ALGSEL_MASK);
if (ctx->adata.keylen_pad > CAAM_MAX_HASH_KEY_SIZE)
goto bad_free_key;
ctx->adata.key_virt = key;
ctx->adata.key_inline = true;
/*
* In case |user key| > |derived key|, using DKP<imm,imm> would result
* in invalid opcodes (last bytes of user key) in the resulting
* descriptor. Use DKP<ptr,imm> instead => both virtual and dma key
* addresses are needed.
*/
if (keylen > ctx->adata.keylen_pad) {
memcpy(ctx->key, key, keylen);
dma_sync_single_for_device(ctx->dev, ctx->adata.key_dma,
ctx->adata.keylen_pad,
DMA_TO_DEVICE);
}
ret = ahash_set_sh_desc(ahash);
kfree(hashed_key);
return ret;
bad_free_key:
kfree(hashed_key);
return -EINVAL;
}
static inline void ahash_unmap(struct device *dev, struct ahash_edesc *edesc,
struct ahash_request *req)
{
struct caam_hash_state *state = ahash_request_ctx(req);
if (edesc->src_nents)
dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
if (edesc->qm_sg_bytes)
dma_unmap_single(dev, edesc->qm_sg_dma, edesc->qm_sg_bytes,
DMA_TO_DEVICE);
if (state->buf_dma) {
dma_unmap_single(dev, state->buf_dma, state->buflen,
DMA_TO_DEVICE);
state->buf_dma = 0;
}
}
static inline void ahash_unmap_ctx(struct device *dev,
struct ahash_edesc *edesc,
struct ahash_request *req, u32 flag)
{
struct caam_hash_state *state = ahash_request_ctx(req);
if (state->ctx_dma) {
dma_unmap_single(dev, state->ctx_dma, state->ctx_dma_len, flag);
state->ctx_dma = 0;
}
ahash_unmap(dev, edesc, req);
}
static void ahash_done(void *cbk_ctx, u32 status)
{
struct crypto_async_request *areq = cbk_ctx;
struct ahash_request *req = ahash_request_cast(areq);
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_state *state = ahash_request_ctx(req);
struct ahash_edesc *edesc = state->caam_req.edesc;
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
int digestsize = crypto_ahash_digestsize(ahash);
int ecode = 0;
dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
if (unlikely(status))
ecode = caam_qi2_strstatus(ctx->dev, status);
ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE);
memcpy(req->result, state->caam_ctx, digestsize);
qi_cache_free(edesc);
print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
ctx->ctx_len, 1);
req->base.complete(&req->base, ecode);
}
static void ahash_done_bi(void *cbk_ctx, u32 status)
{
struct crypto_async_request *areq = cbk_ctx;
struct ahash_request *req = ahash_request_cast(areq);
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_state *state = ahash_request_ctx(req);
struct ahash_edesc *edesc = state->caam_req.edesc;
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
int ecode = 0;
dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
if (unlikely(status))
ecode = caam_qi2_strstatus(ctx->dev, status);
ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL);
qi_cache_free(edesc);
scatterwalk_map_and_copy(state->buf, req->src,
req->nbytes - state->next_buflen,
state->next_buflen, 0);
state->buflen = state->next_buflen;
print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, state->buf,
state->buflen, 1);
print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
ctx->ctx_len, 1);
if (req->result)
print_hex_dump_debug("result@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->result,
crypto_ahash_digestsize(ahash), 1);
req->base.complete(&req->base, ecode);
}
static void ahash_done_ctx_src(void *cbk_ctx, u32 status)
{
struct crypto_async_request *areq = cbk_ctx;
struct ahash_request *req = ahash_request_cast(areq);
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_state *state = ahash_request_ctx(req);
struct ahash_edesc *edesc = state->caam_req.edesc;
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
int digestsize = crypto_ahash_digestsize(ahash);
int ecode = 0;
dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
if (unlikely(status))
ecode = caam_qi2_strstatus(ctx->dev, status);
ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL);
memcpy(req->result, state->caam_ctx, digestsize);
qi_cache_free(edesc);
print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
ctx->ctx_len, 1);
req->base.complete(&req->base, ecode);
}
static void ahash_done_ctx_dst(void *cbk_ctx, u32 status)
{
struct crypto_async_request *areq = cbk_ctx;
struct ahash_request *req = ahash_request_cast(areq);
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_state *state = ahash_request_ctx(req);
struct ahash_edesc *edesc = state->caam_req.edesc;
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
int ecode = 0;
dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
if (unlikely(status))
ecode = caam_qi2_strstatus(ctx->dev, status);
ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE);
qi_cache_free(edesc);
scatterwalk_map_and_copy(state->buf, req->src,
req->nbytes - state->next_buflen,
state->next_buflen, 0);
state->buflen = state->next_buflen;
print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, state->buf,
state->buflen, 1);
print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
ctx->ctx_len, 1);
if (req->result)
print_hex_dump_debug("result@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->result,
crypto_ahash_digestsize(ahash), 1);
req->base.complete(&req->base, ecode);
}
static int ahash_update_ctx(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct caam_request *req_ctx = &state->caam_req;
struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
u8 *buf = state->buf;
int *buflen = &state->buflen;
int *next_buflen = &state->next_buflen;
int in_len = *buflen + req->nbytes, to_hash;
int src_nents, mapped_nents, qm_sg_bytes, qm_sg_src_index;
struct ahash_edesc *edesc;
int ret = 0;
*next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
to_hash = in_len - *next_buflen;
if (to_hash) {
struct dpaa2_sg_entry *sg_table;
int src_len = req->nbytes - *next_buflen;
src_nents = sg_nents_for_len(req->src, src_len);
if (src_nents < 0) {
dev_err(ctx->dev, "Invalid number of src SG.\n");
return src_nents;
}
if (src_nents) {
mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
DMA_TO_DEVICE);
if (!mapped_nents) {
dev_err(ctx->dev, "unable to DMA map source\n");
return -ENOMEM;
}
} else {
mapped_nents = 0;
}
/* allocate space for base edesc and link tables */
edesc = qi_cache_zalloc(GFP_DMA | flags);
if (!edesc) {
dma_unmap_sg(ctx->dev, req->src, src_nents,
DMA_TO_DEVICE);
return -ENOMEM;
}
edesc->src_nents = src_nents;
qm_sg_src_index = 1 + (*buflen ? 1 : 0);
qm_sg_bytes = pad_sg_nents(qm_sg_src_index + mapped_nents) *
sizeof(*sg_table);
sg_table = &edesc->sgt[0];
ret = ctx_map_to_qm_sg(ctx->dev, state, ctx->ctx_len, sg_table,
DMA_BIDIRECTIONAL);
if (ret)
goto unmap_ctx;
ret = buf_map_to_qm_sg(ctx->dev, sg_table + 1, state);
if (ret)
goto unmap_ctx;
if (mapped_nents) {
sg_to_qm_sg_last(req->src, src_len,
sg_table + qm_sg_src_index, 0);
} else {
dpaa2_sg_set_final(sg_table + qm_sg_src_index - 1,
true);
}
edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
qm_sg_bytes, DMA_TO_DEVICE);
if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
dev_err(ctx->dev, "unable to map S/G table\n");
ret = -ENOMEM;
goto unmap_ctx;
}
edesc->qm_sg_bytes = qm_sg_bytes;
memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
dpaa2_fl_set_final(in_fle, true);
dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
dpaa2_fl_set_len(in_fle, ctx->ctx_len + to_hash);
dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(out_fle, state->ctx_dma);
dpaa2_fl_set_len(out_fle, ctx->ctx_len);
req_ctx->flc = &ctx->flc[UPDATE];
req_ctx->flc_dma = ctx->flc_dma[UPDATE];
req_ctx->cbk = ahash_done_bi;
req_ctx->ctx = &req->base;
req_ctx->edesc = edesc;
ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
if (ret != -EINPROGRESS &&
!(ret == -EBUSY &&
req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
goto unmap_ctx;
} else if (*next_buflen) {
scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
req->nbytes, 0);
*buflen = *next_buflen;
print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, buf,
*buflen, 1);
}
return ret;
unmap_ctx:
ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL);
qi_cache_free(edesc);
return ret;
}
static int ahash_final_ctx(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct caam_request *req_ctx = &state->caam_req;
struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int buflen = state->buflen;
int qm_sg_bytes;
int digestsize = crypto_ahash_digestsize(ahash);
struct ahash_edesc *edesc;
struct dpaa2_sg_entry *sg_table;
int ret;
/* allocate space for base edesc and link tables */
edesc = qi_cache_zalloc(GFP_DMA | flags);
if (!edesc)
return -ENOMEM;
qm_sg_bytes = pad_sg_nents(1 + (buflen ? 1 : 0)) * sizeof(*sg_table);
sg_table = &edesc->sgt[0];
ret = ctx_map_to_qm_sg(ctx->dev, state, ctx->ctx_len, sg_table,
DMA_BIDIRECTIONAL);
if (ret)
goto unmap_ctx;
ret = buf_map_to_qm_sg(ctx->dev, sg_table + 1, state);
if (ret)
goto unmap_ctx;
dpaa2_sg_set_final(sg_table + (buflen ? 1 : 0), true);
edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes,
DMA_TO_DEVICE);
if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
dev_err(ctx->dev, "unable to map S/G table\n");
ret = -ENOMEM;
goto unmap_ctx;
}
edesc->qm_sg_bytes = qm_sg_bytes;
memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
dpaa2_fl_set_final(in_fle, true);
dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
dpaa2_fl_set_len(in_fle, ctx->ctx_len + buflen);
dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(out_fle, state->ctx_dma);
dpaa2_fl_set_len(out_fle, digestsize);
req_ctx->flc = &ctx->flc[FINALIZE];
req_ctx->flc_dma = ctx->flc_dma[FINALIZE];
req_ctx->cbk = ahash_done_ctx_src;
req_ctx->ctx = &req->base;
req_ctx->edesc = edesc;
ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
if (ret == -EINPROGRESS ||
(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
return ret;
unmap_ctx:
ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL);
qi_cache_free(edesc);
return ret;
}
static int ahash_finup_ctx(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct caam_request *req_ctx = &state->caam_req;
struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int buflen = state->buflen;
int qm_sg_bytes, qm_sg_src_index;
int src_nents, mapped_nents;
int digestsize = crypto_ahash_digestsize(ahash);
struct ahash_edesc *edesc;
struct dpaa2_sg_entry *sg_table;
int ret;
src_nents = sg_nents_for_len(req->src, req->nbytes);
if (src_nents < 0) {
dev_err(ctx->dev, "Invalid number of src SG.\n");
return src_nents;
}
if (src_nents) {
mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
DMA_TO_DEVICE);
if (!mapped_nents) {
dev_err(ctx->dev, "unable to DMA map source\n");
return -ENOMEM;
}
} else {
mapped_nents = 0;
}
/* allocate space for base edesc and link tables */
edesc = qi_cache_zalloc(GFP_DMA | flags);
if (!edesc) {
dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE);
return -ENOMEM;
}
edesc->src_nents = src_nents;
qm_sg_src_index = 1 + (buflen ? 1 : 0);
qm_sg_bytes = pad_sg_nents(qm_sg_src_index + mapped_nents) *
sizeof(*sg_table);
sg_table = &edesc->sgt[0];
ret = ctx_map_to_qm_sg(ctx->dev, state, ctx->ctx_len, sg_table,
DMA_BIDIRECTIONAL);
if (ret)
goto unmap_ctx;
ret = buf_map_to_qm_sg(ctx->dev, sg_table + 1, state);
if (ret)
goto unmap_ctx;
sg_to_qm_sg_last(req->src, req->nbytes, sg_table + qm_sg_src_index, 0);
edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes,
DMA_TO_DEVICE);
if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
dev_err(ctx->dev, "unable to map S/G table\n");
ret = -ENOMEM;
goto unmap_ctx;
}
edesc->qm_sg_bytes = qm_sg_bytes;
memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
dpaa2_fl_set_final(in_fle, true);
dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
dpaa2_fl_set_len(in_fle, ctx->ctx_len + buflen + req->nbytes);
dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(out_fle, state->ctx_dma);
dpaa2_fl_set_len(out_fle, digestsize);
req_ctx->flc = &ctx->flc[FINALIZE];
req_ctx->flc_dma = ctx->flc_dma[FINALIZE];
req_ctx->cbk = ahash_done_ctx_src;
req_ctx->ctx = &req->base;
req_ctx->edesc = edesc;
ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
if (ret == -EINPROGRESS ||
(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
return ret;
unmap_ctx:
ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL);
qi_cache_free(edesc);
return ret;
}
static int ahash_digest(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct caam_request *req_ctx = &state->caam_req;
struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int digestsize = crypto_ahash_digestsize(ahash);
int src_nents, mapped_nents;
struct ahash_edesc *edesc;
int ret = -ENOMEM;
state->buf_dma = 0;
src_nents = sg_nents_for_len(req->src, req->nbytes);
if (src_nents < 0) {
dev_err(ctx->dev, "Invalid number of src SG.\n");
return src_nents;
}
if (src_nents) {
mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
DMA_TO_DEVICE);
if (!mapped_nents) {
dev_err(ctx->dev, "unable to map source for DMA\n");
return ret;
}
} else {
mapped_nents = 0;
}
/* allocate space for base edesc and link tables */
edesc = qi_cache_zalloc(GFP_DMA | flags);
if (!edesc) {
dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE);
return ret;
}
edesc->src_nents = src_nents;
memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
if (mapped_nents > 1) {
int qm_sg_bytes;
struct dpaa2_sg_entry *sg_table = &edesc->sgt[0];
qm_sg_bytes = pad_sg_nents(mapped_nents) * sizeof(*sg_table);
sg_to_qm_sg_last(req->src, req->nbytes, sg_table, 0);
edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
qm_sg_bytes, DMA_TO_DEVICE);
if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
dev_err(ctx->dev, "unable to map S/G table\n");
goto unmap;
}
edesc->qm_sg_bytes = qm_sg_bytes;
dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
} else {
dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(in_fle, sg_dma_address(req->src));
}
state->ctx_dma_len = digestsize;
state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx, digestsize,
DMA_FROM_DEVICE);
if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
dev_err(ctx->dev, "unable to map ctx\n");
state->ctx_dma = 0;
goto unmap;
}
dpaa2_fl_set_final(in_fle, true);
dpaa2_fl_set_len(in_fle, req->nbytes);
dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(out_fle, state->ctx_dma);
dpaa2_fl_set_len(out_fle, digestsize);
req_ctx->flc = &ctx->flc[DIGEST];
req_ctx->flc_dma = ctx->flc_dma[DIGEST];
req_ctx->cbk = ahash_done;
req_ctx->ctx = &req->base;
req_ctx->edesc = edesc;
ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
if (ret == -EINPROGRESS ||
(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
return ret;
unmap:
ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE);
qi_cache_free(edesc);
return ret;
}
static int ahash_final_no_ctx(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct caam_request *req_ctx = &state->caam_req;
struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
u8 *buf = state->buf;
int buflen = state->buflen;
int digestsize = crypto_ahash_digestsize(ahash);
struct ahash_edesc *edesc;
int ret = -ENOMEM;
/* allocate space for base edesc and link tables */
edesc = qi_cache_zalloc(GFP_DMA | flags);
if (!edesc)
return ret;
if (buflen) {
state->buf_dma = dma_map_single(ctx->dev, buf, buflen,
DMA_TO_DEVICE);
if (dma_mapping_error(ctx->dev, state->buf_dma)) {
dev_err(ctx->dev, "unable to map src\n");
goto unmap;
}
}
state->ctx_dma_len = digestsize;
state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx, digestsize,
DMA_FROM_DEVICE);
if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
dev_err(ctx->dev, "unable to map ctx\n");
state->ctx_dma = 0;
goto unmap;
}
memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
dpaa2_fl_set_final(in_fle, true);
/*
* crypto engine requires the input entry to be present when
* "frame list" FD is used.
* Since engine does not support FMT=2'b11 (unused entry type), leaving
* in_fle zeroized (except for "Final" flag) is the best option.
*/
if (buflen) {
dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(in_fle, state->buf_dma);
dpaa2_fl_set_len(in_fle, buflen);
}
dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(out_fle, state->ctx_dma);
dpaa2_fl_set_len(out_fle, digestsize);
req_ctx->flc = &ctx->flc[DIGEST];
req_ctx->flc_dma = ctx->flc_dma[DIGEST];
req_ctx->cbk = ahash_done;
req_ctx->ctx = &req->base;
req_ctx->edesc = edesc;
ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
if (ret == -EINPROGRESS ||
(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
return ret;
unmap:
ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE);
qi_cache_free(edesc);
return ret;
}
static int ahash_update_no_ctx(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct caam_request *req_ctx = &state->caam_req;
struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
u8 *buf = state->buf;
int *buflen = &state->buflen;
int *next_buflen = &state->next_buflen;
int in_len = *buflen + req->nbytes, to_hash;
int qm_sg_bytes, src_nents, mapped_nents;
struct ahash_edesc *edesc;
int ret = 0;
*next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
to_hash = in_len - *next_buflen;
if (to_hash) {
struct dpaa2_sg_entry *sg_table;
int src_len = req->nbytes - *next_buflen;
src_nents = sg_nents_for_len(req->src, src_len);
if (src_nents < 0) {
dev_err(ctx->dev, "Invalid number of src SG.\n");
return src_nents;
}
if (src_nents) {
mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
DMA_TO_DEVICE);
if (!mapped_nents) {
dev_err(ctx->dev, "unable to DMA map source\n");
return -ENOMEM;
}
} else {
mapped_nents = 0;
}
/* allocate space for base edesc and link tables */
edesc = qi_cache_zalloc(GFP_DMA | flags);
if (!edesc) {
dma_unmap_sg(ctx->dev, req->src, src_nents,
DMA_TO_DEVICE);
return -ENOMEM;
}
edesc->src_nents = src_nents;
qm_sg_bytes = pad_sg_nents(1 + mapped_nents) *
sizeof(*sg_table);
sg_table = &edesc->sgt[0];
ret = buf_map_to_qm_sg(ctx->dev, sg_table, state);
if (ret)
goto unmap_ctx;
sg_to_qm_sg_last(req->src, src_len, sg_table + 1, 0);
edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
qm_sg_bytes, DMA_TO_DEVICE);
if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
dev_err(ctx->dev, "unable to map S/G table\n");
ret = -ENOMEM;
goto unmap_ctx;
}
edesc->qm_sg_bytes = qm_sg_bytes;
state->ctx_dma_len = ctx->ctx_len;
state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx,
ctx->ctx_len, DMA_FROM_DEVICE);
if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
dev_err(ctx->dev, "unable to map ctx\n");
state->ctx_dma = 0;
ret = -ENOMEM;
goto unmap_ctx;
}
memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
dpaa2_fl_set_final(in_fle, true);
dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
dpaa2_fl_set_len(in_fle, to_hash);
dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(out_fle, state->ctx_dma);
dpaa2_fl_set_len(out_fle, ctx->ctx_len);
req_ctx->flc = &ctx->flc[UPDATE_FIRST];
req_ctx->flc_dma = ctx->flc_dma[UPDATE_FIRST];
req_ctx->cbk = ahash_done_ctx_dst;
req_ctx->ctx = &req->base;
req_ctx->edesc = edesc;
ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
if (ret != -EINPROGRESS &&
!(ret == -EBUSY &&
req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
goto unmap_ctx;
state->update = ahash_update_ctx;
state->finup = ahash_finup_ctx;
state->final = ahash_final_ctx;
} else if (*next_buflen) {
scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
req->nbytes, 0);
*buflen = *next_buflen;
print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, buf,
*buflen, 1);
}
return ret;
unmap_ctx:
ahash_unmap_ctx(ctx->dev, edesc, req, DMA_TO_DEVICE);
qi_cache_free(edesc);
return ret;
}
static int ahash_finup_no_ctx(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct caam_request *req_ctx = &state->caam_req;
struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int buflen = state->buflen;
int qm_sg_bytes, src_nents, mapped_nents;
int digestsize = crypto_ahash_digestsize(ahash);
struct ahash_edesc *edesc;
struct dpaa2_sg_entry *sg_table;
int ret;
src_nents = sg_nents_for_len(req->src, req->nbytes);
if (src_nents < 0) {
dev_err(ctx->dev, "Invalid number of src SG.\n");
return src_nents;
}
if (src_nents) {
mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
DMA_TO_DEVICE);
if (!mapped_nents) {
dev_err(ctx->dev, "unable to DMA map source\n");
return -ENOMEM;
}
} else {
mapped_nents = 0;
}
/* allocate space for base edesc and link tables */
edesc = qi_cache_zalloc(GFP_DMA | flags);
if (!edesc) {
dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE);
return -ENOMEM;
}
edesc->src_nents = src_nents;
qm_sg_bytes = pad_sg_nents(2 + mapped_nents) * sizeof(*sg_table);
sg_table = &edesc->sgt[0];
ret = buf_map_to_qm_sg(ctx->dev, sg_table, state);
if (ret)
goto unmap;
sg_to_qm_sg_last(req->src, req->nbytes, sg_table + 1, 0);
edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes,
DMA_TO_DEVICE);
if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
dev_err(ctx->dev, "unable to map S/G table\n");
ret = -ENOMEM;
goto unmap;
}
edesc->qm_sg_bytes = qm_sg_bytes;
state->ctx_dma_len = digestsize;
state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx, digestsize,
DMA_FROM_DEVICE);
if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
dev_err(ctx->dev, "unable to map ctx\n");
state->ctx_dma = 0;
ret = -ENOMEM;
goto unmap;
}
memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
dpaa2_fl_set_final(in_fle, true);
dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
dpaa2_fl_set_len(in_fle, buflen + req->nbytes);
dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(out_fle, state->ctx_dma);
dpaa2_fl_set_len(out_fle, digestsize);
req_ctx->flc = &ctx->flc[DIGEST];
req_ctx->flc_dma = ctx->flc_dma[DIGEST];
req_ctx->cbk = ahash_done;
req_ctx->ctx = &req->base;
req_ctx->edesc = edesc;
ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
if (ret != -EINPROGRESS &&
!(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
goto unmap;
return ret;
unmap:
ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE);
qi_cache_free(edesc);
return -ENOMEM;
}
static int ahash_update_first(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct caam_hash_state *state = ahash_request_ctx(req);
struct caam_request *req_ctx = &state->caam_req;
struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
u8 *buf = state->buf;
int *buflen = &state->buflen;
int *next_buflen = &state->next_buflen;
int to_hash;
int src_nents, mapped_nents;
struct ahash_edesc *edesc;
int ret = 0;
*next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
1);
to_hash = req->nbytes - *next_buflen;
if (to_hash) {
struct dpaa2_sg_entry *sg_table;
int src_len = req->nbytes - *next_buflen;
src_nents = sg_nents_for_len(req->src, src_len);
if (src_nents < 0) {
dev_err(ctx->dev, "Invalid number of src SG.\n");
return src_nents;
}
if (src_nents) {
mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
DMA_TO_DEVICE);
if (!mapped_nents) {
dev_err(ctx->dev, "unable to map source for DMA\n");
return -ENOMEM;
}
} else {
mapped_nents = 0;
}
/* allocate space for base edesc and link tables */
edesc = qi_cache_zalloc(GFP_DMA | flags);
if (!edesc) {
dma_unmap_sg(ctx->dev, req->src, src_nents,
DMA_TO_DEVICE);
return -ENOMEM;
}
edesc->src_nents = src_nents;
sg_table = &edesc->sgt[0];
memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
dpaa2_fl_set_final(in_fle, true);
dpaa2_fl_set_len(in_fle, to_hash);
if (mapped_nents > 1) {
int qm_sg_bytes;
sg_to_qm_sg_last(req->src, src_len, sg_table, 0);
qm_sg_bytes = pad_sg_nents(mapped_nents) *
sizeof(*sg_table);
edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
qm_sg_bytes,
DMA_TO_DEVICE);
if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
dev_err(ctx->dev, "unable to map S/G table\n");
ret = -ENOMEM;
goto unmap_ctx;
}
edesc->qm_sg_bytes = qm_sg_bytes;
dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
} else {
dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(in_fle, sg_dma_address(req->src));
}
state->ctx_dma_len = ctx->ctx_len;
state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx,
ctx->ctx_len, DMA_FROM_DEVICE);
if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
dev_err(ctx->dev, "unable to map ctx\n");
state->ctx_dma = 0;
ret = -ENOMEM;
goto unmap_ctx;
}
dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
dpaa2_fl_set_addr(out_fle, state->ctx_dma);
dpaa2_fl_set_len(out_fle, ctx->ctx_len);
req_ctx->flc = &ctx->flc[UPDATE_FIRST];
req_ctx->flc_dma = ctx->flc_dma[UPDATE_FIRST];
req_ctx->cbk = ahash_done_ctx_dst;
req_ctx->ctx = &req->base;
req_ctx->edesc = edesc;
ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
if (ret != -EINPROGRESS &&
!(ret == -EBUSY && req->base.flags &
CRYPTO_TFM_REQ_MAY_BACKLOG))
goto unmap_ctx;
state->update = ahash_update_ctx;
state->finup = ahash_finup_ctx;
state->final = ahash_final_ctx;
} else if (*next_buflen) {
state->update = ahash_update_no_ctx;
state->finup = ahash_finup_no_ctx;
state->final = ahash_final_no_ctx;
scatterwalk_map_and_copy(buf, req->src, 0,
req->nbytes, 0);
*buflen = *next_buflen;
print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, buf,
*buflen, 1);
}
return ret;
unmap_ctx:
ahash_unmap_ctx(ctx->dev, edesc, req, DMA_TO_DEVICE);
qi_cache_free(edesc);
return ret;
}
static int ahash_finup_first(struct ahash_request *req)
{
return ahash_digest(req);
}
static int ahash_init(struct ahash_request *req)
{
struct caam_hash_state *state = ahash_request_ctx(req);
state->update = ahash_update_first;
state->finup = ahash_finup_first;
state->final = ahash_final_no_ctx;
state->ctx_dma = 0;
state->ctx_dma_len = 0;
state->buf_dma = 0;
state->buflen = 0;
state->next_buflen = 0;
return 0;
}
static int ahash_update(struct ahash_request *req)
{
struct caam_hash_state *state = ahash_request_ctx(req);
return state->update(req);
}
static int ahash_finup(struct ahash_request *req)
{
struct caam_hash_state *state = ahash_request_ctx(req);
return state->finup(req);
}
static int ahash_final(struct ahash_request *req)
{
struct caam_hash_state *state = ahash_request_ctx(req);
return state->final(req);
}
static int ahash_export(struct ahash_request *req, void *out)
{
struct caam_hash_state *state = ahash_request_ctx(req);
struct caam_export_state *export = out;
u8 *buf = state->buf;
int len = state->buflen;
memcpy(export->buf, buf, len);
memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx));
export->buflen = len;
export->update = state->update;
export->final = state->final;
export->finup = state->finup;
return 0;
}
static int ahash_import(struct ahash_request *req, const void *in)
{
struct caam_hash_state *state = ahash_request_ctx(req);
const struct caam_export_state *export = in;
memset(state, 0, sizeof(*state));
memcpy(state->buf, export->buf, export->buflen);
memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx));
state->buflen = export->buflen;
state->update = export->update;
state->final = export->final;
state->finup = export->finup;
return 0;
}
struct caam_hash_template {
char name[CRYPTO_MAX_ALG_NAME];
char driver_name[CRYPTO_MAX_ALG_NAME];
char hmac_name[CRYPTO_MAX_ALG_NAME];
char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
unsigned int blocksize;
struct ahash_alg template_ahash;
u32 alg_type;
};
/* ahash descriptors */
static struct caam_hash_template driver_hash[] = {
{
.name = "sha1",
.driver_name = "sha1-caam-qi2",
.hmac_name = "hmac(sha1)",
.hmac_driver_name = "hmac-sha1-caam-qi2",
.blocksize = SHA1_BLOCK_SIZE,
.template_ahash = {
.init = ahash_init,
.update = ahash_update,
.final = ahash_final,
.finup = ahash_finup,
.digest = ahash_digest,
.export = ahash_export,
.import = ahash_import,
.setkey = ahash_setkey,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct caam_export_state),
},
},
.alg_type = OP_ALG_ALGSEL_SHA1,
}, {
.name = "sha224",
.driver_name = "sha224-caam-qi2",
.hmac_name = "hmac(sha224)",
.hmac_driver_name = "hmac-sha224-caam-qi2",
.blocksize = SHA224_BLOCK_SIZE,
.template_ahash = {
.init = ahash_init,
.update = ahash_update,
.final = ahash_final,
.finup = ahash_finup,
.digest = ahash_digest,
.export = ahash_export,
.import = ahash_import,
.setkey = ahash_setkey,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct caam_export_state),
},
},
.alg_type = OP_ALG_ALGSEL_SHA224,
}, {
.name = "sha256",
.driver_name = "sha256-caam-qi2",
.hmac_name = "hmac(sha256)",
.hmac_driver_name = "hmac-sha256-caam-qi2",
.blocksize = SHA256_BLOCK_SIZE,
.template_ahash = {
.init = ahash_init,
.update = ahash_update,
.final = ahash_final,
.finup = ahash_finup,
.digest = ahash_digest,
.export = ahash_export,
.import = ahash_import,
.setkey = ahash_setkey,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct caam_export_state),
},
},
.alg_type = OP_ALG_ALGSEL_SHA256,
}, {
.name = "sha384",
.driver_name = "sha384-caam-qi2",
.hmac_name = "hmac(sha384)",
.hmac_driver_name = "hmac-sha384-caam-qi2",
.blocksize = SHA384_BLOCK_SIZE,
.template_ahash = {
.init = ahash_init,
.update = ahash_update,
.final = ahash_final,
.finup = ahash_finup,
.digest = ahash_digest,
.export = ahash_export,
.import = ahash_import,
.setkey = ahash_setkey,
.halg = {
.digestsize = SHA384_DIGEST_SIZE,
.statesize = sizeof(struct caam_export_state),
},
},
.alg_type = OP_ALG_ALGSEL_SHA384,
}, {
.name = "sha512",
.driver_name = "sha512-caam-qi2",
.hmac_name = "hmac(sha512)",
.hmac_driver_name = "hmac-sha512-caam-qi2",
.blocksize = SHA512_BLOCK_SIZE,
.template_ahash = {
.init = ahash_init,
.update = ahash_update,
.final = ahash_final,
.finup = ahash_finup,
.digest = ahash_digest,
.export = ahash_export,
.import = ahash_import,
.setkey = ahash_setkey,
.halg = {
.digestsize = SHA512_DIGEST_SIZE,
.statesize = sizeof(struct caam_export_state),
},
},
.alg_type = OP_ALG_ALGSEL_SHA512,
}, {
.name = "md5",
.driver_name = "md5-caam-qi2",
.hmac_name = "hmac(md5)",
.hmac_driver_name = "hmac-md5-caam-qi2",
.blocksize = MD5_BLOCK_WORDS * 4,
.template_ahash = {
.init = ahash_init,
.update = ahash_update,
.final = ahash_final,
.finup = ahash_finup,
.digest = ahash_digest,
.export = ahash_export,
.import = ahash_import,
.setkey = ahash_setkey,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct caam_export_state),
},
},
.alg_type = OP_ALG_ALGSEL_MD5,
}
};
struct caam_hash_alg {
struct list_head entry;
struct device *dev;
int alg_type;
struct ahash_alg ahash_alg;
};
static int caam_hash_cra_init(struct crypto_tfm *tfm)
{
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct crypto_alg *base = tfm->__crt_alg;
struct hash_alg_common *halg =
container_of(base, struct hash_alg_common, base);
struct ahash_alg *alg =
container_of(halg, struct ahash_alg, halg);
struct caam_hash_alg *caam_hash =
container_of(alg, struct caam_hash_alg, ahash_alg);
struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
/* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
HASH_MSG_LEN + SHA1_DIGEST_SIZE,
HASH_MSG_LEN + 32,
HASH_MSG_LEN + SHA256_DIGEST_SIZE,
HASH_MSG_LEN + 64,
HASH_MSG_LEN + SHA512_DIGEST_SIZE };
dma_addr_t dma_addr;
int i;
ctx->dev = caam_hash->dev;
if (alg->setkey) {
ctx->adata.key_dma = dma_map_single_attrs(ctx->dev, ctx->key,
ARRAY_SIZE(ctx->key),
DMA_TO_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
if (dma_mapping_error(ctx->dev, ctx->adata.key_dma)) {
dev_err(ctx->dev, "unable to map key\n");
return -ENOMEM;
}
}
dma_addr = dma_map_single_attrs(ctx->dev, ctx->flc, sizeof(ctx->flc),
DMA_BIDIRECTIONAL,
DMA_ATTR_SKIP_CPU_SYNC);
if (dma_mapping_error(ctx->dev, dma_addr)) {
dev_err(ctx->dev, "unable to map shared descriptors\n");
if (ctx->adata.key_dma)
dma_unmap_single_attrs(ctx->dev, ctx->adata.key_dma,
ARRAY_SIZE(ctx->key),
DMA_TO_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
return -ENOMEM;
}
for (i = 0; i < HASH_NUM_OP; i++)
ctx->flc_dma[i] = dma_addr + i * sizeof(ctx->flc[i]);
/* copy descriptor header template value */
ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
ctx->ctx_len = runninglen[(ctx->adata.algtype &
OP_ALG_ALGSEL_SUBMASK) >>
OP_ALG_ALGSEL_SHIFT];
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct caam_hash_state));
return ahash_set_sh_desc(ahash);
}
static void caam_hash_cra_exit(struct crypto_tfm *tfm)
{
struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
dma_unmap_single_attrs(ctx->dev, ctx->flc_dma[0], sizeof(ctx->flc),
DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC);
if (ctx->adata.key_dma)
dma_unmap_single_attrs(ctx->dev, ctx->adata.key_dma,
ARRAY_SIZE(ctx->key), DMA_TO_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
}
static struct caam_hash_alg *caam_hash_alloc(struct device *dev,
struct caam_hash_template *template, bool keyed)
{
struct caam_hash_alg *t_alg;
struct ahash_alg *halg;
struct crypto_alg *alg;
t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
if (!t_alg)
return ERR_PTR(-ENOMEM);
t_alg->ahash_alg = template->template_ahash;
halg = &t_alg->ahash_alg;
alg = &halg->halg.base;
if (keyed) {
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
template->hmac_name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
template->hmac_driver_name);
} else {
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
template->name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
template->driver_name);
t_alg->ahash_alg.setkey = NULL;
}
alg->cra_module = THIS_MODULE;
alg->cra_init = caam_hash_cra_init;
alg->cra_exit = caam_hash_cra_exit;
alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
alg->cra_priority = CAAM_CRA_PRIORITY;
alg->cra_blocksize = template->blocksize;
alg->cra_alignmask = 0;
alg->cra_flags = CRYPTO_ALG_ASYNC;
t_alg->alg_type = template->alg_type;
t_alg->dev = dev;
return t_alg;
}
static void dpaa2_caam_fqdan_cb(struct dpaa2_io_notification_ctx *nctx)
{
struct dpaa2_caam_priv_per_cpu *ppriv;
ppriv = container_of(nctx, struct dpaa2_caam_priv_per_cpu, nctx);
napi_schedule_irqoff(&ppriv->napi);
}
static int __cold dpaa2_dpseci_dpio_setup(struct dpaa2_caam_priv *priv)
{
struct device *dev = priv->dev;
struct dpaa2_io_notification_ctx *nctx;
struct dpaa2_caam_priv_per_cpu *ppriv;
int err, i = 0, cpu;
for_each_online_cpu(cpu) {
ppriv = per_cpu_ptr(priv->ppriv, cpu);
ppriv->priv = priv;
nctx = &ppriv->nctx;
nctx->is_cdan = 0;
nctx->id = ppriv->rsp_fqid;
nctx->desired_cpu = cpu;
nctx->cb = dpaa2_caam_fqdan_cb;
/* Register notification callbacks */
ppriv->dpio = dpaa2_io_service_select(cpu);
err = dpaa2_io_service_register(ppriv->dpio, nctx, dev);
if (unlikely(err)) {
dev_dbg(dev, "No affine DPIO for cpu %d\n", cpu);
nctx->cb = NULL;
/*
* If no affine DPIO for this core, there's probably
* none available for next cores either. Signal we want
* to retry later, in case the DPIO devices weren't
* probed yet.
*/
err = -EPROBE_DEFER;
goto err;
}
ppriv->store = dpaa2_io_store_create(DPAA2_CAAM_STORE_SIZE,
dev);
if (unlikely(!ppriv->store)) {
dev_err(dev, "dpaa2_io_store_create() failed\n");
err = -ENOMEM;
goto err;
}
if (++i == priv->num_pairs)
break;
}
return 0;
err:
for_each_online_cpu(cpu) {
ppriv = per_cpu_ptr(priv->ppriv, cpu);
if (!ppriv->nctx.cb)
break;
dpaa2_io_service_deregister(ppriv->dpio, &ppriv->nctx, dev);
}
for_each_online_cpu(cpu) {
ppriv = per_cpu_ptr(priv->ppriv, cpu);
if (!ppriv->store)
break;
dpaa2_io_store_destroy(ppriv->store);
}
return err;
}
static void __cold dpaa2_dpseci_dpio_free(struct dpaa2_caam_priv *priv)
{
struct dpaa2_caam_priv_per_cpu *ppriv;
int i = 0, cpu;
for_each_online_cpu(cpu) {
ppriv = per_cpu_ptr(priv->ppriv, cpu);
dpaa2_io_service_deregister(ppriv->dpio, &ppriv->nctx,
priv->dev);
dpaa2_io_store_destroy(ppriv->store);
if (++i == priv->num_pairs)
return;
}
}
static int dpaa2_dpseci_bind(struct dpaa2_caam_priv *priv)
{
struct dpseci_rx_queue_cfg rx_queue_cfg;
struct device *dev = priv->dev;
struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
struct dpaa2_caam_priv_per_cpu *ppriv;
int err = 0, i = 0, cpu;
/* Configure Rx queues */
for_each_online_cpu(cpu) {
ppriv = per_cpu_ptr(priv->ppriv, cpu);
rx_queue_cfg.options = DPSECI_QUEUE_OPT_DEST |
DPSECI_QUEUE_OPT_USER_CTX;
rx_queue_cfg.order_preservation_en = 0;
rx_queue_cfg.dest_cfg.dest_type = DPSECI_DEST_DPIO;
rx_queue_cfg.dest_cfg.dest_id = ppriv->nctx.dpio_id;
/*
* Rx priority (WQ) doesn't really matter, since we use
* pull mode, i.e. volatile dequeues from specific FQs
*/
rx_queue_cfg.dest_cfg.priority = 0;
rx_queue_cfg.user_ctx = ppriv->nctx.qman64;
err = dpseci_set_rx_queue(priv->mc_io, 0, ls_dev->mc_handle, i,
&rx_queue_cfg);
if (err) {
dev_err(dev, "dpseci_set_rx_queue() failed with err %d\n",
err);
return err;
}
if (++i == priv->num_pairs)
break;
}
return err;
}
static void dpaa2_dpseci_congestion_free(struct dpaa2_caam_priv *priv)
{
struct device *dev = priv->dev;
if (!priv->cscn_mem)
return;
dma_unmap_single(dev, priv->cscn_dma, DPAA2_CSCN_SIZE, DMA_FROM_DEVICE);
kfree(priv->cscn_mem);
}
static void dpaa2_dpseci_free(struct dpaa2_caam_priv *priv)
{
struct device *dev = priv->dev;
struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
dpaa2_dpseci_congestion_free(priv);
dpseci_close(priv->mc_io, 0, ls_dev->mc_handle);
}
static void dpaa2_caam_process_fd(struct dpaa2_caam_priv *priv,
const struct dpaa2_fd *fd)
{
struct caam_request *req;
u32 fd_err;
if (dpaa2_fd_get_format(fd) != dpaa2_fd_list) {
dev_err(priv->dev, "Only Frame List FD format is supported!\n");
return;
}
fd_err = dpaa2_fd_get_ctrl(fd) & FD_CTRL_ERR_MASK;
if (unlikely(fd_err))
dev_err_ratelimited(priv->dev, "FD error: %08x\n", fd_err);
/*
* FD[ADDR] is guaranteed to be valid, irrespective of errors reported
* in FD[ERR] or FD[FRC].
*/
req = dpaa2_caam_iova_to_virt(priv, dpaa2_fd_get_addr(fd));
dma_unmap_single(priv->dev, req->fd_flt_dma, sizeof(req->fd_flt),
DMA_BIDIRECTIONAL);
req->cbk(req->ctx, dpaa2_fd_get_frc(fd));
}
static int dpaa2_caam_pull_fq(struct dpaa2_caam_priv_per_cpu *ppriv)
{
int err;
/* Retry while portal is busy */
do {
err = dpaa2_io_service_pull_fq(ppriv->dpio, ppriv->rsp_fqid,
ppriv->store);
} while (err == -EBUSY);
if (unlikely(err))
dev_err(ppriv->priv->dev, "dpaa2_io_service_pull err %d", err);
return err;
}
static int dpaa2_caam_store_consume(struct dpaa2_caam_priv_per_cpu *ppriv)
{
struct dpaa2_dq *dq;
int cleaned = 0, is_last;
do {
dq = dpaa2_io_store_next(ppriv->store, &is_last);
if (unlikely(!dq)) {
if (unlikely(!is_last)) {
dev_dbg(ppriv->priv->dev,
"FQ %d returned no valid frames\n",
ppriv->rsp_fqid);
/*
* MUST retry until we get some sort of
* valid response token (be it "empty dequeue"
* or a valid frame).
*/
continue;
}
break;
}
/* Process FD */
dpaa2_caam_process_fd(ppriv->priv, dpaa2_dq_fd(dq));
cleaned++;
} while (!is_last);
return cleaned;
}
static int dpaa2_dpseci_poll(struct napi_struct *napi, int budget)
{
struct dpaa2_caam_priv_per_cpu *ppriv;
struct dpaa2_caam_priv *priv;
int err, cleaned = 0, store_cleaned;
ppriv = container_of(napi, struct dpaa2_caam_priv_per_cpu, napi);
priv = ppriv->priv;
if (unlikely(dpaa2_caam_pull_fq(ppriv)))
return 0;
do {
store_cleaned = dpaa2_caam_store_consume(ppriv);
cleaned += store_cleaned;
if (store_cleaned == 0 ||
cleaned > budget - DPAA2_CAAM_STORE_SIZE)
break;
/* Try to dequeue some more */
err = dpaa2_caam_pull_fq(ppriv);
if (unlikely(err))
break;
} while (1);
if (cleaned < budget) {
napi_complete_done(napi, cleaned);
err = dpaa2_io_service_rearm(ppriv->dpio, &ppriv->nctx);
if (unlikely(err))
dev_err(priv->dev, "Notification rearm failed: %d\n",
err);
}
return cleaned;
}
static int dpaa2_dpseci_congestion_setup(struct dpaa2_caam_priv *priv,
u16 token)
{
struct dpseci_congestion_notification_cfg cong_notif_cfg = { 0 };
struct device *dev = priv->dev;
int err;
/*
* Congestion group feature supported starting with DPSECI API v5.1
* and only when object has been created with this capability.
*/
if ((DPSECI_VER(priv->major_ver, priv->minor_ver) < DPSECI_VER(5, 1)) ||
!(priv->dpseci_attr.options & DPSECI_OPT_HAS_CG))
return 0;
priv->cscn_mem = kzalloc(DPAA2_CSCN_SIZE + DPAA2_CSCN_ALIGN,
GFP_KERNEL | GFP_DMA);
if (!priv->cscn_mem)
return -ENOMEM;
priv->cscn_mem_aligned = PTR_ALIGN(priv->cscn_mem, DPAA2_CSCN_ALIGN);
priv->cscn_dma = dma_map_single(dev, priv->cscn_mem_aligned,
DPAA2_CSCN_SIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(dev, priv->cscn_dma)) {
dev_err(dev, "Error mapping CSCN memory area\n");
err = -ENOMEM;
goto err_dma_map;
}
cong_notif_cfg.units = DPSECI_CONGESTION_UNIT_BYTES;
cong_notif_cfg.threshold_entry = DPAA2_SEC_CONG_ENTRY_THRESH;
cong_notif_cfg.threshold_exit = DPAA2_SEC_CONG_EXIT_THRESH;
cong_notif_cfg.message_ctx = (uintptr_t)priv;
cong_notif_cfg.message_iova = priv->cscn_dma;
cong_notif_cfg.notification_mode = DPSECI_CGN_MODE_WRITE_MEM_ON_ENTER |
DPSECI_CGN_MODE_WRITE_MEM_ON_EXIT |
DPSECI_CGN_MODE_COHERENT_WRITE;
err = dpseci_set_congestion_notification(priv->mc_io, 0, token,
&cong_notif_cfg);
if (err) {
dev_err(dev, "dpseci_set_congestion_notification failed\n");
goto err_set_cong;
}
return 0;
err_set_cong:
dma_unmap_single(dev, priv->cscn_dma, DPAA2_CSCN_SIZE, DMA_FROM_DEVICE);
err_dma_map:
kfree(priv->cscn_mem);
return err;
}
static int __cold dpaa2_dpseci_setup(struct fsl_mc_device *ls_dev)
{
struct device *dev = &ls_dev->dev;
struct dpaa2_caam_priv *priv;
struct dpaa2_caam_priv_per_cpu *ppriv;
int err, cpu;
u8 i;
priv = dev_get_drvdata(dev);
priv->dev = dev;
priv->dpsec_id = ls_dev->obj_desc.id;
/* Get a handle for the DPSECI this interface is associate with */
err = dpseci_open(priv->mc_io, 0, priv->dpsec_id, &ls_dev->mc_handle);
if (err) {
dev_err(dev, "dpseci_open() failed: %d\n", err);
goto err_open;
}
err = dpseci_get_api_version(priv->mc_io, 0, &priv->major_ver,
&priv->minor_ver);
if (err) {
dev_err(dev, "dpseci_get_api_version() failed\n");
goto err_get_vers;
}
dev_info(dev, "dpseci v%d.%d\n", priv->major_ver, priv->minor_ver);
err = dpseci_get_attributes(priv->mc_io, 0, ls_dev->mc_handle,
&priv->dpseci_attr);
if (err) {
dev_err(dev, "dpseci_get_attributes() failed\n");
goto err_get_vers;
}
err = dpseci_get_sec_attr(priv->mc_io, 0, ls_dev->mc_handle,
&priv->sec_attr);
if (err) {
dev_err(dev, "dpseci_get_sec_attr() failed\n");
goto err_get_vers;
}
err = dpaa2_dpseci_congestion_setup(priv, ls_dev->mc_handle);
if (err) {
dev_err(dev, "setup_congestion() failed\n");
goto err_get_vers;
}
priv->num_pairs = min(priv->dpseci_attr.num_rx_queues,
priv->dpseci_attr.num_tx_queues);
if (priv->num_pairs > num_online_cpus()) {
dev_warn(dev, "%d queues won't be used\n",
priv->num_pairs - num_online_cpus());
priv->num_pairs = num_online_cpus();
}
for (i = 0; i < priv->dpseci_attr.num_rx_queues; i++) {
err = dpseci_get_rx_queue(priv->mc_io, 0, ls_dev->mc_handle, i,
&priv->rx_queue_attr[i]);
if (err) {
dev_err(dev, "dpseci_get_rx_queue() failed\n");
goto err_get_rx_queue;
}
}
for (i = 0; i < priv->dpseci_attr.num_tx_queues; i++) {
err = dpseci_get_tx_queue(priv->mc_io, 0, ls_dev->mc_handle, i,
&priv->tx_queue_attr[i]);
if (err) {
dev_err(dev, "dpseci_get_tx_queue() failed\n");
goto err_get_rx_queue;
}
}
i = 0;
for_each_online_cpu(cpu) {
u8 j;
j = i % priv->num_pairs;
ppriv = per_cpu_ptr(priv->ppriv, cpu);
ppriv->req_fqid = priv->tx_queue_attr[j].fqid;
/*
* Allow all cores to enqueue, while only some of them
* will take part in dequeuing.
*/
if (++i > priv->num_pairs)
continue;
ppriv->rsp_fqid = priv->rx_queue_attr[j].fqid;
ppriv->prio = j;
dev_dbg(dev, "pair %d: rx queue %d, tx queue %d\n", j,
priv->rx_queue_attr[j].fqid,
priv->tx_queue_attr[j].fqid);
ppriv->net_dev.dev = *dev;
INIT_LIST_HEAD(&ppriv->net_dev.napi_list);
netif_napi_add(&ppriv->net_dev, &ppriv->napi, dpaa2_dpseci_poll,
DPAA2_CAAM_NAPI_WEIGHT);
}
return 0;
err_get_rx_queue:
dpaa2_dpseci_congestion_free(priv);
err_get_vers:
dpseci_close(priv->mc_io, 0, ls_dev->mc_handle);
err_open:
return err;
}
static int dpaa2_dpseci_enable(struct dpaa2_caam_priv *priv)
{
struct device *dev = priv->dev;
struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
struct dpaa2_caam_priv_per_cpu *ppriv;
int i;
for (i = 0; i < priv->num_pairs; i++) {
ppriv = per_cpu_ptr(priv->ppriv, i);
napi_enable(&ppriv->napi);
}
return dpseci_enable(priv->mc_io, 0, ls_dev->mc_handle);
}
static int __cold dpaa2_dpseci_disable(struct dpaa2_caam_priv *priv)
{
struct device *dev = priv->dev;
struct dpaa2_caam_priv_per_cpu *ppriv;
struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
int i, err = 0, enabled;
err = dpseci_disable(priv->mc_io, 0, ls_dev->mc_handle);
if (err) {
dev_err(dev, "dpseci_disable() failed\n");
return err;
}
err = dpseci_is_enabled(priv->mc_io, 0, ls_dev->mc_handle, &enabled);
if (err) {
dev_err(dev, "dpseci_is_enabled() failed\n");
return err;
}
dev_dbg(dev, "disable: %s\n", enabled ? "false" : "true");
for (i = 0; i < priv->num_pairs; i++) {
ppriv = per_cpu_ptr(priv->ppriv, i);
napi_disable(&ppriv->napi);
netif_napi_del(&ppriv->napi);
}
return 0;
}
static struct list_head hash_list;
static int dpaa2_caam_probe(struct fsl_mc_device *dpseci_dev)
{
struct device *dev;
struct dpaa2_caam_priv *priv;
int i, err = 0;
bool registered = false;
/*
* There is no way to get CAAM endianness - there is no direct register
* space access and MC f/w does not provide this attribute.
* All DPAA2-based SoCs have little endian CAAM, thus hard-code this
* property.
*/
caam_little_end = true;
caam_imx = false;
dev = &dpseci_dev->dev;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
dev_set_drvdata(dev, priv);
priv->domain = iommu_get_domain_for_dev(dev);
qi_cache = kmem_cache_create("dpaa2_caamqicache", CAAM_QI_MEMCACHE_SIZE,
0, SLAB_CACHE_DMA, NULL);
if (!qi_cache) {
dev_err(dev, "Can't allocate SEC cache\n");
return -ENOMEM;
}
err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(49));
if (err) {
dev_err(dev, "dma_set_mask_and_coherent() failed\n");
goto err_dma_mask;
}
/* Obtain a MC portal */
err = fsl_mc_portal_allocate(dpseci_dev, 0, &priv->mc_io);
if (err) {
if (err == -ENXIO)
err = -EPROBE_DEFER;
else
dev_err(dev, "MC portal allocation failed\n");
goto err_dma_mask;
}
priv->ppriv = alloc_percpu(*priv->ppriv);
if (!priv->ppriv) {
dev_err(dev, "alloc_percpu() failed\n");
err = -ENOMEM;
goto err_alloc_ppriv;
}
/* DPSECI initialization */
err = dpaa2_dpseci_setup(dpseci_dev);
if (err) {
dev_err(dev, "dpaa2_dpseci_setup() failed\n");
goto err_dpseci_setup;
}
/* DPIO */
err = dpaa2_dpseci_dpio_setup(priv);
if (err) {
if (err != -EPROBE_DEFER)
dev_err(dev, "dpaa2_dpseci_dpio_setup() failed\n");
goto err_dpio_setup;
}
/* DPSECI binding to DPIO */
err = dpaa2_dpseci_bind(priv);
if (err) {
dev_err(dev, "dpaa2_dpseci_bind() failed\n");
goto err_bind;
}
/* DPSECI enable */
err = dpaa2_dpseci_enable(priv);
if (err) {
dev_err(dev, "dpaa2_dpseci_enable() failed\n");
goto err_bind;
}
dpaa2_dpseci_debugfs_init(priv);
/* register crypto algorithms the device supports */
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
struct caam_skcipher_alg *t_alg = driver_algs + i;
u32 alg_sel = t_alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK;
/* Skip DES algorithms if not supported by device */
if (!priv->sec_attr.des_acc_num &&
(alg_sel == OP_ALG_ALGSEL_3DES ||
alg_sel == OP_ALG_ALGSEL_DES))
continue;
/* Skip AES algorithms if not supported by device */
if (!priv->sec_attr.aes_acc_num &&
alg_sel == OP_ALG_ALGSEL_AES)
continue;
/* Skip CHACHA20 algorithms if not supported by device */
if (alg_sel == OP_ALG_ALGSEL_CHACHA20 &&
!priv->sec_attr.ccha_acc_num)
continue;
t_alg->caam.dev = dev;
caam_skcipher_alg_init(t_alg);
err = crypto_register_skcipher(&t_alg->skcipher);
if (err) {
dev_warn(dev, "%s alg registration failed: %d\n",
t_alg->skcipher.base.cra_driver_name, err);
continue;
}
t_alg->registered = true;
registered = true;
}
for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
struct caam_aead_alg *t_alg = driver_aeads + i;
u32 c1_alg_sel = t_alg->caam.class1_alg_type &
OP_ALG_ALGSEL_MASK;
u32 c2_alg_sel = t_alg->caam.class2_alg_type &
OP_ALG_ALGSEL_MASK;
/* Skip DES algorithms if not supported by device */
if (!priv->sec_attr.des_acc_num &&
(c1_alg_sel == OP_ALG_ALGSEL_3DES ||
c1_alg_sel == OP_ALG_ALGSEL_DES))
continue;
/* Skip AES algorithms if not supported by device */
if (!priv->sec_attr.aes_acc_num &&
c1_alg_sel == OP_ALG_ALGSEL_AES)
continue;
/* Skip CHACHA20 algorithms if not supported by device */
if (c1_alg_sel == OP_ALG_ALGSEL_CHACHA20 &&
!priv->sec_attr.ccha_acc_num)
continue;
/* Skip POLY1305 algorithms if not supported by device */
if (c2_alg_sel == OP_ALG_ALGSEL_POLY1305 &&
!priv->sec_attr.ptha_acc_num)
continue;
/*
* Skip algorithms requiring message digests
* if MD not supported by device.
*/
if ((c2_alg_sel & ~OP_ALG_ALGSEL_SUBMASK) == 0x40 &&
!priv->sec_attr.md_acc_num)
continue;
t_alg->caam.dev = dev;
caam_aead_alg_init(t_alg);
err = crypto_register_aead(&t_alg->aead);
if (err) {
dev_warn(dev, "%s alg registration failed: %d\n",
t_alg->aead.base.cra_driver_name, err);
continue;
}
t_alg->registered = true;
registered = true;
}
if (registered)
dev_info(dev, "algorithms registered in /proc/crypto\n");
/* register hash algorithms the device supports */
INIT_LIST_HEAD(&hash_list);
/*
* Skip registration of any hashing algorithms if MD block
* is not present.
*/
if (!priv->sec_attr.md_acc_num)
return 0;
for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
struct caam_hash_alg *t_alg;
struct caam_hash_template *alg = driver_hash + i;
/* register hmac version */
t_alg = caam_hash_alloc(dev, alg, true);
if (IS_ERR(t_alg)) {
err = PTR_ERR(t_alg);
dev_warn(dev, "%s hash alg allocation failed: %d\n",
alg->driver_name, err);
continue;
}
err = crypto_register_ahash(&t_alg->ahash_alg);
if (err) {
dev_warn(dev, "%s alg registration failed: %d\n",
t_alg->ahash_alg.halg.base.cra_driver_name,
err);
kfree(t_alg);
} else {
list_add_tail(&t_alg->entry, &hash_list);
}
/* register unkeyed version */
t_alg = caam_hash_alloc(dev, alg, false);
if (IS_ERR(t_alg)) {
err = PTR_ERR(t_alg);
dev_warn(dev, "%s alg allocation failed: %d\n",
alg->driver_name, err);
continue;
}
err = crypto_register_ahash(&t_alg->ahash_alg);
if (err) {
dev_warn(dev, "%s alg registration failed: %d\n",
t_alg->ahash_alg.halg.base.cra_driver_name,
err);
kfree(t_alg);
} else {
list_add_tail(&t_alg->entry, &hash_list);
}
}
if (!list_empty(&hash_list))
dev_info(dev, "hash algorithms registered in /proc/crypto\n");
return err;
err_bind:
dpaa2_dpseci_dpio_free(priv);
err_dpio_setup:
dpaa2_dpseci_free(priv);
err_dpseci_setup:
free_percpu(priv->ppriv);
err_alloc_ppriv:
fsl_mc_portal_free(priv->mc_io);
err_dma_mask:
kmem_cache_destroy(qi_cache);
return err;
}
static int __cold dpaa2_caam_remove(struct fsl_mc_device *ls_dev)
{
struct device *dev;
struct dpaa2_caam_priv *priv;
int i;
dev = &ls_dev->dev;
priv = dev_get_drvdata(dev);
dpaa2_dpseci_debugfs_exit(priv);
for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
struct caam_aead_alg *t_alg = driver_aeads + i;
if (t_alg->registered)
crypto_unregister_aead(&t_alg->aead);
}
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
struct caam_skcipher_alg *t_alg = driver_algs + i;
if (t_alg->registered)
crypto_unregister_skcipher(&t_alg->skcipher);
}
if (hash_list.next) {
struct caam_hash_alg *t_hash_alg, *p;
list_for_each_entry_safe(t_hash_alg, p, &hash_list, entry) {
crypto_unregister_ahash(&t_hash_alg->ahash_alg);
list_del(&t_hash_alg->entry);
kfree(t_hash_alg);
}
}
dpaa2_dpseci_disable(priv);
dpaa2_dpseci_dpio_free(priv);
dpaa2_dpseci_free(priv);
free_percpu(priv->ppriv);
fsl_mc_portal_free(priv->mc_io);
kmem_cache_destroy(qi_cache);
return 0;
}
int dpaa2_caam_enqueue(struct device *dev, struct caam_request *req)
{
struct dpaa2_fd fd;
struct dpaa2_caam_priv *priv = dev_get_drvdata(dev);
struct dpaa2_caam_priv_per_cpu *ppriv;
int err = 0, i;
if (IS_ERR(req))
return PTR_ERR(req);
if (priv->cscn_mem) {
dma_sync_single_for_cpu(priv->dev, priv->cscn_dma,
DPAA2_CSCN_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dpaa2_cscn_state_congested(priv->cscn_mem_aligned))) {
dev_dbg_ratelimited(dev, "Dropping request\n");
return -EBUSY;
}
}
dpaa2_fl_set_flc(&req->fd_flt[1], req->flc_dma);
req->fd_flt_dma = dma_map_single(dev, req->fd_flt, sizeof(req->fd_flt),
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, req->fd_flt_dma)) {
dev_err(dev, "DMA mapping error for QI enqueue request\n");
goto err_out;
}
memset(&fd, 0, sizeof(fd));
dpaa2_fd_set_format(&fd, dpaa2_fd_list);
dpaa2_fd_set_addr(&fd, req->fd_flt_dma);
dpaa2_fd_set_len(&fd, dpaa2_fl_get_len(&req->fd_flt[1]));
dpaa2_fd_set_flc(&fd, req->flc_dma);
ppriv = this_cpu_ptr(priv->ppriv);
for (i = 0; i < (priv->dpseci_attr.num_tx_queues << 1); i++) {
err = dpaa2_io_service_enqueue_fq(ppriv->dpio, ppriv->req_fqid,
&fd);
if (err != -EBUSY)
break;
cpu_relax();
}
if (unlikely(err)) {
dev_err_ratelimited(dev, "Error enqueuing frame: %d\n", err);
goto err_out;
}
return -EINPROGRESS;
err_out:
dma_unmap_single(dev, req->fd_flt_dma, sizeof(req->fd_flt),
DMA_BIDIRECTIONAL);
return -EIO;
}
EXPORT_SYMBOL(dpaa2_caam_enqueue);
static const struct fsl_mc_device_id dpaa2_caam_match_id_table[] = {
{
.vendor = FSL_MC_VENDOR_FREESCALE,
.obj_type = "dpseci",
},
{ .vendor = 0x0 }
};
static struct fsl_mc_driver dpaa2_caam_driver = {
.driver = {
.name = KBUILD_MODNAME,
.owner = THIS_MODULE,
},
.probe = dpaa2_caam_probe,
.remove = dpaa2_caam_remove,
.match_id_table = dpaa2_caam_match_id_table
};
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Freescale Semiconductor, Inc");
MODULE_DESCRIPTION("Freescale DPAA2 CAAM Driver");
module_fsl_mc_driver(dpaa2_caam_driver);