blob: feac86196a65f55e38dadcf808a3d90d6b0e8d72 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2013 Red Hat Inc.
*
* Authors: Jérôme Glisse <jglisse@redhat.com>
*/
/*
* Refer to include/linux/hmm.h for information about heterogeneous memory
* management or HMM for short.
*/
#include <linux/pagewalk.h>
#include <linux/hmm.h>
#include <linux/hmm-dma.h>
#include <linux/init.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mmzone.h>
#include <linux/pagemap.h>
#include <linux/swapops.h>
#include <linux/hugetlb.h>
#include <linux/memremap.h>
#include <linux/sched/mm.h>
#include <linux/jump_label.h>
#include <linux/dma-mapping.h>
#include <linux/pci-p2pdma.h>
#include <linux/mmu_notifier.h>
#include <linux/memory_hotplug.h>
#include "internal.h"
struct hmm_vma_walk {
struct hmm_range *range;
unsigned long last;
};
enum {
HMM_NEED_FAULT = 1 << 0,
HMM_NEED_WRITE_FAULT = 1 << 1,
HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
};
enum {
/* These flags are carried from input-to-output */
HMM_PFN_INOUT_FLAGS = HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA |
HMM_PFN_P2PDMA_BUS,
};
static int hmm_pfns_fill(unsigned long addr, unsigned long end,
struct hmm_range *range, unsigned long cpu_flags)
{
unsigned long i = (addr - range->start) >> PAGE_SHIFT;
for (; addr < end; addr += PAGE_SIZE, i++) {
range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
range->hmm_pfns[i] |= cpu_flags;
}
return 0;
}
/*
* hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
* @addr: range virtual start address (inclusive)
* @end: range virtual end address (exclusive)
* @required_fault: HMM_NEED_* flags
* @walk: mm_walk structure
* Return: -EBUSY after page fault, or page fault error
*
* This function will be called whenever pmd_none() or pte_none() returns true,
* or whenever there is no page directory covering the virtual address range.
*/
static int hmm_vma_fault(unsigned long addr, unsigned long end,
unsigned int required_fault, struct mm_walk *walk)
{
struct hmm_vma_walk *hmm_vma_walk = walk->private;
struct vm_area_struct *vma = walk->vma;
unsigned int fault_flags = FAULT_FLAG_REMOTE;
WARN_ON_ONCE(!required_fault);
hmm_vma_walk->last = addr;
if (required_fault & HMM_NEED_WRITE_FAULT) {
if (!(vma->vm_flags & VM_WRITE))
return -EPERM;
fault_flags |= FAULT_FLAG_WRITE;
}
for (; addr < end; addr += PAGE_SIZE)
if (handle_mm_fault(vma, addr, fault_flags, NULL) &
VM_FAULT_ERROR)
return -EFAULT;
return -EBUSY;
}
static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
unsigned long pfn_req_flags,
unsigned long cpu_flags)
{
struct hmm_range *range = hmm_vma_walk->range;
/*
* So we not only consider the individual per page request we also
* consider the default flags requested for the range. The API can
* be used 2 ways. The first one where the HMM user coalesces
* multiple page faults into one request and sets flags per pfn for
* those faults. The second one where the HMM user wants to pre-
* fault a range with specific flags. For the latter one it is a
* waste to have the user pre-fill the pfn arrays with a default
* flags value.
*/
pfn_req_flags &= range->pfn_flags_mask;
pfn_req_flags |= range->default_flags;
/* We aren't ask to do anything ... */
if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
return 0;
/* Need to write fault ? */
if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
!(cpu_flags & HMM_PFN_WRITE))
return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
/* If CPU page table is not valid then we need to fault */
if (!(cpu_flags & HMM_PFN_VALID))
return HMM_NEED_FAULT;
return 0;
}
static unsigned int
hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
const unsigned long hmm_pfns[], unsigned long npages,
unsigned long cpu_flags)
{
struct hmm_range *range = hmm_vma_walk->range;
unsigned int required_fault = 0;
unsigned long i;
/*
* If the default flags do not request to fault pages, and the mask does
* not allow for individual pages to be faulted, then
* hmm_pte_need_fault() will always return 0.
*/
if (!((range->default_flags | range->pfn_flags_mask) &
HMM_PFN_REQ_FAULT))
return 0;
for (i = 0; i < npages; ++i) {
required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
cpu_flags);
if (required_fault == HMM_NEED_ALL_BITS)
return required_fault;
}
return required_fault;
}
static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
__always_unused int depth, struct mm_walk *walk)
{
struct hmm_vma_walk *hmm_vma_walk = walk->private;
struct hmm_range *range = hmm_vma_walk->range;
unsigned int required_fault;
unsigned long i, npages;
unsigned long *hmm_pfns;
i = (addr - range->start) >> PAGE_SHIFT;
npages = (end - addr) >> PAGE_SHIFT;
hmm_pfns = &range->hmm_pfns[i];
required_fault =
hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
if (!walk->vma) {
if (required_fault)
return -EFAULT;
return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
}
if (required_fault)
return hmm_vma_fault(addr, end, required_fault, walk);
return hmm_pfns_fill(addr, end, range, 0);
}
static inline unsigned long hmm_pfn_flags_order(unsigned long order)
{
return order << HMM_PFN_ORDER_SHIFT;
}
static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
pmd_t pmd)
{
if (pmd_protnone(pmd))
return 0;
return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
HMM_PFN_VALID) |
hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
unsigned long end, unsigned long hmm_pfns[],
pmd_t pmd)
{
struct hmm_vma_walk *hmm_vma_walk = walk->private;
struct hmm_range *range = hmm_vma_walk->range;
unsigned long pfn, npages, i;
unsigned int required_fault;
unsigned long cpu_flags;
npages = (end - addr) >> PAGE_SHIFT;
cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
required_fault =
hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
if (required_fault)
return hmm_vma_fault(addr, end, required_fault, walk);
pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
hmm_pfns[i] |= pfn | cpu_flags;
}
return 0;
}
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
/* stub to allow the code below to compile */
int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
pte_t pte)
{
if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
return 0;
return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
}
static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
unsigned long end, pmd_t *pmdp, pte_t *ptep,
unsigned long *hmm_pfn)
{
struct hmm_vma_walk *hmm_vma_walk = walk->private;
struct hmm_range *range = hmm_vma_walk->range;
unsigned int required_fault;
unsigned long cpu_flags;
pte_t pte = ptep_get(ptep);
uint64_t pfn_req_flags = *hmm_pfn;
uint64_t new_pfn_flags = 0;
if (pte_none_mostly(pte)) {
required_fault =
hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
if (required_fault)
goto fault;
goto out;
}
if (!pte_present(pte)) {
swp_entry_t entry = pte_to_swp_entry(pte);
/*
* Don't fault in device private pages owned by the caller,
* just report the PFN.
*/
if (is_device_private_entry(entry) &&
page_pgmap(pfn_swap_entry_to_page(entry))->owner ==
range->dev_private_owner) {
cpu_flags = HMM_PFN_VALID;
if (is_writable_device_private_entry(entry))
cpu_flags |= HMM_PFN_WRITE;
new_pfn_flags = swp_offset_pfn(entry) | cpu_flags;
goto out;
}
required_fault =
hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
if (!required_fault)
goto out;
if (!non_swap_entry(entry))
goto fault;
if (is_device_private_entry(entry))
goto fault;
if (is_device_exclusive_entry(entry))
goto fault;
if (is_migration_entry(entry)) {
pte_unmap(ptep);
hmm_vma_walk->last = addr;
migration_entry_wait(walk->mm, pmdp, addr);
return -EBUSY;
}
/* Report error for everything else */
pte_unmap(ptep);
return -EFAULT;
}
cpu_flags = pte_to_hmm_pfn_flags(range, pte);
required_fault =
hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
if (required_fault)
goto fault;
/*
* Bypass devmap pte such as DAX page when all pfn requested
* flags(pfn_req_flags) are fulfilled.
* Since each architecture defines a struct page for the zero page, just
* fall through and treat it like a normal page.
*/
if (!vm_normal_page(walk->vma, addr, pte) &&
!pte_devmap(pte) &&
!is_zero_pfn(pte_pfn(pte))) {
if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
pte_unmap(ptep);
return -EFAULT;
}
new_pfn_flags = HMM_PFN_ERROR;
goto out;
}
new_pfn_flags = pte_pfn(pte) | cpu_flags;
out:
*hmm_pfn = (*hmm_pfn & HMM_PFN_INOUT_FLAGS) | new_pfn_flags;
return 0;
fault:
pte_unmap(ptep);
/* Fault any virtual address we were asked to fault */
return hmm_vma_fault(addr, end, required_fault, walk);
}
static int hmm_vma_walk_pmd(pmd_t *pmdp,
unsigned long start,
unsigned long end,
struct mm_walk *walk)
{
struct hmm_vma_walk *hmm_vma_walk = walk->private;
struct hmm_range *range = hmm_vma_walk->range;
unsigned long *hmm_pfns =
&range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
unsigned long npages = (end - start) >> PAGE_SHIFT;
unsigned long addr = start;
pte_t *ptep;
pmd_t pmd;
again:
pmd = pmdp_get_lockless(pmdp);
if (pmd_none(pmd))
return hmm_vma_walk_hole(start, end, -1, walk);
if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
hmm_vma_walk->last = addr;
pmd_migration_entry_wait(walk->mm, pmdp);
return -EBUSY;
}
return hmm_pfns_fill(start, end, range, 0);
}
if (!pmd_present(pmd)) {
if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
return -EFAULT;
return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
}
if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
/*
* No need to take pmd_lock here, even if some other thread
* is splitting the huge pmd we will get that event through
* mmu_notifier callback.
*
* So just read pmd value and check again it's a transparent
* huge or device mapping one and compute corresponding pfn
* values.
*/
pmd = pmdp_get_lockless(pmdp);
if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
goto again;
return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
}
/*
* We have handled all the valid cases above ie either none, migration,
* huge or transparent huge. At this point either it is a valid pmd
* entry pointing to pte directory or it is a bad pmd that will not
* recover.
*/
if (pmd_bad(pmd)) {
if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
return -EFAULT;
return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
}
ptep = pte_offset_map(pmdp, addr);
if (!ptep)
goto again;
for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
int r;
r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
if (r) {
/* hmm_vma_handle_pte() did pte_unmap() */
return r;
}
}
pte_unmap(ptep - 1);
return 0;
}
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
pud_t pud)
{
if (!pud_present(pud))
return 0;
return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
HMM_PFN_VALID) |
hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
}
static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
struct mm_walk *walk)
{
struct hmm_vma_walk *hmm_vma_walk = walk->private;
struct hmm_range *range = hmm_vma_walk->range;
unsigned long addr = start;
pud_t pud;
spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
if (!ptl)
return 0;
/* Normally we don't want to split the huge page */
walk->action = ACTION_CONTINUE;
pud = READ_ONCE(*pudp);
if (!pud_present(pud)) {
spin_unlock(ptl);
return hmm_vma_walk_hole(start, end, -1, walk);
}
if (pud_leaf(pud) && pud_devmap(pud)) {
unsigned long i, npages, pfn;
unsigned int required_fault;
unsigned long *hmm_pfns;
unsigned long cpu_flags;
i = (addr - range->start) >> PAGE_SHIFT;
npages = (end - addr) >> PAGE_SHIFT;
hmm_pfns = &range->hmm_pfns[i];
cpu_flags = pud_to_hmm_pfn_flags(range, pud);
required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
npages, cpu_flags);
if (required_fault) {
spin_unlock(ptl);
return hmm_vma_fault(addr, end, required_fault, walk);
}
pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
for (i = 0; i < npages; ++i, ++pfn) {
hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
hmm_pfns[i] |= pfn | cpu_flags;
}
goto out_unlock;
}
/* Ask for the PUD to be split */
walk->action = ACTION_SUBTREE;
out_unlock:
spin_unlock(ptl);
return 0;
}
#else
#define hmm_vma_walk_pud NULL
#endif
#ifdef CONFIG_HUGETLB_PAGE
static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
unsigned long start, unsigned long end,
struct mm_walk *walk)
{
unsigned long addr = start, i, pfn;
struct hmm_vma_walk *hmm_vma_walk = walk->private;
struct hmm_range *range = hmm_vma_walk->range;
struct vm_area_struct *vma = walk->vma;
unsigned int required_fault;
unsigned long pfn_req_flags;
unsigned long cpu_flags;
spinlock_t *ptl;
pte_t entry;
ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
entry = huge_ptep_get(walk->mm, addr, pte);
i = (start - range->start) >> PAGE_SHIFT;
pfn_req_flags = range->hmm_pfns[i];
cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
required_fault =
hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
if (required_fault) {
int ret;
spin_unlock(ptl);
hugetlb_vma_unlock_read(vma);
/*
* Avoid deadlock: drop the vma lock before calling
* hmm_vma_fault(), which will itself potentially take and
* drop the vma lock. This is also correct from a
* protection point of view, because there is no further
* use here of either pte or ptl after dropping the vma
* lock.
*/
ret = hmm_vma_fault(addr, end, required_fault, walk);
hugetlb_vma_lock_read(vma);
return ret;
}
pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
for (; addr < end; addr += PAGE_SIZE, i++, pfn++) {
range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
range->hmm_pfns[i] |= pfn | cpu_flags;
}
spin_unlock(ptl);
return 0;
}
#else
#define hmm_vma_walk_hugetlb_entry NULL
#endif /* CONFIG_HUGETLB_PAGE */
static int hmm_vma_walk_test(unsigned long start, unsigned long end,
struct mm_walk *walk)
{
struct hmm_vma_walk *hmm_vma_walk = walk->private;
struct hmm_range *range = hmm_vma_walk->range;
struct vm_area_struct *vma = walk->vma;
if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) &&
vma->vm_flags & VM_READ)
return 0;
/*
* vma ranges that don't have struct page backing them or map I/O
* devices directly cannot be handled by hmm_range_fault().
*
* If the vma does not allow read access, then assume that it does not
* allow write access either. HMM does not support architectures that
* allow write without read.
*
* If a fault is requested for an unsupported range then it is a hard
* failure.
*/
if (hmm_range_need_fault(hmm_vma_walk,
range->hmm_pfns +
((start - range->start) >> PAGE_SHIFT),
(end - start) >> PAGE_SHIFT, 0))
return -EFAULT;
hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
/* Skip this vma and continue processing the next vma. */
return 1;
}
static const struct mm_walk_ops hmm_walk_ops = {
.pud_entry = hmm_vma_walk_pud,
.pmd_entry = hmm_vma_walk_pmd,
.pte_hole = hmm_vma_walk_hole,
.hugetlb_entry = hmm_vma_walk_hugetlb_entry,
.test_walk = hmm_vma_walk_test,
.walk_lock = PGWALK_RDLOCK,
};
/**
* hmm_range_fault - try to fault some address in a virtual address range
* @range: argument structure
*
* Returns 0 on success or one of the following error codes:
*
* -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma
* (e.g., device file vma).
* -ENOMEM: Out of memory.
* -EPERM: Invalid permission (e.g., asking for write and range is read
* only).
* -EBUSY: The range has been invalidated and the caller needs to wait for
* the invalidation to finish.
* -EFAULT: A page was requested to be valid and could not be made valid
* ie it has no backing VMA or it is illegal to access
*
* This is similar to get_user_pages(), except that it can read the page tables
* without mutating them (ie causing faults).
*/
int hmm_range_fault(struct hmm_range *range)
{
struct hmm_vma_walk hmm_vma_walk = {
.range = range,
.last = range->start,
};
struct mm_struct *mm = range->notifier->mm;
int ret;
mmap_assert_locked(mm);
do {
/* If range is no longer valid force retry. */
if (mmu_interval_check_retry(range->notifier,
range->notifier_seq))
return -EBUSY;
ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
&hmm_walk_ops, &hmm_vma_walk);
/*
* When -EBUSY is returned the loop restarts with
* hmm_vma_walk.last set to an address that has not been stored
* in pfns. All entries < last in the pfn array are set to their
* output, and all >= are still at their input values.
*/
} while (ret == -EBUSY);
return ret;
}
EXPORT_SYMBOL(hmm_range_fault);
/**
* hmm_dma_map_alloc - Allocate HMM map structure
* @dev: device to allocate structure for
* @map: HMM map to allocate
* @nr_entries: number of entries in the map
* @dma_entry_size: size of the DMA entry in the map
*
* Allocate the HMM map structure and all the lists it contains.
* Return 0 on success, -ENOMEM on failure.
*/
int hmm_dma_map_alloc(struct device *dev, struct hmm_dma_map *map,
size_t nr_entries, size_t dma_entry_size)
{
bool dma_need_sync = false;
bool use_iova;
WARN_ON_ONCE(!(nr_entries * PAGE_SIZE / dma_entry_size));
/*
* The HMM API violates our normal DMA buffer ownership rules and can't
* transfer buffer ownership. The dma_addressing_limited() check is a
* best approximation to ensure no swiotlb buffering happens.
*/
#ifdef CONFIG_DMA_NEED_SYNC
dma_need_sync = !dev->dma_skip_sync;
#endif /* CONFIG_DMA_NEED_SYNC */
if (dma_need_sync || dma_addressing_limited(dev))
return -EOPNOTSUPP;
map->dma_entry_size = dma_entry_size;
map->pfn_list = kvcalloc(nr_entries, sizeof(*map->pfn_list),
GFP_KERNEL | __GFP_NOWARN);
if (!map->pfn_list)
return -ENOMEM;
use_iova = dma_iova_try_alloc(dev, &map->state, 0,
nr_entries * PAGE_SIZE);
if (!use_iova && dma_need_unmap(dev)) {
map->dma_list = kvcalloc(nr_entries, sizeof(*map->dma_list),
GFP_KERNEL | __GFP_NOWARN);
if (!map->dma_list)
goto err_dma;
}
return 0;
err_dma:
kvfree(map->pfn_list);
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(hmm_dma_map_alloc);
/**
* hmm_dma_map_free - iFree HMM map structure
* @dev: device to free structure from
* @map: HMM map containing the various lists and state
*
* Free the HMM map structure and all the lists it contains.
*/
void hmm_dma_map_free(struct device *dev, struct hmm_dma_map *map)
{
if (dma_use_iova(&map->state))
dma_iova_free(dev, &map->state);
kvfree(map->pfn_list);
kvfree(map->dma_list);
}
EXPORT_SYMBOL_GPL(hmm_dma_map_free);
/**
* hmm_dma_map_pfn - Map a physical HMM page to DMA address
* @dev: Device to map the page for
* @map: HMM map
* @idx: Index into the PFN and dma address arrays
* @p2pdma_state: PCI P2P state.
*
* dma_alloc_iova() allocates IOVA based on the size specified by their use in
* iova->size. Call this function after IOVA allocation to link whole @page
* to get the DMA address. Note that very first call to this function
* will have @offset set to 0 in the IOVA space allocated from
* dma_alloc_iova(). For subsequent calls to this function on same @iova,
* @offset needs to be advanced by the caller with the size of previous
* page that was linked + DMA address returned for the previous page that was
* linked by this function.
*/
dma_addr_t hmm_dma_map_pfn(struct device *dev, struct hmm_dma_map *map,
size_t idx,
struct pci_p2pdma_map_state *p2pdma_state)
{
struct dma_iova_state *state = &map->state;
dma_addr_t *dma_addrs = map->dma_list;
unsigned long *pfns = map->pfn_list;
struct page *page = hmm_pfn_to_page(pfns[idx]);
phys_addr_t paddr = hmm_pfn_to_phys(pfns[idx]);
size_t offset = idx * map->dma_entry_size;
unsigned long attrs = 0;
dma_addr_t dma_addr;
int ret;
if ((pfns[idx] & HMM_PFN_DMA_MAPPED) &&
!(pfns[idx] & HMM_PFN_P2PDMA_BUS)) {
/*
* We are in this flow when there is a need to resync flags,
* for example when page was already linked in prefetch call
* with READ flag and now we need to add WRITE flag
*
* This page was already programmed to HW and we don't want/need
* to unlink and link it again just to resync flags.
*/
if (dma_use_iova(state))
return state->addr + offset;
/*
* Without dma_need_unmap, the dma_addrs array is NULL, thus we
* need to regenerate the address below even if there already
* was a mapping. But !dma_need_unmap implies that the
* mapping stateless, so this is fine.
*/
if (dma_need_unmap(dev))
return dma_addrs[idx];
/* Continue to remapping */
}
switch (pci_p2pdma_state(p2pdma_state, dev, page)) {
case PCI_P2PDMA_MAP_NONE:
break;
case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
attrs |= DMA_ATTR_SKIP_CPU_SYNC;
pfns[idx] |= HMM_PFN_P2PDMA;
break;
case PCI_P2PDMA_MAP_BUS_ADDR:
pfns[idx] |= HMM_PFN_P2PDMA_BUS | HMM_PFN_DMA_MAPPED;
return pci_p2pdma_bus_addr_map(p2pdma_state, paddr);
default:
return DMA_MAPPING_ERROR;
}
if (dma_use_iova(state)) {
ret = dma_iova_link(dev, state, paddr, offset,
map->dma_entry_size, DMA_BIDIRECTIONAL,
attrs);
if (ret)
goto error;
ret = dma_iova_sync(dev, state, offset, map->dma_entry_size);
if (ret) {
dma_iova_unlink(dev, state, offset, map->dma_entry_size,
DMA_BIDIRECTIONAL, attrs);
goto error;
}
dma_addr = state->addr + offset;
} else {
if (WARN_ON_ONCE(dma_need_unmap(dev) && !dma_addrs))
goto error;
dma_addr = dma_map_page(dev, page, 0, map->dma_entry_size,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, dma_addr))
goto error;
if (dma_need_unmap(dev))
dma_addrs[idx] = dma_addr;
}
pfns[idx] |= HMM_PFN_DMA_MAPPED;
return dma_addr;
error:
pfns[idx] &= ~HMM_PFN_P2PDMA;
return DMA_MAPPING_ERROR;
}
EXPORT_SYMBOL_GPL(hmm_dma_map_pfn);
/**
* hmm_dma_unmap_pfn - Unmap a physical HMM page from DMA address
* @dev: Device to unmap the page from
* @map: HMM map
* @idx: Index of the PFN to unmap
*
* Returns true if the PFN was mapped and has been unmapped, false otherwise.
*/
bool hmm_dma_unmap_pfn(struct device *dev, struct hmm_dma_map *map, size_t idx)
{
const unsigned long valid_dma = HMM_PFN_VALID | HMM_PFN_DMA_MAPPED;
struct dma_iova_state *state = &map->state;
dma_addr_t *dma_addrs = map->dma_list;
unsigned long *pfns = map->pfn_list;
unsigned long attrs = 0;
if ((pfns[idx] & valid_dma) != valid_dma)
return false;
if (pfns[idx] & HMM_PFN_P2PDMA_BUS)
; /* no need to unmap bus address P2P mappings */
else if (dma_use_iova(state)) {
if (pfns[idx] & HMM_PFN_P2PDMA)
attrs |= DMA_ATTR_SKIP_CPU_SYNC;
dma_iova_unlink(dev, state, idx * map->dma_entry_size,
map->dma_entry_size, DMA_BIDIRECTIONAL, attrs);
} else if (dma_need_unmap(dev))
dma_unmap_page(dev, dma_addrs[idx], map->dma_entry_size,
DMA_BIDIRECTIONAL);
pfns[idx] &=
~(HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA | HMM_PFN_P2PDMA_BUS);
return true;
}
EXPORT_SYMBOL_GPL(hmm_dma_unmap_pfn);