| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright 2013 Red Hat Inc. |
| * |
| * Authors: Jérôme Glisse <jglisse@redhat.com> |
| */ |
| /* |
| * Refer to include/linux/hmm.h for information about heterogeneous memory |
| * management or HMM for short. |
| */ |
| #include <linux/pagewalk.h> |
| #include <linux/hmm.h> |
| #include <linux/hmm-dma.h> |
| #include <linux/init.h> |
| #include <linux/rmap.h> |
| #include <linux/swap.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/mmzone.h> |
| #include <linux/pagemap.h> |
| #include <linux/swapops.h> |
| #include <linux/hugetlb.h> |
| #include <linux/memremap.h> |
| #include <linux/sched/mm.h> |
| #include <linux/jump_label.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/pci-p2pdma.h> |
| #include <linux/mmu_notifier.h> |
| #include <linux/memory_hotplug.h> |
| |
| #include "internal.h" |
| |
| struct hmm_vma_walk { |
| struct hmm_range *range; |
| unsigned long last; |
| }; |
| |
| enum { |
| HMM_NEED_FAULT = 1 << 0, |
| HMM_NEED_WRITE_FAULT = 1 << 1, |
| HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT, |
| }; |
| |
| enum { |
| /* These flags are carried from input-to-output */ |
| HMM_PFN_INOUT_FLAGS = HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA | |
| HMM_PFN_P2PDMA_BUS, |
| }; |
| |
| static int hmm_pfns_fill(unsigned long addr, unsigned long end, |
| struct hmm_range *range, unsigned long cpu_flags) |
| { |
| unsigned long i = (addr - range->start) >> PAGE_SHIFT; |
| |
| for (; addr < end; addr += PAGE_SIZE, i++) { |
| range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; |
| range->hmm_pfns[i] |= cpu_flags; |
| } |
| return 0; |
| } |
| |
| /* |
| * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s) |
| * @addr: range virtual start address (inclusive) |
| * @end: range virtual end address (exclusive) |
| * @required_fault: HMM_NEED_* flags |
| * @walk: mm_walk structure |
| * Return: -EBUSY after page fault, or page fault error |
| * |
| * This function will be called whenever pmd_none() or pte_none() returns true, |
| * or whenever there is no page directory covering the virtual address range. |
| */ |
| static int hmm_vma_fault(unsigned long addr, unsigned long end, |
| unsigned int required_fault, struct mm_walk *walk) |
| { |
| struct hmm_vma_walk *hmm_vma_walk = walk->private; |
| struct vm_area_struct *vma = walk->vma; |
| unsigned int fault_flags = FAULT_FLAG_REMOTE; |
| |
| WARN_ON_ONCE(!required_fault); |
| hmm_vma_walk->last = addr; |
| |
| if (required_fault & HMM_NEED_WRITE_FAULT) { |
| if (!(vma->vm_flags & VM_WRITE)) |
| return -EPERM; |
| fault_flags |= FAULT_FLAG_WRITE; |
| } |
| |
| for (; addr < end; addr += PAGE_SIZE) |
| if (handle_mm_fault(vma, addr, fault_flags, NULL) & |
| VM_FAULT_ERROR) |
| return -EFAULT; |
| return -EBUSY; |
| } |
| |
| static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk, |
| unsigned long pfn_req_flags, |
| unsigned long cpu_flags) |
| { |
| struct hmm_range *range = hmm_vma_walk->range; |
| |
| /* |
| * So we not only consider the individual per page request we also |
| * consider the default flags requested for the range. The API can |
| * be used 2 ways. The first one where the HMM user coalesces |
| * multiple page faults into one request and sets flags per pfn for |
| * those faults. The second one where the HMM user wants to pre- |
| * fault a range with specific flags. For the latter one it is a |
| * waste to have the user pre-fill the pfn arrays with a default |
| * flags value. |
| */ |
| pfn_req_flags &= range->pfn_flags_mask; |
| pfn_req_flags |= range->default_flags; |
| |
| /* We aren't ask to do anything ... */ |
| if (!(pfn_req_flags & HMM_PFN_REQ_FAULT)) |
| return 0; |
| |
| /* Need to write fault ? */ |
| if ((pfn_req_flags & HMM_PFN_REQ_WRITE) && |
| !(cpu_flags & HMM_PFN_WRITE)) |
| return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT; |
| |
| /* If CPU page table is not valid then we need to fault */ |
| if (!(cpu_flags & HMM_PFN_VALID)) |
| return HMM_NEED_FAULT; |
| return 0; |
| } |
| |
| static unsigned int |
| hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk, |
| const unsigned long hmm_pfns[], unsigned long npages, |
| unsigned long cpu_flags) |
| { |
| struct hmm_range *range = hmm_vma_walk->range; |
| unsigned int required_fault = 0; |
| unsigned long i; |
| |
| /* |
| * If the default flags do not request to fault pages, and the mask does |
| * not allow for individual pages to be faulted, then |
| * hmm_pte_need_fault() will always return 0. |
| */ |
| if (!((range->default_flags | range->pfn_flags_mask) & |
| HMM_PFN_REQ_FAULT)) |
| return 0; |
| |
| for (i = 0; i < npages; ++i) { |
| required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i], |
| cpu_flags); |
| if (required_fault == HMM_NEED_ALL_BITS) |
| return required_fault; |
| } |
| return required_fault; |
| } |
| |
| static int hmm_vma_walk_hole(unsigned long addr, unsigned long end, |
| __always_unused int depth, struct mm_walk *walk) |
| { |
| struct hmm_vma_walk *hmm_vma_walk = walk->private; |
| struct hmm_range *range = hmm_vma_walk->range; |
| unsigned int required_fault; |
| unsigned long i, npages; |
| unsigned long *hmm_pfns; |
| |
| i = (addr - range->start) >> PAGE_SHIFT; |
| npages = (end - addr) >> PAGE_SHIFT; |
| hmm_pfns = &range->hmm_pfns[i]; |
| required_fault = |
| hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0); |
| if (!walk->vma) { |
| if (required_fault) |
| return -EFAULT; |
| return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR); |
| } |
| if (required_fault) |
| return hmm_vma_fault(addr, end, required_fault, walk); |
| return hmm_pfns_fill(addr, end, range, 0); |
| } |
| |
| static inline unsigned long hmm_pfn_flags_order(unsigned long order) |
| { |
| return order << HMM_PFN_ORDER_SHIFT; |
| } |
| |
| static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range, |
| pmd_t pmd) |
| { |
| if (pmd_protnone(pmd)) |
| return 0; |
| return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : |
| HMM_PFN_VALID) | |
| hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT); |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, |
| unsigned long end, unsigned long hmm_pfns[], |
| pmd_t pmd) |
| { |
| struct hmm_vma_walk *hmm_vma_walk = walk->private; |
| struct hmm_range *range = hmm_vma_walk->range; |
| unsigned long pfn, npages, i; |
| unsigned int required_fault; |
| unsigned long cpu_flags; |
| |
| npages = (end - addr) >> PAGE_SHIFT; |
| cpu_flags = pmd_to_hmm_pfn_flags(range, pmd); |
| required_fault = |
| hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags); |
| if (required_fault) |
| return hmm_vma_fault(addr, end, required_fault, walk); |
| |
| pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
| for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) { |
| hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; |
| hmm_pfns[i] |= pfn | cpu_flags; |
| } |
| return 0; |
| } |
| #else /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| /* stub to allow the code below to compile */ |
| int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, |
| unsigned long end, unsigned long hmm_pfns[], pmd_t pmd); |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range, |
| pte_t pte) |
| { |
| if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte)) |
| return 0; |
| return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID; |
| } |
| |
| static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr, |
| unsigned long end, pmd_t *pmdp, pte_t *ptep, |
| unsigned long *hmm_pfn) |
| { |
| struct hmm_vma_walk *hmm_vma_walk = walk->private; |
| struct hmm_range *range = hmm_vma_walk->range; |
| unsigned int required_fault; |
| unsigned long cpu_flags; |
| pte_t pte = ptep_get(ptep); |
| uint64_t pfn_req_flags = *hmm_pfn; |
| uint64_t new_pfn_flags = 0; |
| |
| if (pte_none_mostly(pte)) { |
| required_fault = |
| hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); |
| if (required_fault) |
| goto fault; |
| goto out; |
| } |
| |
| if (!pte_present(pte)) { |
| swp_entry_t entry = pte_to_swp_entry(pte); |
| |
| /* |
| * Don't fault in device private pages owned by the caller, |
| * just report the PFN. |
| */ |
| if (is_device_private_entry(entry) && |
| page_pgmap(pfn_swap_entry_to_page(entry))->owner == |
| range->dev_private_owner) { |
| cpu_flags = HMM_PFN_VALID; |
| if (is_writable_device_private_entry(entry)) |
| cpu_flags |= HMM_PFN_WRITE; |
| new_pfn_flags = swp_offset_pfn(entry) | cpu_flags; |
| goto out; |
| } |
| |
| required_fault = |
| hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); |
| if (!required_fault) |
| goto out; |
| |
| if (!non_swap_entry(entry)) |
| goto fault; |
| |
| if (is_device_private_entry(entry)) |
| goto fault; |
| |
| if (is_device_exclusive_entry(entry)) |
| goto fault; |
| |
| if (is_migration_entry(entry)) { |
| pte_unmap(ptep); |
| hmm_vma_walk->last = addr; |
| migration_entry_wait(walk->mm, pmdp, addr); |
| return -EBUSY; |
| } |
| |
| /* Report error for everything else */ |
| pte_unmap(ptep); |
| return -EFAULT; |
| } |
| |
| cpu_flags = pte_to_hmm_pfn_flags(range, pte); |
| required_fault = |
| hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); |
| if (required_fault) |
| goto fault; |
| |
| /* |
| * Bypass devmap pte such as DAX page when all pfn requested |
| * flags(pfn_req_flags) are fulfilled. |
| * Since each architecture defines a struct page for the zero page, just |
| * fall through and treat it like a normal page. |
| */ |
| if (!vm_normal_page(walk->vma, addr, pte) && |
| !pte_devmap(pte) && |
| !is_zero_pfn(pte_pfn(pte))) { |
| if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) { |
| pte_unmap(ptep); |
| return -EFAULT; |
| } |
| new_pfn_flags = HMM_PFN_ERROR; |
| goto out; |
| } |
| |
| new_pfn_flags = pte_pfn(pte) | cpu_flags; |
| out: |
| *hmm_pfn = (*hmm_pfn & HMM_PFN_INOUT_FLAGS) | new_pfn_flags; |
| return 0; |
| |
| fault: |
| pte_unmap(ptep); |
| /* Fault any virtual address we were asked to fault */ |
| return hmm_vma_fault(addr, end, required_fault, walk); |
| } |
| |
| static int hmm_vma_walk_pmd(pmd_t *pmdp, |
| unsigned long start, |
| unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct hmm_vma_walk *hmm_vma_walk = walk->private; |
| struct hmm_range *range = hmm_vma_walk->range; |
| unsigned long *hmm_pfns = |
| &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT]; |
| unsigned long npages = (end - start) >> PAGE_SHIFT; |
| unsigned long addr = start; |
| pte_t *ptep; |
| pmd_t pmd; |
| |
| again: |
| pmd = pmdp_get_lockless(pmdp); |
| if (pmd_none(pmd)) |
| return hmm_vma_walk_hole(start, end, -1, walk); |
| |
| if (thp_migration_supported() && is_pmd_migration_entry(pmd)) { |
| if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) { |
| hmm_vma_walk->last = addr; |
| pmd_migration_entry_wait(walk->mm, pmdp); |
| return -EBUSY; |
| } |
| return hmm_pfns_fill(start, end, range, 0); |
| } |
| |
| if (!pmd_present(pmd)) { |
| if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) |
| return -EFAULT; |
| return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); |
| } |
| |
| if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) { |
| /* |
| * No need to take pmd_lock here, even if some other thread |
| * is splitting the huge pmd we will get that event through |
| * mmu_notifier callback. |
| * |
| * So just read pmd value and check again it's a transparent |
| * huge or device mapping one and compute corresponding pfn |
| * values. |
| */ |
| pmd = pmdp_get_lockless(pmdp); |
| if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd)) |
| goto again; |
| |
| return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd); |
| } |
| |
| /* |
| * We have handled all the valid cases above ie either none, migration, |
| * huge or transparent huge. At this point either it is a valid pmd |
| * entry pointing to pte directory or it is a bad pmd that will not |
| * recover. |
| */ |
| if (pmd_bad(pmd)) { |
| if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) |
| return -EFAULT; |
| return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); |
| } |
| |
| ptep = pte_offset_map(pmdp, addr); |
| if (!ptep) |
| goto again; |
| for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) { |
| int r; |
| |
| r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns); |
| if (r) { |
| /* hmm_vma_handle_pte() did pte_unmap() */ |
| return r; |
| } |
| } |
| pte_unmap(ptep - 1); |
| return 0; |
| } |
| |
| #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \ |
| defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) |
| static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range, |
| pud_t pud) |
| { |
| if (!pud_present(pud)) |
| return 0; |
| return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : |
| HMM_PFN_VALID) | |
| hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT); |
| } |
| |
| static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct hmm_vma_walk *hmm_vma_walk = walk->private; |
| struct hmm_range *range = hmm_vma_walk->range; |
| unsigned long addr = start; |
| pud_t pud; |
| spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma); |
| |
| if (!ptl) |
| return 0; |
| |
| /* Normally we don't want to split the huge page */ |
| walk->action = ACTION_CONTINUE; |
| |
| pud = READ_ONCE(*pudp); |
| if (!pud_present(pud)) { |
| spin_unlock(ptl); |
| return hmm_vma_walk_hole(start, end, -1, walk); |
| } |
| |
| if (pud_leaf(pud) && pud_devmap(pud)) { |
| unsigned long i, npages, pfn; |
| unsigned int required_fault; |
| unsigned long *hmm_pfns; |
| unsigned long cpu_flags; |
| |
| i = (addr - range->start) >> PAGE_SHIFT; |
| npages = (end - addr) >> PAGE_SHIFT; |
| hmm_pfns = &range->hmm_pfns[i]; |
| |
| cpu_flags = pud_to_hmm_pfn_flags(range, pud); |
| required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns, |
| npages, cpu_flags); |
| if (required_fault) { |
| spin_unlock(ptl); |
| return hmm_vma_fault(addr, end, required_fault, walk); |
| } |
| |
| pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
| for (i = 0; i < npages; ++i, ++pfn) { |
| hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; |
| hmm_pfns[i] |= pfn | cpu_flags; |
| } |
| goto out_unlock; |
| } |
| |
| /* Ask for the PUD to be split */ |
| walk->action = ACTION_SUBTREE; |
| |
| out_unlock: |
| spin_unlock(ptl); |
| return 0; |
| } |
| #else |
| #define hmm_vma_walk_pud NULL |
| #endif |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask, |
| unsigned long start, unsigned long end, |
| struct mm_walk *walk) |
| { |
| unsigned long addr = start, i, pfn; |
| struct hmm_vma_walk *hmm_vma_walk = walk->private; |
| struct hmm_range *range = hmm_vma_walk->range; |
| struct vm_area_struct *vma = walk->vma; |
| unsigned int required_fault; |
| unsigned long pfn_req_flags; |
| unsigned long cpu_flags; |
| spinlock_t *ptl; |
| pte_t entry; |
| |
| ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte); |
| entry = huge_ptep_get(walk->mm, addr, pte); |
| |
| i = (start - range->start) >> PAGE_SHIFT; |
| pfn_req_flags = range->hmm_pfns[i]; |
| cpu_flags = pte_to_hmm_pfn_flags(range, entry) | |
| hmm_pfn_flags_order(huge_page_order(hstate_vma(vma))); |
| required_fault = |
| hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); |
| if (required_fault) { |
| int ret; |
| |
| spin_unlock(ptl); |
| hugetlb_vma_unlock_read(vma); |
| /* |
| * Avoid deadlock: drop the vma lock before calling |
| * hmm_vma_fault(), which will itself potentially take and |
| * drop the vma lock. This is also correct from a |
| * protection point of view, because there is no further |
| * use here of either pte or ptl after dropping the vma |
| * lock. |
| */ |
| ret = hmm_vma_fault(addr, end, required_fault, walk); |
| hugetlb_vma_lock_read(vma); |
| return ret; |
| } |
| |
| pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT); |
| for (; addr < end; addr += PAGE_SIZE, i++, pfn++) { |
| range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; |
| range->hmm_pfns[i] |= pfn | cpu_flags; |
| } |
| |
| spin_unlock(ptl); |
| return 0; |
| } |
| #else |
| #define hmm_vma_walk_hugetlb_entry NULL |
| #endif /* CONFIG_HUGETLB_PAGE */ |
| |
| static int hmm_vma_walk_test(unsigned long start, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct hmm_vma_walk *hmm_vma_walk = walk->private; |
| struct hmm_range *range = hmm_vma_walk->range; |
| struct vm_area_struct *vma = walk->vma; |
| |
| if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) && |
| vma->vm_flags & VM_READ) |
| return 0; |
| |
| /* |
| * vma ranges that don't have struct page backing them or map I/O |
| * devices directly cannot be handled by hmm_range_fault(). |
| * |
| * If the vma does not allow read access, then assume that it does not |
| * allow write access either. HMM does not support architectures that |
| * allow write without read. |
| * |
| * If a fault is requested for an unsupported range then it is a hard |
| * failure. |
| */ |
| if (hmm_range_need_fault(hmm_vma_walk, |
| range->hmm_pfns + |
| ((start - range->start) >> PAGE_SHIFT), |
| (end - start) >> PAGE_SHIFT, 0)) |
| return -EFAULT; |
| |
| hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); |
| |
| /* Skip this vma and continue processing the next vma. */ |
| return 1; |
| } |
| |
| static const struct mm_walk_ops hmm_walk_ops = { |
| .pud_entry = hmm_vma_walk_pud, |
| .pmd_entry = hmm_vma_walk_pmd, |
| .pte_hole = hmm_vma_walk_hole, |
| .hugetlb_entry = hmm_vma_walk_hugetlb_entry, |
| .test_walk = hmm_vma_walk_test, |
| .walk_lock = PGWALK_RDLOCK, |
| }; |
| |
| /** |
| * hmm_range_fault - try to fault some address in a virtual address range |
| * @range: argument structure |
| * |
| * Returns 0 on success or one of the following error codes: |
| * |
| * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma |
| * (e.g., device file vma). |
| * -ENOMEM: Out of memory. |
| * -EPERM: Invalid permission (e.g., asking for write and range is read |
| * only). |
| * -EBUSY: The range has been invalidated and the caller needs to wait for |
| * the invalidation to finish. |
| * -EFAULT: A page was requested to be valid and could not be made valid |
| * ie it has no backing VMA or it is illegal to access |
| * |
| * This is similar to get_user_pages(), except that it can read the page tables |
| * without mutating them (ie causing faults). |
| */ |
| int hmm_range_fault(struct hmm_range *range) |
| { |
| struct hmm_vma_walk hmm_vma_walk = { |
| .range = range, |
| .last = range->start, |
| }; |
| struct mm_struct *mm = range->notifier->mm; |
| int ret; |
| |
| mmap_assert_locked(mm); |
| |
| do { |
| /* If range is no longer valid force retry. */ |
| if (mmu_interval_check_retry(range->notifier, |
| range->notifier_seq)) |
| return -EBUSY; |
| ret = walk_page_range(mm, hmm_vma_walk.last, range->end, |
| &hmm_walk_ops, &hmm_vma_walk); |
| /* |
| * When -EBUSY is returned the loop restarts with |
| * hmm_vma_walk.last set to an address that has not been stored |
| * in pfns. All entries < last in the pfn array are set to their |
| * output, and all >= are still at their input values. |
| */ |
| } while (ret == -EBUSY); |
| return ret; |
| } |
| EXPORT_SYMBOL(hmm_range_fault); |
| |
| /** |
| * hmm_dma_map_alloc - Allocate HMM map structure |
| * @dev: device to allocate structure for |
| * @map: HMM map to allocate |
| * @nr_entries: number of entries in the map |
| * @dma_entry_size: size of the DMA entry in the map |
| * |
| * Allocate the HMM map structure and all the lists it contains. |
| * Return 0 on success, -ENOMEM on failure. |
| */ |
| int hmm_dma_map_alloc(struct device *dev, struct hmm_dma_map *map, |
| size_t nr_entries, size_t dma_entry_size) |
| { |
| bool dma_need_sync = false; |
| bool use_iova; |
| |
| WARN_ON_ONCE(!(nr_entries * PAGE_SIZE / dma_entry_size)); |
| |
| /* |
| * The HMM API violates our normal DMA buffer ownership rules and can't |
| * transfer buffer ownership. The dma_addressing_limited() check is a |
| * best approximation to ensure no swiotlb buffering happens. |
| */ |
| #ifdef CONFIG_DMA_NEED_SYNC |
| dma_need_sync = !dev->dma_skip_sync; |
| #endif /* CONFIG_DMA_NEED_SYNC */ |
| if (dma_need_sync || dma_addressing_limited(dev)) |
| return -EOPNOTSUPP; |
| |
| map->dma_entry_size = dma_entry_size; |
| map->pfn_list = kvcalloc(nr_entries, sizeof(*map->pfn_list), |
| GFP_KERNEL | __GFP_NOWARN); |
| if (!map->pfn_list) |
| return -ENOMEM; |
| |
| use_iova = dma_iova_try_alloc(dev, &map->state, 0, |
| nr_entries * PAGE_SIZE); |
| if (!use_iova && dma_need_unmap(dev)) { |
| map->dma_list = kvcalloc(nr_entries, sizeof(*map->dma_list), |
| GFP_KERNEL | __GFP_NOWARN); |
| if (!map->dma_list) |
| goto err_dma; |
| } |
| return 0; |
| |
| err_dma: |
| kvfree(map->pfn_list); |
| return -ENOMEM; |
| } |
| EXPORT_SYMBOL_GPL(hmm_dma_map_alloc); |
| |
| /** |
| * hmm_dma_map_free - iFree HMM map structure |
| * @dev: device to free structure from |
| * @map: HMM map containing the various lists and state |
| * |
| * Free the HMM map structure and all the lists it contains. |
| */ |
| void hmm_dma_map_free(struct device *dev, struct hmm_dma_map *map) |
| { |
| if (dma_use_iova(&map->state)) |
| dma_iova_free(dev, &map->state); |
| kvfree(map->pfn_list); |
| kvfree(map->dma_list); |
| } |
| EXPORT_SYMBOL_GPL(hmm_dma_map_free); |
| |
| /** |
| * hmm_dma_map_pfn - Map a physical HMM page to DMA address |
| * @dev: Device to map the page for |
| * @map: HMM map |
| * @idx: Index into the PFN and dma address arrays |
| * @p2pdma_state: PCI P2P state. |
| * |
| * dma_alloc_iova() allocates IOVA based on the size specified by their use in |
| * iova->size. Call this function after IOVA allocation to link whole @page |
| * to get the DMA address. Note that very first call to this function |
| * will have @offset set to 0 in the IOVA space allocated from |
| * dma_alloc_iova(). For subsequent calls to this function on same @iova, |
| * @offset needs to be advanced by the caller with the size of previous |
| * page that was linked + DMA address returned for the previous page that was |
| * linked by this function. |
| */ |
| dma_addr_t hmm_dma_map_pfn(struct device *dev, struct hmm_dma_map *map, |
| size_t idx, |
| struct pci_p2pdma_map_state *p2pdma_state) |
| { |
| struct dma_iova_state *state = &map->state; |
| dma_addr_t *dma_addrs = map->dma_list; |
| unsigned long *pfns = map->pfn_list; |
| struct page *page = hmm_pfn_to_page(pfns[idx]); |
| phys_addr_t paddr = hmm_pfn_to_phys(pfns[idx]); |
| size_t offset = idx * map->dma_entry_size; |
| unsigned long attrs = 0; |
| dma_addr_t dma_addr; |
| int ret; |
| |
| if ((pfns[idx] & HMM_PFN_DMA_MAPPED) && |
| !(pfns[idx] & HMM_PFN_P2PDMA_BUS)) { |
| /* |
| * We are in this flow when there is a need to resync flags, |
| * for example when page was already linked in prefetch call |
| * with READ flag and now we need to add WRITE flag |
| * |
| * This page was already programmed to HW and we don't want/need |
| * to unlink and link it again just to resync flags. |
| */ |
| if (dma_use_iova(state)) |
| return state->addr + offset; |
| |
| /* |
| * Without dma_need_unmap, the dma_addrs array is NULL, thus we |
| * need to regenerate the address below even if there already |
| * was a mapping. But !dma_need_unmap implies that the |
| * mapping stateless, so this is fine. |
| */ |
| if (dma_need_unmap(dev)) |
| return dma_addrs[idx]; |
| |
| /* Continue to remapping */ |
| } |
| |
| switch (pci_p2pdma_state(p2pdma_state, dev, page)) { |
| case PCI_P2PDMA_MAP_NONE: |
| break; |
| case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: |
| attrs |= DMA_ATTR_SKIP_CPU_SYNC; |
| pfns[idx] |= HMM_PFN_P2PDMA; |
| break; |
| case PCI_P2PDMA_MAP_BUS_ADDR: |
| pfns[idx] |= HMM_PFN_P2PDMA_BUS | HMM_PFN_DMA_MAPPED; |
| return pci_p2pdma_bus_addr_map(p2pdma_state, paddr); |
| default: |
| return DMA_MAPPING_ERROR; |
| } |
| |
| if (dma_use_iova(state)) { |
| ret = dma_iova_link(dev, state, paddr, offset, |
| map->dma_entry_size, DMA_BIDIRECTIONAL, |
| attrs); |
| if (ret) |
| goto error; |
| |
| ret = dma_iova_sync(dev, state, offset, map->dma_entry_size); |
| if (ret) { |
| dma_iova_unlink(dev, state, offset, map->dma_entry_size, |
| DMA_BIDIRECTIONAL, attrs); |
| goto error; |
| } |
| |
| dma_addr = state->addr + offset; |
| } else { |
| if (WARN_ON_ONCE(dma_need_unmap(dev) && !dma_addrs)) |
| goto error; |
| |
| dma_addr = dma_map_page(dev, page, 0, map->dma_entry_size, |
| DMA_BIDIRECTIONAL); |
| if (dma_mapping_error(dev, dma_addr)) |
| goto error; |
| |
| if (dma_need_unmap(dev)) |
| dma_addrs[idx] = dma_addr; |
| } |
| pfns[idx] |= HMM_PFN_DMA_MAPPED; |
| return dma_addr; |
| error: |
| pfns[idx] &= ~HMM_PFN_P2PDMA; |
| return DMA_MAPPING_ERROR; |
| |
| } |
| EXPORT_SYMBOL_GPL(hmm_dma_map_pfn); |
| |
| /** |
| * hmm_dma_unmap_pfn - Unmap a physical HMM page from DMA address |
| * @dev: Device to unmap the page from |
| * @map: HMM map |
| * @idx: Index of the PFN to unmap |
| * |
| * Returns true if the PFN was mapped and has been unmapped, false otherwise. |
| */ |
| bool hmm_dma_unmap_pfn(struct device *dev, struct hmm_dma_map *map, size_t idx) |
| { |
| const unsigned long valid_dma = HMM_PFN_VALID | HMM_PFN_DMA_MAPPED; |
| struct dma_iova_state *state = &map->state; |
| dma_addr_t *dma_addrs = map->dma_list; |
| unsigned long *pfns = map->pfn_list; |
| unsigned long attrs = 0; |
| |
| if ((pfns[idx] & valid_dma) != valid_dma) |
| return false; |
| |
| if (pfns[idx] & HMM_PFN_P2PDMA_BUS) |
| ; /* no need to unmap bus address P2P mappings */ |
| else if (dma_use_iova(state)) { |
| if (pfns[idx] & HMM_PFN_P2PDMA) |
| attrs |= DMA_ATTR_SKIP_CPU_SYNC; |
| dma_iova_unlink(dev, state, idx * map->dma_entry_size, |
| map->dma_entry_size, DMA_BIDIRECTIONAL, attrs); |
| } else if (dma_need_unmap(dev)) |
| dma_unmap_page(dev, dma_addrs[idx], map->dma_entry_size, |
| DMA_BIDIRECTIONAL); |
| |
| pfns[idx] &= |
| ~(HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA | HMM_PFN_P2PDMA_BUS); |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(hmm_dma_unmap_pfn); |