blob: e6b1985767c2f85498b87926a209bc27f62e3151 [file] [log] [blame]
/*
* Alchemy Semi Au1000 IrDA driver
*
* Copyright 2001 MontaVista Software Inc.
* Author: MontaVista Software, Inc.
* ppopov@mvista.com or source@mvista.com
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/slab.h>
#include <linux/rtnetlink.h>
#include <linux/interrupt.h>
#include <linux/pm.h>
#include <linux/bitops.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/au1000.h>
#if defined(CONFIG_MIPS_PB1000) || defined(CONFIG_MIPS_PB1100)
#include <asm/pb1000.h>
#elif defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
#include <asm/db1x00.h>
#else
#error au1k_ir: unsupported board
#endif
#include <net/irda/irda.h>
#include <net/irda/irmod.h>
#include <net/irda/wrapper.h>
#include <net/irda/irda_device.h>
#include "au1000_ircc.h"
static int au1k_irda_net_init(struct net_device *);
static int au1k_irda_start(struct net_device *);
static int au1k_irda_stop(struct net_device *dev);
static int au1k_irda_hard_xmit(struct sk_buff *, struct net_device *);
static int au1k_irda_rx(struct net_device *);
static void au1k_irda_interrupt(int, void *, struct pt_regs *);
static void au1k_tx_timeout(struct net_device *);
static struct net_device_stats *au1k_irda_stats(struct net_device *);
static int au1k_irda_ioctl(struct net_device *, struct ifreq *, int);
static int au1k_irda_set_speed(struct net_device *dev, int speed);
static void *dma_alloc(size_t, dma_addr_t *);
static void dma_free(void *, size_t);
static int qos_mtt_bits = 0x07; /* 1 ms or more */
static struct net_device *ir_devs[NUM_IR_IFF];
static char version[] __devinitdata =
"au1k_ircc:1.2 ppopov@mvista.com\n";
#define RUN_AT(x) (jiffies + (x))
#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
static BCSR * const bcsr = (BCSR *)0xAE000000;
#endif
static DEFINE_SPINLOCK(ir_lock);
/*
* IrDA peripheral bug. You have to read the register
* twice to get the right value.
*/
u32 read_ir_reg(u32 addr)
{
readl(addr);
return readl(addr);
}
/*
* Buffer allocation/deallocation routines. The buffer descriptor returned
* has the virtual and dma address of a buffer suitable for
* both, receive and transmit operations.
*/
static db_dest_t *GetFreeDB(struct au1k_private *aup)
{
db_dest_t *pDB;
pDB = aup->pDBfree;
if (pDB) {
aup->pDBfree = pDB->pnext;
}
return pDB;
}
static void ReleaseDB(struct au1k_private *aup, db_dest_t *pDB)
{
db_dest_t *pDBfree = aup->pDBfree;
if (pDBfree)
pDBfree->pnext = pDB;
aup->pDBfree = pDB;
}
/*
DMA memory allocation, derived from pci_alloc_consistent.
However, the Au1000 data cache is coherent (when programmed
so), therefore we return KSEG0 address, not KSEG1.
*/
static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
{
void *ret;
int gfp = GFP_ATOMIC | GFP_DMA;
ret = (void *) __get_free_pages(gfp, get_order(size));
if (ret != NULL) {
memset(ret, 0, size);
*dma_handle = virt_to_bus(ret);
ret = (void *)KSEG0ADDR(ret);
}
return ret;
}
static void dma_free(void *vaddr, size_t size)
{
vaddr = (void *)KSEG0ADDR(vaddr);
free_pages((unsigned long) vaddr, get_order(size));
}
static void
setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
{
int i;
for (i=0; i<NUM_IR_DESC; i++) {
aup->rx_ring[i] = (volatile ring_dest_t *)
(rx_base + sizeof(ring_dest_t)*i);
}
for (i=0; i<NUM_IR_DESC; i++) {
aup->tx_ring[i] = (volatile ring_dest_t *)
(tx_base + sizeof(ring_dest_t)*i);
}
}
static int au1k_irda_init(void)
{
static unsigned version_printed = 0;
struct au1k_private *aup;
struct net_device *dev;
int err;
if (version_printed++ == 0) printk(version);
dev = alloc_irdadev(sizeof(struct au1k_private));
if (!dev)
return -ENOMEM;
dev->irq = AU1000_IRDA_RX_INT; /* TX has its own interrupt */
err = au1k_irda_net_init(dev);
if (err)
goto out;
err = register_netdev(dev);
if (err)
goto out1;
ir_devs[0] = dev;
printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
return 0;
out1:
aup = netdev_priv(dev);
dma_free((void *)aup->db[0].vaddr,
MAX_BUF_SIZE * 2*NUM_IR_DESC);
dma_free((void *)aup->rx_ring[0],
2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
kfree(aup->rx_buff.head);
out:
free_netdev(dev);
return err;
}
static int au1k_irda_init_iobuf(iobuff_t *io, int size)
{
io->head = kmalloc(size, GFP_KERNEL);
if (io->head != NULL) {
io->truesize = size;
io->in_frame = FALSE;
io->state = OUTSIDE_FRAME;
io->data = io->head;
}
return io->head ? 0 : -ENOMEM;
}
static int au1k_irda_net_init(struct net_device *dev)
{
struct au1k_private *aup = netdev_priv(dev);
int i, retval = 0, err;
db_dest_t *pDB, *pDBfree;
dma_addr_t temp;
err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
if (err)
goto out1;
dev->open = au1k_irda_start;
dev->hard_start_xmit = au1k_irda_hard_xmit;
dev->stop = au1k_irda_stop;
dev->get_stats = au1k_irda_stats;
dev->do_ioctl = au1k_irda_ioctl;
dev->tx_timeout = au1k_tx_timeout;
irda_init_max_qos_capabilies(&aup->qos);
/* The only value we must override it the baudrate */
aup->qos.baud_rate.bits = IR_9600|IR_19200|IR_38400|IR_57600|
IR_115200|IR_576000 |(IR_4000000 << 8);
aup->qos.min_turn_time.bits = qos_mtt_bits;
irda_qos_bits_to_value(&aup->qos);
retval = -ENOMEM;
/* Tx ring follows rx ring + 512 bytes */
/* we need a 1k aligned buffer */
aup->rx_ring[0] = (ring_dest_t *)
dma_alloc(2*MAX_NUM_IR_DESC*(sizeof(ring_dest_t)), &temp);
if (!aup->rx_ring[0])
goto out2;
/* allocate the data buffers */
aup->db[0].vaddr =
(void *)dma_alloc(MAX_BUF_SIZE * 2*NUM_IR_DESC, &temp);
if (!aup->db[0].vaddr)
goto out3;
setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
pDBfree = NULL;
pDB = aup->db;
for (i=0; i<(2*NUM_IR_DESC); i++) {
pDB->pnext = pDBfree;
pDBfree = pDB;
pDB->vaddr =
(u32 *)((unsigned)aup->db[0].vaddr + MAX_BUF_SIZE*i);
pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
pDB++;
}
aup->pDBfree = pDBfree;
/* attach a data buffer to each descriptor */
for (i=0; i<NUM_IR_DESC; i++) {
pDB = GetFreeDB(aup);
if (!pDB) goto out;
aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
aup->rx_db_inuse[i] = pDB;
}
for (i=0; i<NUM_IR_DESC; i++) {
pDB = GetFreeDB(aup);
if (!pDB) goto out;
aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
aup->tx_ring[i]->count_0 = 0;
aup->tx_ring[i]->count_1 = 0;
aup->tx_ring[i]->flags = 0;
aup->tx_db_inuse[i] = pDB;
}
#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
/* power on */
bcsr->resets &= ~BCSR_RESETS_IRDA_MODE_MASK;
bcsr->resets |= BCSR_RESETS_IRDA_MODE_FULL;
au_sync();
#endif
return 0;
out3:
dma_free((void *)aup->rx_ring[0],
2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
out2:
kfree(aup->rx_buff.head);
out1:
printk(KERN_ERR "au1k_init_module failed. Returns %d\n", retval);
return retval;
}
static int au1k_init(struct net_device *dev)
{
struct au1k_private *aup = netdev_priv(dev);
int i;
u32 control;
u32 ring_address;
/* bring the device out of reset */
control = 0xe; /* coherent, clock enable, one half system clock */
#ifndef CONFIG_CPU_LITTLE_ENDIAN
control |= 1;
#endif
aup->tx_head = 0;
aup->tx_tail = 0;
aup->rx_head = 0;
for (i=0; i<NUM_IR_DESC; i++) {
aup->rx_ring[i]->flags = AU_OWN;
}
writel(control, IR_INTERFACE_CONFIG);
au_sync_delay(10);
writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE); /* disable PHY */
au_sync_delay(1);
writel(MAX_BUF_SIZE, IR_MAX_PKT_LEN);
ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
writel(ring_address >> 26, IR_RING_BASE_ADDR_H);
writel((ring_address >> 10) & 0xffff, IR_RING_BASE_ADDR_L);
writel(RING_SIZE_64<<8 | RING_SIZE_64<<12, IR_RING_SIZE);
writel(1<<2 | IR_ONE_PIN, IR_CONFIG_2); /* 48MHz */
writel(0, IR_RING_ADDR_CMPR);
au1k_irda_set_speed(dev, 9600);
return 0;
}
static int au1k_irda_start(struct net_device *dev)
{
int retval;
char hwname[32];
struct au1k_private *aup = netdev_priv(dev);
if ((retval = au1k_init(dev))) {
printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
return retval;
}
if ((retval = request_irq(AU1000_IRDA_TX_INT, &au1k_irda_interrupt,
0, dev->name, dev))) {
printk(KERN_ERR "%s: unable to get IRQ %d\n",
dev->name, dev->irq);
return retval;
}
if ((retval = request_irq(AU1000_IRDA_RX_INT, &au1k_irda_interrupt,
0, dev->name, dev))) {
free_irq(AU1000_IRDA_TX_INT, dev);
printk(KERN_ERR "%s: unable to get IRQ %d\n",
dev->name, dev->irq);
return retval;
}
/* Give self a hardware name */
sprintf(hwname, "Au1000 SIR/FIR");
aup->irlap = irlap_open(dev, &aup->qos, hwname);
netif_start_queue(dev);
writel(read_ir_reg(IR_CONFIG_2) | 1<<8, IR_CONFIG_2); /* int enable */
aup->timer.expires = RUN_AT((3*HZ));
aup->timer.data = (unsigned long)dev;
return 0;
}
static int au1k_irda_stop(struct net_device *dev)
{
struct au1k_private *aup = netdev_priv(dev);
/* disable interrupts */
writel(read_ir_reg(IR_CONFIG_2) & ~(1<<8), IR_CONFIG_2);
writel(0, IR_CONFIG_1);
writel(0, IR_INTERFACE_CONFIG); /* disable clock */
au_sync();
if (aup->irlap) {
irlap_close(aup->irlap);
aup->irlap = NULL;
}
netif_stop_queue(dev);
del_timer(&aup->timer);
/* disable the interrupt */
free_irq(AU1000_IRDA_TX_INT, dev);
free_irq(AU1000_IRDA_RX_INT, dev);
return 0;
}
static void __exit au1k_irda_exit(void)
{
struct net_device *dev = ir_devs[0];
struct au1k_private *aup = netdev_priv(dev);
unregister_netdev(dev);
dma_free((void *)aup->db[0].vaddr,
MAX_BUF_SIZE * 2*NUM_IR_DESC);
dma_free((void *)aup->rx_ring[0],
2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
kfree(aup->rx_buff.head);
free_netdev(dev);
}
static inline void
update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
{
struct au1k_private *aup = netdev_priv(dev);
struct net_device_stats *ps = &aup->stats;
ps->tx_packets++;
ps->tx_bytes += pkt_len;
if (status & IR_TX_ERROR) {
ps->tx_errors++;
ps->tx_aborted_errors++;
}
}
static void au1k_tx_ack(struct net_device *dev)
{
struct au1k_private *aup = netdev_priv(dev);
volatile ring_dest_t *ptxd;
ptxd = aup->tx_ring[aup->tx_tail];
while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
update_tx_stats(dev, ptxd->flags,
ptxd->count_1<<8 | ptxd->count_0);
ptxd->count_0 = 0;
ptxd->count_1 = 0;
au_sync();
aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
ptxd = aup->tx_ring[aup->tx_tail];
if (aup->tx_full) {
aup->tx_full = 0;
netif_wake_queue(dev);
}
}
if (aup->tx_tail == aup->tx_head) {
if (aup->newspeed) {
au1k_irda_set_speed(dev, aup->newspeed);
aup->newspeed = 0;
}
else {
writel(read_ir_reg(IR_CONFIG_1) & ~IR_TX_ENABLE,
IR_CONFIG_1);
au_sync();
writel(read_ir_reg(IR_CONFIG_1) | IR_RX_ENABLE,
IR_CONFIG_1);
writel(0, IR_RING_PROMPT);
au_sync();
}
}
}
/*
* Au1000 transmit routine.
*/
static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct au1k_private *aup = netdev_priv(dev);
int speed = irda_get_next_speed(skb);
volatile ring_dest_t *ptxd;
u32 len;
u32 flags;
db_dest_t *pDB;
if (speed != aup->speed && speed != -1) {
aup->newspeed = speed;
}
if ((skb->len == 0) && (aup->newspeed)) {
if (aup->tx_tail == aup->tx_head) {
au1k_irda_set_speed(dev, speed);
aup->newspeed = 0;
}
dev_kfree_skb(skb);
return 0;
}
ptxd = aup->tx_ring[aup->tx_head];
flags = ptxd->flags;
if (flags & AU_OWN) {
printk(KERN_DEBUG "%s: tx_full\n", dev->name);
netif_stop_queue(dev);
aup->tx_full = 1;
return 1;
}
else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
printk(KERN_DEBUG "%s: tx_full\n", dev->name);
netif_stop_queue(dev);
aup->tx_full = 1;
return 1;
}
pDB = aup->tx_db_inuse[aup->tx_head];
#if 0
if (read_ir_reg(IR_RX_BYTE_CNT) != 0) {
printk("tx warning: rx byte cnt %x\n",
read_ir_reg(IR_RX_BYTE_CNT));
}
#endif
if (aup->speed == 4000000) {
/* FIR */
memcpy((void *)pDB->vaddr, skb->data, skb->len);
ptxd->count_0 = skb->len & 0xff;
ptxd->count_1 = (skb->len >> 8) & 0xff;
}
else {
/* SIR */
len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
ptxd->count_0 = len & 0xff;
ptxd->count_1 = (len >> 8) & 0xff;
ptxd->flags |= IR_DIS_CRC;
au_writel(au_readl(0xae00000c) & ~(1<<13), 0xae00000c);
}
ptxd->flags |= AU_OWN;
au_sync();
writel(read_ir_reg(IR_CONFIG_1) | IR_TX_ENABLE, IR_CONFIG_1);
writel(0, IR_RING_PROMPT);
au_sync();
dev_kfree_skb(skb);
aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
dev->trans_start = jiffies;
return 0;
}
static inline void
update_rx_stats(struct net_device *dev, u32 status, u32 count)
{
struct au1k_private *aup = netdev_priv(dev);
struct net_device_stats *ps = &aup->stats;
ps->rx_packets++;
if (status & IR_RX_ERROR) {
ps->rx_errors++;
if (status & (IR_PHY_ERROR|IR_FIFO_OVER))
ps->rx_missed_errors++;
if (status & IR_MAX_LEN)
ps->rx_length_errors++;
if (status & IR_CRC_ERROR)
ps->rx_crc_errors++;
}
else
ps->rx_bytes += count;
}
/*
* Au1000 receive routine.
*/
static int au1k_irda_rx(struct net_device *dev)
{
struct au1k_private *aup = netdev_priv(dev);
struct sk_buff *skb;
volatile ring_dest_t *prxd;
u32 flags, count;
db_dest_t *pDB;
prxd = aup->rx_ring[aup->rx_head];
flags = prxd->flags;
while (!(flags & AU_OWN)) {
pDB = aup->rx_db_inuse[aup->rx_head];
count = prxd->count_1<<8 | prxd->count_0;
if (!(flags & IR_RX_ERROR)) {
/* good frame */
update_rx_stats(dev, flags, count);
skb=alloc_skb(count+1,GFP_ATOMIC);
if (skb == NULL) {
aup->stats.rx_dropped++;
continue;
}
skb_reserve(skb, 1);
if (aup->speed == 4000000)
skb_put(skb, count);
else
skb_put(skb, count-2);
memcpy(skb->data, (void *)pDB->vaddr, count-2);
skb->dev = dev;
skb->mac.raw = skb->data;
skb->protocol = htons(ETH_P_IRDA);
netif_rx(skb);
prxd->count_0 = 0;
prxd->count_1 = 0;
}
prxd->flags |= AU_OWN;
aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
writel(0, IR_RING_PROMPT);
au_sync();
/* next descriptor */
prxd = aup->rx_ring[aup->rx_head];
flags = prxd->flags;
dev->last_rx = jiffies;
}
return 0;
}
void au1k_irda_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
if (dev == NULL) {
printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
return;
}
writel(0, IR_INT_CLEAR); /* ack irda interrupts */
au1k_irda_rx(dev);
au1k_tx_ack(dev);
}
/*
* The Tx ring has been full longer than the watchdog timeout
* value. The transmitter must be hung?
*/
static void au1k_tx_timeout(struct net_device *dev)
{
u32 speed;
struct au1k_private *aup = netdev_priv(dev);
printk(KERN_ERR "%s: tx timeout\n", dev->name);
speed = aup->speed;
aup->speed = 0;
au1k_irda_set_speed(dev, speed);
aup->tx_full = 0;
netif_wake_queue(dev);
}
/*
* Set the IrDA communications speed.
*/
static int
au1k_irda_set_speed(struct net_device *dev, int speed)
{
unsigned long flags;
struct au1k_private *aup = netdev_priv(dev);
u32 control;
int ret = 0, timeout = 10, i;
volatile ring_dest_t *ptxd;
#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
unsigned long irda_resets;
#endif
if (speed == aup->speed)
return ret;
spin_lock_irqsave(&ir_lock, flags);
/* disable PHY first */
writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE);
/* disable RX/TX */
writel(read_ir_reg(IR_CONFIG_1) & ~(IR_RX_ENABLE|IR_TX_ENABLE),
IR_CONFIG_1);
au_sync_delay(1);
while (read_ir_reg(IR_ENABLE) & (IR_RX_STATUS | IR_TX_STATUS)) {
mdelay(1);
if (!timeout--) {
printk(KERN_ERR "%s: rx/tx disable timeout\n",
dev->name);
break;
}
}
/* disable DMA */
writel(read_ir_reg(IR_CONFIG_1) & ~IR_DMA_ENABLE, IR_CONFIG_1);
au_sync_delay(1);
/*
* After we disable tx/rx. the index pointers
* go back to zero.
*/
aup->tx_head = aup->tx_tail = aup->rx_head = 0;
for (i=0; i<NUM_IR_DESC; i++) {
ptxd = aup->tx_ring[i];
ptxd->flags = 0;
ptxd->count_0 = 0;
ptxd->count_1 = 0;
}
for (i=0; i<NUM_IR_DESC; i++) {
ptxd = aup->rx_ring[i];
ptxd->count_0 = 0;
ptxd->count_1 = 0;
ptxd->flags = AU_OWN;
}
if (speed == 4000000) {
#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
bcsr->resets |= BCSR_RESETS_FIR_SEL;
#else /* Pb1000 and Pb1100 */
writel(1<<13, CPLD_AUX1);
#endif
}
else {
#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
bcsr->resets &= ~BCSR_RESETS_FIR_SEL;
#else /* Pb1000 and Pb1100 */
writel(readl(CPLD_AUX1) & ~(1<<13), CPLD_AUX1);
#endif
}
switch (speed) {
case 9600:
writel(11<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
writel(IR_SIR_MODE, IR_CONFIG_1);
break;
case 19200:
writel(5<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
writel(IR_SIR_MODE, IR_CONFIG_1);
break;
case 38400:
writel(2<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
writel(IR_SIR_MODE, IR_CONFIG_1);
break;
case 57600:
writel(1<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
writel(IR_SIR_MODE, IR_CONFIG_1);
break;
case 115200:
writel(12<<5, IR_WRITE_PHY_CONFIG);
writel(IR_SIR_MODE, IR_CONFIG_1);
break;
case 4000000:
writel(0xF, IR_WRITE_PHY_CONFIG);
writel(IR_FIR|IR_DMA_ENABLE|IR_RX_ENABLE, IR_CONFIG_1);
break;
default:
printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
ret = -EINVAL;
break;
}
aup->speed = speed;
writel(read_ir_reg(IR_ENABLE) | 0x8000, IR_ENABLE);
au_sync();
control = read_ir_reg(IR_ENABLE);
writel(0, IR_RING_PROMPT);
au_sync();
if (control & (1<<14)) {
printk(KERN_ERR "%s: configuration error\n", dev->name);
}
else {
if (control & (1<<11))
printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
if (control & (1<<12))
printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
if (control & (1<<13))
printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
if (control & (1<<10))
printk(KERN_DEBUG "%s TX enabled\n", dev->name);
if (control & (1<<9))
printk(KERN_DEBUG "%s RX enabled\n", dev->name);
}
spin_unlock_irqrestore(&ir_lock, flags);
return ret;
}
static int
au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
{
struct if_irda_req *rq = (struct if_irda_req *)ifreq;
struct au1k_private *aup = netdev_priv(dev);
int ret = -EOPNOTSUPP;
switch (cmd) {
case SIOCSBANDWIDTH:
if (capable(CAP_NET_ADMIN)) {
/*
* We are unable to set the speed if the
* device is not running.
*/
if (aup->open)
ret = au1k_irda_set_speed(dev,
rq->ifr_baudrate);
else {
printk(KERN_ERR "%s ioctl: !netif_running\n",
dev->name);
ret = 0;
}
}
break;
case SIOCSMEDIABUSY:
ret = -EPERM;
if (capable(CAP_NET_ADMIN)) {
irda_device_set_media_busy(dev, TRUE);
ret = 0;
}
break;
case SIOCGRECEIVING:
rq->ifr_receiving = 0;
break;
default:
break;
}
return ret;
}
static struct net_device_stats *au1k_irda_stats(struct net_device *dev)
{
struct au1k_private *aup = netdev_priv(dev);
return &aup->stats;
}
MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
module_init(au1k_irda_init);
module_exit(au1k_irda_exit);