blob: d1bc5820ea469349bedb6f61cc8d209cdb75190f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine driver for Linux
*
* AMD SVM support
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*/
#define pr_fmt(fmt) "SVM: " fmt
#include <linux/kvm_types.h>
#include <linux/hashtable.h>
#include <linux/amd-iommu.h>
#include <linux/kvm_host.h>
#include <asm/irq_remapping.h>
#include "trace.h"
#include "lapic.h"
#include "x86.h"
#include "irq.h"
#include "svm.h"
/* AVIC GATAG is encoded using VM and VCPU IDs */
#define AVIC_VCPU_ID_BITS 8
#define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
#define AVIC_VM_ID_BITS 24
#define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
#define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
#define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
(y & AVIC_VCPU_ID_MASK))
#define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
#define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
/* Note:
* This hash table is used to map VM_ID to a struct kvm_svm,
* when handling AMD IOMMU GALOG notification to schedule in
* a particular vCPU.
*/
#define SVM_VM_DATA_HASH_BITS 8
static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
static u32 next_vm_id = 0;
static bool next_vm_id_wrapped = 0;
static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
/*
* This is a wrapper of struct amd_iommu_ir_data.
*/
struct amd_svm_iommu_ir {
struct list_head node; /* Used by SVM for per-vcpu ir_list */
void *data; /* Storing pointer to struct amd_ir_data */
};
/* Note:
* This function is called from IOMMU driver to notify
* SVM to schedule in a particular vCPU of a particular VM.
*/
int avic_ga_log_notifier(u32 ga_tag)
{
unsigned long flags;
struct kvm_svm *kvm_svm;
struct kvm_vcpu *vcpu = NULL;
u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
trace_kvm_avic_ga_log(vm_id, vcpu_id);
spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
if (kvm_svm->avic_vm_id != vm_id)
continue;
vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
break;
}
spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
/* Note:
* At this point, the IOMMU should have already set the pending
* bit in the vAPIC backing page. So, we just need to schedule
* in the vcpu.
*/
if (vcpu)
kvm_vcpu_wake_up(vcpu);
return 0;
}
void avic_vm_destroy(struct kvm *kvm)
{
unsigned long flags;
struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
if (!enable_apicv)
return;
if (kvm_svm->avic_logical_id_table_page)
__free_page(kvm_svm->avic_logical_id_table_page);
if (kvm_svm->avic_physical_id_table_page)
__free_page(kvm_svm->avic_physical_id_table_page);
spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
hash_del(&kvm_svm->hnode);
spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
}
int avic_vm_init(struct kvm *kvm)
{
unsigned long flags;
int err = -ENOMEM;
struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
struct kvm_svm *k2;
struct page *p_page;
struct page *l_page;
u32 vm_id;
if (!enable_apicv)
return 0;
/* Allocating physical APIC ID table (4KB) */
p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!p_page)
goto free_avic;
kvm_svm->avic_physical_id_table_page = p_page;
/* Allocating logical APIC ID table (4KB) */
l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!l_page)
goto free_avic;
kvm_svm->avic_logical_id_table_page = l_page;
spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
again:
vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
if (vm_id == 0) { /* id is 1-based, zero is not okay */
next_vm_id_wrapped = 1;
goto again;
}
/* Is it still in use? Only possible if wrapped at least once */
if (next_vm_id_wrapped) {
hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
if (k2->avic_vm_id == vm_id)
goto again;
}
}
kvm_svm->avic_vm_id = vm_id;
hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
return 0;
free_avic:
avic_vm_destroy(kvm);
return err;
}
void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb)
{
struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
if (kvm_apicv_activated(svm->vcpu.kvm))
vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
else
vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
}
static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
unsigned int index)
{
u64 *avic_physical_id_table;
struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
return NULL;
avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
return &avic_physical_id_table[index];
}
/*
* Note:
* AVIC hardware walks the nested page table to check permissions,
* but does not use the SPA address specified in the leaf page
* table entry since it uses address in the AVIC_BACKING_PAGE pointer
* field of the VMCB. Therefore, we set up the
* APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
*/
static int avic_alloc_access_page(struct kvm *kvm)
{
void __user *ret;
int r = 0;
mutex_lock(&kvm->slots_lock);
if (kvm->arch.apic_access_memslot_enabled)
goto out;
ret = __x86_set_memory_region(kvm,
APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
APIC_DEFAULT_PHYS_BASE,
PAGE_SIZE);
if (IS_ERR(ret)) {
r = PTR_ERR(ret);
goto out;
}
kvm->arch.apic_access_memslot_enabled = true;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
static int avic_init_backing_page(struct kvm_vcpu *vcpu)
{
u64 *entry, new_entry;
int id = vcpu->vcpu_id;
struct vcpu_svm *svm = to_svm(vcpu);
if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
return -EINVAL;
if (!vcpu->arch.apic->regs)
return -EINVAL;
if (kvm_apicv_activated(vcpu->kvm)) {
int ret;
ret = avic_alloc_access_page(vcpu->kvm);
if (ret)
return ret;
}
svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
/* Setting AVIC backing page address in the phy APIC ID table */
entry = avic_get_physical_id_entry(vcpu, id);
if (!entry)
return -EINVAL;
new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
WRITE_ONCE(*entry, new_entry);
svm->avic_physical_id_cache = entry;
return 0;
}
void avic_ring_doorbell(struct kvm_vcpu *vcpu)
{
/*
* Note, the vCPU could get migrated to a different pCPU at any point,
* which could result in signalling the wrong/previous pCPU. But if
* that happens the vCPU is guaranteed to do a VMRUN (after being
* migrated) and thus will process pending interrupts, i.e. a doorbell
* is not needed (and the spurious one is harmless).
*/
int cpu = READ_ONCE(vcpu->cpu);
if (cpu != get_cpu())
wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
put_cpu();
}
/*
* A fast-path version of avic_kick_target_vcpus(), which attempts to match
* destination APIC ID to vCPU without looping through all vCPUs.
*/
static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source,
u32 icrl, u32 icrh, u32 index)
{
u32 l1_physical_id, dest;
struct kvm_vcpu *target_vcpu;
int dest_mode = icrl & APIC_DEST_MASK;
int shorthand = icrl & APIC_SHORT_MASK;
struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
if (shorthand != APIC_DEST_NOSHORT)
return -EINVAL;
if (apic_x2apic_mode(source))
dest = icrh;
else
dest = GET_APIC_DEST_FIELD(icrh);
if (dest_mode == APIC_DEST_PHYSICAL) {
/* broadcast destination, use slow path */
if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST)
return -EINVAL;
if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST)
return -EINVAL;
l1_physical_id = dest;
if (WARN_ON_ONCE(l1_physical_id != index))
return -EINVAL;
} else {
u32 bitmap, cluster;
int logid_index;
if (apic_x2apic_mode(source)) {
/* 16 bit dest mask, 16 bit cluster id */
bitmap = dest & 0xFFFF0000;
cluster = (dest >> 16) << 4;
} else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) {
/* 8 bit dest mask*/
bitmap = dest;
cluster = 0;
} else {
/* 4 bit desk mask, 4 bit cluster id */
bitmap = dest & 0xF;
cluster = (dest >> 4) << 2;
}
if (unlikely(!bitmap))
/* guest bug: nobody to send the logical interrupt to */
return 0;
if (!is_power_of_2(bitmap))
/* multiple logical destinations, use slow path */
return -EINVAL;
logid_index = cluster + __ffs(bitmap);
if (apic_x2apic_mode(source)) {
l1_physical_id = logid_index;
} else {
u32 *avic_logical_id_table =
page_address(kvm_svm->avic_logical_id_table_page);
u32 logid_entry = avic_logical_id_table[logid_index];
if (WARN_ON_ONCE(index != logid_index))
return -EINVAL;
/* guest bug: non existing/reserved logical destination */
if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK)))
return 0;
l1_physical_id = logid_entry &
AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
}
}
target_vcpu = kvm_get_vcpu_by_id(kvm, l1_physical_id);
if (unlikely(!target_vcpu))
/* guest bug: non existing vCPU is a target of this IPI*/
return 0;
target_vcpu->arch.apic->irr_pending = true;
svm_complete_interrupt_delivery(target_vcpu,
icrl & APIC_MODE_MASK,
icrl & APIC_INT_LEVELTRIG,
icrl & APIC_VECTOR_MASK);
return 0;
}
static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
u32 icrl, u32 icrh, u32 index)
{
unsigned long i;
struct kvm_vcpu *vcpu;
if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index))
return;
trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index);
/*
* Wake any target vCPUs that are blocking, i.e. waiting for a wake
* event. There's no need to signal doorbells, as hardware has handled
* vCPUs that were in guest at the time of the IPI, and vCPUs that have
* since entered the guest will have processed pending IRQs at VMRUN.
*/
kvm_for_each_vcpu(i, vcpu, kvm) {
if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK,
GET_APIC_DEST_FIELD(icrh),
icrl & APIC_DEST_MASK)) {
vcpu->arch.apic->irr_pending = true;
svm_complete_interrupt_delivery(vcpu,
icrl & APIC_MODE_MASK,
icrl & APIC_INT_LEVELTRIG,
icrl & APIC_VECTOR_MASK);
}
}
}
int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
u32 icrl = svm->vmcb->control.exit_info_1;
u32 id = svm->vmcb->control.exit_info_2 >> 32;
u32 index = svm->vmcb->control.exit_info_2 & 0x1FF;
struct kvm_lapic *apic = vcpu->arch.apic;
trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
switch (id) {
case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
/*
* Emulate IPIs that are not handled by AVIC hardware, which
* only virtualizes Fixed, Edge-Triggered INTRs. The exit is
* a trap, e.g. ICR holds the correct value and RIP has been
* advanced, KVM is responsible only for emulating the IPI.
* Sadly, hardware may sometimes leave the BUSY flag set, in
* which case KVM needs to emulate the ICR write as well in
* order to clear the BUSY flag.
*/
if (icrl & APIC_ICR_BUSY)
kvm_apic_write_nodecode(vcpu, APIC_ICR);
else
kvm_apic_send_ipi(apic, icrl, icrh);
break;
case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
/*
* At this point, we expect that the AVIC HW has already
* set the appropriate IRR bits on the valid target
* vcpus. So, we just need to kick the appropriate vcpu.
*/
avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index);
break;
case AVIC_IPI_FAILURE_INVALID_TARGET:
break;
case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
WARN_ONCE(1, "Invalid backing page\n");
break;
default:
pr_err("Unknown IPI interception\n");
}
return 1;
}
unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu)
{
if (is_guest_mode(vcpu))
return APICV_INHIBIT_REASON_NESTED;
return 0;
}
static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
{
struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
int index;
u32 *logical_apic_id_table;
int dlid = GET_APIC_LOGICAL_ID(ldr);
if (!dlid)
return NULL;
if (flat) { /* flat */
index = ffs(dlid) - 1;
if (index > 7)
return NULL;
} else { /* cluster */
int cluster = (dlid & 0xf0) >> 4;
int apic = ffs(dlid & 0x0f) - 1;
if ((apic < 0) || (apic > 7) ||
(cluster >= 0xf))
return NULL;
index = (cluster << 2) + apic;
}
logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
return &logical_apic_id_table[index];
}
static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
{
bool flat;
u32 *entry, new_entry;
flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
entry = avic_get_logical_id_entry(vcpu, ldr, flat);
if (!entry)
return -EINVAL;
new_entry = READ_ONCE(*entry);
new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
WRITE_ONCE(*entry, new_entry);
return 0;
}
static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
bool flat = svm->dfr_reg == APIC_DFR_FLAT;
u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
if (entry)
clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
}
static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
{
int ret = 0;
struct vcpu_svm *svm = to_svm(vcpu);
u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
u32 id = kvm_xapic_id(vcpu->arch.apic);
if (ldr == svm->ldr_reg)
return 0;
avic_invalidate_logical_id_entry(vcpu);
if (ldr)
ret = avic_ldr_write(vcpu, id, ldr);
if (!ret)
svm->ldr_reg = ldr;
return ret;
}
static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
if (svm->dfr_reg == dfr)
return;
avic_invalidate_logical_id_entry(vcpu);
svm->dfr_reg = dfr;
}
static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu)
{
u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 &
AVIC_UNACCEL_ACCESS_OFFSET_MASK;
switch (offset) {
case APIC_LDR:
if (avic_handle_ldr_update(vcpu))
return 0;
break;
case APIC_DFR:
avic_handle_dfr_update(vcpu);
break;
default:
break;
}
kvm_apic_write_nodecode(vcpu, offset);
return 1;
}
static bool is_avic_unaccelerated_access_trap(u32 offset)
{
bool ret = false;
switch (offset) {
case APIC_ID:
case APIC_EOI:
case APIC_RRR:
case APIC_LDR:
case APIC_DFR:
case APIC_SPIV:
case APIC_ESR:
case APIC_ICR:
case APIC_LVTT:
case APIC_LVTTHMR:
case APIC_LVTPC:
case APIC_LVT0:
case APIC_LVT1:
case APIC_LVTERR:
case APIC_TMICT:
case APIC_TDCR:
ret = true;
break;
default:
break;
}
return ret;
}
int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
int ret = 0;
u32 offset = svm->vmcb->control.exit_info_1 &
AVIC_UNACCEL_ACCESS_OFFSET_MASK;
u32 vector = svm->vmcb->control.exit_info_2 &
AVIC_UNACCEL_ACCESS_VECTOR_MASK;
bool write = (svm->vmcb->control.exit_info_1 >> 32) &
AVIC_UNACCEL_ACCESS_WRITE_MASK;
bool trap = is_avic_unaccelerated_access_trap(offset);
trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
trap, write, vector);
if (trap) {
/* Handling Trap */
WARN_ONCE(!write, "svm: Handling trap read.\n");
ret = avic_unaccel_trap_write(vcpu);
} else {
/* Handling Fault */
ret = kvm_emulate_instruction(vcpu, 0);
}
return ret;
}
int avic_init_vcpu(struct vcpu_svm *svm)
{
int ret;
struct kvm_vcpu *vcpu = &svm->vcpu;
if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
return 0;
ret = avic_init_backing_page(vcpu);
if (ret)
return ret;
INIT_LIST_HEAD(&svm->ir_list);
spin_lock_init(&svm->ir_list_lock);
svm->dfr_reg = APIC_DFR_FLAT;
return ret;
}
void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu)
{
avic_handle_dfr_update(vcpu);
avic_handle_ldr_update(vcpu);
}
static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
{
int ret = 0;
unsigned long flags;
struct amd_svm_iommu_ir *ir;
struct vcpu_svm *svm = to_svm(vcpu);
if (!kvm_arch_has_assigned_device(vcpu->kvm))
return 0;
/*
* Here, we go through the per-vcpu ir_list to update all existing
* interrupt remapping table entry targeting this vcpu.
*/
spin_lock_irqsave(&svm->ir_list_lock, flags);
if (list_empty(&svm->ir_list))
goto out;
list_for_each_entry(ir, &svm->ir_list, node) {
if (activate)
ret = amd_iommu_activate_guest_mode(ir->data);
else
ret = amd_iommu_deactivate_guest_mode(ir->data);
if (ret)
break;
}
out:
spin_unlock_irqrestore(&svm->ir_list_lock, flags);
return ret;
}
static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
{
unsigned long flags;
struct amd_svm_iommu_ir *cur;
spin_lock_irqsave(&svm->ir_list_lock, flags);
list_for_each_entry(cur, &svm->ir_list, node) {
if (cur->data != pi->ir_data)
continue;
list_del(&cur->node);
kfree(cur);
break;
}
spin_unlock_irqrestore(&svm->ir_list_lock, flags);
}
static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
{
int ret = 0;
unsigned long flags;
struct amd_svm_iommu_ir *ir;
/**
* In some cases, the existing irte is updated and re-set,
* so we need to check here if it's already been * added
* to the ir_list.
*/
if (pi->ir_data && (pi->prev_ga_tag != 0)) {
struct kvm *kvm = svm->vcpu.kvm;
u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
struct vcpu_svm *prev_svm;
if (!prev_vcpu) {
ret = -EINVAL;
goto out;
}
prev_svm = to_svm(prev_vcpu);
svm_ir_list_del(prev_svm, pi);
}
/**
* Allocating new amd_iommu_pi_data, which will get
* add to the per-vcpu ir_list.
*/
ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
if (!ir) {
ret = -ENOMEM;
goto out;
}
ir->data = pi->ir_data;
spin_lock_irqsave(&svm->ir_list_lock, flags);
list_add(&ir->node, &svm->ir_list);
spin_unlock_irqrestore(&svm->ir_list_lock, flags);
out:
return ret;
}
/*
* Note:
* The HW cannot support posting multicast/broadcast
* interrupts to a vCPU. So, we still use legacy interrupt
* remapping for these kind of interrupts.
*
* For lowest-priority interrupts, we only support
* those with single CPU as the destination, e.g. user
* configures the interrupts via /proc/irq or uses
* irqbalance to make the interrupts single-CPU.
*/
static int
get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
{
struct kvm_lapic_irq irq;
struct kvm_vcpu *vcpu = NULL;
kvm_set_msi_irq(kvm, e, &irq);
if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
!kvm_irq_is_postable(&irq)) {
pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
__func__, irq.vector);
return -1;
}
pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
irq.vector);
*svm = to_svm(vcpu);
vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
vcpu_info->vector = irq.vector;
return 0;
}
/*
* avic_pi_update_irte - set IRTE for Posted-Interrupts
*
* @kvm: kvm
* @host_irq: host irq of the interrupt
* @guest_irq: gsi of the interrupt
* @set: set or unset PI
* returns 0 on success, < 0 on failure
*/
int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
uint32_t guest_irq, bool set)
{
struct kvm_kernel_irq_routing_entry *e;
struct kvm_irq_routing_table *irq_rt;
int idx, ret = 0;
if (!kvm_arch_has_assigned_device(kvm) ||
!irq_remapping_cap(IRQ_POSTING_CAP))
return 0;
pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
__func__, host_irq, guest_irq, set);
idx = srcu_read_lock(&kvm->irq_srcu);
irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
if (guest_irq >= irq_rt->nr_rt_entries ||
hlist_empty(&irq_rt->map[guest_irq])) {
pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
guest_irq, irq_rt->nr_rt_entries);
goto out;
}
hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
struct vcpu_data vcpu_info;
struct vcpu_svm *svm = NULL;
if (e->type != KVM_IRQ_ROUTING_MSI)
continue;
/**
* Here, we setup with legacy mode in the following cases:
* 1. When cannot target interrupt to a specific vcpu.
* 2. Unsetting posted interrupt.
* 3. APIC virtualization is disabled for the vcpu.
* 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
*/
if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
kvm_vcpu_apicv_active(&svm->vcpu)) {
struct amd_iommu_pi_data pi;
/* Try to enable guest_mode in IRTE */
pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
AVIC_HPA_MASK);
pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
svm->vcpu.vcpu_id);
pi.is_guest_mode = true;
pi.vcpu_data = &vcpu_info;
ret = irq_set_vcpu_affinity(host_irq, &pi);
/**
* Here, we successfully setting up vcpu affinity in
* IOMMU guest mode. Now, we need to store the posted
* interrupt information in a per-vcpu ir_list so that
* we can reference to them directly when we update vcpu
* scheduling information in IOMMU irte.
*/
if (!ret && pi.is_guest_mode)
svm_ir_list_add(svm, &pi);
} else {
/* Use legacy mode in IRTE */
struct amd_iommu_pi_data pi;
/**
* Here, pi is used to:
* - Tell IOMMU to use legacy mode for this interrupt.
* - Retrieve ga_tag of prior interrupt remapping data.
*/
pi.prev_ga_tag = 0;
pi.is_guest_mode = false;
ret = irq_set_vcpu_affinity(host_irq, &pi);
/**
* Check if the posted interrupt was previously
* setup with the guest_mode by checking if the ga_tag
* was cached. If so, we need to clean up the per-vcpu
* ir_list.
*/
if (!ret && pi.prev_ga_tag) {
int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
struct kvm_vcpu *vcpu;
vcpu = kvm_get_vcpu_by_id(kvm, id);
if (vcpu)
svm_ir_list_del(to_svm(vcpu), &pi);
}
}
if (!ret && svm) {
trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
e->gsi, vcpu_info.vector,
vcpu_info.pi_desc_addr, set);
}
if (ret < 0) {
pr_err("%s: failed to update PI IRTE\n", __func__);
goto out;
}
}
ret = 0;
out:
srcu_read_unlock(&kvm->irq_srcu, idx);
return ret;
}
bool avic_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)
{
ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
BIT(APICV_INHIBIT_REASON_ABSENT) |
BIT(APICV_INHIBIT_REASON_HYPERV) |
BIT(APICV_INHIBIT_REASON_NESTED) |
BIT(APICV_INHIBIT_REASON_IRQWIN) |
BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
BIT(APICV_INHIBIT_REASON_X2APIC) |
BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |
BIT(APICV_INHIBIT_REASON_SEV) |
BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |
BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
return supported & BIT(reason);
}
static inline int
avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
{
int ret = 0;
unsigned long flags;
struct amd_svm_iommu_ir *ir;
struct vcpu_svm *svm = to_svm(vcpu);
if (!kvm_arch_has_assigned_device(vcpu->kvm))
return 0;
/*
* Here, we go through the per-vcpu ir_list to update all existing
* interrupt remapping table entry targeting this vcpu.
*/
spin_lock_irqsave(&svm->ir_list_lock, flags);
if (list_empty(&svm->ir_list))
goto out;
list_for_each_entry(ir, &svm->ir_list, node) {
ret = amd_iommu_update_ga(cpu, r, ir->data);
if (ret)
break;
}
out:
spin_unlock_irqrestore(&svm->ir_list_lock, flags);
return ret;
}
void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
u64 entry;
int h_physical_id = kvm_cpu_get_apicid(cpu);
struct vcpu_svm *svm = to_svm(vcpu);
lockdep_assert_preemption_disabled();
if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
return;
/*
* No need to update anything if the vCPU is blocking, i.e. if the vCPU
* is being scheduled in after being preempted. The CPU entries in the
* Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
* If the vCPU was migrated, its new CPU value will be stuffed when the
* vCPU unblocks.
*/
if (kvm_vcpu_is_blocking(vcpu))
return;
entry = READ_ONCE(*(svm->avic_physical_id_cache));
WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true);
}
void avic_vcpu_put(struct kvm_vcpu *vcpu)
{
u64 entry;
struct vcpu_svm *svm = to_svm(vcpu);
lockdep_assert_preemption_disabled();
entry = READ_ONCE(*(svm->avic_physical_id_cache));
/* Nothing to do if IsRunning == '0' due to vCPU blocking. */
if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK))
return;
avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
}
void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *vmcb = svm->vmcb01.ptr;
bool activated = kvm_vcpu_apicv_active(vcpu);
if (!enable_apicv)
return;
if (activated) {
/**
* During AVIC temporary deactivation, guest could update
* APIC ID, DFR and LDR registers, which would not be trapped
* by avic_unaccelerated_access_interception(). In this case,
* we need to check and update the AVIC logical APIC ID table
* accordingly before re-activating.
*/
avic_apicv_post_state_restore(vcpu);
vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
} else {
vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
}
vmcb_mark_dirty(vmcb, VMCB_AVIC);
if (activated)
avic_vcpu_load(vcpu, vcpu->cpu);
else
avic_vcpu_put(vcpu);
avic_set_pi_irte_mode(vcpu, activated);
}
void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
{
if (!kvm_vcpu_apicv_active(vcpu))
return;
/*
* Unload the AVIC when the vCPU is about to block, _before_
* the vCPU actually blocks.
*
* Any IRQs that arrive before IsRunning=0 will not cause an
* incomplete IPI vmexit on the source, therefore vIRR will also
* be checked by kvm_vcpu_check_block() before blocking. The
* memory barrier implicit in set_current_state orders writing
* IsRunning=0 before reading the vIRR. The processor needs a
* matching memory barrier on interrupt delivery between writing
* IRR and reading IsRunning; the lack of this barrier might be
* the cause of errata #1235).
*/
avic_vcpu_put(vcpu);
}
void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
if (!kvm_vcpu_apicv_active(vcpu))
return;
avic_vcpu_load(vcpu, vcpu->cpu);
}