blob: 15f046e19cb2c21a72cbaeba1ed26382fb690aea [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <sys/types.h>
#include <signal.h>
#include <errno.h>
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/atomic.h>
#include "kvm_util.h"
#include "test_util.h"
#include "guest_modes.h"
#include "processor.h"
static void guest_code(uint64_t start_gpa, uint64_t end_gpa, uint64_t stride)
{
uint64_t gpa;
for (gpa = start_gpa; gpa < end_gpa; gpa += stride)
*((volatile uint64_t *)gpa) = gpa;
GUEST_DONE();
}
struct vcpu_info {
struct kvm_vm *vm;
uint32_t id;
uint64_t start_gpa;
uint64_t end_gpa;
};
static int nr_vcpus;
static atomic_t rendezvous;
static void rendezvous_with_boss(void)
{
int orig = atomic_read(&rendezvous);
if (orig > 0) {
atomic_dec_and_test(&rendezvous);
while (atomic_read(&rendezvous) > 0)
cpu_relax();
} else {
atomic_inc(&rendezvous);
while (atomic_read(&rendezvous) < 0)
cpu_relax();
}
}
static void run_vcpu(struct kvm_vm *vm, uint32_t vcpu_id)
{
vcpu_run(vm, vcpu_id);
ASSERT_EQ(get_ucall(vm, vcpu_id, NULL), UCALL_DONE);
}
static void *vcpu_worker(void *data)
{
struct vcpu_info *vcpu = data;
struct kvm_vm *vm = vcpu->vm;
struct kvm_sregs sregs;
struct kvm_regs regs;
vcpu_args_set(vm, vcpu->id, 3, vcpu->start_gpa, vcpu->end_gpa,
vm_get_page_size(vm));
/* Snapshot regs before the first run. */
vcpu_regs_get(vm, vcpu->id, &regs);
rendezvous_with_boss();
run_vcpu(vm, vcpu->id);
rendezvous_with_boss();
vcpu_regs_set(vm, vcpu->id, &regs);
vcpu_sregs_get(vm, vcpu->id, &sregs);
#ifdef __x86_64__
/* Toggle CR0.WP to trigger a MMU context reset. */
sregs.cr0 ^= X86_CR0_WP;
#endif
vcpu_sregs_set(vm, vcpu->id, &sregs);
rendezvous_with_boss();
run_vcpu(vm, vcpu->id);
rendezvous_with_boss();
return NULL;
}
static pthread_t *spawn_workers(struct kvm_vm *vm, uint64_t start_gpa,
uint64_t end_gpa)
{
struct vcpu_info *info;
uint64_t gpa, nr_bytes;
pthread_t *threads;
int i;
threads = malloc(nr_vcpus * sizeof(*threads));
TEST_ASSERT(threads, "Failed to allocate vCPU threads");
info = malloc(nr_vcpus * sizeof(*info));
TEST_ASSERT(info, "Failed to allocate vCPU gpa ranges");
nr_bytes = ((end_gpa - start_gpa) / nr_vcpus) &
~((uint64_t)vm_get_page_size(vm) - 1);
TEST_ASSERT(nr_bytes, "C'mon, no way you have %d CPUs", nr_vcpus);
for (i = 0, gpa = start_gpa; i < nr_vcpus; i++, gpa += nr_bytes) {
info[i].vm = vm;
info[i].id = i;
info[i].start_gpa = gpa;
info[i].end_gpa = gpa + nr_bytes;
pthread_create(&threads[i], NULL, vcpu_worker, &info[i]);
}
return threads;
}
static void rendezvous_with_vcpus(struct timespec *time, const char *name)
{
int i, rendezvoused;
pr_info("Waiting for vCPUs to finish %s...\n", name);
rendezvoused = atomic_read(&rendezvous);
for (i = 0; abs(rendezvoused) != 1; i++) {
usleep(100);
if (!(i & 0x3f))
pr_info("\r%d vCPUs haven't rendezvoused...",
abs(rendezvoused) - 1);
rendezvoused = atomic_read(&rendezvous);
}
clock_gettime(CLOCK_MONOTONIC, time);
/* Release the vCPUs after getting the time of the previous action. */
pr_info("\rAll vCPUs finished %s, releasing...\n", name);
if (rendezvoused > 0)
atomic_set(&rendezvous, -nr_vcpus - 1);
else
atomic_set(&rendezvous, nr_vcpus + 1);
}
static void calc_default_nr_vcpus(void)
{
cpu_set_t possible_mask;
int r;
r = sched_getaffinity(0, sizeof(possible_mask), &possible_mask);
TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)",
errno, strerror(errno));
nr_vcpus = CPU_COUNT(&possible_mask) * 3/4;
TEST_ASSERT(nr_vcpus > 0, "Uh, no CPUs?");
}
int main(int argc, char *argv[])
{
/*
* Skip the first 4gb and slot0. slot0 maps <1gb and is used to back
* the guest's code, stack, and page tables. Because selftests creates
* an IRQCHIP, a.k.a. a local APIC, KVM creates an internal memslot
* just below the 4gb boundary. This test could create memory at
* 1gb-3gb,but it's simpler to skip straight to 4gb.
*/
const uint64_t size_1gb = (1 << 30);
const uint64_t start_gpa = (4ull * size_1gb);
const int first_slot = 1;
struct timespec time_start, time_run1, time_reset, time_run2;
uint64_t max_gpa, gpa, slot_size, max_mem, i;
int max_slots, slot, opt, fd;
bool hugepages = false;
pthread_t *threads;
struct kvm_vm *vm;
void *mem;
/*
* Default to 2gb so that maxing out systems with MAXPHADDR=46, which
* are quite common for x86, requires changing only max_mem (KVM allows
* 32k memslots, 32k * 2gb == ~64tb of guest memory).
*/
slot_size = 2 * size_1gb;
max_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
TEST_ASSERT(max_slots > first_slot, "KVM is broken");
/* All KVM MMUs should be able to survive a 128gb guest. */
max_mem = 128 * size_1gb;
calc_default_nr_vcpus();
while ((opt = getopt(argc, argv, "c:h:m:s:H")) != -1) {
switch (opt) {
case 'c':
nr_vcpus = atoi(optarg);
TEST_ASSERT(nr_vcpus > 0, "number of vcpus must be >0");
break;
case 'm':
max_mem = atoi(optarg) * size_1gb;
TEST_ASSERT(max_mem > 0, "memory size must be >0");
break;
case 's':
slot_size = atoi(optarg) * size_1gb;
TEST_ASSERT(slot_size > 0, "slot size must be >0");
break;
case 'H':
hugepages = true;
break;
case 'h':
default:
printf("usage: %s [-c nr_vcpus] [-m max_mem_in_gb] [-s slot_size_in_gb] [-H]\n", argv[0]);
exit(1);
}
}
vm = vm_create_default_with_vcpus(nr_vcpus, 0, 0, guest_code, NULL);
max_gpa = vm_get_max_gfn(vm) << vm_get_page_shift(vm);
TEST_ASSERT(max_gpa > (4 * slot_size), "MAXPHYADDR <4gb ");
fd = kvm_memfd_alloc(slot_size, hugepages);
mem = mmap(NULL, slot_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
TEST_ASSERT(mem != MAP_FAILED, "mmap() failed");
TEST_ASSERT(!madvise(mem, slot_size, MADV_NOHUGEPAGE), "madvise() failed");
/* Pre-fault the memory to avoid taking mmap_sem on guest page faults. */
for (i = 0; i < slot_size; i += vm_get_page_size(vm))
((uint8_t *)mem)[i] = 0xaa;
gpa = 0;
for (slot = first_slot; slot < max_slots; slot++) {
gpa = start_gpa + ((slot - first_slot) * slot_size);
if (gpa + slot_size > max_gpa)
break;
if ((gpa - start_gpa) >= max_mem)
break;
vm_set_user_memory_region(vm, slot, 0, gpa, slot_size, mem);
#ifdef __x86_64__
/* Identity map memory in the guest using 1gb pages. */
for (i = 0; i < slot_size; i += size_1gb)
__virt_pg_map(vm, gpa + i, gpa + i, PG_LEVEL_1G);
#else
for (i = 0; i < slot_size; i += vm_get_page_size(vm))
virt_pg_map(vm, gpa + i, gpa + i);
#endif
}
atomic_set(&rendezvous, nr_vcpus + 1);
threads = spawn_workers(vm, start_gpa, gpa);
pr_info("Running with %lugb of guest memory and %u vCPUs\n",
(gpa - start_gpa) / size_1gb, nr_vcpus);
rendezvous_with_vcpus(&time_start, "spawning");
rendezvous_with_vcpus(&time_run1, "run 1");
rendezvous_with_vcpus(&time_reset, "reset");
rendezvous_with_vcpus(&time_run2, "run 2");
time_run2 = timespec_sub(time_run2, time_reset);
time_reset = timespec_sub(time_reset, time_run1);
time_run1 = timespec_sub(time_run1, time_start);
pr_info("run1 = %ld.%.9lds, reset = %ld.%.9lds, run2 = %ld.%.9lds\n",
time_run1.tv_sec, time_run1.tv_nsec,
time_reset.tv_sec, time_reset.tv_nsec,
time_run2.tv_sec, time_run2.tv_nsec);
/*
* Delete even numbered slots (arbitrary) and unmap the first half of
* the backing (also arbitrary) to verify KVM correctly drops all
* references to the removed regions.
*/
for (slot = (slot - 1) & ~1ull; slot >= first_slot; slot -= 2)
vm_set_user_memory_region(vm, slot, 0, 0, 0, NULL);
munmap(mem, slot_size / 2);
/* Sanity check that the vCPUs actually ran. */
for (i = 0; i < nr_vcpus; i++)
pthread_join(threads[i], NULL);
/*
* Deliberately exit without deleting the remaining memslots or closing
* kvm_fd to test cleanup via mmu_notifier.release.
*/
}