blob: 4fb9bfdd2f4cee1506fce817d214b5a67c490143 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Support for Medifield PNW Camera Imaging ISP subsystem.
*
* Copyright (c) 2010 Intel Corporation. All Rights Reserved.
*
* Copyright (c) 2010 Silicon Hive www.siliconhive.com.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
*/
/*
* This file contains functions for buffer object structure management
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/gfp.h> /* for GFP_ATOMIC */
#include <linux/mm.h>
#include <linux/mm_types.h>
#include <linux/hugetlb.h>
#include <linux/highmem.h>
#include <linux/slab.h> /* for kmalloc */
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/string.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <asm/current.h>
#include <linux/sched/signal.h>
#include <linux/file.h>
#include <asm/set_memory.h>
#include "atomisp_internal.h"
#include "hmm/hmm_common.h"
#include "hmm/hmm_pool.h"
#include "hmm/hmm_bo.h"
static unsigned int order_to_nr(unsigned int order)
{
return 1U << order;
}
static unsigned int nr_to_order_bottom(unsigned int nr)
{
return fls(nr) - 1;
}
static int __bo_init(struct hmm_bo_device *bdev, struct hmm_buffer_object *bo,
unsigned int pgnr)
{
check_bodev_null_return(bdev, -EINVAL);
var_equal_return(hmm_bo_device_inited(bdev), 0, -EINVAL,
"hmm_bo_device not inited yet.\n");
/* prevent zero size buffer object */
if (pgnr == 0) {
dev_err(atomisp_dev, "0 size buffer is not allowed.\n");
return -EINVAL;
}
memset(bo, 0, sizeof(*bo));
mutex_init(&bo->mutex);
/* init the bo->list HEAD as an element of entire_bo_list */
INIT_LIST_HEAD(&bo->list);
bo->bdev = bdev;
bo->vmap_addr = NULL;
bo->status = HMM_BO_FREE;
bo->start = bdev->start;
bo->pgnr = pgnr;
bo->end = bo->start + pgnr_to_size(pgnr);
bo->prev = NULL;
bo->next = NULL;
return 0;
}
static struct hmm_buffer_object *__bo_search_and_remove_from_free_rbtree(
struct rb_node *node, unsigned int pgnr)
{
struct hmm_buffer_object *this, *ret_bo, *temp_bo;
this = rb_entry(node, struct hmm_buffer_object, node);
if (this->pgnr == pgnr ||
(this->pgnr > pgnr && !this->node.rb_left)) {
goto remove_bo_and_return;
} else {
if (this->pgnr < pgnr) {
if (!this->node.rb_right)
return NULL;
ret_bo = __bo_search_and_remove_from_free_rbtree(
this->node.rb_right, pgnr);
} else {
ret_bo = __bo_search_and_remove_from_free_rbtree(
this->node.rb_left, pgnr);
}
if (!ret_bo) {
if (this->pgnr > pgnr)
goto remove_bo_and_return;
else
return NULL;
}
return ret_bo;
}
remove_bo_and_return:
/* NOTE: All nodes on free rbtree have a 'prev' that points to NULL.
* 1. check if 'this->next' is NULL:
* yes: erase 'this' node and rebalance rbtree, return 'this'.
*/
if (!this->next) {
rb_erase(&this->node, &this->bdev->free_rbtree);
return this;
}
/* NOTE: if 'this->next' is not NULL, always return 'this->next' bo.
* 2. check if 'this->next->next' is NULL:
* yes: change the related 'next/prev' pointer,
* return 'this->next' but the rbtree stays unchanged.
*/
temp_bo = this->next;
this->next = temp_bo->next;
if (temp_bo->next)
temp_bo->next->prev = this;
temp_bo->next = NULL;
temp_bo->prev = NULL;
return temp_bo;
}
static struct hmm_buffer_object *__bo_search_by_addr(struct rb_root *root,
ia_css_ptr start)
{
struct rb_node *n = root->rb_node;
struct hmm_buffer_object *bo;
do {
bo = rb_entry(n, struct hmm_buffer_object, node);
if (bo->start > start) {
if (!n->rb_left)
return NULL;
n = n->rb_left;
} else if (bo->start < start) {
if (!n->rb_right)
return NULL;
n = n->rb_right;
} else {
return bo;
}
} while (n);
return NULL;
}
static struct hmm_buffer_object *__bo_search_by_addr_in_range(
struct rb_root *root, unsigned int start)
{
struct rb_node *n = root->rb_node;
struct hmm_buffer_object *bo;
do {
bo = rb_entry(n, struct hmm_buffer_object, node);
if (bo->start > start) {
if (!n->rb_left)
return NULL;
n = n->rb_left;
} else {
if (bo->end > start)
return bo;
if (!n->rb_right)
return NULL;
n = n->rb_right;
}
} while (n);
return NULL;
}
static void __bo_insert_to_free_rbtree(struct rb_root *root,
struct hmm_buffer_object *bo)
{
struct rb_node **new = &root->rb_node;
struct rb_node *parent = NULL;
struct hmm_buffer_object *this;
unsigned int pgnr = bo->pgnr;
while (*new) {
parent = *new;
this = container_of(*new, struct hmm_buffer_object, node);
if (pgnr < this->pgnr) {
new = &((*new)->rb_left);
} else if (pgnr > this->pgnr) {
new = &((*new)->rb_right);
} else {
bo->prev = this;
bo->next = this->next;
if (this->next)
this->next->prev = bo;
this->next = bo;
bo->status = (bo->status & ~HMM_BO_MASK) | HMM_BO_FREE;
return;
}
}
bo->status = (bo->status & ~HMM_BO_MASK) | HMM_BO_FREE;
rb_link_node(&bo->node, parent, new);
rb_insert_color(&bo->node, root);
}
static void __bo_insert_to_alloc_rbtree(struct rb_root *root,
struct hmm_buffer_object *bo)
{
struct rb_node **new = &root->rb_node;
struct rb_node *parent = NULL;
struct hmm_buffer_object *this;
unsigned int start = bo->start;
while (*new) {
parent = *new;
this = container_of(*new, struct hmm_buffer_object, node);
if (start < this->start)
new = &((*new)->rb_left);
else
new = &((*new)->rb_right);
}
kref_init(&bo->kref);
bo->status = (bo->status & ~HMM_BO_MASK) | HMM_BO_ALLOCED;
rb_link_node(&bo->node, parent, new);
rb_insert_color(&bo->node, root);
}
static struct hmm_buffer_object *__bo_break_up(struct hmm_bo_device *bdev,
struct hmm_buffer_object *bo,
unsigned int pgnr)
{
struct hmm_buffer_object *new_bo;
unsigned long flags;
int ret;
new_bo = kmem_cache_alloc(bdev->bo_cache, GFP_KERNEL);
if (!new_bo) {
dev_err(atomisp_dev, "%s: __bo_alloc failed!\n", __func__);
return NULL;
}
ret = __bo_init(bdev, new_bo, pgnr);
if (ret) {
dev_err(atomisp_dev, "%s: __bo_init failed!\n", __func__);
kmem_cache_free(bdev->bo_cache, new_bo);
return NULL;
}
new_bo->start = bo->start;
new_bo->end = new_bo->start + pgnr_to_size(pgnr);
bo->start = new_bo->end;
bo->pgnr = bo->pgnr - pgnr;
spin_lock_irqsave(&bdev->list_lock, flags);
list_add_tail(&new_bo->list, &bo->list);
spin_unlock_irqrestore(&bdev->list_lock, flags);
return new_bo;
}
static void __bo_take_off_handling(struct hmm_buffer_object *bo)
{
struct hmm_bo_device *bdev = bo->bdev;
/* There are 4 situations when we take off a known bo from free rbtree:
* 1. if bo->next && bo->prev == NULL, bo is a rbtree node
* and does not have a linked list after bo, to take off this bo,
* we just need erase bo directly and rebalance the free rbtree
*/
if (!bo->prev && !bo->next) {
rb_erase(&bo->node, &bdev->free_rbtree);
/* 2. when bo->next != NULL && bo->prev == NULL, bo is a rbtree node,
* and has a linked list,to take off this bo we need erase bo
* first, then, insert bo->next into free rbtree and rebalance
* the free rbtree
*/
} else if (!bo->prev && bo->next) {
bo->next->prev = NULL;
rb_erase(&bo->node, &bdev->free_rbtree);
__bo_insert_to_free_rbtree(&bdev->free_rbtree, bo->next);
bo->next = NULL;
/* 3. when bo->prev != NULL && bo->next == NULL, bo is not a rbtree
* node, bo is the last element of the linked list after rbtree
* node, to take off this bo, we just need set the "prev/next"
* pointers to NULL, the free rbtree stays unchaged
*/
} else if (bo->prev && !bo->next) {
bo->prev->next = NULL;
bo->prev = NULL;
/* 4. when bo->prev != NULL && bo->next != NULL ,bo is not a rbtree
* node, bo is in the middle of the linked list after rbtree node,
* to take off this bo, we just set take the "prev/next" pointers
* to NULL, the free rbtree stays unchaged
*/
} else if (bo->prev && bo->next) {
bo->next->prev = bo->prev;
bo->prev->next = bo->next;
bo->next = NULL;
bo->prev = NULL;
}
}
static struct hmm_buffer_object *__bo_merge(struct hmm_buffer_object *bo,
struct hmm_buffer_object *next_bo)
{
struct hmm_bo_device *bdev;
unsigned long flags;
bdev = bo->bdev;
next_bo->start = bo->start;
next_bo->pgnr = next_bo->pgnr + bo->pgnr;
spin_lock_irqsave(&bdev->list_lock, flags);
list_del(&bo->list);
spin_unlock_irqrestore(&bdev->list_lock, flags);
kmem_cache_free(bo->bdev->bo_cache, bo);
return next_bo;
}
/*
* hmm_bo_device functions.
*/
int hmm_bo_device_init(struct hmm_bo_device *bdev,
struct isp_mmu_client *mmu_driver,
unsigned int vaddr_start,
unsigned int size)
{
struct hmm_buffer_object *bo;
unsigned long flags;
int ret;
check_bodev_null_return(bdev, -EINVAL);
ret = isp_mmu_init(&bdev->mmu, mmu_driver);
if (ret) {
dev_err(atomisp_dev, "isp_mmu_init failed.\n");
return ret;
}
bdev->start = vaddr_start;
bdev->pgnr = size_to_pgnr_ceil(size);
bdev->size = pgnr_to_size(bdev->pgnr);
spin_lock_init(&bdev->list_lock);
mutex_init(&bdev->rbtree_mutex);
bdev->flag = HMM_BO_DEVICE_INITED;
INIT_LIST_HEAD(&bdev->entire_bo_list);
bdev->allocated_rbtree = RB_ROOT;
bdev->free_rbtree = RB_ROOT;
bdev->bo_cache = kmem_cache_create("bo_cache",
sizeof(struct hmm_buffer_object), 0, 0, NULL);
if (!bdev->bo_cache) {
dev_err(atomisp_dev, "%s: create cache failed!\n", __func__);
isp_mmu_exit(&bdev->mmu);
return -ENOMEM;
}
bo = kmem_cache_alloc(bdev->bo_cache, GFP_KERNEL);
if (!bo) {
dev_err(atomisp_dev, "%s: __bo_alloc failed!\n", __func__);
isp_mmu_exit(&bdev->mmu);
return -ENOMEM;
}
ret = __bo_init(bdev, bo, bdev->pgnr);
if (ret) {
dev_err(atomisp_dev, "%s: __bo_init failed!\n", __func__);
kmem_cache_free(bdev->bo_cache, bo);
isp_mmu_exit(&bdev->mmu);
return -EINVAL;
}
spin_lock_irqsave(&bdev->list_lock, flags);
list_add_tail(&bo->list, &bdev->entire_bo_list);
spin_unlock_irqrestore(&bdev->list_lock, flags);
__bo_insert_to_free_rbtree(&bdev->free_rbtree, bo);
return 0;
}
struct hmm_buffer_object *hmm_bo_alloc(struct hmm_bo_device *bdev,
unsigned int pgnr)
{
struct hmm_buffer_object *bo, *new_bo;
struct rb_root *root = &bdev->free_rbtree;
check_bodev_null_return(bdev, NULL);
var_equal_return(hmm_bo_device_inited(bdev), 0, NULL,
"hmm_bo_device not inited yet.\n");
if (pgnr == 0) {
dev_err(atomisp_dev, "0 size buffer is not allowed.\n");
return NULL;
}
mutex_lock(&bdev->rbtree_mutex);
bo = __bo_search_and_remove_from_free_rbtree(root->rb_node, pgnr);
if (!bo) {
mutex_unlock(&bdev->rbtree_mutex);
dev_err(atomisp_dev, "%s: Out of Memory! hmm_bo_alloc failed",
__func__);
return NULL;
}
if (bo->pgnr > pgnr) {
new_bo = __bo_break_up(bdev, bo, pgnr);
if (!new_bo) {
mutex_unlock(&bdev->rbtree_mutex);
dev_err(atomisp_dev, "%s: __bo_break_up failed!\n",
__func__);
return NULL;
}
__bo_insert_to_alloc_rbtree(&bdev->allocated_rbtree, new_bo);
__bo_insert_to_free_rbtree(&bdev->free_rbtree, bo);
mutex_unlock(&bdev->rbtree_mutex);
return new_bo;
}
__bo_insert_to_alloc_rbtree(&bdev->allocated_rbtree, bo);
mutex_unlock(&bdev->rbtree_mutex);
return bo;
}
void hmm_bo_release(struct hmm_buffer_object *bo)
{
struct hmm_bo_device *bdev = bo->bdev;
struct hmm_buffer_object *next_bo, *prev_bo;
mutex_lock(&bdev->rbtree_mutex);
/*
* FIX ME:
*
* how to destroy the bo when it is stilled MMAPED?
*
* ideally, this will not happened as hmm_bo_release
* will only be called when kref reaches 0, and in mmap
* operation the hmm_bo_ref will eventually be called.
* so, if this happened, something goes wrong.
*/
if (bo->status & HMM_BO_MMAPED) {
mutex_unlock(&bdev->rbtree_mutex);
dev_dbg(atomisp_dev, "destroy bo which is MMAPED, do nothing\n");
return;
}
if (bo->status & HMM_BO_BINDED) {
dev_warn(atomisp_dev, "the bo is still binded, unbind it first...\n");
hmm_bo_unbind(bo);
}
if (bo->status & HMM_BO_PAGE_ALLOCED) {
dev_warn(atomisp_dev, "the pages is not freed, free pages first\n");
hmm_bo_free_pages(bo);
}
if (bo->status & HMM_BO_VMAPED || bo->status & HMM_BO_VMAPED_CACHED) {
dev_warn(atomisp_dev, "the vunmap is not done, do it...\n");
hmm_bo_vunmap(bo);
}
rb_erase(&bo->node, &bdev->allocated_rbtree);
prev_bo = list_entry(bo->list.prev, struct hmm_buffer_object, list);
next_bo = list_entry(bo->list.next, struct hmm_buffer_object, list);
if (bo->list.prev != &bdev->entire_bo_list &&
prev_bo->end == bo->start &&
(prev_bo->status & HMM_BO_MASK) == HMM_BO_FREE) {
__bo_take_off_handling(prev_bo);
bo = __bo_merge(prev_bo, bo);
}
if (bo->list.next != &bdev->entire_bo_list &&
next_bo->start == bo->end &&
(next_bo->status & HMM_BO_MASK) == HMM_BO_FREE) {
__bo_take_off_handling(next_bo);
bo = __bo_merge(bo, next_bo);
}
__bo_insert_to_free_rbtree(&bdev->free_rbtree, bo);
mutex_unlock(&bdev->rbtree_mutex);
return;
}
void hmm_bo_device_exit(struct hmm_bo_device *bdev)
{
struct hmm_buffer_object *bo;
unsigned long flags;
dev_dbg(atomisp_dev, "%s: entering!\n", __func__);
check_bodev_null_return_void(bdev);
/*
* release all allocated bos even they a in use
* and all bos will be merged into a big bo
*/
while (!RB_EMPTY_ROOT(&bdev->allocated_rbtree))
hmm_bo_release(
rbtree_node_to_hmm_bo(bdev->allocated_rbtree.rb_node));
dev_dbg(atomisp_dev, "%s: finished releasing all allocated bos!\n",
__func__);
/* free all bos to release all ISP virtual memory */
while (!list_empty(&bdev->entire_bo_list)) {
bo = list_to_hmm_bo(bdev->entire_bo_list.next);
spin_lock_irqsave(&bdev->list_lock, flags);
list_del(&bo->list);
spin_unlock_irqrestore(&bdev->list_lock, flags);
kmem_cache_free(bdev->bo_cache, bo);
}
dev_dbg(atomisp_dev, "%s: finished to free all bos!\n", __func__);
kmem_cache_destroy(bdev->bo_cache);
isp_mmu_exit(&bdev->mmu);
}
int hmm_bo_device_inited(struct hmm_bo_device *bdev)
{
check_bodev_null_return(bdev, -EINVAL);
return bdev->flag == HMM_BO_DEVICE_INITED;
}
int hmm_bo_allocated(struct hmm_buffer_object *bo)
{
check_bo_null_return(bo, 0);
return bo->status & HMM_BO_ALLOCED;
}
struct hmm_buffer_object *hmm_bo_device_search_start(
struct hmm_bo_device *bdev, ia_css_ptr vaddr)
{
struct hmm_buffer_object *bo;
check_bodev_null_return(bdev, NULL);
mutex_lock(&bdev->rbtree_mutex);
bo = __bo_search_by_addr(&bdev->allocated_rbtree, vaddr);
if (!bo) {
mutex_unlock(&bdev->rbtree_mutex);
dev_err(atomisp_dev, "%s can not find bo with addr: 0x%x\n",
__func__, vaddr);
return NULL;
}
mutex_unlock(&bdev->rbtree_mutex);
return bo;
}
struct hmm_buffer_object *hmm_bo_device_search_in_range(
struct hmm_bo_device *bdev, unsigned int vaddr)
{
struct hmm_buffer_object *bo;
check_bodev_null_return(bdev, NULL);
mutex_lock(&bdev->rbtree_mutex);
bo = __bo_search_by_addr_in_range(&bdev->allocated_rbtree, vaddr);
if (!bo) {
mutex_unlock(&bdev->rbtree_mutex);
dev_err(atomisp_dev, "%s can not find bo contain addr: 0x%x\n",
__func__, vaddr);
return NULL;
}
mutex_unlock(&bdev->rbtree_mutex);
return bo;
}
struct hmm_buffer_object *hmm_bo_device_search_vmap_start(
struct hmm_bo_device *bdev, const void *vaddr)
{
struct list_head *pos;
struct hmm_buffer_object *bo;
unsigned long flags;
check_bodev_null_return(bdev, NULL);
spin_lock_irqsave(&bdev->list_lock, flags);
list_for_each(pos, &bdev->entire_bo_list) {
bo = list_to_hmm_bo(pos);
/* pass bo which has no vm_node allocated */
if ((bo->status & HMM_BO_MASK) == HMM_BO_FREE)
continue;
if (bo->vmap_addr == vaddr)
goto found;
}
spin_unlock_irqrestore(&bdev->list_lock, flags);
return NULL;
found:
spin_unlock_irqrestore(&bdev->list_lock, flags);
return bo;
}
static void free_private_bo_pages(struct hmm_buffer_object *bo,
struct hmm_pool *dypool,
struct hmm_pool *repool,
int free_pgnr)
{
int i, ret;
for (i = 0; i < free_pgnr; i++) {
switch (bo->page_obj[i].type) {
case HMM_PAGE_TYPE_RESERVED:
if (repool->pops
&& repool->pops->pool_free_pages) {
repool->pops->pool_free_pages(repool->pool_info,
&bo->page_obj[i]);
hmm_mem_stat.res_cnt--;
}
break;
/*
* HMM_PAGE_TYPE_GENERAL indicates that pages are from system
* memory, so when free them, they should be put into dynamic
* pool.
*/
case HMM_PAGE_TYPE_DYNAMIC:
case HMM_PAGE_TYPE_GENERAL:
if (dypool->pops
&& dypool->pops->pool_inited
&& dypool->pops->pool_inited(dypool->pool_info)) {
if (dypool->pops->pool_free_pages)
dypool->pops->pool_free_pages(
dypool->pool_info,
&bo->page_obj[i]);
break;
}
/* fall through */
/*
* if dynamic memory pool doesn't exist, need to free
* pages to system directly.
*/
default:
ret = set_pages_wb(bo->page_obj[i].page, 1);
if (ret)
dev_err(atomisp_dev,
"set page to WB err ...ret = %d\n",
ret);
/*
W/A: set_pages_wb seldom return value = -EFAULT
indicate that address of page is not in valid
range(0xffff880000000000~0xffffc7ffffffffff)
then, _free_pages would panic; Do not know why page
address be valid,it maybe memory corruption by lowmemory
*/
if (!ret) {
__free_pages(bo->page_obj[i].page, 0);
hmm_mem_stat.sys_size--;
}
break;
}
}
return;
}
/*Allocate pages which will be used only by ISP*/
static int alloc_private_pages(struct hmm_buffer_object *bo,
int from_highmem,
bool cached,
struct hmm_pool *dypool,
struct hmm_pool *repool)
{
int ret;
unsigned int pgnr, order, blk_pgnr, alloc_pgnr;
struct page *pages;
gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; /* REVISIT: need __GFP_FS too? */
int i, j;
int failure_number = 0;
bool reduce_order = false;
bool lack_mem = true;
if (from_highmem)
gfp |= __GFP_HIGHMEM;
pgnr = bo->pgnr;
bo->page_obj = kmalloc_array(pgnr, sizeof(struct hmm_page_object),
GFP_KERNEL);
if (unlikely(!bo->page_obj))
return -ENOMEM;
i = 0;
alloc_pgnr = 0;
/*
* get physical pages from dynamic pages pool.
*/
if (dypool->pops && dypool->pops->pool_alloc_pages) {
alloc_pgnr = dypool->pops->pool_alloc_pages(dypool->pool_info,
bo->page_obj, pgnr,
cached);
hmm_mem_stat.dyc_size -= alloc_pgnr;
if (alloc_pgnr == pgnr)
return 0;
}
pgnr -= alloc_pgnr;
i += alloc_pgnr;
/*
* get physical pages from reserved pages pool for atomisp.
*/
if (repool->pops && repool->pops->pool_alloc_pages) {
alloc_pgnr = repool->pops->pool_alloc_pages(repool->pool_info,
&bo->page_obj[i], pgnr,
cached);
hmm_mem_stat.res_cnt += alloc_pgnr;
if (alloc_pgnr == pgnr)
return 0;
}
pgnr -= alloc_pgnr;
i += alloc_pgnr;
while (pgnr) {
order = nr_to_order_bottom(pgnr);
/*
* if be short of memory, we will set order to 0
* everytime.
*/
if (lack_mem)
order = HMM_MIN_ORDER;
else if (order > HMM_MAX_ORDER)
order = HMM_MAX_ORDER;
retry:
/*
* When order > HMM_MIN_ORDER, for performance reasons we don't
* want alloc_pages() to sleep. In case it fails and fallbacks
* to HMM_MIN_ORDER or in case the requested order is originally
* the minimum value, we can allow alloc_pages() to sleep for
* robustness purpose.
*
* REVISIT: why __GFP_FS is necessary?
*/
if (order == HMM_MIN_ORDER) {
gfp &= ~GFP_NOWAIT;
gfp |= __GFP_RECLAIM | __GFP_FS;
}
pages = alloc_pages(gfp, order);
if (unlikely(!pages)) {
/*
* in low memory case, if allocation page fails,
* we turn to try if order=0 allocation could
* succeed. if order=0 fails too, that means there is
* no memory left.
*/
if (order == HMM_MIN_ORDER) {
dev_err(atomisp_dev,
"%s: cannot allocate pages\n",
__func__);
goto cleanup;
}
order = HMM_MIN_ORDER;
failure_number++;
reduce_order = true;
/*
* if fail two times continuously, we think be short
* of memory now.
*/
if (failure_number == 2) {
lack_mem = true;
failure_number = 0;
}
goto retry;
} else {
blk_pgnr = order_to_nr(order);
if (!cached) {
/*
* set memory to uncacheable -- UC_MINUS
*/
ret = set_pages_uc(pages, blk_pgnr);
if (ret) {
dev_err(atomisp_dev,
"set page uncacheablefailed.\n");
__free_pages(pages, order);
goto cleanup;
}
}
for (j = 0; j < blk_pgnr; j++) {
bo->page_obj[i].page = pages + j;
bo->page_obj[i++].type = HMM_PAGE_TYPE_GENERAL;
}
pgnr -= blk_pgnr;
hmm_mem_stat.sys_size += blk_pgnr;
/*
* if order is not reduced this time, clear
* failure_number.
*/
if (reduce_order)
reduce_order = false;
else
failure_number = 0;
}
}
return 0;
cleanup:
alloc_pgnr = i;
free_private_bo_pages(bo, dypool, repool, alloc_pgnr);
kfree(bo->page_obj);
return -ENOMEM;
}
static void free_private_pages(struct hmm_buffer_object *bo,
struct hmm_pool *dypool,
struct hmm_pool *repool)
{
free_private_bo_pages(bo, dypool, repool, bo->pgnr);
kfree(bo->page_obj);
}
static void free_user_pages(struct hmm_buffer_object *bo)
{
int i;
hmm_mem_stat.usr_size -= bo->pgnr;
if (bo->mem_type == HMM_BO_MEM_TYPE_PFN) {
unpin_user_pages(bo->pages, bo->pgnr);
} else {
for (i = 0; i < bo->pgnr; i++)
put_page(bo->pages[i]);
}
kfree(bo->pages);
kfree(bo->page_obj);
}
/*
* Convert user space virtual address into pages list
*/
static int alloc_user_pages(struct hmm_buffer_object *bo,
const void __user *userptr, bool cached)
{
int page_nr;
int i;
struct vm_area_struct *vma;
struct page **pages;
pages = kmalloc_array(bo->pgnr, sizeof(struct page *), GFP_KERNEL);
if (unlikely(!pages))
return -ENOMEM;
bo->page_obj = kmalloc_array(bo->pgnr, sizeof(struct hmm_page_object),
GFP_KERNEL);
if (unlikely(!bo->page_obj)) {
kfree(pages);
return -ENOMEM;
}
mutex_unlock(&bo->mutex);
mmap_read_lock(current->mm);
vma = find_vma(current->mm, (unsigned long)userptr);
mmap_read_unlock(current->mm);
if (!vma) {
dev_err(atomisp_dev, "find_vma failed\n");
kfree(bo->page_obj);
kfree(pages);
mutex_lock(&bo->mutex);
return -EFAULT;
}
mutex_lock(&bo->mutex);
/*
* Handle frame buffer allocated in other kerenl space driver
* and map to user space
*/
userptr = untagged_addr(userptr);
bo->pages = pages;
if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
page_nr = pin_user_pages((unsigned long)userptr, bo->pgnr,
FOLL_LONGTERM | FOLL_WRITE,
pages, NULL);
bo->mem_type = HMM_BO_MEM_TYPE_PFN;
} else {
/*Handle frame buffer allocated in user space*/
mutex_unlock(&bo->mutex);
page_nr = get_user_pages_fast((unsigned long)userptr,
(int)(bo->pgnr), 1, pages);
mutex_lock(&bo->mutex);
bo->mem_type = HMM_BO_MEM_TYPE_USER;
}
dev_dbg(atomisp_dev, "%s: %d %s pages were allocated as 0x%08x\n",
__func__,
bo->pgnr,
bo->mem_type == HMM_BO_MEM_TYPE_USER ? "user" : "pfn", page_nr);
hmm_mem_stat.usr_size += bo->pgnr;
/* can be written by caller, not forced */
if (page_nr != bo->pgnr) {
dev_err(atomisp_dev,
"get_user_pages err: bo->pgnr = %d, pgnr actually pinned = %d.\n",
bo->pgnr, page_nr);
goto out_of_mem;
}
for (i = 0; i < bo->pgnr; i++) {
bo->page_obj[i].page = pages[i];
bo->page_obj[i].type = HMM_PAGE_TYPE_GENERAL;
}
return 0;
out_of_mem:
free_user_pages(bo);
return -ENOMEM;
}
/*
* allocate/free physical pages for the bo.
*
* type indicate where are the pages from. currently we have 3 types
* of memory: HMM_BO_PRIVATE, HMM_BO_USER, HMM_BO_SHARE.
*
* from_highmem is only valid when type is HMM_BO_PRIVATE, it will
* try to alloc memory from highmem if from_highmem is set.
*
* userptr is only valid when type is HMM_BO_USER, it indicates
* the start address from user space task.
*
* from_highmem and userptr will both be ignored when type is
* HMM_BO_SHARE.
*/
int hmm_bo_alloc_pages(struct hmm_buffer_object *bo,
enum hmm_bo_type type, int from_highmem,
const void __user *userptr, bool cached)
{
int ret = -EINVAL;
check_bo_null_return(bo, -EINVAL);
mutex_lock(&bo->mutex);
check_bo_status_no_goto(bo, HMM_BO_PAGE_ALLOCED, status_err);
/*
* TO DO:
* add HMM_BO_USER type
*/
if (type == HMM_BO_PRIVATE) {
ret = alloc_private_pages(bo, from_highmem,
cached, &dynamic_pool, &reserved_pool);
} else if (type == HMM_BO_USER) {
ret = alloc_user_pages(bo, userptr, cached);
} else {
dev_err(atomisp_dev, "invalid buffer type.\n");
ret = -EINVAL;
}
if (ret)
goto alloc_err;
bo->type = type;
bo->status |= HMM_BO_PAGE_ALLOCED;
mutex_unlock(&bo->mutex);
return 0;
alloc_err:
mutex_unlock(&bo->mutex);
dev_err(atomisp_dev, "alloc pages err...\n");
return ret;
status_err:
mutex_unlock(&bo->mutex);
dev_err(atomisp_dev,
"buffer object has already page allocated.\n");
return -EINVAL;
}
/*
* free physical pages of the bo.
*/
void hmm_bo_free_pages(struct hmm_buffer_object *bo)
{
check_bo_null_return_void(bo);
mutex_lock(&bo->mutex);
check_bo_status_yes_goto(bo, HMM_BO_PAGE_ALLOCED, status_err2);
/* clear the flag anyway. */
bo->status &= (~HMM_BO_PAGE_ALLOCED);
if (bo->type == HMM_BO_PRIVATE)
free_private_pages(bo, &dynamic_pool, &reserved_pool);
else if (bo->type == HMM_BO_USER)
free_user_pages(bo);
else
dev_err(atomisp_dev, "invalid buffer type.\n");
mutex_unlock(&bo->mutex);
return;
status_err2:
mutex_unlock(&bo->mutex);
dev_err(atomisp_dev,
"buffer object not page allocated yet.\n");
}
int hmm_bo_page_allocated(struct hmm_buffer_object *bo)
{
check_bo_null_return(bo, 0);
return bo->status & HMM_BO_PAGE_ALLOCED;
}
/*
* get physical page info of the bo.
*/
int hmm_bo_get_page_info(struct hmm_buffer_object *bo,
struct hmm_page_object **page_obj, int *pgnr)
{
check_bo_null_return(bo, -EINVAL);
mutex_lock(&bo->mutex);
check_bo_status_yes_goto(bo, HMM_BO_PAGE_ALLOCED, status_err);
*page_obj = bo->page_obj;
*pgnr = bo->pgnr;
mutex_unlock(&bo->mutex);
return 0;
status_err:
dev_err(atomisp_dev,
"buffer object not page allocated yet.\n");
mutex_unlock(&bo->mutex);
return -EINVAL;
}
/*
* bind the physical pages to a virtual address space.
*/
int hmm_bo_bind(struct hmm_buffer_object *bo)
{
int ret;
unsigned int virt;
struct hmm_bo_device *bdev;
unsigned int i;
check_bo_null_return(bo, -EINVAL);
mutex_lock(&bo->mutex);
check_bo_status_yes_goto(bo,
HMM_BO_PAGE_ALLOCED | HMM_BO_ALLOCED,
status_err1);
check_bo_status_no_goto(bo, HMM_BO_BINDED, status_err2);
bdev = bo->bdev;
virt = bo->start;
for (i = 0; i < bo->pgnr; i++) {
ret =
isp_mmu_map(&bdev->mmu, virt,
page_to_phys(bo->page_obj[i].page), 1);
if (ret)
goto map_err;
virt += (1 << PAGE_SHIFT);
}
/*
* flush TBL here.
*
* theoretically, we donot need to flush TLB as we didnot change
* any existed address mappings, but for Silicon Hive's MMU, its
* really a bug here. I guess when fetching PTEs (page table entity)
* to TLB, its MMU will fetch additional INVALID PTEs automatically
* for performance issue. EX, we only set up 1 page address mapping,
* meaning updating 1 PTE, but the MMU fetches 4 PTE at one time,
* so the additional 3 PTEs are invalid.
*/
if (bo->start != 0x0)
isp_mmu_flush_tlb_range(&bdev->mmu, bo->start,
(bo->pgnr << PAGE_SHIFT));
bo->status |= HMM_BO_BINDED;
mutex_unlock(&bo->mutex);
return 0;
map_err:
/* unbind the physical pages with related virtual address space */
virt = bo->start;
for ( ; i > 0; i--) {
isp_mmu_unmap(&bdev->mmu, virt, 1);
virt += pgnr_to_size(1);
}
mutex_unlock(&bo->mutex);
dev_err(atomisp_dev,
"setup MMU address mapping failed.\n");
return ret;
status_err2:
mutex_unlock(&bo->mutex);
dev_err(atomisp_dev, "buffer object already binded.\n");
return -EINVAL;
status_err1:
mutex_unlock(&bo->mutex);
dev_err(atomisp_dev,
"buffer object vm_node or page not allocated.\n");
return -EINVAL;
}
/*
* unbind the physical pages with related virtual address space.
*/
void hmm_bo_unbind(struct hmm_buffer_object *bo)
{
unsigned int virt;
struct hmm_bo_device *bdev;
unsigned int i;
check_bo_null_return_void(bo);
mutex_lock(&bo->mutex);
check_bo_status_yes_goto(bo,
HMM_BO_PAGE_ALLOCED |
HMM_BO_ALLOCED |
HMM_BO_BINDED, status_err);
bdev = bo->bdev;
virt = bo->start;
for (i = 0; i < bo->pgnr; i++) {
isp_mmu_unmap(&bdev->mmu, virt, 1);
virt += pgnr_to_size(1);
}
/*
* flush TLB as the address mapping has been removed and
* related TLBs should be invalidated.
*/
isp_mmu_flush_tlb_range(&bdev->mmu, bo->start,
(bo->pgnr << PAGE_SHIFT));
bo->status &= (~HMM_BO_BINDED);
mutex_unlock(&bo->mutex);
return;
status_err:
mutex_unlock(&bo->mutex);
dev_err(atomisp_dev,
"buffer vm or page not allocated or not binded yet.\n");
}
int hmm_bo_binded(struct hmm_buffer_object *bo)
{
int ret;
check_bo_null_return(bo, 0);
mutex_lock(&bo->mutex);
ret = bo->status & HMM_BO_BINDED;
mutex_unlock(&bo->mutex);
return ret;
}
void *hmm_bo_vmap(struct hmm_buffer_object *bo, bool cached)
{
struct page **pages;
int i;
check_bo_null_return(bo, NULL);
mutex_lock(&bo->mutex);
if (((bo->status & HMM_BO_VMAPED) && !cached) ||
((bo->status & HMM_BO_VMAPED_CACHED) && cached)) {
mutex_unlock(&bo->mutex);
return bo->vmap_addr;
}
/* cached status need to be changed, so vunmap first */
if (bo->status & HMM_BO_VMAPED || bo->status & HMM_BO_VMAPED_CACHED) {
vunmap(bo->vmap_addr);
bo->vmap_addr = NULL;
bo->status &= ~(HMM_BO_VMAPED | HMM_BO_VMAPED_CACHED);
}
pages = kmalloc_array(bo->pgnr, sizeof(*pages), GFP_KERNEL);
if (unlikely(!pages)) {
mutex_unlock(&bo->mutex);
return NULL;
}
for (i = 0; i < bo->pgnr; i++)
pages[i] = bo->page_obj[i].page;
bo->vmap_addr = vmap(pages, bo->pgnr, VM_MAP,
cached ? PAGE_KERNEL : PAGE_KERNEL_NOCACHE);
if (unlikely(!bo->vmap_addr)) {
kfree(pages);
mutex_unlock(&bo->mutex);
dev_err(atomisp_dev, "vmap failed...\n");
return NULL;
}
bo->status |= (cached ? HMM_BO_VMAPED_CACHED : HMM_BO_VMAPED);
kfree(pages);
mutex_unlock(&bo->mutex);
return bo->vmap_addr;
}
void hmm_bo_flush_vmap(struct hmm_buffer_object *bo)
{
check_bo_null_return_void(bo);
mutex_lock(&bo->mutex);
if (!(bo->status & HMM_BO_VMAPED_CACHED) || !bo->vmap_addr) {
mutex_unlock(&bo->mutex);
return;
}
clflush_cache_range(bo->vmap_addr, bo->pgnr * PAGE_SIZE);
mutex_unlock(&bo->mutex);
}
void hmm_bo_vunmap(struct hmm_buffer_object *bo)
{
check_bo_null_return_void(bo);
mutex_lock(&bo->mutex);
if (bo->status & HMM_BO_VMAPED || bo->status & HMM_BO_VMAPED_CACHED) {
vunmap(bo->vmap_addr);
bo->vmap_addr = NULL;
bo->status &= ~(HMM_BO_VMAPED | HMM_BO_VMAPED_CACHED);
}
mutex_unlock(&bo->mutex);
return;
}
void hmm_bo_ref(struct hmm_buffer_object *bo)
{
check_bo_null_return_void(bo);
kref_get(&bo->kref);
}
static void kref_hmm_bo_release(struct kref *kref)
{
if (!kref)
return;
hmm_bo_release(kref_to_hmm_bo(kref));
}
void hmm_bo_unref(struct hmm_buffer_object *bo)
{
check_bo_null_return_void(bo);
kref_put(&bo->kref, kref_hmm_bo_release);
}
static void hmm_bo_vm_open(struct vm_area_struct *vma)
{
struct hmm_buffer_object *bo =
(struct hmm_buffer_object *)vma->vm_private_data;
check_bo_null_return_void(bo);
hmm_bo_ref(bo);
mutex_lock(&bo->mutex);
bo->status |= HMM_BO_MMAPED;
bo->mmap_count++;
mutex_unlock(&bo->mutex);
}
static void hmm_bo_vm_close(struct vm_area_struct *vma)
{
struct hmm_buffer_object *bo =
(struct hmm_buffer_object *)vma->vm_private_data;
check_bo_null_return_void(bo);
hmm_bo_unref(bo);
mutex_lock(&bo->mutex);
bo->mmap_count--;
if (!bo->mmap_count) {
bo->status &= (~HMM_BO_MMAPED);
vma->vm_private_data = NULL;
}
mutex_unlock(&bo->mutex);
}
static const struct vm_operations_struct hmm_bo_vm_ops = {
.open = hmm_bo_vm_open,
.close = hmm_bo_vm_close,
};
/*
* mmap the bo to user space.
*/
int hmm_bo_mmap(struct vm_area_struct *vma, struct hmm_buffer_object *bo)
{
unsigned int start, end;
unsigned int virt;
unsigned int pgnr, i;
unsigned int pfn;
check_bo_null_return(bo, -EINVAL);
check_bo_status_yes_goto(bo, HMM_BO_PAGE_ALLOCED, status_err);
pgnr = bo->pgnr;
start = vma->vm_start;
end = vma->vm_end;
/*
* check vma's virtual address space size and buffer object's size.
* must be the same.
*/
if ((start + pgnr_to_size(pgnr)) != end) {
dev_warn(atomisp_dev,
"vma's address space size not equal to buffer object's size");
return -EINVAL;
}
virt = vma->vm_start;
for (i = 0; i < pgnr; i++) {
pfn = page_to_pfn(bo->page_obj[i].page);
if (remap_pfn_range(vma, virt, pfn, PAGE_SIZE, PAGE_SHARED)) {
dev_warn(atomisp_dev,
"remap_pfn_range failed: virt = 0x%x, pfn = 0x%x, mapped_pgnr = %d\n",
virt, pfn, 1);
return -EINVAL;
}
virt += PAGE_SIZE;
}
vma->vm_private_data = bo;
vma->vm_ops = &hmm_bo_vm_ops;
vma->vm_flags |= VM_IO | VM_DONTEXPAND | VM_DONTDUMP;
/*
* call hmm_bo_vm_open explicitly.
*/
hmm_bo_vm_open(vma);
return 0;
status_err:
dev_err(atomisp_dev, "buffer page not allocated yet.\n");
return -EINVAL;
}