blob: bb67cad8371f03da95d878e334e32b1cff2b10e9 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/* exynos_drm_fimd.c
*
* Copyright (C) 2011 Samsung Electronics Co.Ltd
* Authors:
* Joonyoung Shim <jy0922.shim@samsung.com>
* Inki Dae <inki.dae@samsung.com>
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <video/of_display_timing.h>
#include <video/of_videomode.h>
#include <video/samsung_fimd.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_vblank.h>
#include <drm/exynos_drm.h>
#include "exynos_drm_crtc.h"
#include "exynos_drm_drv.h"
#include "exynos_drm_fb.h"
#include "exynos_drm_plane.h"
/*
* FIMD stands for Fully Interactive Mobile Display and
* as a display controller, it transfers contents drawn on memory
* to a LCD Panel through Display Interfaces such as RGB or
* CPU Interface.
*/
#define MIN_FB_WIDTH_FOR_16WORD_BURST 128
/* position control register for hardware window 0, 2 ~ 4.*/
#define VIDOSD_A(win) (VIDOSD_BASE + 0x00 + (win) * 16)
#define VIDOSD_B(win) (VIDOSD_BASE + 0x04 + (win) * 16)
/*
* size control register for hardware windows 0 and alpha control register
* for hardware windows 1 ~ 4
*/
#define VIDOSD_C(win) (VIDOSD_BASE + 0x08 + (win) * 16)
/* size control register for hardware windows 1 ~ 2. */
#define VIDOSD_D(win) (VIDOSD_BASE + 0x0C + (win) * 16)
#define VIDWnALPHA0(win) (VIDW_ALPHA + 0x00 + (win) * 8)
#define VIDWnALPHA1(win) (VIDW_ALPHA + 0x04 + (win) * 8)
#define VIDWx_BUF_START(win, buf) (VIDW_BUF_START(buf) + (win) * 8)
#define VIDWx_BUF_START_S(win, buf) (VIDW_BUF_START_S(buf) + (win) * 8)
#define VIDWx_BUF_END(win, buf) (VIDW_BUF_END(buf) + (win) * 8)
#define VIDWx_BUF_SIZE(win, buf) (VIDW_BUF_SIZE(buf) + (win) * 4)
/* color key control register for hardware window 1 ~ 4. */
#define WKEYCON0_BASE(x) ((WKEYCON0 + 0x140) + ((x - 1) * 8))
/* color key value register for hardware window 1 ~ 4. */
#define WKEYCON1_BASE(x) ((WKEYCON1 + 0x140) + ((x - 1) * 8))
/* I80 trigger control register */
#define TRIGCON 0x1A4
#define TRGMODE_ENABLE (1 << 0)
#define SWTRGCMD_ENABLE (1 << 1)
/* Exynos3250, 3472, 5260 5410, 5420 and 5422 only supported. */
#define HWTRGEN_ENABLE (1 << 3)
#define HWTRGMASK_ENABLE (1 << 4)
/* Exynos3250, 3472, 5260, 5420 and 5422 only supported. */
#define HWTRIGEN_PER_ENABLE (1 << 31)
/* display mode change control register except exynos4 */
#define VIDOUT_CON 0x000
#define VIDOUT_CON_F_I80_LDI0 (0x2 << 8)
/* I80 interface control for main LDI register */
#define I80IFCONFAx(x) (0x1B0 + (x) * 4)
#define I80IFCONFBx(x) (0x1B8 + (x) * 4)
#define LCD_CS_SETUP(x) ((x) << 16)
#define LCD_WR_SETUP(x) ((x) << 12)
#define LCD_WR_ACTIVE(x) ((x) << 8)
#define LCD_WR_HOLD(x) ((x) << 4)
#define I80IFEN_ENABLE (1 << 0)
/* FIMD has totally five hardware windows. */
#define WINDOWS_NR 5
/* HW trigger flag on i80 panel. */
#define I80_HW_TRG (1 << 1)
struct fimd_driver_data {
unsigned int timing_base;
unsigned int lcdblk_offset;
unsigned int lcdblk_vt_shift;
unsigned int lcdblk_bypass_shift;
unsigned int lcdblk_mic_bypass_shift;
unsigned int trg_type;
unsigned int has_shadowcon:1;
unsigned int has_clksel:1;
unsigned int has_limited_fmt:1;
unsigned int has_vidoutcon:1;
unsigned int has_vtsel:1;
unsigned int has_mic_bypass:1;
unsigned int has_dp_clk:1;
unsigned int has_hw_trigger:1;
unsigned int has_trigger_per_te:1;
};
static struct fimd_driver_data s3c64xx_fimd_driver_data = {
.timing_base = 0x0,
.has_clksel = 1,
.has_limited_fmt = 1,
};
static struct fimd_driver_data s5pv210_fimd_driver_data = {
.timing_base = 0x0,
.has_shadowcon = 1,
.has_clksel = 1,
};
static struct fimd_driver_data exynos3_fimd_driver_data = {
.timing_base = 0x20000,
.lcdblk_offset = 0x210,
.lcdblk_bypass_shift = 1,
.has_shadowcon = 1,
.has_vidoutcon = 1,
};
static struct fimd_driver_data exynos4_fimd_driver_data = {
.timing_base = 0x0,
.lcdblk_offset = 0x210,
.lcdblk_vt_shift = 10,
.lcdblk_bypass_shift = 1,
.has_shadowcon = 1,
.has_vtsel = 1,
};
static struct fimd_driver_data exynos5_fimd_driver_data = {
.timing_base = 0x20000,
.lcdblk_offset = 0x214,
.lcdblk_vt_shift = 24,
.lcdblk_bypass_shift = 15,
.has_shadowcon = 1,
.has_vidoutcon = 1,
.has_vtsel = 1,
.has_dp_clk = 1,
};
static struct fimd_driver_data exynos5420_fimd_driver_data = {
.timing_base = 0x20000,
.lcdblk_offset = 0x214,
.lcdblk_vt_shift = 24,
.lcdblk_bypass_shift = 15,
.lcdblk_mic_bypass_shift = 11,
.has_shadowcon = 1,
.has_vidoutcon = 1,
.has_vtsel = 1,
.has_mic_bypass = 1,
.has_dp_clk = 1,
};
struct fimd_context {
struct device *dev;
struct drm_device *drm_dev;
void *dma_priv;
struct exynos_drm_crtc *crtc;
struct exynos_drm_plane planes[WINDOWS_NR];
struct exynos_drm_plane_config configs[WINDOWS_NR];
struct clk *bus_clk;
struct clk *lcd_clk;
void __iomem *regs;
struct regmap *sysreg;
unsigned long irq_flags;
u32 vidcon0;
u32 vidcon1;
u32 vidout_con;
u32 i80ifcon;
bool i80_if;
bool suspended;
wait_queue_head_t wait_vsync_queue;
atomic_t wait_vsync_event;
atomic_t win_updated;
atomic_t triggering;
u32 clkdiv;
const struct fimd_driver_data *driver_data;
struct drm_encoder *encoder;
struct exynos_drm_clk dp_clk;
};
static const struct of_device_id fimd_driver_dt_match[] = {
{ .compatible = "samsung,s3c6400-fimd",
.data = &s3c64xx_fimd_driver_data },
{ .compatible = "samsung,s5pv210-fimd",
.data = &s5pv210_fimd_driver_data },
{ .compatible = "samsung,exynos3250-fimd",
.data = &exynos3_fimd_driver_data },
{ .compatible = "samsung,exynos4210-fimd",
.data = &exynos4_fimd_driver_data },
{ .compatible = "samsung,exynos5250-fimd",
.data = &exynos5_fimd_driver_data },
{ .compatible = "samsung,exynos5420-fimd",
.data = &exynos5420_fimd_driver_data },
{},
};
MODULE_DEVICE_TABLE(of, fimd_driver_dt_match);
static const enum drm_plane_type fimd_win_types[WINDOWS_NR] = {
DRM_PLANE_TYPE_PRIMARY,
DRM_PLANE_TYPE_OVERLAY,
DRM_PLANE_TYPE_OVERLAY,
DRM_PLANE_TYPE_OVERLAY,
DRM_PLANE_TYPE_CURSOR,
};
static const uint32_t fimd_formats[] = {
DRM_FORMAT_C8,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_RGB565,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_ARGB8888,
};
static const unsigned int capabilities[WINDOWS_NR] = {
0,
EXYNOS_DRM_PLANE_CAP_WIN_BLEND | EXYNOS_DRM_PLANE_CAP_PIX_BLEND,
EXYNOS_DRM_PLANE_CAP_WIN_BLEND | EXYNOS_DRM_PLANE_CAP_PIX_BLEND,
EXYNOS_DRM_PLANE_CAP_WIN_BLEND | EXYNOS_DRM_PLANE_CAP_PIX_BLEND,
EXYNOS_DRM_PLANE_CAP_WIN_BLEND | EXYNOS_DRM_PLANE_CAP_PIX_BLEND,
};
static inline void fimd_set_bits(struct fimd_context *ctx, u32 reg, u32 mask,
u32 val)
{
val = (val & mask) | (readl(ctx->regs + reg) & ~mask);
writel(val, ctx->regs + reg);
}
static int fimd_enable_vblank(struct exynos_drm_crtc *crtc)
{
struct fimd_context *ctx = crtc->ctx;
u32 val;
if (ctx->suspended)
return -EPERM;
if (!test_and_set_bit(0, &ctx->irq_flags)) {
val = readl(ctx->regs + VIDINTCON0);
val |= VIDINTCON0_INT_ENABLE;
if (ctx->i80_if) {
val |= VIDINTCON0_INT_I80IFDONE;
val |= VIDINTCON0_INT_SYSMAINCON;
val &= ~VIDINTCON0_INT_SYSSUBCON;
} else {
val |= VIDINTCON0_INT_FRAME;
val &= ~VIDINTCON0_FRAMESEL0_MASK;
val |= VIDINTCON0_FRAMESEL0_FRONTPORCH;
val &= ~VIDINTCON0_FRAMESEL1_MASK;
val |= VIDINTCON0_FRAMESEL1_NONE;
}
writel(val, ctx->regs + VIDINTCON0);
}
return 0;
}
static void fimd_disable_vblank(struct exynos_drm_crtc *crtc)
{
struct fimd_context *ctx = crtc->ctx;
u32 val;
if (ctx->suspended)
return;
if (test_and_clear_bit(0, &ctx->irq_flags)) {
val = readl(ctx->regs + VIDINTCON0);
val &= ~VIDINTCON0_INT_ENABLE;
if (ctx->i80_if) {
val &= ~VIDINTCON0_INT_I80IFDONE;
val &= ~VIDINTCON0_INT_SYSMAINCON;
val &= ~VIDINTCON0_INT_SYSSUBCON;
} else
val &= ~VIDINTCON0_INT_FRAME;
writel(val, ctx->regs + VIDINTCON0);
}
}
static void fimd_wait_for_vblank(struct exynos_drm_crtc *crtc)
{
struct fimd_context *ctx = crtc->ctx;
if (ctx->suspended)
return;
atomic_set(&ctx->wait_vsync_event, 1);
/*
* wait for FIMD to signal VSYNC interrupt or return after
* timeout which is set to 50ms (refresh rate of 20).
*/
if (!wait_event_timeout(ctx->wait_vsync_queue,
!atomic_read(&ctx->wait_vsync_event),
HZ/20))
DRM_DEV_DEBUG_KMS(ctx->dev, "vblank wait timed out.\n");
}
static void fimd_enable_video_output(struct fimd_context *ctx, unsigned int win,
bool enable)
{
u32 val = readl(ctx->regs + WINCON(win));
if (enable)
val |= WINCONx_ENWIN;
else
val &= ~WINCONx_ENWIN;
writel(val, ctx->regs + WINCON(win));
}
static void fimd_enable_shadow_channel_path(struct fimd_context *ctx,
unsigned int win,
bool enable)
{
u32 val = readl(ctx->regs + SHADOWCON);
if (enable)
val |= SHADOWCON_CHx_ENABLE(win);
else
val &= ~SHADOWCON_CHx_ENABLE(win);
writel(val, ctx->regs + SHADOWCON);
}
static void fimd_clear_channels(struct exynos_drm_crtc *crtc)
{
struct fimd_context *ctx = crtc->ctx;
unsigned int win, ch_enabled = 0;
/* Hardware is in unknown state, so ensure it gets enabled properly */
pm_runtime_get_sync(ctx->dev);
clk_prepare_enable(ctx->bus_clk);
clk_prepare_enable(ctx->lcd_clk);
/* Check if any channel is enabled. */
for (win = 0; win < WINDOWS_NR; win++) {
u32 val = readl(ctx->regs + WINCON(win));
if (val & WINCONx_ENWIN) {
fimd_enable_video_output(ctx, win, false);
if (ctx->driver_data->has_shadowcon)
fimd_enable_shadow_channel_path(ctx, win,
false);
ch_enabled = 1;
}
}
/* Wait for vsync, as disable channel takes effect at next vsync */
if (ch_enabled) {
ctx->suspended = false;
fimd_enable_vblank(ctx->crtc);
fimd_wait_for_vblank(ctx->crtc);
fimd_disable_vblank(ctx->crtc);
ctx->suspended = true;
}
clk_disable_unprepare(ctx->lcd_clk);
clk_disable_unprepare(ctx->bus_clk);
pm_runtime_put(ctx->dev);
}
static int fimd_atomic_check(struct exynos_drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct drm_display_mode *mode = &state->adjusted_mode;
struct fimd_context *ctx = crtc->ctx;
unsigned long ideal_clk, lcd_rate;
u32 clkdiv;
if (mode->clock == 0) {
DRM_DEV_ERROR(ctx->dev, "Mode has zero clock value.\n");
return -EINVAL;
}
ideal_clk = mode->clock * 1000;
if (ctx->i80_if) {
/*
* The frame done interrupt should be occurred prior to the
* next TE signal.
*/
ideal_clk *= 2;
}
lcd_rate = clk_get_rate(ctx->lcd_clk);
if (2 * lcd_rate < ideal_clk) {
DRM_DEV_ERROR(ctx->dev,
"sclk_fimd clock too low(%lu) for requested pixel clock(%lu)\n",
lcd_rate, ideal_clk);
return -EINVAL;
}
/* Find the clock divider value that gets us closest to ideal_clk */
clkdiv = DIV_ROUND_CLOSEST(lcd_rate, ideal_clk);
if (clkdiv >= 0x200) {
DRM_DEV_ERROR(ctx->dev, "requested pixel clock(%lu) too low\n",
ideal_clk);
return -EINVAL;
}
ctx->clkdiv = (clkdiv < 0x100) ? clkdiv : 0xff;
return 0;
}
static void fimd_setup_trigger(struct fimd_context *ctx)
{
void __iomem *timing_base = ctx->regs + ctx->driver_data->timing_base;
u32 trg_type = ctx->driver_data->trg_type;
u32 val = readl(timing_base + TRIGCON);
val &= ~(TRGMODE_ENABLE);
if (trg_type == I80_HW_TRG) {
if (ctx->driver_data->has_hw_trigger)
val |= HWTRGEN_ENABLE | HWTRGMASK_ENABLE;
if (ctx->driver_data->has_trigger_per_te)
val |= HWTRIGEN_PER_ENABLE;
} else {
val |= TRGMODE_ENABLE;
}
writel(val, timing_base + TRIGCON);
}
static void fimd_commit(struct exynos_drm_crtc *crtc)
{
struct fimd_context *ctx = crtc->ctx;
struct drm_display_mode *mode = &crtc->base.state->adjusted_mode;
const struct fimd_driver_data *driver_data = ctx->driver_data;
void *timing_base = ctx->regs + driver_data->timing_base;
u32 val;
if (ctx->suspended)
return;
/* nothing to do if we haven't set the mode yet */
if (mode->htotal == 0 || mode->vtotal == 0)
return;
if (ctx->i80_if) {
val = ctx->i80ifcon | I80IFEN_ENABLE;
writel(val, timing_base + I80IFCONFAx(0));
/* disable auto frame rate */
writel(0, timing_base + I80IFCONFBx(0));
/* set video type selection to I80 interface */
if (driver_data->has_vtsel && ctx->sysreg &&
regmap_update_bits(ctx->sysreg,
driver_data->lcdblk_offset,
0x3 << driver_data->lcdblk_vt_shift,
0x1 << driver_data->lcdblk_vt_shift)) {
DRM_DEV_ERROR(ctx->dev,
"Failed to update sysreg for I80 i/f.\n");
return;
}
} else {
int vsync_len, vbpd, vfpd, hsync_len, hbpd, hfpd;
u32 vidcon1;
/* setup polarity values */
vidcon1 = ctx->vidcon1;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
vidcon1 |= VIDCON1_INV_VSYNC;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
vidcon1 |= VIDCON1_INV_HSYNC;
writel(vidcon1, ctx->regs + driver_data->timing_base + VIDCON1);
/* setup vertical timing values. */
vsync_len = mode->crtc_vsync_end - mode->crtc_vsync_start;
vbpd = mode->crtc_vtotal - mode->crtc_vsync_end;
vfpd = mode->crtc_vsync_start - mode->crtc_vdisplay;
val = VIDTCON0_VBPD(vbpd - 1) |
VIDTCON0_VFPD(vfpd - 1) |
VIDTCON0_VSPW(vsync_len - 1);
writel(val, ctx->regs + driver_data->timing_base + VIDTCON0);
/* setup horizontal timing values. */
hsync_len = mode->crtc_hsync_end - mode->crtc_hsync_start;
hbpd = mode->crtc_htotal - mode->crtc_hsync_end;
hfpd = mode->crtc_hsync_start - mode->crtc_hdisplay;
val = VIDTCON1_HBPD(hbpd - 1) |
VIDTCON1_HFPD(hfpd - 1) |
VIDTCON1_HSPW(hsync_len - 1);
writel(val, ctx->regs + driver_data->timing_base + VIDTCON1);
}
if (driver_data->has_vidoutcon)
writel(ctx->vidout_con, timing_base + VIDOUT_CON);
/* set bypass selection */
if (ctx->sysreg && regmap_update_bits(ctx->sysreg,
driver_data->lcdblk_offset,
0x1 << driver_data->lcdblk_bypass_shift,
0x1 << driver_data->lcdblk_bypass_shift)) {
DRM_DEV_ERROR(ctx->dev,
"Failed to update sysreg for bypass setting.\n");
return;
}
/* TODO: When MIC is enabled for display path, the lcdblk_mic_bypass
* bit should be cleared.
*/
if (driver_data->has_mic_bypass && ctx->sysreg &&
regmap_update_bits(ctx->sysreg,
driver_data->lcdblk_offset,
0x1 << driver_data->lcdblk_mic_bypass_shift,
0x1 << driver_data->lcdblk_mic_bypass_shift)) {
DRM_DEV_ERROR(ctx->dev,
"Failed to update sysreg for bypass mic.\n");
return;
}
/* setup horizontal and vertical display size. */
val = VIDTCON2_LINEVAL(mode->vdisplay - 1) |
VIDTCON2_HOZVAL(mode->hdisplay - 1) |
VIDTCON2_LINEVAL_E(mode->vdisplay - 1) |
VIDTCON2_HOZVAL_E(mode->hdisplay - 1);
writel(val, ctx->regs + driver_data->timing_base + VIDTCON2);
fimd_setup_trigger(ctx);
/*
* fields of register with prefix '_F' would be updated
* at vsync(same as dma start)
*/
val = ctx->vidcon0;
val |= VIDCON0_ENVID | VIDCON0_ENVID_F;
if (ctx->driver_data->has_clksel)
val |= VIDCON0_CLKSEL_LCD;
if (ctx->clkdiv > 1)
val |= VIDCON0_CLKVAL_F(ctx->clkdiv - 1) | VIDCON0_CLKDIR;
writel(val, ctx->regs + VIDCON0);
}
static void fimd_win_set_bldeq(struct fimd_context *ctx, unsigned int win,
unsigned int alpha, unsigned int pixel_alpha)
{
u32 mask = BLENDEQ_A_FUNC_F(0xf) | BLENDEQ_B_FUNC_F(0xf);
u32 val = 0;
switch (pixel_alpha) {
case DRM_MODE_BLEND_PIXEL_NONE:
case DRM_MODE_BLEND_COVERAGE:
val |= BLENDEQ_A_FUNC_F(BLENDEQ_ALPHA_A);
val |= BLENDEQ_B_FUNC_F(BLENDEQ_ONE_MINUS_ALPHA_A);
break;
case DRM_MODE_BLEND_PREMULTI:
default:
if (alpha != DRM_BLEND_ALPHA_OPAQUE) {
val |= BLENDEQ_A_FUNC_F(BLENDEQ_ALPHA0);
val |= BLENDEQ_B_FUNC_F(BLENDEQ_ONE_MINUS_ALPHA_A);
} else {
val |= BLENDEQ_A_FUNC_F(BLENDEQ_ONE);
val |= BLENDEQ_B_FUNC_F(BLENDEQ_ONE_MINUS_ALPHA_A);
}
break;
}
fimd_set_bits(ctx, BLENDEQx(win), mask, val);
}
static void fimd_win_set_bldmod(struct fimd_context *ctx, unsigned int win,
unsigned int alpha, unsigned int pixel_alpha)
{
u32 win_alpha_l = (alpha >> 8) & 0xf;
u32 win_alpha_h = alpha >> 12;
u32 val = 0;
switch (pixel_alpha) {
case DRM_MODE_BLEND_PIXEL_NONE:
break;
case DRM_MODE_BLEND_COVERAGE:
case DRM_MODE_BLEND_PREMULTI:
default:
val |= WINCON1_ALPHA_SEL;
val |= WINCON1_BLD_PIX;
val |= WINCON1_ALPHA_MUL;
break;
}
fimd_set_bits(ctx, WINCON(win), WINCONx_BLEND_MODE_MASK, val);
/* OSD alpha */
val = VIDISD14C_ALPHA0_R(win_alpha_h) |
VIDISD14C_ALPHA0_G(win_alpha_h) |
VIDISD14C_ALPHA0_B(win_alpha_h) |
VIDISD14C_ALPHA1_R(0x0) |
VIDISD14C_ALPHA1_G(0x0) |
VIDISD14C_ALPHA1_B(0x0);
writel(val, ctx->regs + VIDOSD_C(win));
val = VIDW_ALPHA_R(win_alpha_l) | VIDW_ALPHA_G(win_alpha_l) |
VIDW_ALPHA_B(win_alpha_l);
writel(val, ctx->regs + VIDWnALPHA0(win));
val = VIDW_ALPHA_R(0x0) | VIDW_ALPHA_G(0x0) |
VIDW_ALPHA_B(0x0);
writel(val, ctx->regs + VIDWnALPHA1(win));
fimd_set_bits(ctx, BLENDCON, BLENDCON_NEW_MASK,
BLENDCON_NEW_8BIT_ALPHA_VALUE);
}
static void fimd_win_set_pixfmt(struct fimd_context *ctx, unsigned int win,
struct drm_framebuffer *fb, int width)
{
struct exynos_drm_plane plane = ctx->planes[win];
struct exynos_drm_plane_state *state =
to_exynos_plane_state(plane.base.state);
uint32_t pixel_format = fb->format->format;
unsigned int alpha = state->base.alpha;
u32 val = WINCONx_ENWIN;
unsigned int pixel_alpha;
if (fb->format->has_alpha)
pixel_alpha = state->base.pixel_blend_mode;
else
pixel_alpha = DRM_MODE_BLEND_PIXEL_NONE;
/*
* In case of s3c64xx, window 0 doesn't support alpha channel.
* So the request format is ARGB8888 then change it to XRGB8888.
*/
if (ctx->driver_data->has_limited_fmt && !win) {
if (pixel_format == DRM_FORMAT_ARGB8888)
pixel_format = DRM_FORMAT_XRGB8888;
}
switch (pixel_format) {
case DRM_FORMAT_C8:
val |= WINCON0_BPPMODE_8BPP_PALETTE;
val |= WINCONx_BURSTLEN_8WORD;
val |= WINCONx_BYTSWP;
break;
case DRM_FORMAT_XRGB1555:
val |= WINCON0_BPPMODE_16BPP_1555;
val |= WINCONx_HAWSWP;
val |= WINCONx_BURSTLEN_16WORD;
break;
case DRM_FORMAT_RGB565:
val |= WINCON0_BPPMODE_16BPP_565;
val |= WINCONx_HAWSWP;
val |= WINCONx_BURSTLEN_16WORD;
break;
case DRM_FORMAT_XRGB8888:
val |= WINCON0_BPPMODE_24BPP_888;
val |= WINCONx_WSWP;
val |= WINCONx_BURSTLEN_16WORD;
break;
case DRM_FORMAT_ARGB8888:
default:
val |= WINCON1_BPPMODE_25BPP_A1888;
val |= WINCONx_WSWP;
val |= WINCONx_BURSTLEN_16WORD;
break;
}
/*
* Setting dma-burst to 16Word causes permanent tearing for very small
* buffers, e.g. cursor buffer. Burst Mode switching which based on
* plane size is not recommended as plane size varies alot towards the
* end of the screen and rapid movement causes unstable DMA, but it is
* still better to change dma-burst than displaying garbage.
*/
if (width < MIN_FB_WIDTH_FOR_16WORD_BURST) {
val &= ~WINCONx_BURSTLEN_MASK;
val |= WINCONx_BURSTLEN_4WORD;
}
fimd_set_bits(ctx, WINCON(win), ~WINCONx_BLEND_MODE_MASK, val);
/* hardware window 0 doesn't support alpha channel. */
if (win != 0) {
fimd_win_set_bldmod(ctx, win, alpha, pixel_alpha);
fimd_win_set_bldeq(ctx, win, alpha, pixel_alpha);
}
}
static void fimd_win_set_colkey(struct fimd_context *ctx, unsigned int win)
{
unsigned int keycon0 = 0, keycon1 = 0;
keycon0 = ~(WxKEYCON0_KEYBL_EN | WxKEYCON0_KEYEN_F |
WxKEYCON0_DIRCON) | WxKEYCON0_COMPKEY(0);
keycon1 = WxKEYCON1_COLVAL(0xffffffff);
writel(keycon0, ctx->regs + WKEYCON0_BASE(win));
writel(keycon1, ctx->regs + WKEYCON1_BASE(win));
}
/**
* shadow_protect_win() - disable updating values from shadow registers at vsync
*
* @win: window to protect registers for
* @protect: 1 to protect (disable updates)
*/
static void fimd_shadow_protect_win(struct fimd_context *ctx,
unsigned int win, bool protect)
{
u32 reg, bits, val;
/*
* SHADOWCON/PRTCON register is used for enabling timing.
*
* for example, once only width value of a register is set,
* if the dma is started then fimd hardware could malfunction so
* with protect window setting, the register fields with prefix '_F'
* wouldn't be updated at vsync also but updated once unprotect window
* is set.
*/
if (ctx->driver_data->has_shadowcon) {
reg = SHADOWCON;
bits = SHADOWCON_WINx_PROTECT(win);
} else {
reg = PRTCON;
bits = PRTCON_PROTECT;
}
val = readl(ctx->regs + reg);
if (protect)
val |= bits;
else
val &= ~bits;
writel(val, ctx->regs + reg);
}
static void fimd_atomic_begin(struct exynos_drm_crtc *crtc)
{
struct fimd_context *ctx = crtc->ctx;
int i;
if (ctx->suspended)
return;
for (i = 0; i < WINDOWS_NR; i++)
fimd_shadow_protect_win(ctx, i, true);
}
static void fimd_atomic_flush(struct exynos_drm_crtc *crtc)
{
struct fimd_context *ctx = crtc->ctx;
int i;
if (ctx->suspended)
return;
for (i = 0; i < WINDOWS_NR; i++)
fimd_shadow_protect_win(ctx, i, false);
exynos_crtc_handle_event(crtc);
}
static void fimd_update_plane(struct exynos_drm_crtc *crtc,
struct exynos_drm_plane *plane)
{
struct exynos_drm_plane_state *state =
to_exynos_plane_state(plane->base.state);
struct fimd_context *ctx = crtc->ctx;
struct drm_framebuffer *fb = state->base.fb;
dma_addr_t dma_addr;
unsigned long val, size, offset;
unsigned int last_x, last_y, buf_offsize, line_size;
unsigned int win = plane->index;
unsigned int cpp = fb->format->cpp[0];
unsigned int pitch = fb->pitches[0];
if (ctx->suspended)
return;
offset = state->src.x * cpp;
offset += state->src.y * pitch;
/* buffer start address */
dma_addr = exynos_drm_fb_dma_addr(fb, 0) + offset;
val = (unsigned long)dma_addr;
writel(val, ctx->regs + VIDWx_BUF_START(win, 0));
/* buffer end address */
size = pitch * state->crtc.h;
val = (unsigned long)(dma_addr + size);
writel(val, ctx->regs + VIDWx_BUF_END(win, 0));
DRM_DEV_DEBUG_KMS(ctx->dev,
"start addr = 0x%lx, end addr = 0x%lx, size = 0x%lx\n",
(unsigned long)dma_addr, val, size);
DRM_DEV_DEBUG_KMS(ctx->dev, "ovl_width = %d, ovl_height = %d\n",
state->crtc.w, state->crtc.h);
/* buffer size */
buf_offsize = pitch - (state->crtc.w * cpp);
line_size = state->crtc.w * cpp;
val = VIDW_BUF_SIZE_OFFSET(buf_offsize) |
VIDW_BUF_SIZE_PAGEWIDTH(line_size) |
VIDW_BUF_SIZE_OFFSET_E(buf_offsize) |
VIDW_BUF_SIZE_PAGEWIDTH_E(line_size);
writel(val, ctx->regs + VIDWx_BUF_SIZE(win, 0));
/* OSD position */
val = VIDOSDxA_TOPLEFT_X(state->crtc.x) |
VIDOSDxA_TOPLEFT_Y(state->crtc.y) |
VIDOSDxA_TOPLEFT_X_E(state->crtc.x) |
VIDOSDxA_TOPLEFT_Y_E(state->crtc.y);
writel(val, ctx->regs + VIDOSD_A(win));
last_x = state->crtc.x + state->crtc.w;
if (last_x)
last_x--;
last_y = state->crtc.y + state->crtc.h;
if (last_y)
last_y--;
val = VIDOSDxB_BOTRIGHT_X(last_x) | VIDOSDxB_BOTRIGHT_Y(last_y) |
VIDOSDxB_BOTRIGHT_X_E(last_x) | VIDOSDxB_BOTRIGHT_Y_E(last_y);
writel(val, ctx->regs + VIDOSD_B(win));
DRM_DEV_DEBUG_KMS(ctx->dev,
"osd pos: tx = %d, ty = %d, bx = %d, by = %d\n",
state->crtc.x, state->crtc.y, last_x, last_y);
/* OSD size */
if (win != 3 && win != 4) {
u32 offset = VIDOSD_D(win);
if (win == 0)
offset = VIDOSD_C(win);
val = state->crtc.w * state->crtc.h;
writel(val, ctx->regs + offset);
DRM_DEV_DEBUG_KMS(ctx->dev, "osd size = 0x%x\n",
(unsigned int)val);
}
fimd_win_set_pixfmt(ctx, win, fb, state->src.w);
/* hardware window 0 doesn't support color key. */
if (win != 0)
fimd_win_set_colkey(ctx, win);
fimd_enable_video_output(ctx, win, true);
if (ctx->driver_data->has_shadowcon)
fimd_enable_shadow_channel_path(ctx, win, true);
if (ctx->i80_if)
atomic_set(&ctx->win_updated, 1);
}
static void fimd_disable_plane(struct exynos_drm_crtc *crtc,
struct exynos_drm_plane *plane)
{
struct fimd_context *ctx = crtc->ctx;
unsigned int win = plane->index;
if (ctx->suspended)
return;
fimd_enable_video_output(ctx, win, false);
if (ctx->driver_data->has_shadowcon)
fimd_enable_shadow_channel_path(ctx, win, false);
}
static void fimd_atomic_enable(struct exynos_drm_crtc *crtc)
{
struct fimd_context *ctx = crtc->ctx;
if (!ctx->suspended)
return;
ctx->suspended = false;
pm_runtime_get_sync(ctx->dev);
/* if vblank was enabled status, enable it again. */
if (test_and_clear_bit(0, &ctx->irq_flags))
fimd_enable_vblank(ctx->crtc);
fimd_commit(ctx->crtc);
}
static void fimd_atomic_disable(struct exynos_drm_crtc *crtc)
{
struct fimd_context *ctx = crtc->ctx;
int i;
if (ctx->suspended)
return;
/*
* We need to make sure that all windows are disabled before we
* suspend that connector. Otherwise we might try to scan from
* a destroyed buffer later.
*/
for (i = 0; i < WINDOWS_NR; i++)
fimd_disable_plane(crtc, &ctx->planes[i]);
fimd_enable_vblank(crtc);
fimd_wait_for_vblank(crtc);
fimd_disable_vblank(crtc);
writel(0, ctx->regs + VIDCON0);
pm_runtime_put_sync(ctx->dev);
ctx->suspended = true;
}
static void fimd_trigger(struct device *dev)
{
struct fimd_context *ctx = dev_get_drvdata(dev);
const struct fimd_driver_data *driver_data = ctx->driver_data;
void *timing_base = ctx->regs + driver_data->timing_base;
u32 reg;
/*
* Skips triggering if in triggering state, because multiple triggering
* requests can cause panel reset.
*/
if (atomic_read(&ctx->triggering))
return;
/* Enters triggering mode */
atomic_set(&ctx->triggering, 1);
reg = readl(timing_base + TRIGCON);
reg |= (TRGMODE_ENABLE | SWTRGCMD_ENABLE);
writel(reg, timing_base + TRIGCON);
/*
* Exits triggering mode if vblank is not enabled yet, because when the
* VIDINTCON0 register is not set, it can not exit from triggering mode.
*/
if (!test_bit(0, &ctx->irq_flags))
atomic_set(&ctx->triggering, 0);
}
static void fimd_te_handler(struct exynos_drm_crtc *crtc)
{
struct fimd_context *ctx = crtc->ctx;
u32 trg_type = ctx->driver_data->trg_type;
/* Checks the crtc is detached already from encoder */
if (!ctx->drm_dev)
return;
if (trg_type == I80_HW_TRG)
goto out;
/*
* If there is a page flip request, triggers and handles the page flip
* event so that current fb can be updated into panel GRAM.
*/
if (atomic_add_unless(&ctx->win_updated, -1, 0))
fimd_trigger(ctx->dev);
out:
/* Wakes up vsync event queue */
if (atomic_read(&ctx->wait_vsync_event)) {
atomic_set(&ctx->wait_vsync_event, 0);
wake_up(&ctx->wait_vsync_queue);
}
if (test_bit(0, &ctx->irq_flags))
drm_crtc_handle_vblank(&ctx->crtc->base);
}
static void fimd_dp_clock_enable(struct exynos_drm_clk *clk, bool enable)
{
struct fimd_context *ctx = container_of(clk, struct fimd_context,
dp_clk);
u32 val = enable ? DP_MIE_CLK_DP_ENABLE : DP_MIE_CLK_DISABLE;
writel(val, ctx->regs + DP_MIE_CLKCON);
}
static const struct exynos_drm_crtc_ops fimd_crtc_ops = {
.atomic_enable = fimd_atomic_enable,
.atomic_disable = fimd_atomic_disable,
.enable_vblank = fimd_enable_vblank,
.disable_vblank = fimd_disable_vblank,
.atomic_begin = fimd_atomic_begin,
.update_plane = fimd_update_plane,
.disable_plane = fimd_disable_plane,
.atomic_flush = fimd_atomic_flush,
.atomic_check = fimd_atomic_check,
.te_handler = fimd_te_handler,
};
static irqreturn_t fimd_irq_handler(int irq, void *dev_id)
{
struct fimd_context *ctx = (struct fimd_context *)dev_id;
u32 val, clear_bit;
val = readl(ctx->regs + VIDINTCON1);
clear_bit = ctx->i80_if ? VIDINTCON1_INT_I80 : VIDINTCON1_INT_FRAME;
if (val & clear_bit)
writel(clear_bit, ctx->regs + VIDINTCON1);
/* check the crtc is detached already from encoder */
if (!ctx->drm_dev)
goto out;
if (!ctx->i80_if)
drm_crtc_handle_vblank(&ctx->crtc->base);
if (ctx->i80_if) {
/* Exits triggering mode */
atomic_set(&ctx->triggering, 0);
} else {
/* set wait vsync event to zero and wake up queue. */
if (atomic_read(&ctx->wait_vsync_event)) {
atomic_set(&ctx->wait_vsync_event, 0);
wake_up(&ctx->wait_vsync_queue);
}
}
out:
return IRQ_HANDLED;
}
static int fimd_bind(struct device *dev, struct device *master, void *data)
{
struct fimd_context *ctx = dev_get_drvdata(dev);
struct drm_device *drm_dev = data;
struct exynos_drm_plane *exynos_plane;
unsigned int i;
int ret;
ctx->drm_dev = drm_dev;
for (i = 0; i < WINDOWS_NR; i++) {
ctx->configs[i].pixel_formats = fimd_formats;
ctx->configs[i].num_pixel_formats = ARRAY_SIZE(fimd_formats);
ctx->configs[i].zpos = i;
ctx->configs[i].type = fimd_win_types[i];
ctx->configs[i].capabilities = capabilities[i];
ret = exynos_plane_init(drm_dev, &ctx->planes[i], i,
&ctx->configs[i]);
if (ret)
return ret;
}
exynos_plane = &ctx->planes[DEFAULT_WIN];
ctx->crtc = exynos_drm_crtc_create(drm_dev, &exynos_plane->base,
EXYNOS_DISPLAY_TYPE_LCD, &fimd_crtc_ops, ctx);
if (IS_ERR(ctx->crtc))
return PTR_ERR(ctx->crtc);
if (ctx->driver_data->has_dp_clk) {
ctx->dp_clk.enable = fimd_dp_clock_enable;
ctx->crtc->pipe_clk = &ctx->dp_clk;
}
if (ctx->encoder)
exynos_dpi_bind(drm_dev, ctx->encoder);
if (is_drm_iommu_supported(drm_dev))
fimd_clear_channels(ctx->crtc);
return exynos_drm_register_dma(drm_dev, dev, &ctx->dma_priv);
}
static void fimd_unbind(struct device *dev, struct device *master,
void *data)
{
struct fimd_context *ctx = dev_get_drvdata(dev);
fimd_atomic_disable(ctx->crtc);
exynos_drm_unregister_dma(ctx->drm_dev, ctx->dev, &ctx->dma_priv);
if (ctx->encoder)
exynos_dpi_remove(ctx->encoder);
}
static const struct component_ops fimd_component_ops = {
.bind = fimd_bind,
.unbind = fimd_unbind,
};
static int fimd_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct fimd_context *ctx;
struct device_node *i80_if_timings;
struct resource *res;
int ret;
if (!dev->of_node)
return -ENODEV;
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->dev = dev;
ctx->suspended = true;
ctx->driver_data = of_device_get_match_data(dev);
if (of_property_read_bool(dev->of_node, "samsung,invert-vden"))
ctx->vidcon1 |= VIDCON1_INV_VDEN;
if (of_property_read_bool(dev->of_node, "samsung,invert-vclk"))
ctx->vidcon1 |= VIDCON1_INV_VCLK;
i80_if_timings = of_get_child_by_name(dev->of_node, "i80-if-timings");
if (i80_if_timings) {
u32 val;
ctx->i80_if = true;
if (ctx->driver_data->has_vidoutcon)
ctx->vidout_con |= VIDOUT_CON_F_I80_LDI0;
else
ctx->vidcon0 |= VIDCON0_VIDOUT_I80_LDI0;
/*
* The user manual describes that this "DSI_EN" bit is required
* to enable I80 24-bit data interface.
*/
ctx->vidcon0 |= VIDCON0_DSI_EN;
if (of_property_read_u32(i80_if_timings, "cs-setup", &val))
val = 0;
ctx->i80ifcon = LCD_CS_SETUP(val);
if (of_property_read_u32(i80_if_timings, "wr-setup", &val))
val = 0;
ctx->i80ifcon |= LCD_WR_SETUP(val);
if (of_property_read_u32(i80_if_timings, "wr-active", &val))
val = 1;
ctx->i80ifcon |= LCD_WR_ACTIVE(val);
if (of_property_read_u32(i80_if_timings, "wr-hold", &val))
val = 0;
ctx->i80ifcon |= LCD_WR_HOLD(val);
}
of_node_put(i80_if_timings);
ctx->sysreg = syscon_regmap_lookup_by_phandle(dev->of_node,
"samsung,sysreg");
if (IS_ERR(ctx->sysreg)) {
dev_warn(dev, "failed to get system register.\n");
ctx->sysreg = NULL;
}
ctx->bus_clk = devm_clk_get(dev, "fimd");
if (IS_ERR(ctx->bus_clk)) {
dev_err(dev, "failed to get bus clock\n");
return PTR_ERR(ctx->bus_clk);
}
ctx->lcd_clk = devm_clk_get(dev, "sclk_fimd");
if (IS_ERR(ctx->lcd_clk)) {
dev_err(dev, "failed to get lcd clock\n");
return PTR_ERR(ctx->lcd_clk);
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ctx->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(ctx->regs))
return PTR_ERR(ctx->regs);
res = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
ctx->i80_if ? "lcd_sys" : "vsync");
if (!res) {
dev_err(dev, "irq request failed.\n");
return -ENXIO;
}
ret = devm_request_irq(dev, res->start, fimd_irq_handler,
0, "drm_fimd", ctx);
if (ret) {
dev_err(dev, "irq request failed.\n");
return ret;
}
init_waitqueue_head(&ctx->wait_vsync_queue);
atomic_set(&ctx->wait_vsync_event, 0);
platform_set_drvdata(pdev, ctx);
ctx->encoder = exynos_dpi_probe(dev);
if (IS_ERR(ctx->encoder))
return PTR_ERR(ctx->encoder);
pm_runtime_enable(dev);
ret = component_add(dev, &fimd_component_ops);
if (ret)
goto err_disable_pm_runtime;
return ret;
err_disable_pm_runtime:
pm_runtime_disable(dev);
return ret;
}
static int fimd_remove(struct platform_device *pdev)
{
pm_runtime_disable(&pdev->dev);
component_del(&pdev->dev, &fimd_component_ops);
return 0;
}
#ifdef CONFIG_PM
static int exynos_fimd_suspend(struct device *dev)
{
struct fimd_context *ctx = dev_get_drvdata(dev);
clk_disable_unprepare(ctx->lcd_clk);
clk_disable_unprepare(ctx->bus_clk);
return 0;
}
static int exynos_fimd_resume(struct device *dev)
{
struct fimd_context *ctx = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(ctx->bus_clk);
if (ret < 0) {
DRM_DEV_ERROR(dev,
"Failed to prepare_enable the bus clk [%d]\n",
ret);
return ret;
}
ret = clk_prepare_enable(ctx->lcd_clk);
if (ret < 0) {
DRM_DEV_ERROR(dev,
"Failed to prepare_enable the lcd clk [%d]\n",
ret);
return ret;
}
return 0;
}
#endif
static const struct dev_pm_ops exynos_fimd_pm_ops = {
SET_RUNTIME_PM_OPS(exynos_fimd_suspend, exynos_fimd_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
struct platform_driver fimd_driver = {
.probe = fimd_probe,
.remove = fimd_remove,
.driver = {
.name = "exynos4-fb",
.owner = THIS_MODULE,
.pm = &exynos_fimd_pm_ops,
.of_match_table = fimd_driver_dt_match,
},
};