blob: fdc99cc6eae4a7e2c7a8bde37341dc6a0df712f4 [file] [log] [blame]
/*
* Support for Intel Camera Imaging ISP subsystem.
* Copyright (c) 2010-2015, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include "assert_support.h"
#include "irq.h"
#ifndef __INLINE_GP_DEVICE__
#define __INLINE_GP_DEVICE__
#endif
#include "gp_device.h" /* _REG_GP_IRQ_REQUEST_ADDR */
#include "platform_support.h" /* hrt_sleep() */
static inline void irq_wait_for_write_complete(
const irq_ID_t ID);
static inline bool any_irq_channel_enabled(
const irq_ID_t ID);
static inline irq_ID_t virq_get_irq_id(
const virq_id_t irq_ID,
unsigned int *channel_ID);
#ifndef __INLINE_IRQ__
#include "irq_private.h"
#endif /* __INLINE_IRQ__ */
static unsigned short IRQ_N_CHANNEL[N_IRQ_ID] = {
IRQ0_ID_N_CHANNEL,
IRQ1_ID_N_CHANNEL,
IRQ2_ID_N_CHANNEL,
IRQ3_ID_N_CHANNEL
};
static unsigned short IRQ_N_ID_OFFSET[N_IRQ_ID + 1] = {
IRQ0_ID_OFFSET,
IRQ1_ID_OFFSET,
IRQ2_ID_OFFSET,
IRQ3_ID_OFFSET,
IRQ_END_OFFSET
};
static virq_id_t IRQ_NESTING_ID[N_IRQ_ID] = {
N_virq_id,
virq_ifmt,
virq_isys,
virq_isel
};
void irq_clear_all(
const irq_ID_t ID)
{
hrt_data mask = 0xFFFFFFFF;
assert(ID < N_IRQ_ID);
assert(IRQ_N_CHANNEL[ID] <= HRT_DATA_WIDTH);
if (IRQ_N_CHANNEL[ID] < HRT_DATA_WIDTH) {
mask = ~((~(hrt_data)0) >> IRQ_N_CHANNEL[ID]);
}
irq_reg_store(ID,
_HRT_IRQ_CONTROLLER_CLEAR_REG_IDX, mask);
return;
}
/*
* Do we want the user to be able to set the signalling method ?
*/
void irq_enable_channel(
const irq_ID_t ID,
const unsigned int irq_id)
{
unsigned int mask = irq_reg_load(ID,
_HRT_IRQ_CONTROLLER_MASK_REG_IDX);
unsigned int enable = irq_reg_load(ID,
_HRT_IRQ_CONTROLLER_ENABLE_REG_IDX);
unsigned int edge_in = irq_reg_load(ID,
_HRT_IRQ_CONTROLLER_EDGE_REG_IDX);
unsigned int me = 1U << irq_id;
assert(ID < N_IRQ_ID);
assert(irq_id < IRQ_N_CHANNEL[ID]);
mask |= me;
enable |= me;
edge_in |= me; /* rising edge */
/* to avoid mishaps configuration must follow the following order */
/* mask this interrupt */
irq_reg_store(ID,
_HRT_IRQ_CONTROLLER_MASK_REG_IDX, mask & ~me);
/* rising edge at input */
irq_reg_store(ID,
_HRT_IRQ_CONTROLLER_EDGE_REG_IDX, edge_in);
/* enable interrupt to output */
irq_reg_store(ID,
_HRT_IRQ_CONTROLLER_ENABLE_REG_IDX, enable);
/* clear current irq only */
irq_reg_store(ID,
_HRT_IRQ_CONTROLLER_CLEAR_REG_IDX, me);
/* unmask interrupt from input */
irq_reg_store(ID,
_HRT_IRQ_CONTROLLER_MASK_REG_IDX, mask);
irq_wait_for_write_complete(ID);
return;
}
void irq_enable_pulse(
const irq_ID_t ID,
bool pulse)
{
unsigned int edge_out = 0x0;
if (pulse) {
edge_out = 0xffffffff;
}
/* output is given as edge, not pulse */
irq_reg_store(ID,
_HRT_IRQ_CONTROLLER_EDGE_NOT_PULSE_REG_IDX, edge_out);
return;
}
void irq_disable_channel(
const irq_ID_t ID,
const unsigned int irq_id)
{
unsigned int mask = irq_reg_load(ID,
_HRT_IRQ_CONTROLLER_MASK_REG_IDX);
unsigned int enable = irq_reg_load(ID,
_HRT_IRQ_CONTROLLER_ENABLE_REG_IDX);
unsigned int me = 1U << irq_id;
assert(ID < N_IRQ_ID);
assert(irq_id < IRQ_N_CHANNEL[ID]);
mask &= ~me;
enable &= ~me;
/* enable interrupt to output */
irq_reg_store(ID,
_HRT_IRQ_CONTROLLER_ENABLE_REG_IDX, enable);
/* unmask interrupt from input */
irq_reg_store(ID,
_HRT_IRQ_CONTROLLER_MASK_REG_IDX, mask);
/* clear current irq only */
irq_reg_store(ID,
_HRT_IRQ_CONTROLLER_CLEAR_REG_IDX, me);
irq_wait_for_write_complete(ID);
return;
}
enum hrt_isp_css_irq_status irq_get_channel_id(
const irq_ID_t ID,
unsigned int *irq_id)
{
unsigned int irq_status = irq_reg_load(ID,
_HRT_IRQ_CONTROLLER_STATUS_REG_IDX);
unsigned int idx;
enum hrt_isp_css_irq_status status = hrt_isp_css_irq_status_success;
assert(ID < N_IRQ_ID);
assert(irq_id);
/* find the first irq bit */
for (idx = 0; idx < IRQ_N_CHANNEL[ID]; idx++) {
if (irq_status & (1U << idx))
break;
}
if (idx == IRQ_N_CHANNEL[ID])
return hrt_isp_css_irq_status_error;
/* now check whether there are more bits set */
if (irq_status != (1U << idx))
status = hrt_isp_css_irq_status_more_irqs;
irq_reg_store(ID,
_HRT_IRQ_CONTROLLER_CLEAR_REG_IDX, 1U << idx);
irq_wait_for_write_complete(ID);
if (irq_id)
*irq_id = (unsigned int)idx;
return status;
}
static const hrt_address IRQ_REQUEST_ADDR[N_IRQ_SW_CHANNEL_ID] = {
_REG_GP_IRQ_REQUEST0_ADDR,
_REG_GP_IRQ_REQUEST1_ADDR
};
void irq_raise(
const irq_ID_t ID,
const irq_sw_channel_id_t irq_id)
{
hrt_address addr;
OP___assert(ID == IRQ0_ID);
OP___assert(IRQ_BASE[ID] != (hrt_address)-1);
OP___assert(irq_id < N_IRQ_SW_CHANNEL_ID);
(void)ID;
addr = IRQ_REQUEST_ADDR[irq_id];
/* The SW IRQ pins are remapped to offset zero */
gp_device_reg_store(GP_DEVICE0_ID,
(unsigned int)addr, 1);
gp_device_reg_store(GP_DEVICE0_ID,
(unsigned int)addr, 0);
return;
}
void irq_controller_get_state(
const irq_ID_t ID,
irq_controller_state_t *state)
{
assert(ID < N_IRQ_ID);
assert(state);
state->irq_edge = irq_reg_load(ID,
_HRT_IRQ_CONTROLLER_EDGE_REG_IDX);
state->irq_mask = irq_reg_load(ID,
_HRT_IRQ_CONTROLLER_MASK_REG_IDX);
state->irq_status = irq_reg_load(ID,
_HRT_IRQ_CONTROLLER_STATUS_REG_IDX);
state->irq_enable = irq_reg_load(ID,
_HRT_IRQ_CONTROLLER_ENABLE_REG_IDX);
state->irq_level_not_pulse = irq_reg_load(ID,
_HRT_IRQ_CONTROLLER_EDGE_NOT_PULSE_REG_IDX);
return;
}
bool any_virq_signal(void)
{
unsigned int irq_status = irq_reg_load(IRQ0_ID,
_HRT_IRQ_CONTROLLER_STATUS_REG_IDX);
return (irq_status != 0);
}
void cnd_virq_enable_channel(
const virq_id_t irq_ID,
const bool en)
{
irq_ID_t i;
unsigned int channel_ID;
irq_ID_t ID = virq_get_irq_id(irq_ID, &channel_ID);
assert(ID < N_IRQ_ID);
for (i = IRQ1_ID; i < N_IRQ_ID; i++) {
/* It is not allowed to enable the pin of a nested IRQ directly */
assert(irq_ID != IRQ_NESTING_ID[i]);
}
if (en) {
irq_enable_channel(ID, channel_ID);
if (IRQ_NESTING_ID[ID] != N_virq_id) {
/* Single level nesting, otherwise we'd need to recurse */
irq_enable_channel(IRQ0_ID, IRQ_NESTING_ID[ID]);
}
} else {
irq_disable_channel(ID, channel_ID);
if ((IRQ_NESTING_ID[ID] != N_virq_id) && !any_irq_channel_enabled(ID)) {
/* Only disable the top if the nested ones are empty */
irq_disable_channel(IRQ0_ID, IRQ_NESTING_ID[ID]);
}
}
return;
}
void virq_clear_all(void)
{
irq_ID_t irq_id;
for (irq_id = (irq_ID_t)0; irq_id < N_IRQ_ID; irq_id++) {
irq_clear_all(irq_id);
}
return;
}
enum hrt_isp_css_irq_status virq_get_channel_signals(
virq_info_t *irq_info)
{
enum hrt_isp_css_irq_status irq_status = hrt_isp_css_irq_status_error;
irq_ID_t ID;
assert(irq_info);
for (ID = (irq_ID_t)0 ; ID < N_IRQ_ID; ID++) {
if (any_irq_channel_enabled(ID)) {
hrt_data irq_data = irq_reg_load(ID,
_HRT_IRQ_CONTROLLER_STATUS_REG_IDX);
if (irq_data != 0) {
/* The error condition is an IRQ pulse received with no IRQ status written */
irq_status = hrt_isp_css_irq_status_success;
}
irq_info->irq_status_reg[ID] |= irq_data;
irq_reg_store(ID,
_HRT_IRQ_CONTROLLER_CLEAR_REG_IDX, irq_data);
irq_wait_for_write_complete(ID);
}
}
return irq_status;
}
void virq_clear_info(
virq_info_t *irq_info)
{
irq_ID_t ID;
assert(irq_info);
for (ID = (irq_ID_t)0 ; ID < N_IRQ_ID; ID++) {
irq_info->irq_status_reg[ID] = 0;
}
return;
}
enum hrt_isp_css_irq_status virq_get_channel_id(
virq_id_t *irq_id)
{
unsigned int irq_status = irq_reg_load(IRQ0_ID,
_HRT_IRQ_CONTROLLER_STATUS_REG_IDX);
unsigned int idx;
enum hrt_isp_css_irq_status status = hrt_isp_css_irq_status_success;
irq_ID_t ID;
assert(irq_id);
/* find the first irq bit on device 0 */
for (idx = 0; idx < IRQ_N_CHANNEL[IRQ0_ID]; idx++) {
if (irq_status & (1U << idx))
break;
}
if (idx == IRQ_N_CHANNEL[IRQ0_ID]) {
return hrt_isp_css_irq_status_error;
}
/* Check whether there are more bits set on device 0 */
if (irq_status != (1U << idx)) {
status = hrt_isp_css_irq_status_more_irqs;
}
/* Check whether we have an IRQ on one of the nested devices */
for (ID = N_IRQ_ID - 1 ; ID > (irq_ID_t)0; ID--) {
if (IRQ_NESTING_ID[ID] == (virq_id_t)idx) {
break;
}
}
/* If we have a nested IRQ, load that state, discard the device 0 state */
if (ID != IRQ0_ID) {
irq_status = irq_reg_load(ID,
_HRT_IRQ_CONTROLLER_STATUS_REG_IDX);
/* find the first irq bit on device "id" */
for (idx = 0; idx < IRQ_N_CHANNEL[ID]; idx++) {
if (irq_status & (1U << idx))
break;
}
if (idx == IRQ_N_CHANNEL[ID]) {
return hrt_isp_css_irq_status_error;
}
/* Alternatively check whether there are more bits set on this device */
if (irq_status != (1U << idx)) {
status = hrt_isp_css_irq_status_more_irqs;
} else {
/* If this device is empty, clear the state on device 0 */
irq_reg_store(IRQ0_ID,
_HRT_IRQ_CONTROLLER_CLEAR_REG_IDX, 1U << IRQ_NESTING_ID[ID]);
}
} /* if (ID != IRQ0_ID) */
/* Here we proceed to clear the IRQ on detected device, if no nested IRQ, this is device 0 */
irq_reg_store(ID,
_HRT_IRQ_CONTROLLER_CLEAR_REG_IDX, 1U << idx);
irq_wait_for_write_complete(ID);
idx += IRQ_N_ID_OFFSET[ID];
if (irq_id)
*irq_id = (virq_id_t)idx;
return status;
}
static inline void irq_wait_for_write_complete(
const irq_ID_t ID)
{
assert(ID < N_IRQ_ID);
assert(IRQ_BASE[ID] != (hrt_address)-1);
(void)ia_css_device_load_uint32(IRQ_BASE[ID] +
_HRT_IRQ_CONTROLLER_ENABLE_REG_IDX * sizeof(hrt_data));
}
static inline bool any_irq_channel_enabled(
const irq_ID_t ID)
{
hrt_data en_reg;
assert(ID < N_IRQ_ID);
en_reg = irq_reg_load(ID,
_HRT_IRQ_CONTROLLER_ENABLE_REG_IDX);
return (en_reg != 0);
}
static inline irq_ID_t virq_get_irq_id(
const virq_id_t irq_ID,
unsigned int *channel_ID)
{
irq_ID_t ID;
assert(channel_ID);
for (ID = (irq_ID_t)0 ; ID < N_IRQ_ID; ID++) {
if (irq_ID < IRQ_N_ID_OFFSET[ID + 1]) {
break;
}
}
*channel_ID = (unsigned int)irq_ID - IRQ_N_ID_OFFSET[ID];
return ID;
}