blob: ab2627e17bb97f2b85af5e9e2c191f714079d159 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2016 Avago Technologies. All rights reserved.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blk-mq.h>
#include <linux/parser.h>
#include <linux/random.h>
#include <uapi/scsi/fc/fc_fs.h>
#include <uapi/scsi/fc/fc_els.h>
#include "nvmet.h"
#include <linux/nvme-fc-driver.h>
#include <linux/nvme-fc.h>
#include "../host/fc.h"
/* *************************** Data Structures/Defines ****************** */
#define NVMET_LS_CTX_COUNT 256
struct nvmet_fc_tgtport;
struct nvmet_fc_tgt_assoc;
struct nvmet_fc_ls_iod { /* for an LS RQST RCV */
struct nvmefc_ls_rsp *lsrsp;
struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
struct list_head ls_rcv_list; /* tgtport->ls_rcv_list */
struct nvmet_fc_tgtport *tgtport;
struct nvmet_fc_tgt_assoc *assoc;
void *hosthandle;
union nvmefc_ls_requests *rqstbuf;
union nvmefc_ls_responses *rspbuf;
u16 rqstdatalen;
dma_addr_t rspdma;
struct scatterlist sg[2];
struct work_struct work;
} __aligned(sizeof(unsigned long long));
struct nvmet_fc_ls_req_op { /* for an LS RQST XMT */
struct nvmefc_ls_req ls_req;
struct nvmet_fc_tgtport *tgtport;
void *hosthandle;
int ls_error;
struct list_head lsreq_list; /* tgtport->ls_req_list */
bool req_queued;
};
/* desired maximum for a single sequence - if sg list allows it */
#define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
enum nvmet_fcp_datadir {
NVMET_FCP_NODATA,
NVMET_FCP_WRITE,
NVMET_FCP_READ,
NVMET_FCP_ABORTED,
};
struct nvmet_fc_fcp_iod {
struct nvmefc_tgt_fcp_req *fcpreq;
struct nvme_fc_cmd_iu cmdiubuf;
struct nvme_fc_ersp_iu rspiubuf;
dma_addr_t rspdma;
struct scatterlist *next_sg;
struct scatterlist *data_sg;
int data_sg_cnt;
u32 offset;
enum nvmet_fcp_datadir io_dir;
bool active;
bool abort;
bool aborted;
bool writedataactive;
spinlock_t flock;
struct nvmet_req req;
struct work_struct defer_work;
struct nvmet_fc_tgtport *tgtport;
struct nvmet_fc_tgt_queue *queue;
struct list_head fcp_list; /* tgtport->fcp_list */
};
struct nvmet_fc_tgtport {
struct nvmet_fc_target_port fc_target_port;
struct list_head tgt_list; /* nvmet_fc_target_list */
struct device *dev; /* dev for dma mapping */
struct nvmet_fc_target_template *ops;
struct nvmet_fc_ls_iod *iod;
spinlock_t lock;
struct list_head ls_rcv_list;
struct list_head ls_req_list;
struct list_head ls_busylist;
struct list_head assoc_list;
struct list_head host_list;
struct ida assoc_cnt;
struct nvmet_fc_port_entry *pe;
struct kref ref;
u32 max_sg_cnt;
};
struct nvmet_fc_port_entry {
struct nvmet_fc_tgtport *tgtport;
struct nvmet_port *port;
u64 node_name;
u64 port_name;
struct list_head pe_list;
};
struct nvmet_fc_defer_fcp_req {
struct list_head req_list;
struct nvmefc_tgt_fcp_req *fcp_req;
};
struct nvmet_fc_tgt_queue {
bool ninetypercent;
u16 qid;
u16 sqsize;
u16 ersp_ratio;
__le16 sqhd;
atomic_t connected;
atomic_t sqtail;
atomic_t zrspcnt;
atomic_t rsn;
spinlock_t qlock;
struct nvmet_cq nvme_cq;
struct nvmet_sq nvme_sq;
struct nvmet_fc_tgt_assoc *assoc;
struct list_head fod_list;
struct list_head pending_cmd_list;
struct list_head avail_defer_list;
struct workqueue_struct *work_q;
struct kref ref;
struct rcu_head rcu;
struct nvmet_fc_fcp_iod fod[]; /* array of fcp_iods */
} __aligned(sizeof(unsigned long long));
struct nvmet_fc_hostport {
struct nvmet_fc_tgtport *tgtport;
void *hosthandle;
struct list_head host_list;
struct kref ref;
u8 invalid;
};
struct nvmet_fc_tgt_assoc {
u64 association_id;
u32 a_id;
atomic_t terminating;
struct nvmet_fc_tgtport *tgtport;
struct nvmet_fc_hostport *hostport;
struct nvmet_fc_ls_iod *rcv_disconn;
struct list_head a_list;
struct nvmet_fc_tgt_queue __rcu *queues[NVMET_NR_QUEUES + 1];
struct kref ref;
struct work_struct del_work;
struct rcu_head rcu;
};
static inline int
nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
{
return (iodptr - iodptr->tgtport->iod);
}
static inline int
nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
{
return (fodptr - fodptr->queue->fod);
}
/*
* Association and Connection IDs:
*
* Association ID will have random number in upper 6 bytes and zero
* in lower 2 bytes
*
* Connection IDs will be Association ID with QID or'd in lower 2 bytes
*
* note: Association ID = Connection ID for queue 0
*/
#define BYTES_FOR_QID sizeof(u16)
#define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
#define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
static inline u64
nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
{
return (assoc->association_id | qid);
}
static inline u64
nvmet_fc_getassociationid(u64 connectionid)
{
return connectionid & ~NVMET_FC_QUEUEID_MASK;
}
static inline u16
nvmet_fc_getqueueid(u64 connectionid)
{
return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
}
static inline struct nvmet_fc_tgtport *
targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
{
return container_of(targetport, struct nvmet_fc_tgtport,
fc_target_port);
}
static inline struct nvmet_fc_fcp_iod *
nvmet_req_to_fod(struct nvmet_req *nvme_req)
{
return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
}
/* *************************** Globals **************************** */
static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
static LIST_HEAD(nvmet_fc_target_list);
static DEFINE_IDA(nvmet_fc_tgtport_cnt);
static LIST_HEAD(nvmet_fc_portentry_list);
static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_fcp_iod *fod);
static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_ls_iod *iod);
/* *********************** FC-NVME DMA Handling **************************** */
/*
* The fcloop device passes in a NULL device pointer. Real LLD's will
* pass in a valid device pointer. If NULL is passed to the dma mapping
* routines, depending on the platform, it may or may not succeed, and
* may crash.
*
* As such:
* Wrapper all the dma routines and check the dev pointer.
*
* If simple mappings (return just a dma address, we'll noop them,
* returning a dma address of 0.
*
* On more complex mappings (dma_map_sg), a pseudo routine fills
* in the scatter list, setting all dma addresses to 0.
*/
static inline dma_addr_t
fc_dma_map_single(struct device *dev, void *ptr, size_t size,
enum dma_data_direction dir)
{
return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
}
static inline int
fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return dev ? dma_mapping_error(dev, dma_addr) : 0;
}
static inline void
fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
if (dev)
dma_unmap_single(dev, addr, size, dir);
}
static inline void
fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
if (dev)
dma_sync_single_for_cpu(dev, addr, size, dir);
}
static inline void
fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
if (dev)
dma_sync_single_for_device(dev, addr, size, dir);
}
/* pseudo dma_map_sg call */
static int
fc_map_sg(struct scatterlist *sg, int nents)
{
struct scatterlist *s;
int i;
WARN_ON(nents == 0 || sg[0].length == 0);
for_each_sg(sg, s, nents, i) {
s->dma_address = 0L;
#ifdef CONFIG_NEED_SG_DMA_LENGTH
s->dma_length = s->length;
#endif
}
return nents;
}
static inline int
fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir)
{
return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
}
static inline void
fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir)
{
if (dev)
dma_unmap_sg(dev, sg, nents, dir);
}
/* ********************** FC-NVME LS XMT Handling ************************* */
static void
__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
{
struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
struct nvmefc_ls_req *lsreq = &lsop->ls_req;
unsigned long flags;
spin_lock_irqsave(&tgtport->lock, flags);
if (!lsop->req_queued) {
spin_unlock_irqrestore(&tgtport->lock, flags);
return;
}
list_del(&lsop->lsreq_list);
lsop->req_queued = false;
spin_unlock_irqrestore(&tgtport->lock, flags);
fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
(lsreq->rqstlen + lsreq->rsplen),
DMA_BIDIRECTIONAL);
nvmet_fc_tgtport_put(tgtport);
}
static int
__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_ls_req_op *lsop,
void (*done)(struct nvmefc_ls_req *req, int status))
{
struct nvmefc_ls_req *lsreq = &lsop->ls_req;
unsigned long flags;
int ret = 0;
if (!tgtport->ops->ls_req)
return -EOPNOTSUPP;
if (!nvmet_fc_tgtport_get(tgtport))
return -ESHUTDOWN;
lsreq->done = done;
lsop->req_queued = false;
INIT_LIST_HEAD(&lsop->lsreq_list);
lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
lsreq->rqstlen + lsreq->rsplen,
DMA_BIDIRECTIONAL);
if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
ret = -EFAULT;
goto out_puttgtport;
}
lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
spin_lock_irqsave(&tgtport->lock, flags);
list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
lsop->req_queued = true;
spin_unlock_irqrestore(&tgtport->lock, flags);
ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
lsreq);
if (ret)
goto out_unlink;
return 0;
out_unlink:
lsop->ls_error = ret;
spin_lock_irqsave(&tgtport->lock, flags);
lsop->req_queued = false;
list_del(&lsop->lsreq_list);
spin_unlock_irqrestore(&tgtport->lock, flags);
fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
(lsreq->rqstlen + lsreq->rsplen),
DMA_BIDIRECTIONAL);
out_puttgtport:
nvmet_fc_tgtport_put(tgtport);
return ret;
}
static int
nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_ls_req_op *lsop,
void (*done)(struct nvmefc_ls_req *req, int status))
{
/* don't wait for completion */
return __nvmet_fc_send_ls_req(tgtport, lsop, done);
}
static void
nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
{
struct nvmet_fc_ls_req_op *lsop =
container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
__nvmet_fc_finish_ls_req(lsop);
/* fc-nvme target doesn't care about success or failure of cmd */
kfree(lsop);
}
/*
* This routine sends a FC-NVME LS to disconnect (aka terminate)
* the FC-NVME Association. Terminating the association also
* terminates the FC-NVME connections (per queue, both admin and io
* queues) that are part of the association. E.g. things are torn
* down, and the related FC-NVME Association ID and Connection IDs
* become invalid.
*
* The behavior of the fc-nvme target is such that it's
* understanding of the association and connections will implicitly
* be torn down. The action is implicit as it may be due to a loss of
* connectivity with the fc-nvme host, so the target may never get a
* response even if it tried. As such, the action of this routine
* is to asynchronously send the LS, ignore any results of the LS, and
* continue on with terminating the association. If the fc-nvme host
* is present and receives the LS, it too can tear down.
*/
static void
nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
{
struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
struct nvmet_fc_ls_req_op *lsop;
struct nvmefc_ls_req *lsreq;
int ret;
/*
* If ls_req is NULL or no hosthandle, it's an older lldd and no
* message is normal. Otherwise, send unless the hostport has
* already been invalidated by the lldd.
*/
if (!tgtport->ops->ls_req || !assoc->hostport ||
assoc->hostport->invalid)
return;
lsop = kzalloc((sizeof(*lsop) +
sizeof(*discon_rqst) + sizeof(*discon_acc) +
tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
if (!lsop) {
dev_info(tgtport->dev,
"{%d:%d} send Disconnect Association failed: ENOMEM\n",
tgtport->fc_target_port.port_num, assoc->a_id);
return;
}
discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
lsreq = &lsop->ls_req;
if (tgtport->ops->lsrqst_priv_sz)
lsreq->private = (void *)&discon_acc[1];
else
lsreq->private = NULL;
lsop->tgtport = tgtport;
lsop->hosthandle = assoc->hostport->hosthandle;
nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
assoc->association_id);
ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
nvmet_fc_disconnect_assoc_done);
if (ret) {
dev_info(tgtport->dev,
"{%d:%d} XMT Disconnect Association failed: %d\n",
tgtport->fc_target_port.port_num, assoc->a_id, ret);
kfree(lsop);
}
}
/* *********************** FC-NVME Port Management ************************ */
static int
nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
{
struct nvmet_fc_ls_iod *iod;
int i;
iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
GFP_KERNEL);
if (!iod)
return -ENOMEM;
tgtport->iod = iod;
for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
iod->tgtport = tgtport;
list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
sizeof(union nvmefc_ls_responses),
GFP_KERNEL);
if (!iod->rqstbuf)
goto out_fail;
iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
sizeof(*iod->rspbuf),
DMA_TO_DEVICE);
if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
goto out_fail;
}
return 0;
out_fail:
kfree(iod->rqstbuf);
list_del(&iod->ls_rcv_list);
for (iod--, i--; i >= 0; iod--, i--) {
fc_dma_unmap_single(tgtport->dev, iod->rspdma,
sizeof(*iod->rspbuf), DMA_TO_DEVICE);
kfree(iod->rqstbuf);
list_del(&iod->ls_rcv_list);
}
kfree(iod);
return -EFAULT;
}
static void
nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
{
struct nvmet_fc_ls_iod *iod = tgtport->iod;
int i;
for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
fc_dma_unmap_single(tgtport->dev,
iod->rspdma, sizeof(*iod->rspbuf),
DMA_TO_DEVICE);
kfree(iod->rqstbuf);
list_del(&iod->ls_rcv_list);
}
kfree(tgtport->iod);
}
static struct nvmet_fc_ls_iod *
nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
{
struct nvmet_fc_ls_iod *iod;
unsigned long flags;
spin_lock_irqsave(&tgtport->lock, flags);
iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
struct nvmet_fc_ls_iod, ls_rcv_list);
if (iod)
list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
spin_unlock_irqrestore(&tgtport->lock, flags);
return iod;
}
static void
nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_ls_iod *iod)
{
unsigned long flags;
spin_lock_irqsave(&tgtport->lock, flags);
list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
spin_unlock_irqrestore(&tgtport->lock, flags);
}
static void
nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_tgt_queue *queue)
{
struct nvmet_fc_fcp_iod *fod = queue->fod;
int i;
for (i = 0; i < queue->sqsize; fod++, i++) {
INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
fod->tgtport = tgtport;
fod->queue = queue;
fod->active = false;
fod->abort = false;
fod->aborted = false;
fod->fcpreq = NULL;
list_add_tail(&fod->fcp_list, &queue->fod_list);
spin_lock_init(&fod->flock);
fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
sizeof(fod->rspiubuf), DMA_TO_DEVICE);
if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
list_del(&fod->fcp_list);
for (fod--, i--; i >= 0; fod--, i--) {
fc_dma_unmap_single(tgtport->dev, fod->rspdma,
sizeof(fod->rspiubuf),
DMA_TO_DEVICE);
fod->rspdma = 0L;
list_del(&fod->fcp_list);
}
return;
}
}
}
static void
nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_tgt_queue *queue)
{
struct nvmet_fc_fcp_iod *fod = queue->fod;
int i;
for (i = 0; i < queue->sqsize; fod++, i++) {
if (fod->rspdma)
fc_dma_unmap_single(tgtport->dev, fod->rspdma,
sizeof(fod->rspiubuf), DMA_TO_DEVICE);
}
}
static struct nvmet_fc_fcp_iod *
nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
{
struct nvmet_fc_fcp_iod *fod;
lockdep_assert_held(&queue->qlock);
fod = list_first_entry_or_null(&queue->fod_list,
struct nvmet_fc_fcp_iod, fcp_list);
if (fod) {
list_del(&fod->fcp_list);
fod->active = true;
/*
* no queue reference is taken, as it was taken by the
* queue lookup just prior to the allocation. The iod
* will "inherit" that reference.
*/
}
return fod;
}
static void
nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_tgt_queue *queue,
struct nvmefc_tgt_fcp_req *fcpreq)
{
struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
/*
* put all admin cmds on hw queue id 0. All io commands go to
* the respective hw queue based on a modulo basis
*/
fcpreq->hwqid = queue->qid ?
((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
nvmet_fc_handle_fcp_rqst(tgtport, fod);
}
static void
nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
{
struct nvmet_fc_fcp_iod *fod =
container_of(work, struct nvmet_fc_fcp_iod, defer_work);
/* Submit deferred IO for processing */
nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
}
static void
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
struct nvmet_fc_fcp_iod *fod)
{
struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
struct nvmet_fc_tgtport *tgtport = fod->tgtport;
struct nvmet_fc_defer_fcp_req *deferfcp;
unsigned long flags;
fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
sizeof(fod->rspiubuf), DMA_TO_DEVICE);
fcpreq->nvmet_fc_private = NULL;
fod->active = false;
fod->abort = false;
fod->aborted = false;
fod->writedataactive = false;
fod->fcpreq = NULL;
tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
/* release the queue lookup reference on the completed IO */
nvmet_fc_tgt_q_put(queue);
spin_lock_irqsave(&queue->qlock, flags);
deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
struct nvmet_fc_defer_fcp_req, req_list);
if (!deferfcp) {
list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
spin_unlock_irqrestore(&queue->qlock, flags);
return;
}
/* Re-use the fod for the next pending cmd that was deferred */
list_del(&deferfcp->req_list);
fcpreq = deferfcp->fcp_req;
/* deferfcp can be reused for another IO at a later date */
list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
spin_unlock_irqrestore(&queue->qlock, flags);
/* Save NVME CMD IO in fod */
memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
/* Setup new fcpreq to be processed */
fcpreq->rspaddr = NULL;
fcpreq->rsplen = 0;
fcpreq->nvmet_fc_private = fod;
fod->fcpreq = fcpreq;
fod->active = true;
/* inform LLDD IO is now being processed */
tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
/*
* Leave the queue lookup get reference taken when
* fod was originally allocated.
*/
queue_work(queue->work_q, &fod->defer_work);
}
static struct nvmet_fc_tgt_queue *
nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
u16 qid, u16 sqsize)
{
struct nvmet_fc_tgt_queue *queue;
int ret;
if (qid > NVMET_NR_QUEUES)
return NULL;
queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
if (!queue)
return NULL;
if (!nvmet_fc_tgt_a_get(assoc))
goto out_free_queue;
queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
assoc->tgtport->fc_target_port.port_num,
assoc->a_id, qid);
if (!queue->work_q)
goto out_a_put;
queue->qid = qid;
queue->sqsize = sqsize;
queue->assoc = assoc;
INIT_LIST_HEAD(&queue->fod_list);
INIT_LIST_HEAD(&queue->avail_defer_list);
INIT_LIST_HEAD(&queue->pending_cmd_list);
atomic_set(&queue->connected, 0);
atomic_set(&queue->sqtail, 0);
atomic_set(&queue->rsn, 1);
atomic_set(&queue->zrspcnt, 0);
spin_lock_init(&queue->qlock);
kref_init(&queue->ref);
nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
ret = nvmet_sq_init(&queue->nvme_sq);
if (ret)
goto out_fail_iodlist;
WARN_ON(assoc->queues[qid]);
rcu_assign_pointer(assoc->queues[qid], queue);
return queue;
out_fail_iodlist:
nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
destroy_workqueue(queue->work_q);
out_a_put:
nvmet_fc_tgt_a_put(assoc);
out_free_queue:
kfree(queue);
return NULL;
}
static void
nvmet_fc_tgt_queue_free(struct kref *ref)
{
struct nvmet_fc_tgt_queue *queue =
container_of(ref, struct nvmet_fc_tgt_queue, ref);
rcu_assign_pointer(queue->assoc->queues[queue->qid], NULL);
nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
nvmet_fc_tgt_a_put(queue->assoc);
destroy_workqueue(queue->work_q);
kfree_rcu(queue, rcu);
}
static void
nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
{
kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
}
static int
nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
{
return kref_get_unless_zero(&queue->ref);
}
static void
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
{
struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
struct nvmet_fc_fcp_iod *fod = queue->fod;
struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
unsigned long flags;
int i;
bool disconnect;
disconnect = atomic_xchg(&queue->connected, 0);
/* if not connected, nothing to do */
if (!disconnect)
return;
spin_lock_irqsave(&queue->qlock, flags);
/* abort outstanding io's */
for (i = 0; i < queue->sqsize; fod++, i++) {
if (fod->active) {
spin_lock(&fod->flock);
fod->abort = true;
/*
* only call lldd abort routine if waiting for
* writedata. other outstanding ops should finish
* on their own.
*/
if (fod->writedataactive) {
fod->aborted = true;
spin_unlock(&fod->flock);
tgtport->ops->fcp_abort(
&tgtport->fc_target_port, fod->fcpreq);
} else
spin_unlock(&fod->flock);
}
}
/* Cleanup defer'ed IOs in queue */
list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
req_list) {
list_del(&deferfcp->req_list);
kfree(deferfcp);
}
for (;;) {
deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
struct nvmet_fc_defer_fcp_req, req_list);
if (!deferfcp)
break;
list_del(&deferfcp->req_list);
spin_unlock_irqrestore(&queue->qlock, flags);
tgtport->ops->defer_rcv(&tgtport->fc_target_port,
deferfcp->fcp_req);
tgtport->ops->fcp_abort(&tgtport->fc_target_port,
deferfcp->fcp_req);
tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
deferfcp->fcp_req);
/* release the queue lookup reference */
nvmet_fc_tgt_q_put(queue);
kfree(deferfcp);
spin_lock_irqsave(&queue->qlock, flags);
}
spin_unlock_irqrestore(&queue->qlock, flags);
flush_workqueue(queue->work_q);
nvmet_sq_destroy(&queue->nvme_sq);
nvmet_fc_tgt_q_put(queue);
}
static struct nvmet_fc_tgt_queue *
nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
u64 connection_id)
{
struct nvmet_fc_tgt_assoc *assoc;
struct nvmet_fc_tgt_queue *queue;
u64 association_id = nvmet_fc_getassociationid(connection_id);
u16 qid = nvmet_fc_getqueueid(connection_id);
if (qid > NVMET_NR_QUEUES)
return NULL;
rcu_read_lock();
list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
if (association_id == assoc->association_id) {
queue = rcu_dereference(assoc->queues[qid]);
if (queue &&
(!atomic_read(&queue->connected) ||
!nvmet_fc_tgt_q_get(queue)))
queue = NULL;
rcu_read_unlock();
return queue;
}
}
rcu_read_unlock();
return NULL;
}
static void
nvmet_fc_hostport_free(struct kref *ref)
{
struct nvmet_fc_hostport *hostport =
container_of(ref, struct nvmet_fc_hostport, ref);
struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
unsigned long flags;
spin_lock_irqsave(&tgtport->lock, flags);
list_del(&hostport->host_list);
spin_unlock_irqrestore(&tgtport->lock, flags);
if (tgtport->ops->host_release && hostport->invalid)
tgtport->ops->host_release(hostport->hosthandle);
kfree(hostport);
nvmet_fc_tgtport_put(tgtport);
}
static void
nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
{
kref_put(&hostport->ref, nvmet_fc_hostport_free);
}
static int
nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
{
return kref_get_unless_zero(&hostport->ref);
}
static void
nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
{
/* if LLDD not implemented, leave as NULL */
if (!hostport || !hostport->hosthandle)
return;
nvmet_fc_hostport_put(hostport);
}
static struct nvmet_fc_hostport *
nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
{
struct nvmet_fc_hostport *host;
lockdep_assert_held(&tgtport->lock);
list_for_each_entry(host, &tgtport->host_list, host_list) {
if (host->hosthandle == hosthandle && !host->invalid) {
if (nvmet_fc_hostport_get(host))
return (host);
}
}
return NULL;
}
static struct nvmet_fc_hostport *
nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
{
struct nvmet_fc_hostport *newhost, *match = NULL;
unsigned long flags;
/* if LLDD not implemented, leave as NULL */
if (!hosthandle)
return NULL;
/*
* take reference for what will be the newly allocated hostport if
* we end up using a new allocation
*/
if (!nvmet_fc_tgtport_get(tgtport))
return ERR_PTR(-EINVAL);
spin_lock_irqsave(&tgtport->lock, flags);
match = nvmet_fc_match_hostport(tgtport, hosthandle);
spin_unlock_irqrestore(&tgtport->lock, flags);
if (match) {
/* no new allocation - release reference */
nvmet_fc_tgtport_put(tgtport);
return match;
}
newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
if (!newhost) {
/* no new allocation - release reference */
nvmet_fc_tgtport_put(tgtport);
return ERR_PTR(-ENOMEM);
}
spin_lock_irqsave(&tgtport->lock, flags);
match = nvmet_fc_match_hostport(tgtport, hosthandle);
if (match) {
/* new allocation not needed */
kfree(newhost);
newhost = match;
/* no new allocation - release reference */
nvmet_fc_tgtport_put(tgtport);
} else {
newhost->tgtport = tgtport;
newhost->hosthandle = hosthandle;
INIT_LIST_HEAD(&newhost->host_list);
kref_init(&newhost->ref);
list_add_tail(&newhost->host_list, &tgtport->host_list);
}
spin_unlock_irqrestore(&tgtport->lock, flags);
return newhost;
}
static void
nvmet_fc_delete_assoc(struct work_struct *work)
{
struct nvmet_fc_tgt_assoc *assoc =
container_of(work, struct nvmet_fc_tgt_assoc, del_work);
nvmet_fc_delete_target_assoc(assoc);
nvmet_fc_tgt_a_put(assoc);
}
static struct nvmet_fc_tgt_assoc *
nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
{
struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
unsigned long flags;
u64 ran;
int idx;
bool needrandom = true;
assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
if (!assoc)
return NULL;
idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
if (idx < 0)
goto out_free_assoc;
if (!nvmet_fc_tgtport_get(tgtport))
goto out_ida;
assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
if (IS_ERR(assoc->hostport))
goto out_put;
assoc->tgtport = tgtport;
assoc->a_id = idx;
INIT_LIST_HEAD(&assoc->a_list);
kref_init(&assoc->ref);
INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
atomic_set(&assoc->terminating, 0);
while (needrandom) {
get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
ran = ran << BYTES_FOR_QID_SHIFT;
spin_lock_irqsave(&tgtport->lock, flags);
needrandom = false;
list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) {
if (ran == tmpassoc->association_id) {
needrandom = true;
break;
}
}
if (!needrandom) {
assoc->association_id = ran;
list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
}
spin_unlock_irqrestore(&tgtport->lock, flags);
}
return assoc;
out_put:
nvmet_fc_tgtport_put(tgtport);
out_ida:
ida_free(&tgtport->assoc_cnt, idx);
out_free_assoc:
kfree(assoc);
return NULL;
}
static void
nvmet_fc_target_assoc_free(struct kref *ref)
{
struct nvmet_fc_tgt_assoc *assoc =
container_of(ref, struct nvmet_fc_tgt_assoc, ref);
struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
struct nvmet_fc_ls_iod *oldls;
unsigned long flags;
/* Send Disconnect now that all i/o has completed */
nvmet_fc_xmt_disconnect_assoc(assoc);
nvmet_fc_free_hostport(assoc->hostport);
spin_lock_irqsave(&tgtport->lock, flags);
list_del_rcu(&assoc->a_list);
oldls = assoc->rcv_disconn;
spin_unlock_irqrestore(&tgtport->lock, flags);
/* if pending Rcv Disconnect Association LS, send rsp now */
if (oldls)
nvmet_fc_xmt_ls_rsp(tgtport, oldls);
ida_free(&tgtport->assoc_cnt, assoc->a_id);
dev_info(tgtport->dev,
"{%d:%d} Association freed\n",
tgtport->fc_target_port.port_num, assoc->a_id);
kfree_rcu(assoc, rcu);
nvmet_fc_tgtport_put(tgtport);
}
static void
nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
{
kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
}
static int
nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
{
return kref_get_unless_zero(&assoc->ref);
}
static void
nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
{
struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
struct nvmet_fc_tgt_queue *queue;
int i, terminating;
terminating = atomic_xchg(&assoc->terminating, 1);
/* if already terminating, do nothing */
if (terminating)
return;
for (i = NVMET_NR_QUEUES; i >= 0; i--) {
rcu_read_lock();
queue = rcu_dereference(assoc->queues[i]);
if (!queue) {
rcu_read_unlock();
continue;
}
if (!nvmet_fc_tgt_q_get(queue)) {
rcu_read_unlock();
continue;
}
rcu_read_unlock();
nvmet_fc_delete_target_queue(queue);
nvmet_fc_tgt_q_put(queue);
}
dev_info(tgtport->dev,
"{%d:%d} Association deleted\n",
tgtport->fc_target_port.port_num, assoc->a_id);
nvmet_fc_tgt_a_put(assoc);
}
static struct nvmet_fc_tgt_assoc *
nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
u64 association_id)
{
struct nvmet_fc_tgt_assoc *assoc;
struct nvmet_fc_tgt_assoc *ret = NULL;
rcu_read_lock();
list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
if (association_id == assoc->association_id) {
ret = assoc;
if (!nvmet_fc_tgt_a_get(assoc))
ret = NULL;
break;
}
}
rcu_read_unlock();
return ret;
}
static void
nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_port_entry *pe,
struct nvmet_port *port)
{
lockdep_assert_held(&nvmet_fc_tgtlock);
pe->tgtport = tgtport;
tgtport->pe = pe;
pe->port = port;
port->priv = pe;
pe->node_name = tgtport->fc_target_port.node_name;
pe->port_name = tgtport->fc_target_port.port_name;
INIT_LIST_HEAD(&pe->pe_list);
list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
}
static void
nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
{
unsigned long flags;
spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
if (pe->tgtport)
pe->tgtport->pe = NULL;
list_del(&pe->pe_list);
spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
}
/*
* called when a targetport deregisters. Breaks the relationship
* with the nvmet port, but leaves the port_entry in place so that
* re-registration can resume operation.
*/
static void
nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
{
struct nvmet_fc_port_entry *pe;
unsigned long flags;
spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
pe = tgtport->pe;
if (pe)
pe->tgtport = NULL;
tgtport->pe = NULL;
spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
}
/*
* called when a new targetport is registered. Looks in the
* existing nvmet port_entries to see if the nvmet layer is
* configured for the targetport's wwn's. (the targetport existed,
* nvmet configured, the lldd unregistered the tgtport, and is now
* reregistering the same targetport). If so, set the nvmet port
* port entry on the targetport.
*/
static void
nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
{
struct nvmet_fc_port_entry *pe;
unsigned long flags;
spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
if (tgtport->fc_target_port.node_name == pe->node_name &&
tgtport->fc_target_port.port_name == pe->port_name) {
WARN_ON(pe->tgtport);
tgtport->pe = pe;
pe->tgtport = tgtport;
break;
}
}
spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
}
/**
* nvmet_fc_register_targetport - transport entry point called by an
* LLDD to register the existence of a local
* NVME subystem FC port.
* @pinfo: pointer to information about the port to be registered
* @template: LLDD entrypoints and operational parameters for the port
* @dev: physical hardware device node port corresponds to. Will be
* used for DMA mappings
* @portptr: pointer to a local port pointer. Upon success, the routine
* will allocate a nvme_fc_local_port structure and place its
* address in the local port pointer. Upon failure, local port
* pointer will be set to NULL.
*
* Returns:
* a completion status. Must be 0 upon success; a negative errno
* (ex: -ENXIO) upon failure.
*/
int
nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
struct nvmet_fc_target_template *template,
struct device *dev,
struct nvmet_fc_target_port **portptr)
{
struct nvmet_fc_tgtport *newrec;
unsigned long flags;
int ret, idx;
if (!template->xmt_ls_rsp || !template->fcp_op ||
!template->fcp_abort ||
!template->fcp_req_release || !template->targetport_delete ||
!template->max_hw_queues || !template->max_sgl_segments ||
!template->max_dif_sgl_segments || !template->dma_boundary) {
ret = -EINVAL;
goto out_regtgt_failed;
}
newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
GFP_KERNEL);
if (!newrec) {
ret = -ENOMEM;
goto out_regtgt_failed;
}
idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
if (idx < 0) {
ret = -ENOSPC;
goto out_fail_kfree;
}
if (!get_device(dev) && dev) {
ret = -ENODEV;
goto out_ida_put;
}
newrec->fc_target_port.node_name = pinfo->node_name;
newrec->fc_target_port.port_name = pinfo->port_name;
if (template->target_priv_sz)
newrec->fc_target_port.private = &newrec[1];
else
newrec->fc_target_port.private = NULL;
newrec->fc_target_port.port_id = pinfo->port_id;
newrec->fc_target_port.port_num = idx;
INIT_LIST_HEAD(&newrec->tgt_list);
newrec->dev = dev;
newrec->ops = template;
spin_lock_init(&newrec->lock);
INIT_LIST_HEAD(&newrec->ls_rcv_list);
INIT_LIST_HEAD(&newrec->ls_req_list);
INIT_LIST_HEAD(&newrec->ls_busylist);
INIT_LIST_HEAD(&newrec->assoc_list);
INIT_LIST_HEAD(&newrec->host_list);
kref_init(&newrec->ref);
ida_init(&newrec->assoc_cnt);
newrec->max_sg_cnt = template->max_sgl_segments;
ret = nvmet_fc_alloc_ls_iodlist(newrec);
if (ret) {
ret = -ENOMEM;
goto out_free_newrec;
}
nvmet_fc_portentry_rebind_tgt(newrec);
spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
*portptr = &newrec->fc_target_port;
return 0;
out_free_newrec:
put_device(dev);
out_ida_put:
ida_free(&nvmet_fc_tgtport_cnt, idx);
out_fail_kfree:
kfree(newrec);
out_regtgt_failed:
*portptr = NULL;
return ret;
}
EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
static void
nvmet_fc_free_tgtport(struct kref *ref)
{
struct nvmet_fc_tgtport *tgtport =
container_of(ref, struct nvmet_fc_tgtport, ref);
struct device *dev = tgtport->dev;
unsigned long flags;
spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
list_del(&tgtport->tgt_list);
spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
nvmet_fc_free_ls_iodlist(tgtport);
/* let the LLDD know we've finished tearing it down */
tgtport->ops->targetport_delete(&tgtport->fc_target_port);
ida_free(&nvmet_fc_tgtport_cnt,
tgtport->fc_target_port.port_num);
ida_destroy(&tgtport->assoc_cnt);
kfree(tgtport);
put_device(dev);
}
static void
nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
{
kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
}
static int
nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
{
return kref_get_unless_zero(&tgtport->ref);
}
static void
__nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
{
struct nvmet_fc_tgt_assoc *assoc;
rcu_read_lock();
list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
if (!nvmet_fc_tgt_a_get(assoc))
continue;
if (!queue_work(nvmet_wq, &assoc->del_work))
/* already deleting - release local reference */
nvmet_fc_tgt_a_put(assoc);
}
rcu_read_unlock();
}
/**
* nvmet_fc_invalidate_host - transport entry point called by an LLDD
* to remove references to a hosthandle for LS's.
*
* The nvmet-fc layer ensures that any references to the hosthandle
* on the targetport are forgotten (set to NULL). The LLDD will
* typically call this when a login with a remote host port has been
* lost, thus LS's for the remote host port are no longer possible.
*
* If an LS request is outstanding to the targetport/hosthandle (or
* issued concurrently with the call to invalidate the host), the
* LLDD is responsible for terminating/aborting the LS and completing
* the LS request. It is recommended that these terminations/aborts
* occur after calling to invalidate the host handle to avoid additional
* retries by the nvmet-fc transport. The nvmet-fc transport may
* continue to reference host handle while it cleans up outstanding
* NVME associations. The nvmet-fc transport will call the
* ops->host_release() callback to notify the LLDD that all references
* are complete and the related host handle can be recovered.
* Note: if there are no references, the callback may be called before
* the invalidate host call returns.
*
* @target_port: pointer to the (registered) target port that a prior
* LS was received on and which supplied the transport the
* hosthandle.
* @hosthandle: the handle (pointer) that represents the host port
* that no longer has connectivity and that LS's should
* no longer be directed to.
*/
void
nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
void *hosthandle)
{
struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
struct nvmet_fc_tgt_assoc *assoc, *next;
unsigned long flags;
bool noassoc = true;
spin_lock_irqsave(&tgtport->lock, flags);
list_for_each_entry_safe(assoc, next,
&tgtport->assoc_list, a_list) {
if (!assoc->hostport ||
assoc->hostport->hosthandle != hosthandle)
continue;
if (!nvmet_fc_tgt_a_get(assoc))
continue;
assoc->hostport->invalid = 1;
noassoc = false;
if (!queue_work(nvmet_wq, &assoc->del_work))
/* already deleting - release local reference */
nvmet_fc_tgt_a_put(assoc);
}
spin_unlock_irqrestore(&tgtport->lock, flags);
/* if there's nothing to wait for - call the callback */
if (noassoc && tgtport->ops->host_release)
tgtport->ops->host_release(hosthandle);
}
EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
/*
* nvmet layer has called to terminate an association
*/
static void
nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
{
struct nvmet_fc_tgtport *tgtport, *next;
struct nvmet_fc_tgt_assoc *assoc;
struct nvmet_fc_tgt_queue *queue;
unsigned long flags;
bool found_ctrl = false;
/* this is a bit ugly, but don't want to make locks layered */
spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
tgt_list) {
if (!nvmet_fc_tgtport_get(tgtport))
continue;
spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
rcu_read_lock();
list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
queue = rcu_dereference(assoc->queues[0]);
if (queue && queue->nvme_sq.ctrl == ctrl) {
if (nvmet_fc_tgt_a_get(assoc))
found_ctrl = true;
break;
}
}
rcu_read_unlock();
nvmet_fc_tgtport_put(tgtport);
if (found_ctrl) {
if (!queue_work(nvmet_wq, &assoc->del_work))
/* already deleting - release local reference */
nvmet_fc_tgt_a_put(assoc);
return;
}
spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
}
spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
}
/**
* nvmet_fc_unregister_targetport - transport entry point called by an
* LLDD to deregister/remove a previously
* registered a local NVME subsystem FC port.
* @target_port: pointer to the (registered) target port that is to be
* deregistered.
*
* Returns:
* a completion status. Must be 0 upon success; a negative errno
* (ex: -ENXIO) upon failure.
*/
int
nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
{
struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
nvmet_fc_portentry_unbind_tgt(tgtport);
/* terminate any outstanding associations */
__nvmet_fc_free_assocs(tgtport);
/*
* should terminate LS's as well. However, LS's will be generated
* at the tail end of association termination, so they likely don't
* exist yet. And even if they did, it's worthwhile to just let
* them finish and targetport ref counting will clean things up.
*/
nvmet_fc_tgtport_put(tgtport);
return 0;
}
EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
/* ********************** FC-NVME LS RCV Handling ************************* */
static void
nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_ls_iod *iod)
{
struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
struct nvmet_fc_tgt_queue *queue;
int ret = 0;
memset(acc, 0, sizeof(*acc));
/*
* FC-NVME spec changes. There are initiators sending different
* lengths as padding sizes for Create Association Cmd descriptor
* was incorrect.
* Accept anything of "minimum" length. Assume format per 1.15
* spec (with HOSTID reduced to 16 bytes), ignore how long the
* trailing pad length is.
*/
if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
ret = VERR_CR_ASSOC_LEN;
else if (be32_to_cpu(rqst->desc_list_len) <
FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
ret = VERR_CR_ASSOC_RQST_LEN;
else if (rqst->assoc_cmd.desc_tag !=
cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
ret = VERR_CR_ASSOC_CMD;
else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
ret = VERR_CR_ASSOC_CMD_LEN;
else if (!rqst->assoc_cmd.ersp_ratio ||
(be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
be16_to_cpu(rqst->assoc_cmd.sqsize)))
ret = VERR_ERSP_RATIO;
else {
/* new association w/ admin queue */
iod->assoc = nvmet_fc_alloc_target_assoc(
tgtport, iod->hosthandle);
if (!iod->assoc)
ret = VERR_ASSOC_ALLOC_FAIL;
else {
queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
be16_to_cpu(rqst->assoc_cmd.sqsize));
if (!queue)
ret = VERR_QUEUE_ALLOC_FAIL;
}
}
if (ret) {
dev_err(tgtport->dev,
"Create Association LS failed: %s\n",
validation_errors[ret]);
iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
sizeof(*acc), rqst->w0.ls_cmd,
FCNVME_RJT_RC_LOGIC,
FCNVME_RJT_EXP_NONE, 0);
return;
}
queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
atomic_set(&queue->connected, 1);
queue->sqhd = 0; /* best place to init value */
dev_info(tgtport->dev,
"{%d:%d} Association created\n",
tgtport->fc_target_port.port_num, iod->assoc->a_id);
/* format a response */
iod->lsrsp->rsplen = sizeof(*acc);
nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
fcnvme_lsdesc_len(
sizeof(struct fcnvme_ls_cr_assoc_acc)),
FCNVME_LS_CREATE_ASSOCIATION);
acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
acc->associd.desc_len =
fcnvme_lsdesc_len(
sizeof(struct fcnvme_lsdesc_assoc_id));
acc->associd.association_id =
cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
acc->connectid.desc_len =
fcnvme_lsdesc_len(
sizeof(struct fcnvme_lsdesc_conn_id));
acc->connectid.connection_id = acc->associd.association_id;
}
static void
nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_ls_iod *iod)
{
struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
struct nvmet_fc_tgt_queue *queue;
int ret = 0;
memset(acc, 0, sizeof(*acc));
if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
ret = VERR_CR_CONN_LEN;
else if (rqst->desc_list_len !=
fcnvme_lsdesc_len(
sizeof(struct fcnvme_ls_cr_conn_rqst)))
ret = VERR_CR_CONN_RQST_LEN;
else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
ret = VERR_ASSOC_ID;
else if (rqst->associd.desc_len !=
fcnvme_lsdesc_len(
sizeof(struct fcnvme_lsdesc_assoc_id)))
ret = VERR_ASSOC_ID_LEN;
else if (rqst->connect_cmd.desc_tag !=
cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
ret = VERR_CR_CONN_CMD;
else if (rqst->connect_cmd.desc_len !=
fcnvme_lsdesc_len(
sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
ret = VERR_CR_CONN_CMD_LEN;
else if (!rqst->connect_cmd.ersp_ratio ||
(be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
be16_to_cpu(rqst->connect_cmd.sqsize)))
ret = VERR_ERSP_RATIO;
else {
/* new io queue */
iod->assoc = nvmet_fc_find_target_assoc(tgtport,
be64_to_cpu(rqst->associd.association_id));
if (!iod->assoc)
ret = VERR_NO_ASSOC;
else {
queue = nvmet_fc_alloc_target_queue(iod->assoc,
be16_to_cpu(rqst->connect_cmd.qid),
be16_to_cpu(rqst->connect_cmd.sqsize));
if (!queue)
ret = VERR_QUEUE_ALLOC_FAIL;
/* release get taken in nvmet_fc_find_target_assoc */
nvmet_fc_tgt_a_put(iod->assoc);
}
}
if (ret) {
dev_err(tgtport->dev,
"Create Connection LS failed: %s\n",
validation_errors[ret]);
iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
sizeof(*acc), rqst->w0.ls_cmd,
(ret == VERR_NO_ASSOC) ?
FCNVME_RJT_RC_INV_ASSOC :
FCNVME_RJT_RC_LOGIC,
FCNVME_RJT_EXP_NONE, 0);
return;
}
queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
atomic_set(&queue->connected, 1);
queue->sqhd = 0; /* best place to init value */
/* format a response */
iod->lsrsp->rsplen = sizeof(*acc);
nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
FCNVME_LS_CREATE_CONNECTION);
acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
acc->connectid.desc_len =
fcnvme_lsdesc_len(
sizeof(struct fcnvme_lsdesc_conn_id));
acc->connectid.connection_id =
cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
be16_to_cpu(rqst->connect_cmd.qid)));
}
/*
* Returns true if the LS response is to be transmit
* Returns false if the LS response is to be delayed
*/
static int
nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_ls_iod *iod)
{
struct fcnvme_ls_disconnect_assoc_rqst *rqst =
&iod->rqstbuf->rq_dis_assoc;
struct fcnvme_ls_disconnect_assoc_acc *acc =
&iod->rspbuf->rsp_dis_assoc;
struct nvmet_fc_tgt_assoc *assoc = NULL;
struct nvmet_fc_ls_iod *oldls = NULL;
unsigned long flags;
int ret = 0;
memset(acc, 0, sizeof(*acc));
ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
if (!ret) {
/* match an active association - takes an assoc ref if !NULL */
assoc = nvmet_fc_find_target_assoc(tgtport,
be64_to_cpu(rqst->associd.association_id));
iod->assoc = assoc;
if (!assoc)
ret = VERR_NO_ASSOC;
}
if (ret || !assoc) {
dev_err(tgtport->dev,
"Disconnect LS failed: %s\n",
validation_errors[ret]);
iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
sizeof(*acc), rqst->w0.ls_cmd,
(ret == VERR_NO_ASSOC) ?
FCNVME_RJT_RC_INV_ASSOC :
FCNVME_RJT_RC_LOGIC,
FCNVME_RJT_EXP_NONE, 0);
return true;
}
/* format a response */
iod->lsrsp->rsplen = sizeof(*acc);
nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
fcnvme_lsdesc_len(
sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
FCNVME_LS_DISCONNECT_ASSOC);
/* release get taken in nvmet_fc_find_target_assoc */
nvmet_fc_tgt_a_put(assoc);
/*
* The rules for LS response says the response cannot
* go back until ABTS's have been sent for all outstanding
* I/O and a Disconnect Association LS has been sent.
* So... save off the Disconnect LS to send the response
* later. If there was a prior LS already saved, replace
* it with the newer one and send a can't perform reject
* on the older one.
*/
spin_lock_irqsave(&tgtport->lock, flags);
oldls = assoc->rcv_disconn;
assoc->rcv_disconn = iod;
spin_unlock_irqrestore(&tgtport->lock, flags);
nvmet_fc_delete_target_assoc(assoc);
if (oldls) {
dev_info(tgtport->dev,
"{%d:%d} Multiple Disconnect Association LS's "
"received\n",
tgtport->fc_target_port.port_num, assoc->a_id);
/* overwrite good response with bogus failure */
oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
sizeof(*iod->rspbuf),
/* ok to use rqst, LS is same */
rqst->w0.ls_cmd,
FCNVME_RJT_RC_UNAB,
FCNVME_RJT_EXP_NONE, 0);
nvmet_fc_xmt_ls_rsp(tgtport, oldls);
}
return false;
}
/* *********************** NVME Ctrl Routines **************************** */
static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
static void
nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
{
struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
struct nvmet_fc_tgtport *tgtport = iod->tgtport;
fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
sizeof(*iod->rspbuf), DMA_TO_DEVICE);
nvmet_fc_free_ls_iod(tgtport, iod);
nvmet_fc_tgtport_put(tgtport);
}
static void
nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_ls_iod *iod)
{
int ret;
fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
sizeof(*iod->rspbuf), DMA_TO_DEVICE);
ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
if (ret)
nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
}
/*
* Actual processing routine for received FC-NVME LS Requests from the LLD
*/
static void
nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_ls_iod *iod)
{
struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
bool sendrsp = true;
iod->lsrsp->nvme_fc_private = iod;
iod->lsrsp->rspbuf = iod->rspbuf;
iod->lsrsp->rspdma = iod->rspdma;
iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
/* Be preventative. handlers will later set to valid length */
iod->lsrsp->rsplen = 0;
iod->assoc = NULL;
/*
* handlers:
* parse request input, execute the request, and format the
* LS response
*/
switch (w0->ls_cmd) {
case FCNVME_LS_CREATE_ASSOCIATION:
/* Creates Association and initial Admin Queue/Connection */
nvmet_fc_ls_create_association(tgtport, iod);
break;
case FCNVME_LS_CREATE_CONNECTION:
/* Creates an IO Queue/Connection */
nvmet_fc_ls_create_connection(tgtport, iod);
break;
case FCNVME_LS_DISCONNECT_ASSOC:
/* Terminate a Queue/Connection or the Association */
sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
break;
default:
iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
sizeof(*iod->rspbuf), w0->ls_cmd,
FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
}
if (sendrsp)
nvmet_fc_xmt_ls_rsp(tgtport, iod);
}
/*
* Actual processing routine for received FC-NVME LS Requests from the LLD
*/
static void
nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
{
struct nvmet_fc_ls_iod *iod =
container_of(work, struct nvmet_fc_ls_iod, work);
struct nvmet_fc_tgtport *tgtport = iod->tgtport;
nvmet_fc_handle_ls_rqst(tgtport, iod);
}
/**
* nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
* upon the reception of a NVME LS request.
*
* The nvmet-fc layer will copy payload to an internal structure for
* processing. As such, upon completion of the routine, the LLDD may
* immediately free/reuse the LS request buffer passed in the call.
*
* If this routine returns error, the LLDD should abort the exchange.
*
* @target_port: pointer to the (registered) target port the LS was
* received on.
* @hosthandle: pointer to the host specific data, gets stored in iod.
* @lsrsp: pointer to a lsrsp structure to be used to reference
* the exchange corresponding to the LS.
* @lsreqbuf: pointer to the buffer containing the LS Request
* @lsreqbuf_len: length, in bytes, of the received LS request
*/
int
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
void *hosthandle,
struct nvmefc_ls_rsp *lsrsp,
void *lsreqbuf, u32 lsreqbuf_len)
{
struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
struct nvmet_fc_ls_iod *iod;
struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
dev_info(tgtport->dev,
"RCV %s LS failed: payload too large (%d)\n",
(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
nvmefc_ls_names[w0->ls_cmd] : "",
lsreqbuf_len);
return -E2BIG;
}
if (!nvmet_fc_tgtport_get(tgtport)) {
dev_info(tgtport->dev,
"RCV %s LS failed: target deleting\n",
(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
nvmefc_ls_names[w0->ls_cmd] : "");
return -ESHUTDOWN;
}
iod = nvmet_fc_alloc_ls_iod(tgtport);
if (!iod) {
dev_info(tgtport->dev,
"RCV %s LS failed: context allocation failed\n",
(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
nvmefc_ls_names[w0->ls_cmd] : "");
nvmet_fc_tgtport_put(tgtport);
return -ENOENT;
}
iod->lsrsp = lsrsp;
iod->fcpreq = NULL;
memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
iod->rqstdatalen = lsreqbuf_len;
iod->hosthandle = hosthandle;
queue_work(nvmet_wq, &iod->work);
return 0;
}
EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
/*
* **********************
* Start of FCP handling
* **********************
*/
static int
nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
{
struct scatterlist *sg;
unsigned int nent;
sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
if (!sg)
goto out;
fod->data_sg = sg;
fod->data_sg_cnt = nent;
fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
((fod->io_dir == NVMET_FCP_WRITE) ?
DMA_FROM_DEVICE : DMA_TO_DEVICE));
/* note: write from initiator perspective */
fod->next_sg = fod->data_sg;
return 0;
out:
return NVME_SC_INTERNAL;
}
static void
nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
{
if (!fod->data_sg || !fod->data_sg_cnt)
return;
fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
((fod->io_dir == NVMET_FCP_WRITE) ?
DMA_FROM_DEVICE : DMA_TO_DEVICE));
sgl_free(fod->data_sg);
fod->data_sg = NULL;
fod->data_sg_cnt = 0;
}
static bool
queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
{
u32 sqtail, used;
/* egad, this is ugly. And sqtail is just a best guess */
sqtail = atomic_read(&q->sqtail) % q->sqsize;
used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
}
/*
* Prep RSP payload.
* May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
*/
static void
nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_fcp_iod *fod)
{
struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
struct nvme_completion *cqe = &ersp->cqe;
u32 *cqewd = (u32 *)cqe;
bool send_ersp = false;
u32 rsn, rspcnt, xfr_length;
if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
xfr_length = fod->req.transfer_len;
else
xfr_length = fod->offset;
/*
* check to see if we can send a 0's rsp.
* Note: to send a 0's response, the NVME-FC host transport will
* recreate the CQE. The host transport knows: sq id, SQHD (last
* seen in an ersp), and command_id. Thus it will create a
* zero-filled CQE with those known fields filled in. Transport
* must send an ersp for any condition where the cqe won't match
* this.
*
* Here are the FC-NVME mandated cases where we must send an ersp:
* every N responses, where N=ersp_ratio
* force fabric commands to send ersp's (not in FC-NVME but good
* practice)
* normal cmds: any time status is non-zero, or status is zero
* but words 0 or 1 are non-zero.
* the SQ is 90% or more full
* the cmd is a fused command
* transferred data length not equal to cmd iu length
*/
rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
if (!(rspcnt % fod->queue->ersp_ratio) ||
nvme_is_fabrics((struct nvme_command *) sqe) ||
xfr_length != fod->req.transfer_len ||
(le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
(sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
send_ersp = true;
/* re-set the fields */
fod->fcpreq->rspaddr = ersp;
fod->fcpreq->rspdma = fod->rspdma;
if (!send_ersp) {
memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
} else {
ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
rsn = atomic_inc_return(&fod->queue->rsn);
ersp->rsn = cpu_to_be32(rsn);
ersp->xfrd_len = cpu_to_be32(xfr_length);
fod->fcpreq->rsplen = sizeof(*ersp);
}
fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
sizeof(fod->rspiubuf), DMA_TO_DEVICE);
}
static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_fcp_iod *fod)
{
struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
/* data no longer needed */
nvmet_fc_free_tgt_pgs(fod);
/*
* if an ABTS was received or we issued the fcp_abort early
* don't call abort routine again.
*/
/* no need to take lock - lock was taken earlier to get here */
if (!fod->aborted)
tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
nvmet_fc_free_fcp_iod(fod->queue, fod);
}
static void
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_fcp_iod *fod)
{
int ret;
fod->fcpreq->op = NVMET_FCOP_RSP;
fod->fcpreq->timeout = 0;
nvmet_fc_prep_fcp_rsp(tgtport, fod);
ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
if (ret)
nvmet_fc_abort_op(tgtport, fod);
}
static void
nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_fcp_iod *fod, u8 op)
{
struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
struct scatterlist *sg = fod->next_sg;
unsigned long flags;
u32 remaininglen = fod->req.transfer_len - fod->offset;
u32 tlen = 0;
int ret;
fcpreq->op = op;
fcpreq->offset = fod->offset;
fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
/*
* for next sequence:
* break at a sg element boundary
* attempt to keep sequence length capped at
* NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
* be longer if a single sg element is larger
* than that amount. This is done to avoid creating
* a new sg list to use for the tgtport api.
*/
fcpreq->sg = sg;
fcpreq->sg_cnt = 0;
while (tlen < remaininglen &&
fcpreq->sg_cnt < tgtport->max_sg_cnt &&
tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
fcpreq->sg_cnt++;
tlen += sg_dma_len(sg);
sg = sg_next(sg);
}
if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
fcpreq->sg_cnt++;
tlen += min_t(u32, sg_dma_len(sg), remaininglen);
sg = sg_next(sg);
}
if (tlen < remaininglen)
fod->next_sg = sg;
else
fod->next_sg = NULL;
fcpreq->transfer_length = tlen;
fcpreq->transferred_length = 0;
fcpreq->fcp_error = 0;
fcpreq->rsplen = 0;
/*
* If the last READDATA request: check if LLDD supports
* combined xfr with response.
*/
if ((op == NVMET_FCOP_READDATA) &&
((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
(tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
fcpreq->op = NVMET_FCOP_READDATA_RSP;
nvmet_fc_prep_fcp_rsp(tgtport, fod);
}
ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
if (ret) {
/*
* should be ok to set w/o lock as its in the thread of
* execution (not an async timer routine) and doesn't
* contend with any clearing action
*/
fod->abort = true;
if (op == NVMET_FCOP_WRITEDATA) {
spin_lock_irqsave(&fod->flock, flags);
fod->writedataactive = false;
spin_unlock_irqrestore(&fod->flock, flags);
nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
fcpreq->fcp_error = ret;
fcpreq->transferred_length = 0;
nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
}
}
}
static inline bool
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
{
struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
struct nvmet_fc_tgtport *tgtport = fod->tgtport;
/* if in the middle of an io and we need to tear down */
if (abort) {
if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
return true;
}
nvmet_fc_abort_op(tgtport, fod);
return true;
}
return false;
}
/*
* actual done handler for FCP operations when completed by the lldd
*/
static void
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
{
struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
struct nvmet_fc_tgtport *tgtport = fod->tgtport;
unsigned long flags;
bool abort;
spin_lock_irqsave(&fod->flock, flags);
abort = fod->abort;
fod->writedataactive = false;
spin_unlock_irqrestore(&fod->flock, flags);
switch (fcpreq->op) {
case NVMET_FCOP_WRITEDATA:
if (__nvmet_fc_fod_op_abort(fod, abort))
return;
if (fcpreq->fcp_error ||
fcpreq->transferred_length != fcpreq->transfer_length) {
spin_lock_irqsave(&fod->flock, flags);
fod->abort = true;
spin_unlock_irqrestore(&fod->flock, flags);
nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
return;
}
fod->offset += fcpreq->transferred_length;
if (fod->offset != fod->req.transfer_len) {
spin_lock_irqsave(&fod->flock, flags);
fod->writedataactive = true;
spin_unlock_irqrestore(&fod->flock, flags);
/* transfer the next chunk */
nvmet_fc_transfer_fcp_data(tgtport, fod,
NVMET_FCOP_WRITEDATA);
return;
}
/* data transfer complete, resume with nvmet layer */
fod->req.execute(&fod->req);
break;
case NVMET_FCOP_READDATA:
case NVMET_FCOP_READDATA_RSP:
if (__nvmet_fc_fod_op_abort(fod, abort))
return;
if (fcpreq->fcp_error ||
fcpreq->transferred_length != fcpreq->transfer_length) {
nvmet_fc_abort_op(tgtport, fod);
return;
}
/* success */
if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
/* data no longer needed */
nvmet_fc_free_tgt_pgs(fod);
nvmet_fc_free_fcp_iod(fod->queue, fod);
return;
}
fod->offset += fcpreq->transferred_length;
if (fod->offset != fod->req.transfer_len) {
/* transfer the next chunk */
nvmet_fc_transfer_fcp_data(tgtport, fod,
NVMET_FCOP_READDATA);
return;
}
/* data transfer complete, send response */
/* data no longer needed */
nvmet_fc_free_tgt_pgs(fod);
nvmet_fc_xmt_fcp_rsp(tgtport, fod);
break;
case NVMET_FCOP_RSP:
if (__nvmet_fc_fod_op_abort(fod, abort))
return;
nvmet_fc_free_fcp_iod(fod->queue, fod);
break;
default:
break;
}
}
static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
{
struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
nvmet_fc_fod_op_done(fod);
}
/*
* actual completion handler after execution by the nvmet layer
*/
static void
__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_fcp_iod *fod, int status)
{
struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
struct nvme_completion *cqe = &fod->rspiubuf.cqe;
unsigned long flags;
bool abort;
spin_lock_irqsave(&fod->flock, flags);
abort = fod->abort;
spin_unlock_irqrestore(&fod->flock, flags);
/* if we have a CQE, snoop the last sq_head value */
if (!status)
fod->queue->sqhd = cqe->sq_head;
if (abort) {
nvmet_fc_abort_op(tgtport, fod);
return;
}
/* if an error handling the cmd post initial parsing */
if (status) {
/* fudge up a failed CQE status for our transport error */
memset(cqe, 0, sizeof(*cqe));
cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */
cqe->sq_id = cpu_to_le16(fod->queue->qid);
cqe->command_id = sqe->command_id;
cqe->status = cpu_to_le16(status);
} else {
/*
* try to push the data even if the SQE status is non-zero.
* There may be a status where data still was intended to
* be moved
*/
if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
/* push the data over before sending rsp */
nvmet_fc_transfer_fcp_data(tgtport, fod,
NVMET_FCOP_READDATA);
return;
}
/* writes & no data - fall thru */
}
/* data no longer needed */
nvmet_fc_free_tgt_pgs(fod);
nvmet_fc_xmt_fcp_rsp(tgtport, fod);
}
static void
nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
{
struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
struct nvmet_fc_tgtport *tgtport = fod->tgtport;
__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
}
/*
* Actual processing routine for received FC-NVME I/O Requests from the LLD
*/
static void
nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_fcp_iod *fod)
{
struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
u32 xfrlen = be32_to_cpu(cmdiu->data_len);
int ret;
/*
* Fused commands are currently not supported in the linux
* implementation.
*
* As such, the implementation of the FC transport does not
* look at the fused commands and order delivery to the upper
* layer until we have both based on csn.
*/
fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
fod->io_dir = NVMET_FCP_WRITE;
if (!nvme_is_write(&cmdiu->sqe))
goto transport_error;
} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
fod->io_dir = NVMET_FCP_READ;
if (nvme_is_write(&cmdiu->sqe))
goto transport_error;
} else {
fod->io_dir = NVMET_FCP_NODATA;
if (xfrlen)
goto transport_error;
}
fod->req.cmd = &fod->cmdiubuf.sqe;
fod->req.cqe = &fod->rspiubuf.cqe;
if (tgtport->pe)
fod->req.port = tgtport->pe->port;
/* clear any response payload */
memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
fod->data_sg = NULL;
fod->data_sg_cnt = 0;
ret = nvmet_req_init(&fod->req,
&fod->queue->nvme_cq,
&fod->queue->nvme_sq,
&nvmet_fc_tgt_fcp_ops);
if (!ret) {
/* bad SQE content or invalid ctrl state */
/* nvmet layer has already called op done to send rsp. */
return;
}
fod->req.transfer_len = xfrlen;
/* keep a running counter of tail position */
atomic_inc(&fod->queue->sqtail);
if (fod->req.transfer_len) {
ret = nvmet_fc_alloc_tgt_pgs(fod);
if (ret) {
nvmet_req_complete(&fod->req, ret);
return;
}
}
fod->req.sg = fod->data_sg;
fod->req.sg_cnt = fod->data_sg_cnt;
fod->offset = 0;
if (fod->io_dir == NVMET_FCP_WRITE) {
/* pull the data over before invoking nvmet layer */
nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
return;
}
/*
* Reads or no data:
*
* can invoke the nvmet_layer now. If read data, cmd completion will
* push the data
*/
fod->req.execute(&fod->req);
return;
transport_error:
nvmet_fc_abort_op(tgtport, fod);
}
/**
* nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
* upon the reception of a NVME FCP CMD IU.
*
* Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
* layer for processing.
*
* The nvmet_fc layer allocates a local job structure (struct
* nvmet_fc_fcp_iod) from the queue for the io and copies the
* CMD IU buffer to the job structure. As such, on a successful
* completion (returns 0), the LLDD may immediately free/reuse
* the CMD IU buffer passed in the call.
*
* However, in some circumstances, due to the packetized nature of FC
* and the api of the FC LLDD which may issue a hw command to send the
* response, but the LLDD may not get the hw completion for that command
* and upcall the nvmet_fc layer before a new command may be
* asynchronously received - its possible for a command to be received
* before the LLDD and nvmet_fc have recycled the job structure. It gives
* the appearance of more commands received than fits in the sq.
* To alleviate this scenario, a temporary queue is maintained in the
* transport for pending LLDD requests waiting for a queue job structure.
* In these "overrun" cases, a temporary queue element is allocated
* the LLDD request and CMD iu buffer information remembered, and the
* routine returns a -EOVERFLOW status. Subsequently, when a queue job
* structure is freed, it is immediately reallocated for anything on the
* pending request list. The LLDDs defer_rcv() callback is called,
* informing the LLDD that it may reuse the CMD IU buffer, and the io
* is then started normally with the transport.
*
* The LLDD, when receiving an -EOVERFLOW completion status, is to treat
* the completion as successful but must not reuse the CMD IU buffer
* until the LLDD's defer_rcv() callback has been called for the
* corresponding struct nvmefc_tgt_fcp_req pointer.
*
* If there is any other condition in which an error occurs, the
* transport will return a non-zero status indicating the error.
* In all cases other than -EOVERFLOW, the transport has not accepted the
* request and the LLDD should abort the exchange.
*
* @target_port: pointer to the (registered) target port the FCP CMD IU
* was received on.
* @fcpreq: pointer to a fcpreq request structure to be used to reference
* the exchange corresponding to the FCP Exchange.
* @cmdiubuf: pointer to the buffer containing the FCP CMD IU
* @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
*/
int
nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
struct nvmefc_tgt_fcp_req *fcpreq,
void *cmdiubuf, u32 cmdiubuf_len)
{
struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
struct nvmet_fc_tgt_queue *queue;
struct nvmet_fc_fcp_iod *fod;
struct nvmet_fc_defer_fcp_req *deferfcp;
unsigned long flags;
/* validate iu, so the connection id can be used to find the queue */
if ((cmdiubuf_len != sizeof(*cmdiu)) ||
(cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
(cmdiu->fc_id != NVME_CMD_FC_ID) ||
(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
return -EIO;
queue = nvmet_fc_find_target_queue(tgtport,
be64_to_cpu(cmdiu->connection_id));
if (!queue)
return -ENOTCONN;
/*
* note: reference taken by find_target_queue
* After successful fod allocation, the fod will inherit the
* ownership of that reference and will remove the reference
* when the fod is freed.
*/
spin_lock_irqsave(&queue->qlock, flags);
fod = nvmet_fc_alloc_fcp_iod(queue);
if (fod) {
spin_unlock_irqrestore(&queue->qlock, flags);
fcpreq->nvmet_fc_private = fod;
fod->fcpreq = fcpreq;
memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
return 0;
}
if (!tgtport->ops->defer_rcv) {
spin_unlock_irqrestore(&queue->qlock, flags);
/* release the queue lookup reference */
nvmet_fc_tgt_q_put(queue);
return -ENOENT;
}
deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
struct nvmet_fc_defer_fcp_req, req_list);
if (deferfcp) {
/* Just re-use one that was previously allocated */
list_del(&deferfcp->req_list);
} else {
spin_unlock_irqrestore(&queue->qlock, flags);
/* Now we need to dynamically allocate one */
deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
if (!deferfcp) {
/* release the queue lookup reference */
nvmet_fc_tgt_q_put(queue);
return -ENOMEM;
}
spin_lock_irqsave(&queue->qlock, flags);
}
/* For now, use rspaddr / rsplen to save payload information */
fcpreq->rspaddr = cmdiubuf;
fcpreq->rsplen = cmdiubuf_len;
deferfcp->fcp_req = fcpreq;
/* defer processing till a fod becomes available */
list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
/* NOTE: the queue lookup reference is still valid */
spin_unlock_irqrestore(&queue->qlock, flags);
return -EOVERFLOW;
}
EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
/**
* nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
* upon the reception of an ABTS for a FCP command
*
* Notify the transport that an ABTS has been received for a FCP command
* that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
* LLDD believes the command is still being worked on
* (template_ops->fcp_req_release() has not been called).
*
* The transport will wait for any outstanding work (an op to the LLDD,
* which the lldd should complete with error due to the ABTS; or the
* completion from the nvmet layer of the nvme command), then will
* stop processing and call the nvmet_fc_rcv_fcp_req() callback to
* return the i/o context to the LLDD. The LLDD may send the BA_ACC
* to the ABTS either after return from this function (assuming any
* outstanding op work has been terminated) or upon the callback being
* called.
*
* @target_port: pointer to the (registered) target port the FCP CMD IU
* was received on.
* @fcpreq: pointer to the fcpreq request structure that corresponds
* to the exchange that received the ABTS.
*/
void
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
struct nvmefc_tgt_fcp_req *fcpreq)
{
struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
struct nvmet_fc_tgt_queue *queue;
unsigned long flags;
if (!fod || fod->fcpreq != fcpreq)
/* job appears to have already completed, ignore abort */
return;
queue = fod->queue;
spin_lock_irqsave(&queue->qlock, flags);
if (fod->active) {
/*
* mark as abort. The abort handler, invoked upon completion
* of any work, will detect the aborted status and do the
* callback.
*/
spin_lock(&fod->flock);
fod->abort = true;
fod->aborted = true;
spin_unlock(&fod->flock);
}
spin_unlock_irqrestore(&queue->qlock, flags);
}
EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
struct nvmet_fc_traddr {
u64 nn;
u64 pn;
};
static int
__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
{
u64 token64;
if (match_u64(sstr, &token64))
return -EINVAL;
*val = token64;
return 0;
}
/*
* This routine validates and extracts the WWN's from the TRADDR string.
* As kernel parsers need the 0x to determine number base, universally
* build string to parse with 0x prefix before parsing name strings.
*/
static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
{
char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
substring_t wwn = { name, &name[sizeof(name)-1] };
int nnoffset, pnoffset;
/* validate if string is one of the 2 allowed formats */
if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
nnoffset = NVME_FC_TRADDR_OXNNLEN;
pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
NVME_FC_TRADDR_OXNNLEN;
} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
"pn-", NVME_FC_TRADDR_NNLEN))) {
nnoffset = NVME_FC_TRADDR_NNLEN;
pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
} else
goto out_einval;
name[0] = '0';
name[1] = 'x';
name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
goto out_einval;
memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
goto out_einval;
return 0;
out_einval:
pr_warn("%s: bad traddr string\n", __func__);
return -EINVAL;
}
static int
nvmet_fc_add_port(struct nvmet_port *port)
{
struct nvmet_fc_tgtport *tgtport;
struct nvmet_fc_port_entry *pe;
struct nvmet_fc_traddr traddr = { 0L, 0L };
unsigned long flags;
int ret;
/* validate the address info */
if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
(port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
return -EINVAL;
/* map the traddr address info to a target port */
ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
sizeof(port->disc_addr.traddr));
if (ret)
return ret;
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
if (!pe)
return -ENOMEM;