blob: 3c5d577d8f0d5e7f24a1b3a5b07769a1f91240e6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Marvell OcteonTX CPT driver
*
* Copyright (C) 2019 Marvell International Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <crypto/aes.h>
#include <crypto/authenc.h>
#include <crypto/cryptd.h>
#include <crypto/des.h>
#include <crypto/internal/aead.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/xts.h>
#include <crypto/scatterwalk.h>
#include <linux/rtnetlink.h>
#include <linux/sort.h>
#include <linux/module.h>
#include "otx_cptvf.h"
#include "otx_cptvf_algs.h"
#include "otx_cptvf_reqmgr.h"
#define CPT_MAX_VF_NUM 64
/* Size of salt in AES GCM mode */
#define AES_GCM_SALT_SIZE 4
/* Size of IV in AES GCM mode */
#define AES_GCM_IV_SIZE 8
/* Size of ICV (Integrity Check Value) in AES GCM mode */
#define AES_GCM_ICV_SIZE 16
/* Offset of IV in AES GCM mode */
#define AES_GCM_IV_OFFSET 8
#define CONTROL_WORD_LEN 8
#define KEY2_OFFSET 48
#define DMA_MODE_FLAG(dma_mode) \
(((dma_mode) == OTX_CPT_DMA_GATHER_SCATTER) ? (1 << 7) : 0)
/* Truncated SHA digest size */
#define SHA1_TRUNC_DIGEST_SIZE 12
#define SHA256_TRUNC_DIGEST_SIZE 16
#define SHA384_TRUNC_DIGEST_SIZE 24
#define SHA512_TRUNC_DIGEST_SIZE 32
static DEFINE_MUTEX(mutex);
static int is_crypto_registered;
struct cpt_device_desc {
enum otx_cptpf_type pf_type;
struct pci_dev *dev;
int num_queues;
};
struct cpt_device_table {
atomic_t count;
struct cpt_device_desc desc[CPT_MAX_VF_NUM];
};
static struct cpt_device_table se_devices = {
.count = ATOMIC_INIT(0)
};
static struct cpt_device_table ae_devices = {
.count = ATOMIC_INIT(0)
};
static inline int get_se_device(struct pci_dev **pdev, int *cpu_num)
{
int count, ret = 0;
count = atomic_read(&se_devices.count);
if (count < 1)
return -ENODEV;
*cpu_num = get_cpu();
if (se_devices.desc[0].pf_type == OTX_CPT_SE) {
/*
* On OcteonTX platform there is one CPT instruction queue bound
* to each VF. We get maximum performance if one CPT queue
* is available for each cpu otherwise CPT queues need to be
* shared between cpus.
*/
if (*cpu_num >= count)
*cpu_num %= count;
*pdev = se_devices.desc[*cpu_num].dev;
} else {
pr_err("Unknown PF type %d\n", se_devices.desc[0].pf_type);
ret = -EINVAL;
}
put_cpu();
return ret;
}
static inline int validate_hmac_cipher_null(struct otx_cpt_req_info *cpt_req)
{
struct otx_cpt_req_ctx *rctx;
struct aead_request *req;
struct crypto_aead *tfm;
req = container_of(cpt_req->areq, struct aead_request, base);
tfm = crypto_aead_reqtfm(req);
rctx = aead_request_ctx_dma(req);
if (memcmp(rctx->fctx.hmac.s.hmac_calc,
rctx->fctx.hmac.s.hmac_recv,
crypto_aead_authsize(tfm)) != 0)
return -EBADMSG;
return 0;
}
static void otx_cpt_aead_callback(int status, void *arg1, void *arg2)
{
struct otx_cpt_info_buffer *cpt_info = arg2;
struct crypto_async_request *areq = arg1;
struct otx_cpt_req_info *cpt_req;
struct pci_dev *pdev;
if (!cpt_info)
goto complete;
cpt_req = cpt_info->req;
if (!status) {
/*
* When selected cipher is NULL we need to manually
* verify whether calculated hmac value matches
* received hmac value
*/
if (cpt_req->req_type == OTX_CPT_AEAD_ENC_DEC_NULL_REQ &&
!cpt_req->is_enc)
status = validate_hmac_cipher_null(cpt_req);
}
pdev = cpt_info->pdev;
do_request_cleanup(pdev, cpt_info);
complete:
if (areq)
crypto_request_complete(areq, status);
}
static void output_iv_copyback(struct crypto_async_request *areq)
{
struct otx_cpt_req_info *req_info;
struct skcipher_request *sreq;
struct crypto_skcipher *stfm;
struct otx_cpt_req_ctx *rctx;
struct otx_cpt_enc_ctx *ctx;
u32 start, ivsize;
sreq = container_of(areq, struct skcipher_request, base);
stfm = crypto_skcipher_reqtfm(sreq);
ctx = crypto_skcipher_ctx(stfm);
if (ctx->cipher_type == OTX_CPT_AES_CBC ||
ctx->cipher_type == OTX_CPT_DES3_CBC) {
rctx = skcipher_request_ctx_dma(sreq);
req_info = &rctx->cpt_req;
ivsize = crypto_skcipher_ivsize(stfm);
start = sreq->cryptlen - ivsize;
if (req_info->is_enc) {
scatterwalk_map_and_copy(sreq->iv, sreq->dst, start,
ivsize, 0);
} else {
if (sreq->src != sreq->dst) {
scatterwalk_map_and_copy(sreq->iv, sreq->src,
start, ivsize, 0);
} else {
memcpy(sreq->iv, req_info->iv_out, ivsize);
kfree(req_info->iv_out);
}
}
}
}
static void otx_cpt_skcipher_callback(int status, void *arg1, void *arg2)
{
struct otx_cpt_info_buffer *cpt_info = arg2;
struct crypto_async_request *areq = arg1;
struct pci_dev *pdev;
if (areq) {
if (!status)
output_iv_copyback(areq);
if (cpt_info) {
pdev = cpt_info->pdev;
do_request_cleanup(pdev, cpt_info);
}
crypto_request_complete(areq, status);
}
}
static inline void update_input_data(struct otx_cpt_req_info *req_info,
struct scatterlist *inp_sg,
u32 nbytes, u32 *argcnt)
{
req_info->req.dlen += nbytes;
while (nbytes) {
u32 len = min(nbytes, inp_sg->length);
u8 *ptr = sg_virt(inp_sg);
req_info->in[*argcnt].vptr = (void *)ptr;
req_info->in[*argcnt].size = len;
nbytes -= len;
++(*argcnt);
inp_sg = sg_next(inp_sg);
}
}
static inline void update_output_data(struct otx_cpt_req_info *req_info,
struct scatterlist *outp_sg,
u32 offset, u32 nbytes, u32 *argcnt)
{
req_info->rlen += nbytes;
while (nbytes) {
u32 len = min(nbytes, outp_sg->length - offset);
u8 *ptr = sg_virt(outp_sg);
req_info->out[*argcnt].vptr = (void *) (ptr + offset);
req_info->out[*argcnt].size = len;
nbytes -= len;
++(*argcnt);
offset = 0;
outp_sg = sg_next(outp_sg);
}
}
static inline u32 create_ctx_hdr(struct skcipher_request *req, u32 enc,
u32 *argcnt)
{
struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
struct otx_cpt_req_info *req_info = &rctx->cpt_req;
struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm);
struct otx_cpt_enc_ctx *ctx = crypto_tfm_ctx(tfm);
struct otx_cpt_fc_ctx *fctx = &rctx->fctx;
int ivsize = crypto_skcipher_ivsize(stfm);
u32 start = req->cryptlen - ivsize;
gfp_t flags;
flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER;
req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ;
req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC |
DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER);
if (enc) {
req_info->req.opcode.s.minor = 2;
} else {
req_info->req.opcode.s.minor = 3;
if ((ctx->cipher_type == OTX_CPT_AES_CBC ||
ctx->cipher_type == OTX_CPT_DES3_CBC) &&
req->src == req->dst) {
req_info->iv_out = kmalloc(ivsize, flags);
if (!req_info->iv_out)
return -ENOMEM;
scatterwalk_map_and_copy(req_info->iv_out, req->src,
start, ivsize, 0);
}
}
/* Encryption data length */
req_info->req.param1 = req->cryptlen;
/* Authentication data length */
req_info->req.param2 = 0;
fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type;
fctx->enc.enc_ctrl.e.aes_key = ctx->key_type;
fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR;
if (ctx->cipher_type == OTX_CPT_AES_XTS)
memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len * 2);
else
memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len);
memcpy(fctx->enc.encr_iv, req->iv, crypto_skcipher_ivsize(stfm));
fctx->enc.enc_ctrl.flags = cpu_to_be64(fctx->enc.enc_ctrl.cflags);
/*
* Storing Packet Data Information in offset
* Control Word First 8 bytes
*/
req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word;
req_info->in[*argcnt].size = CONTROL_WORD_LEN;
req_info->req.dlen += CONTROL_WORD_LEN;
++(*argcnt);
req_info->in[*argcnt].vptr = (u8 *)fctx;
req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx);
req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx);
++(*argcnt);
return 0;
}
static inline u32 create_input_list(struct skcipher_request *req, u32 enc,
u32 enc_iv_len)
{
struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
struct otx_cpt_req_info *req_info = &rctx->cpt_req;
u32 argcnt = 0;
int ret;
ret = create_ctx_hdr(req, enc, &argcnt);
if (ret)
return ret;
update_input_data(req_info, req->src, req->cryptlen, &argcnt);
req_info->incnt = argcnt;
return 0;
}
static inline void create_output_list(struct skcipher_request *req,
u32 enc_iv_len)
{
struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
struct otx_cpt_req_info *req_info = &rctx->cpt_req;
u32 argcnt = 0;
/*
* OUTPUT Buffer Processing
* AES encryption/decryption output would be
* received in the following format
*
* ------IV--------|------ENCRYPTED/DECRYPTED DATA-----|
* [ 16 Bytes/ [ Request Enc/Dec/ DATA Len AES CBC ]
*/
update_output_data(req_info, req->dst, 0, req->cryptlen, &argcnt);
req_info->outcnt = argcnt;
}
static inline int cpt_enc_dec(struct skcipher_request *req, u32 enc)
{
struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
struct otx_cpt_req_info *req_info = &rctx->cpt_req;
u32 enc_iv_len = crypto_skcipher_ivsize(stfm);
struct pci_dev *pdev;
int status, cpu_num;
/* Validate that request doesn't exceed maximum CPT supported size */
if (req->cryptlen > OTX_CPT_MAX_REQ_SIZE)
return -E2BIG;
/* Clear control words */
rctx->ctrl_word.flags = 0;
rctx->fctx.enc.enc_ctrl.flags = 0;
status = create_input_list(req, enc, enc_iv_len);
if (status)
return status;
create_output_list(req, enc_iv_len);
status = get_se_device(&pdev, &cpu_num);
if (status)
return status;
req_info->callback = (void *)otx_cpt_skcipher_callback;
req_info->areq = &req->base;
req_info->req_type = OTX_CPT_ENC_DEC_REQ;
req_info->is_enc = enc;
req_info->is_trunc_hmac = false;
req_info->ctrl.s.grp = 0;
/*
* We perform an asynchronous send and once
* the request is completed the driver would
* intimate through registered call back functions
*/
status = otx_cpt_do_request(pdev, req_info, cpu_num);
return status;
}
static int otx_cpt_skcipher_encrypt(struct skcipher_request *req)
{
return cpt_enc_dec(req, true);
}
static int otx_cpt_skcipher_decrypt(struct skcipher_request *req)
{
return cpt_enc_dec(req, false);
}
static int otx_cpt_skcipher_xts_setkey(struct crypto_skcipher *tfm,
const u8 *key, u32 keylen)
{
struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
const u8 *key2 = key + (keylen / 2);
const u8 *key1 = key;
int ret;
ret = xts_verify_key(tfm, key, keylen);
if (ret)
return ret;
ctx->key_len = keylen;
memcpy(ctx->enc_key, key1, keylen / 2);
memcpy(ctx->enc_key + KEY2_OFFSET, key2, keylen / 2);
ctx->cipher_type = OTX_CPT_AES_XTS;
switch (ctx->key_len) {
case 2 * AES_KEYSIZE_128:
ctx->key_type = OTX_CPT_AES_128_BIT;
break;
case 2 * AES_KEYSIZE_256:
ctx->key_type = OTX_CPT_AES_256_BIT;
break;
default:
return -EINVAL;
}
return 0;
}
static int cpt_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
u32 keylen, u8 cipher_type)
{
struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
if (keylen != DES3_EDE_KEY_SIZE)
return -EINVAL;
ctx->key_len = keylen;
ctx->cipher_type = cipher_type;
memcpy(ctx->enc_key, key, keylen);
return 0;
}
static int cpt_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
u32 keylen, u8 cipher_type)
{
struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
switch (keylen) {
case AES_KEYSIZE_128:
ctx->key_type = OTX_CPT_AES_128_BIT;
break;
case AES_KEYSIZE_192:
ctx->key_type = OTX_CPT_AES_192_BIT;
break;
case AES_KEYSIZE_256:
ctx->key_type = OTX_CPT_AES_256_BIT;
break;
default:
return -EINVAL;
}
ctx->key_len = keylen;
ctx->cipher_type = cipher_type;
memcpy(ctx->enc_key, key, keylen);
return 0;
}
static int otx_cpt_skcipher_cbc_aes_setkey(struct crypto_skcipher *tfm,
const u8 *key, u32 keylen)
{
return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_CBC);
}
static int otx_cpt_skcipher_ecb_aes_setkey(struct crypto_skcipher *tfm,
const u8 *key, u32 keylen)
{
return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_ECB);
}
static int otx_cpt_skcipher_cbc_des3_setkey(struct crypto_skcipher *tfm,
const u8 *key, u32 keylen)
{
return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_CBC);
}
static int otx_cpt_skcipher_ecb_des3_setkey(struct crypto_skcipher *tfm,
const u8 *key, u32 keylen)
{
return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_ECB);
}
static int otx_cpt_enc_dec_init(struct crypto_skcipher *tfm)
{
struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
memset(ctx, 0, sizeof(*ctx));
/*
* Additional memory for skcipher_request is
* allocated since the cryptd daemon uses
* this memory for request_ctx information
*/
crypto_skcipher_set_reqsize_dma(
tfm, sizeof(struct otx_cpt_req_ctx) +
sizeof(struct skcipher_request));
return 0;
}
static int cpt_aead_init(struct crypto_aead *tfm, u8 cipher_type, u8 mac_type)
{
struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
ctx->cipher_type = cipher_type;
ctx->mac_type = mac_type;
/*
* When selected cipher is NULL we use HMAC opcode instead of
* FLEXICRYPTO opcode therefore we don't need to use HASH algorithms
* for calculating ipad and opad
*/
if (ctx->cipher_type != OTX_CPT_CIPHER_NULL) {
switch (ctx->mac_type) {
case OTX_CPT_SHA1:
ctx->hashalg = crypto_alloc_shash("sha1", 0,
CRYPTO_ALG_ASYNC);
if (IS_ERR(ctx->hashalg))
return PTR_ERR(ctx->hashalg);
break;
case OTX_CPT_SHA256:
ctx->hashalg = crypto_alloc_shash("sha256", 0,
CRYPTO_ALG_ASYNC);
if (IS_ERR(ctx->hashalg))
return PTR_ERR(ctx->hashalg);
break;
case OTX_CPT_SHA384:
ctx->hashalg = crypto_alloc_shash("sha384", 0,
CRYPTO_ALG_ASYNC);
if (IS_ERR(ctx->hashalg))
return PTR_ERR(ctx->hashalg);
break;
case OTX_CPT_SHA512:
ctx->hashalg = crypto_alloc_shash("sha512", 0,
CRYPTO_ALG_ASYNC);
if (IS_ERR(ctx->hashalg))
return PTR_ERR(ctx->hashalg);
break;
}
}
crypto_aead_set_reqsize_dma(tfm, sizeof(struct otx_cpt_req_ctx));
return 0;
}
static int otx_cpt_aead_cbc_aes_sha1_init(struct crypto_aead *tfm)
{
return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA1);
}
static int otx_cpt_aead_cbc_aes_sha256_init(struct crypto_aead *tfm)
{
return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA256);
}
static int otx_cpt_aead_cbc_aes_sha384_init(struct crypto_aead *tfm)
{
return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA384);
}
static int otx_cpt_aead_cbc_aes_sha512_init(struct crypto_aead *tfm)
{
return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA512);
}
static int otx_cpt_aead_ecb_null_sha1_init(struct crypto_aead *tfm)
{
return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA1);
}
static int otx_cpt_aead_ecb_null_sha256_init(struct crypto_aead *tfm)
{
return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA256);
}
static int otx_cpt_aead_ecb_null_sha384_init(struct crypto_aead *tfm)
{
return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA384);
}
static int otx_cpt_aead_ecb_null_sha512_init(struct crypto_aead *tfm)
{
return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA512);
}
static int otx_cpt_aead_gcm_aes_init(struct crypto_aead *tfm)
{
return cpt_aead_init(tfm, OTX_CPT_AES_GCM, OTX_CPT_MAC_NULL);
}
static void otx_cpt_aead_exit(struct crypto_aead *tfm)
{
struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
kfree(ctx->ipad);
kfree(ctx->opad);
if (ctx->hashalg)
crypto_free_shash(ctx->hashalg);
kfree(ctx->sdesc);
}
/*
* This is the Integrity Check Value validation (aka the authentication tag
* length)
*/
static int otx_cpt_aead_set_authsize(struct crypto_aead *tfm,
unsigned int authsize)
{
struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
switch (ctx->mac_type) {
case OTX_CPT_SHA1:
if (authsize != SHA1_DIGEST_SIZE &&
authsize != SHA1_TRUNC_DIGEST_SIZE)
return -EINVAL;
if (authsize == SHA1_TRUNC_DIGEST_SIZE)
ctx->is_trunc_hmac = true;
break;
case OTX_CPT_SHA256:
if (authsize != SHA256_DIGEST_SIZE &&
authsize != SHA256_TRUNC_DIGEST_SIZE)
return -EINVAL;
if (authsize == SHA256_TRUNC_DIGEST_SIZE)
ctx->is_trunc_hmac = true;
break;
case OTX_CPT_SHA384:
if (authsize != SHA384_DIGEST_SIZE &&
authsize != SHA384_TRUNC_DIGEST_SIZE)
return -EINVAL;
if (authsize == SHA384_TRUNC_DIGEST_SIZE)
ctx->is_trunc_hmac = true;
break;
case OTX_CPT_SHA512:
if (authsize != SHA512_DIGEST_SIZE &&
authsize != SHA512_TRUNC_DIGEST_SIZE)
return -EINVAL;
if (authsize == SHA512_TRUNC_DIGEST_SIZE)
ctx->is_trunc_hmac = true;
break;
case OTX_CPT_MAC_NULL:
if (ctx->cipher_type == OTX_CPT_AES_GCM) {
if (authsize != AES_GCM_ICV_SIZE)
return -EINVAL;
} else
return -EINVAL;
break;
default:
return -EINVAL;
}
tfm->authsize = authsize;
return 0;
}
static struct otx_cpt_sdesc *alloc_sdesc(struct crypto_shash *alg)
{
struct otx_cpt_sdesc *sdesc;
int size;
size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
sdesc = kmalloc(size, GFP_KERNEL);
if (!sdesc)
return NULL;
sdesc->shash.tfm = alg;
return sdesc;
}
static inline void swap_data32(void *buf, u32 len)
{
cpu_to_be32_array(buf, buf, len / 4);
}
static inline void swap_data64(void *buf, u32 len)
{
__be64 *dst = buf;
u64 *src = buf;
int i = 0;
for (i = 0 ; i < len / 8; i++, src++, dst++)
*dst = cpu_to_be64p(src);
}
static int copy_pad(u8 mac_type, u8 *out_pad, u8 *in_pad)
{
struct sha512_state *sha512;
struct sha256_state *sha256;
struct sha1_state *sha1;
switch (mac_type) {
case OTX_CPT_SHA1:
sha1 = (struct sha1_state *) in_pad;
swap_data32(sha1->state, SHA1_DIGEST_SIZE);
memcpy(out_pad, &sha1->state, SHA1_DIGEST_SIZE);
break;
case OTX_CPT_SHA256:
sha256 = (struct sha256_state *) in_pad;
swap_data32(sha256->state, SHA256_DIGEST_SIZE);
memcpy(out_pad, &sha256->state, SHA256_DIGEST_SIZE);
break;
case OTX_CPT_SHA384:
case OTX_CPT_SHA512:
sha512 = (struct sha512_state *) in_pad;
swap_data64(sha512->state, SHA512_DIGEST_SIZE);
memcpy(out_pad, &sha512->state, SHA512_DIGEST_SIZE);
break;
default:
return -EINVAL;
}
return 0;
}
static int aead_hmac_init(struct crypto_aead *cipher)
{
struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
int state_size = crypto_shash_statesize(ctx->hashalg);
int ds = crypto_shash_digestsize(ctx->hashalg);
int bs = crypto_shash_blocksize(ctx->hashalg);
int authkeylen = ctx->auth_key_len;
u8 *ipad = NULL, *opad = NULL;
int ret = 0, icount = 0;
ctx->sdesc = alloc_sdesc(ctx->hashalg);
if (!ctx->sdesc)
return -ENOMEM;
ctx->ipad = kzalloc(bs, GFP_KERNEL);
if (!ctx->ipad) {
ret = -ENOMEM;
goto calc_fail;
}
ctx->opad = kzalloc(bs, GFP_KERNEL);
if (!ctx->opad) {
ret = -ENOMEM;
goto calc_fail;
}
ipad = kzalloc(state_size, GFP_KERNEL);
if (!ipad) {
ret = -ENOMEM;
goto calc_fail;
}
opad = kzalloc(state_size, GFP_KERNEL);
if (!opad) {
ret = -ENOMEM;
goto calc_fail;
}
if (authkeylen > bs) {
ret = crypto_shash_digest(&ctx->sdesc->shash, ctx->key,
authkeylen, ipad);
if (ret)
goto calc_fail;
authkeylen = ds;
} else {
memcpy(ipad, ctx->key, authkeylen);
}
memset(ipad + authkeylen, 0, bs - authkeylen);
memcpy(opad, ipad, bs);
for (icount = 0; icount < bs; icount++) {
ipad[icount] ^= 0x36;
opad[icount] ^= 0x5c;
}
/*
* Partial Hash calculated from the software
* algorithm is retrieved for IPAD & OPAD
*/
/* IPAD Calculation */
crypto_shash_init(&ctx->sdesc->shash);
crypto_shash_update(&ctx->sdesc->shash, ipad, bs);
crypto_shash_export(&ctx->sdesc->shash, ipad);
ret = copy_pad(ctx->mac_type, ctx->ipad, ipad);
if (ret)
goto calc_fail;
/* OPAD Calculation */
crypto_shash_init(&ctx->sdesc->shash);
crypto_shash_update(&ctx->sdesc->shash, opad, bs);
crypto_shash_export(&ctx->sdesc->shash, opad);
ret = copy_pad(ctx->mac_type, ctx->opad, opad);
if (ret)
goto calc_fail;
kfree(ipad);
kfree(opad);
return 0;
calc_fail:
kfree(ctx->ipad);
ctx->ipad = NULL;
kfree(ctx->opad);
ctx->opad = NULL;
kfree(ipad);
kfree(opad);
kfree(ctx->sdesc);
ctx->sdesc = NULL;
return ret;
}
static int otx_cpt_aead_cbc_aes_sha_setkey(struct crypto_aead *cipher,
const unsigned char *key,
unsigned int keylen)
{
struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
struct crypto_authenc_key_param *param;
int enckeylen = 0, authkeylen = 0;
struct rtattr *rta = (void *)key;
int status = -EINVAL;
if (!RTA_OK(rta, keylen))
goto badkey;
if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
goto badkey;
if (RTA_PAYLOAD(rta) < sizeof(*param))
goto badkey;
param = RTA_DATA(rta);
enckeylen = be32_to_cpu(param->enckeylen);
key += RTA_ALIGN(rta->rta_len);
keylen -= RTA_ALIGN(rta->rta_len);
if (keylen < enckeylen)
goto badkey;
if (keylen > OTX_CPT_MAX_KEY_SIZE)
goto badkey;
authkeylen = keylen - enckeylen;
memcpy(ctx->key, key, keylen);
switch (enckeylen) {
case AES_KEYSIZE_128:
ctx->key_type = OTX_CPT_AES_128_BIT;
break;
case AES_KEYSIZE_192:
ctx->key_type = OTX_CPT_AES_192_BIT;
break;
case AES_KEYSIZE_256:
ctx->key_type = OTX_CPT_AES_256_BIT;
break;
default:
/* Invalid key length */
goto badkey;
}
ctx->enc_key_len = enckeylen;
ctx->auth_key_len = authkeylen;
status = aead_hmac_init(cipher);
if (status)
goto badkey;
return 0;
badkey:
return status;
}
static int otx_cpt_aead_ecb_null_sha_setkey(struct crypto_aead *cipher,
const unsigned char *key,
unsigned int keylen)
{
struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
struct crypto_authenc_key_param *param;
struct rtattr *rta = (void *)key;
int enckeylen = 0;
if (!RTA_OK(rta, keylen))
goto badkey;
if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
goto badkey;
if (RTA_PAYLOAD(rta) < sizeof(*param))
goto badkey;
param = RTA_DATA(rta);
enckeylen = be32_to_cpu(param->enckeylen);
key += RTA_ALIGN(rta->rta_len);
keylen -= RTA_ALIGN(rta->rta_len);
if (enckeylen != 0)
goto badkey;
if (keylen > OTX_CPT_MAX_KEY_SIZE)
goto badkey;
memcpy(ctx->key, key, keylen);
ctx->enc_key_len = enckeylen;
ctx->auth_key_len = keylen;
return 0;
badkey:
return -EINVAL;
}
static int otx_cpt_aead_gcm_aes_setkey(struct crypto_aead *cipher,
const unsigned char *key,
unsigned int keylen)
{
struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
/*
* For aes gcm we expect to get encryption key (16, 24, 32 bytes)
* and salt (4 bytes)
*/
switch (keylen) {
case AES_KEYSIZE_128 + AES_GCM_SALT_SIZE:
ctx->key_type = OTX_CPT_AES_128_BIT;
ctx->enc_key_len = AES_KEYSIZE_128;
break;
case AES_KEYSIZE_192 + AES_GCM_SALT_SIZE:
ctx->key_type = OTX_CPT_AES_192_BIT;
ctx->enc_key_len = AES_KEYSIZE_192;
break;
case AES_KEYSIZE_256 + AES_GCM_SALT_SIZE:
ctx->key_type = OTX_CPT_AES_256_BIT;
ctx->enc_key_len = AES_KEYSIZE_256;
break;
default:
/* Invalid key and salt length */
return -EINVAL;
}
/* Store encryption key and salt */
memcpy(ctx->key, key, keylen);
return 0;
}
static inline u32 create_aead_ctx_hdr(struct aead_request *req, u32 enc,
u32 *argcnt)
{
struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
struct otx_cpt_req_info *req_info = &rctx->cpt_req;
struct otx_cpt_fc_ctx *fctx = &rctx->fctx;
int mac_len = crypto_aead_authsize(tfm);
int ds;
rctx->ctrl_word.e.enc_data_offset = req->assoclen;
switch (ctx->cipher_type) {
case OTX_CPT_AES_CBC:
fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR;
/* Copy encryption key to context */
memcpy(fctx->enc.encr_key, ctx->key + ctx->auth_key_len,
ctx->enc_key_len);
/* Copy IV to context */
memcpy(fctx->enc.encr_iv, req->iv, crypto_aead_ivsize(tfm));
ds = crypto_shash_digestsize(ctx->hashalg);
if (ctx->mac_type == OTX_CPT_SHA384)
ds = SHA512_DIGEST_SIZE;
if (ctx->ipad)
memcpy(fctx->hmac.e.ipad, ctx->ipad, ds);
if (ctx->opad)
memcpy(fctx->hmac.e.opad, ctx->opad, ds);
break;
case OTX_CPT_AES_GCM:
fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_DPTR;
/* Copy encryption key to context */
memcpy(fctx->enc.encr_key, ctx->key, ctx->enc_key_len);
/* Copy salt to context */
memcpy(fctx->enc.encr_iv, ctx->key + ctx->enc_key_len,
AES_GCM_SALT_SIZE);
rctx->ctrl_word.e.iv_offset = req->assoclen - AES_GCM_IV_OFFSET;
break;
default:
/* Unknown cipher type */
return -EINVAL;
}
rctx->ctrl_word.flags = cpu_to_be64(rctx->ctrl_word.cflags);
req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER;
req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ;
req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC |
DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER);
if (enc) {
req_info->req.opcode.s.minor = 2;
req_info->req.param1 = req->cryptlen;
req_info->req.param2 = req->cryptlen + req->assoclen;
} else {
req_info->req.opcode.s.minor = 3;
req_info->req.param1 = req->cryptlen - mac_len;
req_info->req.param2 = req->cryptlen + req->assoclen - mac_len;
}
fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type;
fctx->enc.enc_ctrl.e.aes_key = ctx->key_type;
fctx->enc.enc_ctrl.e.mac_type = ctx->mac_type;
fctx->enc.enc_ctrl.e.mac_len = mac_len;
fctx->enc.enc_ctrl.flags = cpu_to_be64(fctx->enc.enc_ctrl.cflags);
/*
* Storing Packet Data Information in offset
* Control Word First 8 bytes
*/
req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word;
req_info->in[*argcnt].size = CONTROL_WORD_LEN;
req_info->req.dlen += CONTROL_WORD_LEN;
++(*argcnt);
req_info->in[*argcnt].vptr = (u8 *)fctx;
req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx);
req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx);
++(*argcnt);
return 0;
}
static inline u32 create_hmac_ctx_hdr(struct aead_request *req, u32 *argcnt,
u32 enc)
{
struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
struct otx_cpt_req_info *req_info = &rctx->cpt_req;
req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER;
req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ;
req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_HMAC |
DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER);
req_info->is_trunc_hmac = ctx->is_trunc_hmac;
req_info->req.opcode.s.minor = 0;
req_info->req.param1 = ctx->auth_key_len;
req_info->req.param2 = ctx->mac_type << 8;
/* Add authentication key */
req_info->in[*argcnt].vptr = ctx->key;
req_info->in[*argcnt].size = round_up(ctx->auth_key_len, 8);
req_info->req.dlen += round_up(ctx->auth_key_len, 8);
++(*argcnt);
return 0;
}
static inline u32 create_aead_input_list(struct aead_request *req, u32 enc)
{
struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
struct otx_cpt_req_info *req_info = &rctx->cpt_req;
u32 inputlen = req->cryptlen + req->assoclen;
u32 status, argcnt = 0;
status = create_aead_ctx_hdr(req, enc, &argcnt);
if (status)
return status;
update_input_data(req_info, req->src, inputlen, &argcnt);
req_info->incnt = argcnt;
return 0;
}
static inline u32 create_aead_output_list(struct aead_request *req, u32 enc,
u32 mac_len)
{
struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
struct otx_cpt_req_info *req_info = &rctx->cpt_req;
u32 argcnt = 0, outputlen = 0;
if (enc)
outputlen = req->cryptlen + req->assoclen + mac_len;
else
outputlen = req->cryptlen + req->assoclen - mac_len;
update_output_data(req_info, req->dst, 0, outputlen, &argcnt);
req_info->outcnt = argcnt;
return 0;
}
static inline u32 create_aead_null_input_list(struct aead_request *req,
u32 enc, u32 mac_len)
{
struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
struct otx_cpt_req_info *req_info = &rctx->cpt_req;
u32 inputlen, argcnt = 0;
if (enc)
inputlen = req->cryptlen + req->assoclen;
else
inputlen = req->cryptlen + req->assoclen - mac_len;
create_hmac_ctx_hdr(req, &argcnt, enc);
update_input_data(req_info, req->src, inputlen, &argcnt);
req_info->incnt = argcnt;
return 0;
}
static inline u32 create_aead_null_output_list(struct aead_request *req,
u32 enc, u32 mac_len)
{
struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
struct otx_cpt_req_info *req_info = &rctx->cpt_req;
struct scatterlist *dst;
u8 *ptr = NULL;
int argcnt = 0, status, offset;
u32 inputlen;
if (enc)
inputlen = req->cryptlen + req->assoclen;
else
inputlen = req->cryptlen + req->assoclen - mac_len;
/*
* If source and destination are different
* then copy payload to destination
*/
if (req->src != req->dst) {
ptr = kmalloc(inputlen, (req_info->areq->flags &
CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC);
if (!ptr) {
status = -ENOMEM;
goto error;
}
status = sg_copy_to_buffer(req->src, sg_nents(req->src), ptr,
inputlen);
if (status != inputlen) {
status = -EINVAL;
goto error_free;
}
status = sg_copy_from_buffer(req->dst, sg_nents(req->dst), ptr,
inputlen);
if (status != inputlen) {
status = -EINVAL;
goto error_free;
}
kfree(ptr);
}
if (enc) {
/*
* In an encryption scenario hmac needs
* to be appended after payload
*/
dst = req->dst;
offset = inputlen;
while (offset >= dst->length) {
offset -= dst->length;
dst = sg_next(dst);
if (!dst) {
status = -ENOENT;
goto error;
}
}
update_output_data(req_info, dst, offset, mac_len, &argcnt);
} else {
/*
* In a decryption scenario calculated hmac for received
* payload needs to be compare with hmac received
*/
status = sg_copy_buffer(req->src, sg_nents(req->src),
rctx->fctx.hmac.s.hmac_recv, mac_len,
inputlen, true);
if (status != mac_len) {
status = -EINVAL;
goto error;
}
req_info->out[argcnt].vptr = rctx->fctx.hmac.s.hmac_calc;
req_info->out[argcnt].size = mac_len;
argcnt++;
}
req_info->outcnt = argcnt;
return 0;
error_free:
kfree(ptr);
error:
return status;
}
static u32 cpt_aead_enc_dec(struct aead_request *req, u8 reg_type, u8 enc)
{
struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
struct otx_cpt_req_info *req_info = &rctx->cpt_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct pci_dev *pdev;
u32 status, cpu_num;
/* Clear control words */
rctx->ctrl_word.flags = 0;
rctx->fctx.enc.enc_ctrl.flags = 0;
req_info->callback = otx_cpt_aead_callback;
req_info->areq = &req->base;
req_info->req_type = reg_type;
req_info->is_enc = enc;
req_info->is_trunc_hmac = false;
switch (reg_type) {
case OTX_CPT_AEAD_ENC_DEC_REQ:
status = create_aead_input_list(req, enc);
if (status)
return status;
status = create_aead_output_list(req, enc,
crypto_aead_authsize(tfm));
if (status)
return status;
break;
case OTX_CPT_AEAD_ENC_DEC_NULL_REQ:
status = create_aead_null_input_list(req, enc,
crypto_aead_authsize(tfm));
if (status)
return status;
status = create_aead_null_output_list(req, enc,
crypto_aead_authsize(tfm));
if (status)
return status;
break;
default:
return -EINVAL;
}
/* Validate that request doesn't exceed maximum CPT supported size */
if (req_info->req.param1 > OTX_CPT_MAX_REQ_SIZE ||
req_info->req.param2 > OTX_CPT_MAX_REQ_SIZE)
return -E2BIG;
status = get_se_device(&pdev, &cpu_num);
if (status)
return status;
req_info->ctrl.s.grp = 0;
status = otx_cpt_do_request(pdev, req_info, cpu_num);
/*
* We perform an asynchronous send and once
* the request is completed the driver would
* intimate through registered call back functions
*/
return status;
}
static int otx_cpt_aead_encrypt(struct aead_request *req)
{
return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, true);
}
static int otx_cpt_aead_decrypt(struct aead_request *req)
{
return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, false);
}
static int otx_cpt_aead_null_encrypt(struct aead_request *req)
{
return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, true);
}
static int otx_cpt_aead_null_decrypt(struct aead_request *req)
{
return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, false);
}
static struct skcipher_alg otx_cpt_skciphers[] = { {
.base.cra_name = "xts(aes)",
.base.cra_driver_name = "cpt_xts_aes",
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
.base.cra_alignmask = 7,
.base.cra_priority = 4001,
.base.cra_module = THIS_MODULE,
.init = otx_cpt_enc_dec_init,
.ivsize = AES_BLOCK_SIZE,
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.setkey = otx_cpt_skcipher_xts_setkey,
.encrypt = otx_cpt_skcipher_encrypt,
.decrypt = otx_cpt_skcipher_decrypt,
}, {
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "cpt_cbc_aes",
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
.base.cra_alignmask = 7,
.base.cra_priority = 4001,
.base.cra_module = THIS_MODULE,
.init = otx_cpt_enc_dec_init,
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = otx_cpt_skcipher_cbc_aes_setkey,
.encrypt = otx_cpt_skcipher_encrypt,
.decrypt = otx_cpt_skcipher_decrypt,
}, {
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "cpt_ecb_aes",
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
.base.cra_alignmask = 7,
.base.cra_priority = 4001,
.base.cra_module = THIS_MODULE,
.init = otx_cpt_enc_dec_init,
.ivsize = 0,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = otx_cpt_skcipher_ecb_aes_setkey,
.encrypt = otx_cpt_skcipher_encrypt,
.decrypt = otx_cpt_skcipher_decrypt,
}, {
.base.cra_name = "cbc(des3_ede)",
.base.cra_driver_name = "cpt_cbc_des3_ede",
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx),
.base.cra_alignmask = 7,
.base.cra_priority = 4001,
.base.cra_module = THIS_MODULE,
.init = otx_cpt_enc_dec_init,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = otx_cpt_skcipher_cbc_des3_setkey,
.encrypt = otx_cpt_skcipher_encrypt,
.decrypt = otx_cpt_skcipher_decrypt,
}, {
.base.cra_name = "ecb(des3_ede)",
.base.cra_driver_name = "cpt_ecb_des3_ede",
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx),
.base.cra_alignmask = 7,
.base.cra_priority = 4001,
.base.cra_module = THIS_MODULE,
.init = otx_cpt_enc_dec_init,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = 0,
.setkey = otx_cpt_skcipher_ecb_des3_setkey,
.encrypt = otx_cpt_skcipher_encrypt,
.decrypt = otx_cpt_skcipher_decrypt,
} };
static struct aead_alg otx_cpt_aeads[] = { {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "cpt_hmac_sha1_cbc_aes",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
.cra_priority = 4001,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = otx_cpt_aead_cbc_aes_sha1_init,
.exit = otx_cpt_aead_exit,
.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
.setauthsize = otx_cpt_aead_set_authsize,
.encrypt = otx_cpt_aead_encrypt,
.decrypt = otx_cpt_aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
}, {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "cpt_hmac_sha256_cbc_aes",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
.cra_priority = 4001,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = otx_cpt_aead_cbc_aes_sha256_init,
.exit = otx_cpt_aead_exit,
.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
.setauthsize = otx_cpt_aead_set_authsize,
.encrypt = otx_cpt_aead_encrypt,
.decrypt = otx_cpt_aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
}, {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(aes))",
.cra_driver_name = "cpt_hmac_sha384_cbc_aes",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
.cra_priority = 4001,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = otx_cpt_aead_cbc_aes_sha384_init,
.exit = otx_cpt_aead_exit,
.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
.setauthsize = otx_cpt_aead_set_authsize,
.encrypt = otx_cpt_aead_encrypt,
.decrypt = otx_cpt_aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
}, {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(aes))",
.cra_driver_name = "cpt_hmac_sha512_cbc_aes",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
.cra_priority = 4001,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = otx_cpt_aead_cbc_aes_sha512_init,
.exit = otx_cpt_aead_exit,
.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
.setauthsize = otx_cpt_aead_set_authsize,
.encrypt = otx_cpt_aead_encrypt,
.decrypt = otx_cpt_aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
}, {
.base = {
.cra_name = "authenc(hmac(sha1),ecb(cipher_null))",
.cra_driver_name = "cpt_hmac_sha1_ecb_null",
.cra_blocksize = 1,
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
.cra_priority = 4001,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = otx_cpt_aead_ecb_null_sha1_init,
.exit = otx_cpt_aead_exit,
.setkey = otx_cpt_aead_ecb_null_sha_setkey,
.setauthsize = otx_cpt_aead_set_authsize,
.encrypt = otx_cpt_aead_null_encrypt,
.decrypt = otx_cpt_aead_null_decrypt,
.ivsize = 0,
.maxauthsize = SHA1_DIGEST_SIZE,
}, {
.base = {
.cra_name = "authenc(hmac(sha256),ecb(cipher_null))",
.cra_driver_name = "cpt_hmac_sha256_ecb_null",
.cra_blocksize = 1,
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
.cra_priority = 4001,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = otx_cpt_aead_ecb_null_sha256_init,
.exit = otx_cpt_aead_exit,
.setkey = otx_cpt_aead_ecb_null_sha_setkey,
.setauthsize = otx_cpt_aead_set_authsize,
.encrypt = otx_cpt_aead_null_encrypt,
.decrypt = otx_cpt_aead_null_decrypt,
.ivsize = 0,
.maxauthsize = SHA256_DIGEST_SIZE,
}, {
.base = {
.cra_name = "authenc(hmac(sha384),ecb(cipher_null))",
.cra_driver_name = "cpt_hmac_sha384_ecb_null",
.cra_blocksize = 1,
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
.cra_priority = 4001,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = otx_cpt_aead_ecb_null_sha384_init,
.exit = otx_cpt_aead_exit,
.setkey = otx_cpt_aead_ecb_null_sha_setkey,
.setauthsize = otx_cpt_aead_set_authsize,
.encrypt = otx_cpt_aead_null_encrypt,
.decrypt = otx_cpt_aead_null_decrypt,
.ivsize = 0,
.maxauthsize = SHA384_DIGEST_SIZE,
}, {
.base = {
.cra_name = "authenc(hmac(sha512),ecb(cipher_null))",
.cra_driver_name = "cpt_hmac_sha512_ecb_null",
.cra_blocksize = 1,
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
.cra_priority = 4001,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = otx_cpt_aead_ecb_null_sha512_init,
.exit = otx_cpt_aead_exit,
.setkey = otx_cpt_aead_ecb_null_sha_setkey,
.setauthsize = otx_cpt_aead_set_authsize,
.encrypt = otx_cpt_aead_null_encrypt,
.decrypt = otx_cpt_aead_null_decrypt,
.ivsize = 0,
.maxauthsize = SHA512_DIGEST_SIZE,
}, {
.base = {
.cra_name = "rfc4106(gcm(aes))",
.cra_driver_name = "cpt_rfc4106_gcm_aes",
.cra_blocksize = 1,
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
.cra_priority = 4001,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = otx_cpt_aead_gcm_aes_init,
.exit = otx_cpt_aead_exit,
.setkey = otx_cpt_aead_gcm_aes_setkey,
.setauthsize = otx_cpt_aead_set_authsize,
.encrypt = otx_cpt_aead_encrypt,
.decrypt = otx_cpt_aead_decrypt,
.ivsize = AES_GCM_IV_SIZE,
.maxauthsize = AES_GCM_ICV_SIZE,
} };
static inline int is_any_alg_used(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++)
if (refcount_read(&otx_cpt_skciphers[i].base.cra_refcnt) != 1)
return true;
for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++)
if (refcount_read(&otx_cpt_aeads[i].base.cra_refcnt) != 1)
return true;
return false;
}
static inline int cpt_register_algs(void)
{
int i, err = 0;
if (!IS_ENABLED(CONFIG_DM_CRYPT)) {
for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++)
otx_cpt_skciphers[i].base.cra_flags &= ~CRYPTO_ALG_DEAD;
err = crypto_register_skciphers(otx_cpt_skciphers,
ARRAY_SIZE(otx_cpt_skciphers));
if (err)
return err;
}
for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++)
otx_cpt_aeads[i].base.cra_flags &= ~CRYPTO_ALG_DEAD;
err = crypto_register_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads));
if (err) {
crypto_unregister_skciphers(otx_cpt_skciphers,
ARRAY_SIZE(otx_cpt_skciphers));
return err;
}
return 0;
}
static inline void cpt_unregister_algs(void)
{
crypto_unregister_skciphers(otx_cpt_skciphers,
ARRAY_SIZE(otx_cpt_skciphers));
crypto_unregister_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads));
}
static int compare_func(const void *lptr, const void *rptr)
{
struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr;
struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr;
if (ldesc->dev->devfn < rdesc->dev->devfn)
return -1;
if (ldesc->dev->devfn > rdesc->dev->devfn)
return 1;
return 0;
}
static void swap_func(void *lptr, void *rptr, int size)
{
struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr;
struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr;
swap(*ldesc, *rdesc);
}
int otx_cpt_crypto_init(struct pci_dev *pdev, struct module *mod,
enum otx_cptpf_type pf_type,
enum otx_cptvf_type engine_type,
int num_queues, int num_devices)
{
int ret = 0;
int count;
mutex_lock(&mutex);
switch (engine_type) {
case OTX_CPT_SE_TYPES:
count = atomic_read(&se_devices.count);
if (count >= CPT_MAX_VF_NUM) {
dev_err(&pdev->dev, "No space to add a new device\n");
ret = -ENOSPC;
goto err;
}
se_devices.desc[count].pf_type = pf_type;
se_devices.desc[count].num_queues = num_queues;
se_devices.desc[count++].dev = pdev;
atomic_inc(&se_devices.count);
if (atomic_read(&se_devices.count) == num_devices &&
is_crypto_registered == false) {
if (cpt_register_algs()) {
dev_err(&pdev->dev,
"Error in registering crypto algorithms\n");
ret = -EINVAL;
goto err;
}
try_module_get(mod);
is_crypto_registered = true;
}
sort(se_devices.desc, count, sizeof(struct cpt_device_desc),
compare_func, swap_func);
break;
case OTX_CPT_AE_TYPES:
count = atomic_read(&ae_devices.count);
if (count >= CPT_MAX_VF_NUM) {
dev_err(&pdev->dev, "No space to a add new device\n");
ret = -ENOSPC;
goto err;
}
ae_devices.desc[count].pf_type = pf_type;
ae_devices.desc[count].num_queues = num_queues;
ae_devices.desc[count++].dev = pdev;
atomic_inc(&ae_devices.count);
sort(ae_devices.desc, count, sizeof(struct cpt_device_desc),
compare_func, swap_func);
break;
default:
dev_err(&pdev->dev, "Unknown VF type %d\n", engine_type);
ret = BAD_OTX_CPTVF_TYPE;
}
err:
mutex_unlock(&mutex);
return ret;
}
void otx_cpt_crypto_exit(struct pci_dev *pdev, struct module *mod,
enum otx_cptvf_type engine_type)
{
struct cpt_device_table *dev_tbl;
bool dev_found = false;
int i, j, count;
mutex_lock(&mutex);
dev_tbl = (engine_type == OTX_CPT_AE_TYPES) ? &ae_devices : &se_devices;
count = atomic_read(&dev_tbl->count);
for (i = 0; i < count; i++)
if (pdev == dev_tbl->desc[i].dev) {
for (j = i; j < count-1; j++)
dev_tbl->desc[j] = dev_tbl->desc[j+1];
dev_found = true;
break;
}
if (!dev_found) {
dev_err(&pdev->dev, "%s device not found\n", __func__);
goto exit;
}
if (engine_type != OTX_CPT_AE_TYPES) {
if (atomic_dec_and_test(&se_devices.count) &&
!is_any_alg_used()) {
cpt_unregister_algs();
module_put(mod);
is_crypto_registered = false;
}
} else
atomic_dec(&ae_devices.count);
exit:
mutex_unlock(&mutex);
}