blob: bb9b026ae88e52661d1e02e11aa8389c9b400d8f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/* Copyright (c) 2016-2017 Hisilicon Limited. */
#include "hclge_err.h"
static const struct hclge_hw_error hclge_imp_tcm_ecc_int[] = {
{
.int_msk = BIT(1),
.msg = "imp_itcm0_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(3),
.msg = "imp_itcm1_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(5),
.msg = "imp_itcm2_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(7),
.msg = "imp_itcm3_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(9),
.msg = "imp_dtcm0_mem0_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(11),
.msg = "imp_dtcm0_mem1_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(13),
.msg = "imp_dtcm1_mem0_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(15),
.msg = "imp_dtcm1_mem1_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(17),
.msg = "imp_itcm4_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_cmdq_nic_mem_ecc_int[] = {
{
.int_msk = BIT(1),
.msg = "cmdq_nic_rx_depth_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(3),
.msg = "cmdq_nic_tx_depth_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(5),
.msg = "cmdq_nic_rx_tail_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(7),
.msg = "cmdq_nic_tx_tail_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(9),
.msg = "cmdq_nic_rx_head_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(11),
.msg = "cmdq_nic_tx_head_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(13),
.msg = "cmdq_nic_rx_addr_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(15),
.msg = "cmdq_nic_tx_addr_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(17),
.msg = "cmdq_rocee_rx_depth_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(19),
.msg = "cmdq_rocee_tx_depth_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(21),
.msg = "cmdq_rocee_rx_tail_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(23),
.msg = "cmdq_rocee_tx_tail_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(25),
.msg = "cmdq_rocee_rx_head_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(27),
.msg = "cmdq_rocee_tx_head_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(29),
.msg = "cmdq_rocee_rx_addr_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(31),
.msg = "cmdq_rocee_tx_addr_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_tqp_int_ecc_int[] = {
{
.int_msk = BIT(6),
.msg = "tqp_int_cfg_even_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(7),
.msg = "tqp_int_cfg_odd_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(8),
.msg = "tqp_int_ctrl_even_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(9),
.msg = "tqp_int_ctrl_odd_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(10),
.msg = "tx_que_scan_int_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(11),
.msg = "rx_que_scan_int_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_msix_sram_ecc_int[] = {
{
.int_msk = BIT(1),
.msg = "msix_nic_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(3),
.msg = "msix_rocee_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_igu_int[] = {
{
.int_msk = BIT(0),
.msg = "igu_rx_buf0_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "igu_rx_buf1_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_igu_egu_tnl_int[] = {
{
.int_msk = BIT(0),
.msg = "rx_buf_overflow",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(1),
.msg = "rx_stp_fifo_overflow",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "rx_stp_fifo_underflow",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "tx_buf_overflow",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "tx_buf_underrun",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "rx_stp_buf_overflow",
.reset_level = HNAE3_GLOBAL_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_ncsi_err_int[] = {
{
.int_msk = BIT(1),
.msg = "ncsi_tx_ecc_mbit_err",
.reset_level = HNAE3_NONE_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st1[] = {
{
.int_msk = BIT(0),
.msg = "vf_vlan_ad_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(1),
.msg = "umv_mcast_group_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "umv_key_mem0_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "umv_key_mem1_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "umv_key_mem2_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "umv_key_mem3_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "umv_ad_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "rss_tc_mode_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(8),
.msg = "rss_idt_mem0_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(9),
.msg = "rss_idt_mem1_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(10),
.msg = "rss_idt_mem2_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(11),
.msg = "rss_idt_mem3_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(12),
.msg = "rss_idt_mem4_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(13),
.msg = "rss_idt_mem5_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(14),
.msg = "rss_idt_mem6_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(15),
.msg = "rss_idt_mem7_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(16),
.msg = "rss_idt_mem8_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(17),
.msg = "rss_idt_mem9_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(18),
.msg = "rss_idt_mem10_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(19),
.msg = "rss_idt_mem11_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(20),
.msg = "rss_idt_mem12_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(21),
.msg = "rss_idt_mem13_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(22),
.msg = "rss_idt_mem14_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(23),
.msg = "rss_idt_mem15_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(24),
.msg = "port_vlan_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(25),
.msg = "mcast_linear_table_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(26),
.msg = "mcast_result_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(27),
.msg = "flow_director_ad_mem0_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(28),
.msg = "flow_director_ad_mem1_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(29),
.msg = "rx_vlan_tag_memory_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(30),
.msg = "Tx_UP_mapping_config_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_ppp_pf_abnormal_int[] = {
{
.int_msk = BIT(0),
.msg = "tx_vlan_tag_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(1),
.msg = "rss_list_tc_unassigned_queue_err",
.reset_level = HNAE3_NONE_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st3[] = {
{
.int_msk = BIT(0),
.msg = "hfs_fifo_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(1),
.msg = "rslt_descr_fifo_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "tx_vlan_tag_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "FD_CN0_memory_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "FD_CN1_memory_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "GRO_AD_memory_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_tm_sch_rint[] = {
{
.int_msk = BIT(1),
.msg = "tm_sch_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "tm_sch_port_shap_sub_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "tm_sch_port_shap_sub_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "tm_sch_pg_pshap_sub_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "tm_sch_pg_pshap_sub_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "tm_sch_pg_cshap_sub_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "tm_sch_pg_cshap_sub_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(8),
.msg = "tm_sch_pri_pshap_sub_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(9),
.msg = "tm_sch_pri_pshap_sub_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(10),
.msg = "tm_sch_pri_cshap_sub_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(11),
.msg = "tm_sch_pri_cshap_sub_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(12),
.msg = "tm_sch_port_shap_offset_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(13),
.msg = "tm_sch_port_shap_offset_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(14),
.msg = "tm_sch_pg_pshap_offset_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(15),
.msg = "tm_sch_pg_pshap_offset_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(16),
.msg = "tm_sch_pg_cshap_offset_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(17),
.msg = "tm_sch_pg_cshap_offset_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(18),
.msg = "tm_sch_pri_pshap_offset_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(19),
.msg = "tm_sch_pri_pshap_offset_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(20),
.msg = "tm_sch_pri_cshap_offset_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(21),
.msg = "tm_sch_pri_cshap_offset_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(22),
.msg = "tm_sch_rq_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(23),
.msg = "tm_sch_rq_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(24),
.msg = "tm_sch_nq_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(25),
.msg = "tm_sch_nq_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(26),
.msg = "tm_sch_roce_up_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(27),
.msg = "tm_sch_roce_up_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(28),
.msg = "tm_sch_rcb_byte_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(29),
.msg = "tm_sch_rcb_byte_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(30),
.msg = "tm_sch_ssu_byte_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(31),
.msg = "tm_sch_ssu_byte_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_qcn_fifo_rint[] = {
{
.int_msk = BIT(0),
.msg = "qcn_shap_gp0_sch_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(1),
.msg = "qcn_shap_gp0_sch_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "qcn_shap_gp1_sch_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "qcn_shap_gp1_sch_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "qcn_shap_gp2_sch_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "qcn_shap_gp2_sch_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "qcn_shap_gp3_sch_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "qcn_shap_gp3_sch_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(8),
.msg = "qcn_shap_gp0_offset_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(9),
.msg = "qcn_shap_gp0_offset_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(10),
.msg = "qcn_shap_gp1_offset_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(11),
.msg = "qcn_shap_gp1_offset_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(12),
.msg = "qcn_shap_gp2_offset_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(13),
.msg = "qcn_shap_gp2_offset_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(14),
.msg = "qcn_shap_gp3_offset_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(15),
.msg = "qcn_shap_gp3_offset_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(16),
.msg = "qcn_byte_info_fifo_rd_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(17),
.msg = "qcn_byte_info_fifo_wr_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_qcn_ecc_rint[] = {
{
.int_msk = BIT(1),
.msg = "qcn_byte_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "qcn_time_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "qcn_fb_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "qcn_link_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(9),
.msg = "qcn_rate_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(11),
.msg = "qcn_tmplt_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(13),
.msg = "qcn_shap_cfg_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(15),
.msg = "qcn_gp0_barrel_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(17),
.msg = "qcn_gp1_barrel_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(19),
.msg = "qcn_gp2_barrel_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(21),
.msg = "qcn_gp3_barral_mem_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_mac_afifo_tnl_int[] = {
{
.int_msk = BIT(0),
.msg = "egu_cge_afifo_ecc_1bit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(1),
.msg = "egu_cge_afifo_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "egu_lge_afifo_ecc_1bit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(3),
.msg = "egu_lge_afifo_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "cge_igu_afifo_ecc_1bit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(5),
.msg = "cge_igu_afifo_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "lge_igu_afifo_ecc_1bit_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(7),
.msg = "lge_igu_afifo_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(8),
.msg = "cge_igu_afifo_overflow_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(9),
.msg = "lge_igu_afifo_overflow_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(10),
.msg = "egu_cge_afifo_underrun_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(11),
.msg = "egu_lge_afifo_underrun_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(12),
.msg = "egu_ge_afifo_underrun_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(13),
.msg = "ge_igu_afifo_overflow_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st2[] = {
{
.int_msk = BIT(13),
.msg = "rpu_rx_pkt_bit32_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(14),
.msg = "rpu_rx_pkt_bit33_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(15),
.msg = "rpu_rx_pkt_bit34_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(16),
.msg = "rpu_rx_pkt_bit35_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(17),
.msg = "rcb_tx_ring_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(18),
.msg = "rcb_rx_ring_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(19),
.msg = "rcb_tx_fbd_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(20),
.msg = "rcb_rx_ebd_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(21),
.msg = "rcb_tso_info_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(22),
.msg = "rcb_tx_int_info_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(23),
.msg = "rcb_rx_int_info_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(24),
.msg = "tpu_tx_pkt_0_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(25),
.msg = "tpu_tx_pkt_1_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(26),
.msg = "rd_bus_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(27),
.msg = "wr_bus_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(28),
.msg = "reg_search_miss",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(29),
.msg = "rx_q_search_miss",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(30),
.msg = "ooo_ecc_err_detect",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(31),
.msg = "ooo_ecc_err_multpl",
.reset_level = HNAE3_GLOBAL_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st3[] = {
{
.int_msk = BIT(4),
.msg = "gro_bd_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "gro_context_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "rx_stash_cfg_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "axi_rd_fbd_ecc_mbit_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_ppu_pf_abnormal_int[] = {
{
.int_msk = BIT(0),
.msg = "over_8bd_no_fe",
.reset_level = HNAE3_FUNC_RESET
}, {
.int_msk = BIT(1),
.msg = "tso_mss_cmp_min_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(2),
.msg = "tso_mss_cmp_max_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(3),
.msg = "tx_rd_fbd_poison",
.reset_level = HNAE3_FUNC_RESET
}, {
.int_msk = BIT(4),
.msg = "rx_rd_ebd_poison",
.reset_level = HNAE3_FUNC_RESET
}, {
.int_msk = BIT(5),
.msg = "buf_wait_timeout",
.reset_level = HNAE3_NONE_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_ssu_com_err_int[] = {
{
.int_msk = BIT(0),
.msg = "buf_sum_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(1),
.msg = "ppp_mb_num_err",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(2),
.msg = "ppp_mbid_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "ppp_rlt_mac_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "ppp_rlt_host_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "cks_edit_position_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "cks_edit_condition_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "vlan_edit_condition_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(8),
.msg = "vlan_num_ot_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(9),
.msg = "vlan_num_in_err",
.reset_level = HNAE3_GLOBAL_RESET
}, {
/* sentinel */
}
};
#define HCLGE_SSU_MEM_ECC_ERR(x) \
{ \
.int_msk = BIT(x), \
.msg = "ssu_mem" #x "_ecc_mbit_err", \
.reset_level = HNAE3_GLOBAL_RESET \
}
static const struct hclge_hw_error hclge_ssu_mem_ecc_err_int[] = {
HCLGE_SSU_MEM_ECC_ERR(0),
HCLGE_SSU_MEM_ECC_ERR(1),
HCLGE_SSU_MEM_ECC_ERR(2),
HCLGE_SSU_MEM_ECC_ERR(3),
HCLGE_SSU_MEM_ECC_ERR(4),
HCLGE_SSU_MEM_ECC_ERR(5),
HCLGE_SSU_MEM_ECC_ERR(6),
HCLGE_SSU_MEM_ECC_ERR(7),
HCLGE_SSU_MEM_ECC_ERR(8),
HCLGE_SSU_MEM_ECC_ERR(9),
HCLGE_SSU_MEM_ECC_ERR(10),
HCLGE_SSU_MEM_ECC_ERR(11),
HCLGE_SSU_MEM_ECC_ERR(12),
HCLGE_SSU_MEM_ECC_ERR(13),
HCLGE_SSU_MEM_ECC_ERR(14),
HCLGE_SSU_MEM_ECC_ERR(15),
HCLGE_SSU_MEM_ECC_ERR(16),
HCLGE_SSU_MEM_ECC_ERR(17),
HCLGE_SSU_MEM_ECC_ERR(18),
HCLGE_SSU_MEM_ECC_ERR(19),
HCLGE_SSU_MEM_ECC_ERR(20),
HCLGE_SSU_MEM_ECC_ERR(21),
HCLGE_SSU_MEM_ECC_ERR(22),
HCLGE_SSU_MEM_ECC_ERR(23),
HCLGE_SSU_MEM_ECC_ERR(24),
HCLGE_SSU_MEM_ECC_ERR(25),
HCLGE_SSU_MEM_ECC_ERR(26),
HCLGE_SSU_MEM_ECC_ERR(27),
HCLGE_SSU_MEM_ECC_ERR(28),
HCLGE_SSU_MEM_ECC_ERR(29),
HCLGE_SSU_MEM_ECC_ERR(30),
HCLGE_SSU_MEM_ECC_ERR(31),
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ssu_port_based_err_int[] = {
{
.int_msk = BIT(0),
.msg = "roc_pkt_without_key_port",
.reset_level = HNAE3_FUNC_RESET
}, {
.int_msk = BIT(1),
.msg = "tpu_pkt_without_key_port",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "igu_pkt_without_key_port",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "roc_eof_mis_match_port",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "tpu_eof_mis_match_port",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "igu_eof_mis_match_port",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "roc_sof_mis_match_port",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "tpu_sof_mis_match_port",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(8),
.msg = "igu_sof_mis_match_port",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(11),
.msg = "ets_rd_int_rx_port",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(12),
.msg = "ets_wr_int_rx_port",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(13),
.msg = "ets_rd_int_tx_port",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(14),
.msg = "ets_wr_int_tx_port",
.reset_level = HNAE3_GLOBAL_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_ssu_fifo_overflow_int[] = {
{
.int_msk = BIT(0),
.msg = "ig_mac_inf_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(1),
.msg = "ig_host_inf_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "ig_roc_buf_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "ig_host_data_fifo_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(4),
.msg = "ig_host_key_fifo_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(5),
.msg = "tx_qcn_fifo_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(6),
.msg = "rx_qcn_fifo_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(7),
.msg = "tx_pf_rd_fifo_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(8),
.msg = "rx_pf_rd_fifo_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(9),
.msg = "qm_eof_fifo_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(10),
.msg = "mb_rlt_fifo_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(11),
.msg = "dup_uncopy_fifo_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(12),
.msg = "dup_cnt_rd_fifo_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(13),
.msg = "dup_cnt_drop_fifo_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(14),
.msg = "dup_cnt_wrb_fifo_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(15),
.msg = "host_cmd_fifo_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(16),
.msg = "mac_cmd_fifo_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(17),
.msg = "host_cmd_bitmap_empty_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(18),
.msg = "mac_cmd_bitmap_empty_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(19),
.msg = "dup_bitmap_empty_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(20),
.msg = "out_queue_bitmap_empty_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(21),
.msg = "bank2_bitmap_empty_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(22),
.msg = "bank1_bitmap_empty_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(23),
.msg = "bank0_bitmap_empty_int",
.reset_level = HNAE3_GLOBAL_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_ssu_ets_tcg_int[] = {
{
.int_msk = BIT(0),
.msg = "ets_rd_int_rx_tcg",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(1),
.msg = "ets_wr_int_rx_tcg",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(2),
.msg = "ets_rd_int_tx_tcg",
.reset_level = HNAE3_GLOBAL_RESET
}, {
.int_msk = BIT(3),
.msg = "ets_wr_int_tx_tcg",
.reset_level = HNAE3_GLOBAL_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_ssu_port_based_pf_int[] = {
{
.int_msk = BIT(0),
.msg = "roc_pkt_without_key_port",
.reset_level = HNAE3_FUNC_RESET
}, {
.int_msk = BIT(9),
.msg = "low_water_line_err_port",
.reset_level = HNAE3_NONE_RESET
}, {
.int_msk = BIT(10),
.msg = "hi_water_line_err_port",
.reset_level = HNAE3_GLOBAL_RESET
}, {
/* sentinel */
}
};
static const struct hclge_hw_error hclge_rocee_qmm_ovf_err_int[] = {
{
.int_msk = 0,
.msg = "rocee qmm ovf: sgid invalid err"
}, {
.int_msk = 0x4,
.msg = "rocee qmm ovf: sgid ovf err"
}, {
.int_msk = 0x8,
.msg = "rocee qmm ovf: smac invalid err"
}, {
.int_msk = 0xC,
.msg = "rocee qmm ovf: smac ovf err"
}, {
.int_msk = 0x10,
.msg = "rocee qmm ovf: cqc invalid err"
}, {
.int_msk = 0x11,
.msg = "rocee qmm ovf: cqc ovf err"
}, {
.int_msk = 0x12,
.msg = "rocee qmm ovf: cqc hopnum err"
}, {
.int_msk = 0x13,
.msg = "rocee qmm ovf: cqc ba0 err"
}, {
.int_msk = 0x14,
.msg = "rocee qmm ovf: srqc invalid err"
}, {
.int_msk = 0x15,
.msg = "rocee qmm ovf: srqc ovf err"
}, {
.int_msk = 0x16,
.msg = "rocee qmm ovf: srqc hopnum err"
}, {
.int_msk = 0x17,
.msg = "rocee qmm ovf: srqc ba0 err"
}, {
.int_msk = 0x18,
.msg = "rocee qmm ovf: mpt invalid err"
}, {
.int_msk = 0x19,
.msg = "rocee qmm ovf: mpt ovf err"
}, {
.int_msk = 0x1A,
.msg = "rocee qmm ovf: mpt hopnum err"
}, {
.int_msk = 0x1B,
.msg = "rocee qmm ovf: mpt ba0 err"
}, {
.int_msk = 0x1C,
.msg = "rocee qmm ovf: qpc invalid err"
}, {
.int_msk = 0x1D,
.msg = "rocee qmm ovf: qpc ovf err"
}, {
.int_msk = 0x1E,
.msg = "rocee qmm ovf: qpc hopnum err"
}, {
.int_msk = 0x1F,
.msg = "rocee qmm ovf: qpc ba0 err"
}, {
/* sentinel */
}
};
static const struct hclge_hw_module_id hclge_hw_module_id_st[] = {
{
.module_id = MODULE_NONE,
.msg = "MODULE_NONE"
}, {
.module_id = MODULE_BIOS_COMMON,
.msg = "MODULE_BIOS_COMMON"
}, {
.module_id = MODULE_GE,
.msg = "MODULE_GE"
}, {
.module_id = MODULE_IGU_EGU,
.msg = "MODULE_IGU_EGU"
}, {
.module_id = MODULE_LGE,
.msg = "MODULE_LGE"
}, {
.module_id = MODULE_NCSI,
.msg = "MODULE_NCSI"
}, {
.module_id = MODULE_PPP,
.msg = "MODULE_PPP"
}, {
.module_id = MODULE_QCN,
.msg = "MODULE_QCN"
}, {
.module_id = MODULE_RCB_RX,
.msg = "MODULE_RCB_RX"
}, {
.module_id = MODULE_RTC,
.msg = "MODULE_RTC"
}, {
.module_id = MODULE_SSU,
.msg = "MODULE_SSU"
}, {
.module_id = MODULE_TM,
.msg = "MODULE_TM"
}, {
.module_id = MODULE_RCB_TX,
.msg = "MODULE_RCB_TX"
}, {
.module_id = MODULE_TXDMA,
.msg = "MODULE_TXDMA"
}, {
.module_id = MODULE_MASTER,
.msg = "MODULE_MASTER"
}, {
.module_id = MODULE_ROCEE_TOP,
.msg = "MODULE_ROCEE_TOP"
}, {
.module_id = MODULE_ROCEE_TIMER,
.msg = "MODULE_ROCEE_TIMER"
}, {
.module_id = MODULE_ROCEE_MDB,
.msg = "MODULE_ROCEE_MDB"
}, {
.module_id = MODULE_ROCEE_TSP,
.msg = "MODULE_ROCEE_TSP"
}, {
.module_id = MODULE_ROCEE_TRP,
.msg = "MODULE_ROCEE_TRP"
}, {
.module_id = MODULE_ROCEE_SCC,
.msg = "MODULE_ROCEE_SCC"
}, {
.module_id = MODULE_ROCEE_CAEP,
.msg = "MODULE_ROCEE_CAEP"
}, {
.module_id = MODULE_ROCEE_GEN_AC,
.msg = "MODULE_ROCEE_GEN_AC"
}, {
.module_id = MODULE_ROCEE_QMM,
.msg = "MODULE_ROCEE_QMM"
}, {
.module_id = MODULE_ROCEE_LSAN,
.msg = "MODULE_ROCEE_LSAN"
}
};
static const struct hclge_hw_type_id hclge_hw_type_id_st[] = {
{
.type_id = NONE_ERROR,
.msg = "none_error"
}, {
.type_id = FIFO_ERROR,
.msg = "fifo_error"
}, {
.type_id = MEMORY_ERROR,
.msg = "memory_error"
}, {
.type_id = POISON_ERROR,
.msg = "poison_error"
}, {
.type_id = MSIX_ECC_ERROR,
.msg = "msix_ecc_error"
}, {
.type_id = TQP_INT_ECC_ERROR,
.msg = "tqp_int_ecc_error"
}, {
.type_id = PF_ABNORMAL_INT_ERROR,
.msg = "pf_abnormal_int_error"
}, {
.type_id = MPF_ABNORMAL_INT_ERROR,
.msg = "mpf_abnormal_int_error"
}, {
.type_id = COMMON_ERROR,
.msg = "common_error"
}, {
.type_id = PORT_ERROR,
.msg = "port_error"
}, {
.type_id = ETS_ERROR,
.msg = "ets_error"
}, {
.type_id = NCSI_ERROR,
.msg = "ncsi_error"
}, {
.type_id = GLB_ERROR,
.msg = "glb_error"
}, {
.type_id = ROCEE_NORMAL_ERR,
.msg = "rocee_normal_error"
}, {
.type_id = ROCEE_OVF_ERR,
.msg = "rocee_ovf_error"
}
};
static void hclge_log_error(struct device *dev, char *reg,
const struct hclge_hw_error *err,
u32 err_sts, unsigned long *reset_requests)
{
while (err->msg) {
if (err->int_msk & err_sts) {
dev_err(dev, "%s %s found [error status=0x%x]\n",
reg, err->msg, err_sts);
if (err->reset_level &&
err->reset_level != HNAE3_NONE_RESET)
set_bit(err->reset_level, reset_requests);
}
err++;
}
}
/* hclge_cmd_query_error: read the error information
* @hdev: pointer to struct hclge_dev
* @desc: descriptor for describing the command
* @cmd: command opcode
* @flag: flag for extended command structure
*
* This function query the error info from hw register/s using command
*/
static int hclge_cmd_query_error(struct hclge_dev *hdev,
struct hclge_desc *desc, u32 cmd, u16 flag)
{
struct device *dev = &hdev->pdev->dev;
int desc_num = 1;
int ret;
hclge_cmd_setup_basic_desc(&desc[0], cmd, true);
if (flag) {
desc[0].flag |= cpu_to_le16(flag);
hclge_cmd_setup_basic_desc(&desc[1], cmd, true);
desc_num = 2;
}
ret = hclge_cmd_send(&hdev->hw, &desc[0], desc_num);
if (ret)
dev_err(dev, "query error cmd failed (%d)\n", ret);
return ret;
}
static int hclge_clear_mac_tnl_int(struct hclge_dev *hdev)
{
struct hclge_desc desc;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CLEAR_MAC_TNL_INT, false);
desc.data[0] = cpu_to_le32(HCLGE_MAC_TNL_INT_CLR);
return hclge_cmd_send(&hdev->hw, &desc, 1);
}
static int hclge_config_common_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int ret;
/* configure common error interrupts */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_COMMON_ECC_INT_CFG, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], HCLGE_COMMON_ECC_INT_CFG, false);
if (en) {
desc[0].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN);
desc[0].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN |
HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN);
desc[0].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN);
desc[0].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN |
HCLGE_MSIX_SRAM_ECC_ERR_INT_EN);
desc[0].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN);
}
desc[1].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN_MASK);
desc[1].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN_MASK |
HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN_MASK);
desc[1].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN_MASK);
desc[1].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN_MASK |
HCLGE_MSIX_SRAM_ECC_ERR_INT_EN_MASK);
desc[1].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
if (ret)
dev_err(dev,
"fail(%d) to configure common err interrupts\n", ret);
return ret;
}
static int hclge_config_ncsi_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
return 0;
/* configure NCSI error interrupts */
hclge_cmd_setup_basic_desc(&desc, HCLGE_NCSI_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_NCSI_ERR_INT_EN);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(dev,
"fail(%d) to configure NCSI error interrupts\n", ret);
return ret;
}
static int hclge_config_igu_egu_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
/* configure IGU,EGU error interrupts */
hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_COMMON_INT_EN, false);
desc.data[0] = cpu_to_le32(HCLGE_IGU_ERR_INT_TYPE);
if (en)
desc.data[0] |= cpu_to_le32(HCLGE_IGU_ERR_INT_EN);
desc.data[1] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(dev,
"fail(%d) to configure IGU common interrupts\n", ret);
return ret;
}
hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_EGU_TNL_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN);
desc.data[1] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(dev,
"fail(%d) to configure IGU-EGU TNL interrupts\n", ret);
return ret;
}
ret = hclge_config_ncsi_hw_err_int(hdev, en);
return ret;
}
static int hclge_config_ppp_error_interrupt(struct hclge_dev *hdev, u32 cmd,
bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int ret;
/* configure PPP error interrupts */
hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
if (cmd == HCLGE_PPP_CMD0_INT_CMD) {
if (en) {
desc[0].data[0] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN);
desc[0].data[1] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN);
desc[0].data[4] = cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN);
}
desc[1].data[0] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN_MASK);
desc[1].data[1] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN_MASK);
if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
desc[1].data[2] =
cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN_MASK);
} else if (cmd == HCLGE_PPP_CMD1_INT_CMD) {
if (en) {
desc[0].data[0] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN);
desc[0].data[1] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN);
}
desc[1].data[0] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN_MASK);
desc[1].data[1] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN_MASK);
}
ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
if (ret)
dev_err(dev, "fail(%d) to configure PPP error intr\n", ret);
return ret;
}
static int hclge_config_ppp_hw_err_int(struct hclge_dev *hdev, bool en)
{
int ret;
ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD0_INT_CMD,
en);
if (ret)
return ret;
ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD1_INT_CMD,
en);
return ret;
}
static int hclge_config_tm_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
/* configure TM SCH hw errors */
hclge_cmd_setup_basic_desc(&desc, HCLGE_TM_SCH_ECC_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_TM_SCH_ECC_ERR_INT_EN);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(dev, "fail(%d) to configure TM SCH errors\n", ret);
return ret;
}
/* configure TM QCN hw errors */
hclge_cmd_setup_basic_desc(&desc, HCLGE_TM_QCN_MEM_INT_CFG, false);
if (en)
desc.data[1] = cpu_to_le32(HCLGE_TM_QCN_MEM_ERR_INT_EN);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(dev,
"fail(%d) to configure TM QCN mem errors\n", ret);
return ret;
}
static int hclge_config_mac_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
/* configure MAC common error interrupts */
hclge_cmd_setup_basic_desc(&desc, HCLGE_MAC_COMMON_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN);
desc.data[1] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(dev,
"fail(%d) to configure MAC COMMON error intr\n", ret);
return ret;
}
int hclge_config_mac_tnl_int(struct hclge_dev *hdev, bool en)
{
struct hclge_desc desc;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_TNL_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_MAC_TNL_INT_EN);
else
desc.data[0] = 0;
desc.data[1] = cpu_to_le32(HCLGE_MAC_TNL_INT_EN_MASK);
return hclge_cmd_send(&hdev->hw, &desc, 1);
}
static int hclge_config_ppu_error_interrupts(struct hclge_dev *hdev, u32 cmd,
bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int desc_num = 1;
int ret;
/* configure PPU error interrupts */
if (cmd == HCLGE_PPU_MPF_ECC_INT_CMD) {
hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
if (en) {
desc[0].data[0] =
cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT0_EN);
desc[0].data[1] =
cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT1_EN);
desc[1].data[3] =
cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT3_EN);
desc[1].data[4] =
cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN);
}
desc[1].data[0] =
cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT0_EN_MASK);
desc[1].data[1] =
cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT1_EN_MASK);
desc[1].data[2] =
cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN_MASK);
desc[1].data[3] |=
cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT3_EN_MASK);
desc_num = 2;
} else if (cmd == HCLGE_PPU_MPF_OTHER_INT_CMD) {
hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
if (en)
desc[0].data[0] =
cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN2);
desc[0].data[2] =
cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN2_MASK);
} else if (cmd == HCLGE_PPU_PF_OTHER_INT_CMD) {
hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
if (en)
desc[0].data[0] =
cpu_to_le32(HCLGE_PPU_PF_ABNORMAL_INT_EN);
desc[0].data[2] =
cpu_to_le32(HCLGE_PPU_PF_ABNORMAL_INT_EN_MASK);
} else {
dev_err(dev, "Invalid cmd to configure PPU error interrupts\n");
return -EINVAL;
}
ret = hclge_cmd_send(&hdev->hw, &desc[0], desc_num);
return ret;
}
static int hclge_config_ppu_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
int ret;
ret = hclge_config_ppu_error_interrupts(hdev, HCLGE_PPU_MPF_ECC_INT_CMD,
en);
if (ret) {
dev_err(dev, "fail(%d) to configure PPU MPF ECC error intr\n",
ret);
return ret;
}
ret = hclge_config_ppu_error_interrupts(hdev,
HCLGE_PPU_MPF_OTHER_INT_CMD,
en);
if (ret) {
dev_err(dev, "fail(%d) to configure PPU MPF other intr\n", ret);
return ret;
}
ret = hclge_config_ppu_error_interrupts(hdev,
HCLGE_PPU_PF_OTHER_INT_CMD, en);
if (ret)
dev_err(dev, "fail(%d) to configure PPU PF error interrupts\n",
ret);
return ret;
}
static int hclge_config_ssu_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int ret;
/* configure SSU ecc error interrupts */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_ECC_INT_CMD, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_ECC_INT_CMD, false);
if (en) {
desc[0].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN);
desc[0].data[1] =
cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN);
desc[0].data[4] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN);
}
desc[1].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN_MASK);
desc[1].data[1] = cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN_MASK);
desc[1].data[2] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
if (ret) {
dev_err(dev,
"fail(%d) to configure SSU ECC error interrupt\n", ret);
return ret;
}
/* configure SSU common error interrupts */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_COMMON_INT_CMD, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_COMMON_INT_CMD, false);
if (en) {
if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
desc[0].data[0] =
cpu_to_le32(HCLGE_SSU_COMMON_INT_EN);
else
desc[0].data[0] =
cpu_to_le32(HCLGE_SSU_COMMON_INT_EN & ~BIT(5));
desc[0].data[1] = cpu_to_le32(HCLGE_SSU_PORT_BASED_ERR_INT_EN);
desc[0].data[2] =
cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN);
}
desc[1].data[0] = cpu_to_le32(HCLGE_SSU_COMMON_INT_EN_MASK |
HCLGE_SSU_PORT_BASED_ERR_INT_EN_MASK);
desc[1].data[1] = cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
if (ret)
dev_err(dev,
"fail(%d) to configure SSU COMMON error intr\n", ret);
return ret;
}
/* hclge_query_bd_num: query number of buffer descriptors
* @hdev: pointer to struct hclge_dev
* @is_ras: true for ras, false for msix
* @mpf_bd_num: number of main PF interrupt buffer descriptors
* @pf_bd_num: number of not main PF interrupt buffer descriptors
*
* This function querys number of mpf and pf buffer descriptors.
*/
static int hclge_query_bd_num(struct hclge_dev *hdev, bool is_ras,
u32 *mpf_bd_num, u32 *pf_bd_num)
{
struct device *dev = &hdev->pdev->dev;
u32 mpf_min_bd_num, pf_min_bd_num;
enum hclge_opcode_type opcode;
struct hclge_desc desc_bd;
int ret;
if (is_ras) {
opcode = HCLGE_QUERY_RAS_INT_STS_BD_NUM;
mpf_min_bd_num = HCLGE_MPF_RAS_INT_MIN_BD_NUM;
pf_min_bd_num = HCLGE_PF_RAS_INT_MIN_BD_NUM;
} else {
opcode = HCLGE_QUERY_MSIX_INT_STS_BD_NUM;
mpf_min_bd_num = HCLGE_MPF_MSIX_INT_MIN_BD_NUM;
pf_min_bd_num = HCLGE_PF_MSIX_INT_MIN_BD_NUM;
}
hclge_cmd_setup_basic_desc(&desc_bd, opcode, true);
ret = hclge_cmd_send(&hdev->hw, &desc_bd, 1);
if (ret) {
dev_err(dev, "fail(%d) to query msix int status bd num\n",
ret);
return ret;
}
*mpf_bd_num = le32_to_cpu(desc_bd.data[0]);
*pf_bd_num = le32_to_cpu(desc_bd.data[1]);
if (*mpf_bd_num < mpf_min_bd_num || *pf_bd_num < pf_min_bd_num) {
dev_err(dev, "Invalid bd num: mpf(%u), pf(%u)\n",
*mpf_bd_num, *pf_bd_num);
return -EINVAL;
}
return 0;
}
/* hclge_handle_mpf_ras_error: handle all main PF RAS errors
* @hdev: pointer to struct hclge_dev
* @desc: descriptor for describing the command
* @num: number of extended command structures
*
* This function handles all the main PF RAS errors in the
* hw register/s using command.
*/
static int hclge_handle_mpf_ras_error(struct hclge_dev *hdev,
struct hclge_desc *desc,
int num)
{
struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
struct device *dev = &hdev->pdev->dev;
__le32 *desc_data;
u32 status;
int ret;
/* query all main PF RAS errors */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_MPF_RAS_INT,
true);
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret) {
dev_err(dev, "query all mpf ras int cmd failed (%d)\n", ret);
return ret;
}
/* log HNS common errors */
status = le32_to_cpu(desc[0].data[0]);
if (status)
hclge_log_error(dev, "IMP_TCM_ECC_INT_STS",
&hclge_imp_tcm_ecc_int[0], status,
&ae_dev->hw_err_reset_req);
status = le32_to_cpu(desc[0].data[1]);
if (status)
hclge_log_error(dev, "CMDQ_MEM_ECC_INT_STS",
&hclge_cmdq_nic_mem_ecc_int[0], status,
&ae_dev->hw_err_reset_req);
if ((le32_to_cpu(desc[0].data[2])) & BIT(0))
dev_warn(dev, "imp_rd_data_poison_err found\n");
status = le32_to_cpu(desc[0].data[3]);
if (status)
hclge_log_error(dev, "TQP_INT_ECC_INT_STS",
&hclge_tqp_int_ecc_int[0], status,
&ae_dev->hw_err_reset_req);
status = le32_to_cpu(desc[0].data[4]);
if (status)
hclge_log_error(dev, "MSIX_ECC_INT_STS",
&hclge_msix_sram_ecc_int[0], status,
&ae_dev->hw_err_reset_req);
/* log SSU(Storage Switch Unit) errors */
desc_data = (__le32 *)&desc[2];
status = le32_to_cpu(*(desc_data + 2));
if (status)
hclge_log_error(dev, "SSU_ECC_MULTI_BIT_INT_0",
&hclge_ssu_mem_ecc_err_int[0], status,
&ae_dev->hw_err_reset_req);
status = le32_to_cpu(*(desc_data + 3)) & BIT(0);
if (status) {
dev_err(dev, "SSU_ECC_MULTI_BIT_INT_1 ssu_mem32_ecc_mbit_err found [error status=0x%x]\n",
status);
set_bit(HNAE3_GLOBAL_RESET, &ae_dev->hw_err_reset_req);
}
status = le32_to_cpu(*(desc_data + 4)) & HCLGE_SSU_COMMON_ERR_INT_MASK;
if (status)
hclge_log_error(dev, "SSU_COMMON_ERR_INT",
&hclge_ssu_com_err_int[0], status,
&ae_dev->hw_err_reset_req);
/* log IGU(Ingress Unit) errors */
desc_data = (__le32 *)&desc[3];
status = le32_to_cpu(*desc_data) & HCLGE_IGU_INT_MASK;
if (status)
hclge_log_error(dev, "IGU_INT_STS",
&hclge_igu_int[0], status,
&ae_dev->hw_err_reset_req);
/* log PPP(Programmable Packet Process) errors */
desc_data = (__le32 *)&desc[4];
status = le32_to_cpu(*(desc_data + 1));
if (status)
hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST1",
&hclge_ppp_mpf_abnormal_int_st1[0], status,
&ae_dev->hw_err_reset_req);
status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPP_MPF_INT_ST3_MASK;
if (status)
hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST3",
&hclge_ppp_mpf_abnormal_int_st3[0], status,
&ae_dev->hw_err_reset_req);
/* log PPU(RCB) errors */
desc_data = (__le32 *)&desc[5];
status = le32_to_cpu(*(desc_data + 1));
if (status) {
dev_err(dev,
"PPU_MPF_ABNORMAL_INT_ST1 rpu_rx_pkt_ecc_mbit_err found\n");
set_bit(HNAE3_GLOBAL_RESET, &ae_dev->hw_err_reset_req);
}
status = le32_to_cpu(*(desc_data + 2));
if (status)
hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST2",
&hclge_ppu_mpf_abnormal_int_st2[0], status,
&ae_dev->hw_err_reset_req);
status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPU_MPF_INT_ST3_MASK;
if (status)
hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST3",
&hclge_ppu_mpf_abnormal_int_st3[0], status,
&ae_dev->hw_err_reset_req);
/* log TM(Traffic Manager) errors */
desc_data = (__le32 *)&desc[6];
status = le32_to_cpu(*desc_data);
if (status)
hclge_log_error(dev, "TM_SCH_RINT",
&hclge_tm_sch_rint[0], status,
&ae_dev->hw_err_reset_req);
/* log QCN(Quantized Congestion Control) errors */
desc_data = (__le32 *)&desc[7];
status = le32_to_cpu(*desc_data) & HCLGE_QCN_FIFO_INT_MASK;
if (status)
hclge_log_error(dev, "QCN_FIFO_RINT",
&hclge_qcn_fifo_rint[0], status,
&ae_dev->hw_err_reset_req);
status = le32_to_cpu(*(desc_data + 1)) & HCLGE_QCN_ECC_INT_MASK;
if (status)
hclge_log_error(dev, "QCN_ECC_RINT",
&hclge_qcn_ecc_rint[0], status,
&ae_dev->hw_err_reset_req);
/* log NCSI errors */
desc_data = (__le32 *)&desc[9];
status = le32_to_cpu(*desc_data) & HCLGE_NCSI_ECC_INT_MASK;
if (status)
hclge_log_error(dev, "NCSI_ECC_INT_RPT",
&hclge_ncsi_err_int[0], status,
&ae_dev->hw_err_reset_req);
/* clear all main PF RAS errors */
hclge_cmd_reuse_desc(&desc[0], false);
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret)
dev_err(dev, "clear all mpf ras int cmd failed (%d)\n", ret);
return ret;
}
/* hclge_handle_pf_ras_error: handle all PF RAS errors
* @hdev: pointer to struct hclge_dev
* @desc: descriptor for describing the command
* @num: number of extended command structures
*
* This function handles all the PF RAS errors in the
* hw register/s using command.
*/
static int hclge_handle_pf_ras_error(struct hclge_dev *hdev,
struct hclge_desc *desc,
int num)
{
struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
struct device *dev = &hdev->pdev->dev;
__le32 *desc_data;
u32 status;
int ret;
/* query all PF RAS errors */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_PF_RAS_INT,
true);
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret) {
dev_err(dev, "query all pf ras int cmd failed (%d)\n", ret);
return ret;
}
/* log SSU(Storage Switch Unit) errors */
status = le32_to_cpu(desc[0].data[0]);
if (status)
hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
&hclge_ssu_port_based_err_int[0], status,
&ae_dev->hw_err_reset_req);
status = le32_to_cpu(desc[0].data[1]);
if (status)
hclge_log_error(dev, "SSU_FIFO_OVERFLOW_INT",
&hclge_ssu_fifo_overflow_int[0], status,
&ae_dev->hw_err_reset_req);
status = le32_to_cpu(desc[0].data[2]);
if (status)
hclge_log_error(dev, "SSU_ETS_TCG_INT",
&hclge_ssu_ets_tcg_int[0], status,
&ae_dev->hw_err_reset_req);
/* log IGU(Ingress Unit) EGU(Egress Unit) TNL errors */
desc_data = (__le32 *)&desc[1];
status = le32_to_cpu(*desc_data) & HCLGE_IGU_EGU_TNL_INT_MASK;
if (status)
hclge_log_error(dev, "IGU_EGU_TNL_INT_STS",
&hclge_igu_egu_tnl_int[0], status,
&ae_dev->hw_err_reset_req);
/* log PPU(RCB) errors */
desc_data = (__le32 *)&desc[3];
status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_RAS_MASK;
if (status) {
hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST0",
&hclge_ppu_pf_abnormal_int[0], status,
&ae_dev->hw_err_reset_req);
hclge_report_hw_error(hdev, HNAE3_PPU_POISON_ERROR);
}
/* clear all PF RAS errors */
hclge_cmd_reuse_desc(&desc[0], false);
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret)
dev_err(dev, "clear all pf ras int cmd failed (%d)\n", ret);
return ret;
}
static int hclge_handle_all_ras_errors(struct hclge_dev *hdev)
{
u32 mpf_bd_num, pf_bd_num, bd_num;
struct hclge_desc *desc;
int ret;
/* query the number of registers in the RAS int status */
ret = hclge_query_bd_num(hdev, true, &mpf_bd_num, &pf_bd_num);
if (ret)
return ret;
bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
/* handle all main PF RAS errors */
ret = hclge_handle_mpf_ras_error(hdev, desc, mpf_bd_num);
if (ret) {
kfree(desc);
return ret;
}
memset(desc, 0, bd_num * sizeof(struct hclge_desc));
/* handle all PF RAS errors */
ret = hclge_handle_pf_ras_error(hdev, desc, pf_bd_num);
kfree(desc);
return ret;
}
static int hclge_log_rocee_axi_error(struct hclge_dev *hdev)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[3];
int ret;
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_ROCEE_AXI_RAS_INFO_CMD,
true);
hclge_cmd_setup_basic_desc(&desc[1], HCLGE_QUERY_ROCEE_AXI_RAS_INFO_CMD,
true);
hclge_cmd_setup_basic_desc(&desc[2], HCLGE_QUERY_ROCEE_AXI_RAS_INFO_CMD,
true);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
desc[1].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], 3);
if (ret) {
dev_err(dev, "failed(%d) to query ROCEE AXI error sts\n", ret);
return ret;
}
dev_err(dev, "AXI1: %08X %08X %08X %08X %08X %08X\n",
le32_to_cpu(desc[0].data[0]), le32_to_cpu(desc[0].data[1]),
le32_to_cpu(desc[0].data[2]), le32_to_cpu(desc[0].data[3]),
le32_to_cpu(desc[0].data[4]), le32_to_cpu(desc[0].data[5]));
dev_err(dev, "AXI2: %08X %08X %08X %08X %08X %08X\n",
le32_to_cpu(desc[1].data[0]), le32_to_cpu(desc[1].data[1]),
le32_to_cpu(desc[1].data[2]), le32_to_cpu(desc[1].data[3]),
le32_to_cpu(desc[1].data[4]), le32_to_cpu(desc[1].data[5]));
dev_err(dev, "AXI3: %08X %08X %08X %08X\n",
le32_to_cpu(desc[2].data[0]), le32_to_cpu(desc[2].data[1]),
le32_to_cpu(desc[2].data[2]), le32_to_cpu(desc[2].data[3]));
return 0;
}
static int hclge_log_rocee_ecc_error(struct hclge_dev *hdev)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int ret;
ret = hclge_cmd_query_error(hdev, &desc[0],
HCLGE_QUERY_ROCEE_ECC_RAS_INFO_CMD,
HCLGE_CMD_FLAG_NEXT);
if (ret) {
dev_err(dev, "failed(%d) to query ROCEE ECC error sts\n", ret);
return ret;
}
dev_err(dev, "ECC1: %08X %08X %08X %08X %08X %08X\n",
le32_to_cpu(desc[0].data[0]), le32_to_cpu(desc[0].data[1]),
le32_to_cpu(desc[0].data[2]), le32_to_cpu(desc[0].data[3]),
le32_to_cpu(desc[0].data[4]), le32_to_cpu(desc[0].data[5]));
dev_err(dev, "ECC2: %08X %08X %08X\n", le32_to_cpu(desc[1].data[0]),
le32_to_cpu(desc[1].data[1]), le32_to_cpu(desc[1].data[2]));
return 0;
}
static int hclge_log_rocee_ovf_error(struct hclge_dev *hdev)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int ret;
/* read overflow error status */
ret = hclge_cmd_query_error(hdev, &desc[0], HCLGE_ROCEE_PF_RAS_INT_CMD,
0);
if (ret) {
dev_err(dev, "failed(%d) to query ROCEE OVF error sts\n", ret);
return ret;
}
/* log overflow error */
if (le32_to_cpu(desc[0].data[0]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
const struct hclge_hw_error *err;
u32 err_sts;
err = &hclge_rocee_qmm_ovf_err_int[0];
err_sts = HCLGE_ROCEE_OVF_ERR_TYPE_MASK &
le32_to_cpu(desc[0].data[0]);
while (err->msg) {
if (err->int_msk == err_sts) {
dev_err(dev, "%s [error status=0x%x] found\n",
err->msg,
le32_to_cpu(desc[0].data[0]));
break;
}
err++;
}
}
if (le32_to_cpu(desc[0].data[1]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
dev_err(dev, "ROCEE TSP OVF [error status=0x%x] found\n",
le32_to_cpu(desc[0].data[1]));
}
if (le32_to_cpu(desc[0].data[2]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
dev_err(dev, "ROCEE SCC OVF [error status=0x%x] found\n",
le32_to_cpu(desc[0].data[2]));
}
return 0;
}
static enum hnae3_reset_type
hclge_log_and_clear_rocee_ras_error(struct hclge_dev *hdev)
{
enum hnae3_reset_type reset_type = HNAE3_NONE_RESET;
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
unsigned int status;
int ret;
/* read RAS error interrupt status */
ret = hclge_cmd_query_error(hdev, &desc[0],
HCLGE_QUERY_CLEAR_ROCEE_RAS_INT, 0);
if (ret) {
dev_err(dev, "failed(%d) to query ROCEE RAS INT SRC\n", ret);
/* reset everything for now */
return HNAE3_GLOBAL_RESET;
}
status = le32_to_cpu(desc[0].data[0]);
if (status & HCLGE_ROCEE_AXI_ERR_INT_MASK) {
if (status & HCLGE_ROCEE_RERR_INT_MASK)
dev_err(dev, "ROCEE RAS AXI rresp error\n");
if (status & HCLGE_ROCEE_BERR_INT_MASK)
dev_err(dev, "ROCEE RAS AXI bresp error\n");
reset_type = HNAE3_FUNC_RESET;
hclge_report_hw_error(hdev, HNAE3_ROCEE_AXI_RESP_ERROR);
ret = hclge_log_rocee_axi_error(hdev);
if (ret)
return HNAE3_GLOBAL_RESET;
}
if (status & HCLGE_ROCEE_ECC_INT_MASK) {
dev_err(dev, "ROCEE RAS 2bit ECC error\n");
reset_type = HNAE3_GLOBAL_RESET;
ret = hclge_log_rocee_ecc_error(hdev);
if (ret)
return HNAE3_GLOBAL_RESET;
}
if (status & HCLGE_ROCEE_OVF_INT_MASK) {
ret = hclge_log_rocee_ovf_error(hdev);
if (ret) {
dev_err(dev, "failed(%d) to process ovf error\n", ret);
/* reset everything for now */
return HNAE3_GLOBAL_RESET;
}
}
/* clear error status */
hclge_cmd_reuse_desc(&desc[0], false);
ret = hclge_cmd_send(&hdev->hw, &desc[0], 1);
if (ret) {
dev_err(dev, "failed(%d) to clear ROCEE RAS error\n", ret);
/* reset everything for now */
return HNAE3_GLOBAL_RESET;
}
return reset_type;
}
int hclge_config_rocee_ras_interrupt(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2 ||
!hnae3_dev_roce_supported(hdev))
return 0;
hclge_cmd_setup_basic_desc(&desc, HCLGE_CONFIG_ROCEE_RAS_INT_EN, false);
if (en) {
/* enable ROCEE hw error interrupts */
desc.data[0] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN);
desc.data[1] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN);
hclge_log_and_clear_rocee_ras_error(hdev);
}
desc.data[2] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN_MASK);
desc.data[3] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(dev, "failed(%d) to config ROCEE RAS interrupt\n", ret);
return ret;
}
static void hclge_handle_rocee_ras_error(struct hnae3_ae_dev *ae_dev)
{
struct hclge_dev *hdev = ae_dev->priv;
enum hnae3_reset_type reset_type;
if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
return;
reset_type = hclge_log_and_clear_rocee_ras_error(hdev);
if (reset_type != HNAE3_NONE_RESET)
set_bit(reset_type, &ae_dev->hw_err_reset_req);
}
static const struct hclge_hw_blk hw_blk[] = {
{
.msk = BIT(0),
.name = "IGU_EGU",
.config_err_int = hclge_config_igu_egu_hw_err_int,
}, {
.msk = BIT(1),
.name = "PPP",
.config_err_int = hclge_config_ppp_hw_err_int,
}, {
.msk = BIT(2),
.name = "SSU",
.config_err_int = hclge_config_ssu_hw_err_int,
}, {
.msk = BIT(3),
.name = "PPU",
.config_err_int = hclge_config_ppu_hw_err_int,
}, {
.msk = BIT(4),
.name = "TM",
.config_err_int = hclge_config_tm_hw_err_int,
}, {
.msk = BIT(5),
.name = "COMMON",
.config_err_int = hclge_config_common_hw_err_int,
}, {
.msk = BIT(8),
.name = "MAC",
.config_err_int = hclge_config_mac_err_int,
}, {
/* sentinel */
}
};
static void hclge_config_all_msix_error(struct hclge_dev *hdev, bool enable)
{
u32 reg_val;
reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
if (enable)
reg_val |= BIT(HCLGE_VECTOR0_ALL_MSIX_ERR_B);
else
reg_val &= ~BIT(HCLGE_VECTOR0_ALL_MSIX_ERR_B);
hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val);
}
int hclge_config_nic_hw_error(struct hclge_dev *hdev, bool state)
{
const struct hclge_hw_blk *module = hw_blk;
int ret = 0;
hclge_config_all_msix_error(hdev, state);
while (module->name) {
if (module->config_err_int) {
ret = module->config_err_int(hdev, state);
if (ret)
return ret;
}
module++;
}
return ret;
}
pci_ers_result_t hclge_handle_hw_ras_error(struct hnae3_ae_dev *ae_dev)
{
struct hclge_dev *hdev = ae_dev->priv;
struct device *dev = &hdev->pdev->dev;
u32 status;
if (!test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state)) {
dev_err(dev,
"Can't recover - RAS error reported during dev init\n");
return PCI_ERS_RESULT_NONE;
}
status = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG);
if (status & HCLGE_RAS_REG_NFE_MASK ||
status & HCLGE_RAS_REG_ROCEE_ERR_MASK)
ae_dev->hw_err_reset_req = 0;
else
goto out;
/* Handling Non-fatal HNS RAS errors */
if (status & HCLGE_RAS_REG_NFE_MASK) {
dev_err(dev,
"HNS Non-Fatal RAS error(status=0x%x) identified\n",
status);
hclge_handle_all_ras_errors(hdev);
}
/* Handling Non-fatal Rocee RAS errors */
if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 &&
status & HCLGE_RAS_REG_ROCEE_ERR_MASK) {
dev_err(dev, "ROCEE Non-Fatal RAS error identified\n");
hclge_handle_rocee_ras_error(ae_dev);
}
if (ae_dev->hw_err_reset_req)
return PCI_ERS_RESULT_NEED_RESET;
out:
return PCI_ERS_RESULT_RECOVERED;
}
static int hclge_clear_hw_msix_error(struct hclge_dev *hdev,
struct hclge_desc *desc, bool is_mpf,
u32 bd_num)
{
if (is_mpf)
desc[0].opcode =
cpu_to_le16(HCLGE_QUERY_CLEAR_ALL_MPF_MSIX_INT);
else
desc[0].opcode = cpu_to_le16(HCLGE_QUERY_CLEAR_ALL_PF_MSIX_INT);
desc[0].flag = cpu_to_le16(HCLGE_CMD_FLAG_NO_INTR | HCLGE_CMD_FLAG_IN);
return hclge_cmd_send(&hdev->hw, &desc[0], bd_num);
}
/* hclge_query_8bd_info: query information about over_8bd_nfe_err
* @hdev: pointer to struct hclge_dev
* @vf_id: Index of the virtual function with error
* @q_id: Physical index of the queue with error
*
* This function get specific index of queue and function which causes
* over_8bd_nfe_err by using command. If vf_id is 0, it means error is
* caused by PF instead of VF.
*/
static int hclge_query_over_8bd_err_info(struct hclge_dev *hdev, u16 *vf_id,
u16 *q_id)
{
struct hclge_query_ppu_pf_other_int_dfx_cmd *req;
struct hclge_desc desc;
int ret;
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PPU_PF_OTHER_INT_DFX, true);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
return ret;
req = (struct hclge_query_ppu_pf_other_int_dfx_cmd *)desc.data;
*vf_id = le16_to_cpu(req->over_8bd_no_fe_vf_id);
*q_id = le16_to_cpu(req->over_8bd_no_fe_qid);
return 0;
}
/* hclge_handle_over_8bd_err: handle MSI-X error named over_8bd_nfe_err
* @hdev: pointer to struct hclge_dev
* @reset_requests: reset level that we need to trigger later
*
* over_8bd_nfe_err is a special MSI-X because it may caused by a VF, in
* that case, we need to trigger VF reset. Otherwise, a PF reset is needed.
*/
static void hclge_handle_over_8bd_err(struct hclge_dev *hdev,
unsigned long *reset_requests)
{
struct device *dev = &hdev->pdev->dev;
u16 vf_id;
u16 q_id;
int ret;
ret = hclge_query_over_8bd_err_info(hdev, &vf_id, &q_id);
if (ret) {
dev_err(dev, "fail(%d) to query over_8bd_no_fe info\n",
ret);
return;
}
dev_err(dev, "PPU_PF_ABNORMAL_INT_ST over_8bd_no_fe found, vport(%u), queue_id(%u)\n",
vf_id, q_id);
if (vf_id) {
if (vf_id >= hdev->num_alloc_vport) {
dev_err(dev, "invalid vport(%u)\n", vf_id);
return;
}
/* If we need to trigger other reset whose level is higher
* than HNAE3_VF_FUNC_RESET, no need to trigger a VF reset
* here.
*/
if (*reset_requests != 0)
return;
ret = hclge_inform_reset_assert_to_vf(&hdev->vport[vf_id]);
if (ret)
dev_err(dev, "inform reset to vport(%u) failed %d!\n",
vf_id, ret);
} else {
set_bit(HNAE3_FUNC_RESET, reset_requests);
}
}
/* hclge_handle_mpf_msix_error: handle all main PF MSI-X errors
* @hdev: pointer to struct hclge_dev
* @desc: descriptor for describing the command
* @mpf_bd_num: number of extended command structures
* @reset_requests: record of the reset level that we need
*
* This function handles all the main PF MSI-X errors in the hw register/s
* using command.
*/
static int hclge_handle_mpf_msix_error(struct hclge_dev *hdev,
struct hclge_desc *desc,
int mpf_bd_num,
unsigned long *reset_requests)
{
struct device *dev = &hdev->pdev->dev;
__le32 *desc_data;
u32 status;
int ret;
/* query all main PF MSIx errors */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_MPF_MSIX_INT,
true);
ret = hclge_cmd_send(&hdev->hw, &desc[0], mpf_bd_num);
if (ret) {
dev_err(dev, "query all mpf msix int cmd failed (%d)\n", ret);
return ret;
}
/* log MAC errors */
desc_data = (__le32 *)&desc[1];
status = le32_to_cpu(*desc_data);
if (status)
hclge_log_error(dev, "MAC_AFIFO_TNL_INT_R",
&hclge_mac_afifo_tnl_int[0], status,
reset_requests);
/* log PPU(RCB) MPF errors */
desc_data = (__le32 *)&desc[5];
status = le32_to_cpu(*(desc_data + 2)) &
HCLGE_PPU_MPF_INT_ST2_MSIX_MASK;
if (status)
dev_err(dev, "PPU_MPF_ABNORMAL_INT_ST2 rx_q_search_miss found [dfx status=0x%x\n]",
status);
/* clear all main PF MSIx errors */
ret = hclge_clear_hw_msix_error(hdev, desc, true, mpf_bd_num);
if (ret)
dev_err(dev, "clear all mpf msix int cmd failed (%d)\n", ret);
return ret;
}
/* hclge_handle_pf_msix_error: handle all PF MSI-X errors
* @hdev: pointer to struct hclge_dev
* @desc: descriptor for describing the command
* @mpf_bd_num: number of extended command structures
* @reset_requests: record of the reset level that we need
*
* This function handles all the PF MSI-X errors in the hw register/s using
* command.
*/
static int hclge_handle_pf_msix_error(struct hclge_dev *hdev,
struct hclge_desc *desc,
int pf_bd_num,
unsigned long *reset_requests)
{
struct device *dev = &hdev->pdev->dev;
__le32 *desc_data;
u32 status;
int ret;
/* query all PF MSIx errors */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_PF_MSIX_INT,
true);
ret = hclge_cmd_send(&hdev->hw, &desc[0], pf_bd_num);
if (ret) {
dev_err(dev, "query all pf msix int cmd failed (%d)\n", ret);
return ret;
}
/* log SSU PF errors */
status = le32_to_cpu(desc[0].data[0]) & HCLGE_SSU_PORT_INT_MSIX_MASK;
if (status)
hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
&hclge_ssu_port_based_pf_int[0],
status, reset_requests);
/* read and log PPP PF errors */
desc_data = (__le32 *)&desc[2];
status = le32_to_cpu(*desc_data);
if (status)
hclge_log_error(dev, "PPP_PF_ABNORMAL_INT_ST0",
&hclge_ppp_pf_abnormal_int[0],
status, reset_requests);
/* log PPU(RCB) PF errors */
desc_data = (__le32 *)&desc[3];
status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_MSIX_MASK;
if (status)
hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST",
&hclge_ppu_pf_abnormal_int[0],
status, reset_requests);
status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_OVER_8BD_ERR_MASK;
if (status)
hclge_handle_over_8bd_err(hdev, reset_requests);
/* clear all PF MSIx errors */
ret = hclge_clear_hw_msix_error(hdev, desc, false, pf_bd_num);
if (ret)
dev_err(dev, "clear all pf msix int cmd failed (%d)\n", ret);
return ret;
}
static int hclge_handle_all_hw_msix_error(struct hclge_dev *hdev,
unsigned long *reset_requests)
{
u32 mpf_bd_num, pf_bd_num, bd_num;
struct hclge_desc *desc;
int ret;
/* query the number of bds for the MSIx int status */
ret = hclge_query_bd_num(hdev, false, &mpf_bd_num, &pf_bd_num);
if (ret)
goto out;
bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
ret = hclge_handle_mpf_msix_error(hdev, desc, mpf_bd_num,
reset_requests);
if (ret)
goto msi_error;
memset(desc, 0, bd_num * sizeof(struct hclge_desc));
ret = hclge_handle_pf_msix_error(hdev, desc, pf_bd_num, reset_requests);
if (ret)
goto msi_error;
ret = hclge_handle_mac_tnl(hdev);
msi_error:
kfree(desc);
out:
return ret;
}
int hclge_handle_hw_msix_error(struct hclge_dev *hdev,
unsigned long *reset_requests)
{
struct device *dev = &hdev->pdev->dev;
if (!test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state)) {
dev_err(dev,
"failed to handle msix error during dev init\n");
return -EAGAIN;
}
return hclge_handle_all_hw_msix_error(hdev, reset_requests);
}
int hclge_handle_mac_tnl(struct hclge_dev *hdev)
{
struct hclge_mac_tnl_stats mac_tnl_stats;
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
u32 status;
int ret;
/* query and clear mac tnl interruptions */
hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_MAC_TNL_INT, true);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(dev, "failed to query mac tnl int, ret = %d.\n", ret);
return ret;
}
status = le32_to_cpu(desc.data[0]);
if (status) {
/* When mac tnl interrupt occurs, we record current time and
* register status here in a fifo, then clear the status. So
* that if link status changes suddenly at some time, we can
* query them by debugfs.
*/
mac_tnl_stats.time = local_clock();
mac_tnl_stats.status = status;
kfifo_put(&hdev->mac_tnl_log, mac_tnl_stats);
ret = hclge_clear_mac_tnl_int(hdev);
if (ret)
dev_err(dev, "failed to clear mac tnl int, ret = %d.\n",
ret);
}
return ret;
}
void hclge_handle_all_hns_hw_errors(struct hnae3_ae_dev *ae_dev)
{
struct hclge_dev *hdev = ae_dev->priv;
struct device *dev = &hdev->pdev->dev;
u32 mpf_bd_num, pf_bd_num, bd_num;
struct hclge_desc *desc;
u32 status;
int ret;
ae_dev->hw_err_reset_req = 0;
status = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG);
/* query the number of bds for the MSIx int status */
ret = hclge_query_bd_num(hdev, false, &mpf_bd_num, &pf_bd_num);
if (ret)
return;
bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
if (!desc)
return;
/* Clear HNS hw errors reported through msix */
memset(&desc[0].data[0], 0xFF, mpf_bd_num * sizeof(struct hclge_desc) -
HCLGE_DESC_NO_DATA_LEN);
ret = hclge_clear_hw_msix_error(hdev, desc, true, mpf_bd_num);
if (ret) {
dev_err(dev, "fail(%d) to clear mpf msix int during init\n",
ret);
goto msi_error;
}
memset(&desc[0].data[0], 0xFF, pf_bd_num * sizeof(struct hclge_desc) -
HCLGE_DESC_NO_DATA_LEN);
ret = hclge_clear_hw_msix_error(hdev, desc, false, pf_bd_num);
if (ret) {
dev_err(dev, "fail(%d) to clear pf msix int during init\n",
ret);
goto msi_error;
}
/* Handle Non-fatal HNS RAS errors */
if (status & HCLGE_RAS_REG_NFE_MASK) {
dev_err(dev, "HNS hw error(RAS) identified during init\n");
hclge_handle_all_ras_errors(hdev);
}
msi_error:
kfree(desc);
}
bool hclge_find_error_source(struct hclge_dev *hdev)
{
u32 msix_src_flag, hw_err_src_flag;
msix_src_flag = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS) &
HCLGE_VECTOR0_REG_MSIX_MASK;
hw_err_src_flag = hclge_read_dev(&hdev->hw,
HCLGE_RAS_PF_OTHER_INT_STS_REG) &
HCLGE_RAS_REG_ERR_MASK;
return msix_src_flag || hw_err_src_flag;
}
void hclge_handle_occurred_error(struct hclge_dev *hdev)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
if (hclge_find_error_source(hdev))
hclge_handle_error_info_log(ae_dev);
}
static void
hclge_handle_error_type_reg_log(struct device *dev,
struct hclge_mod_err_info *mod_info,
struct hclge_type_reg_err_info *type_reg_info)
{
#define HCLGE_ERR_TYPE_MASK 0x7F
#define HCLGE_ERR_TYPE_IS_RAS_OFFSET 7
u8 mod_id, total_module, type_id, total_type, i, is_ras;
u8 index_module = MODULE_NONE;
u8 index_type = NONE_ERROR;
mod_id = mod_info->mod_id;
type_id = type_reg_info->type_id & HCLGE_ERR_TYPE_MASK;
is_ras = type_reg_info->type_id >> HCLGE_ERR_TYPE_IS_RAS_OFFSET;
total_module = ARRAY_SIZE(hclge_hw_module_id_st);
total_type = ARRAY_SIZE(hclge_hw_type_id_st);
for (i = 0; i < total_module; i++) {
if (mod_id == hclge_hw_module_id_st[i].module_id) {
index_module = i;
break;
}
}
for (i = 0; i < total_type; i++) {
if (type_id == hclge_hw_type_id_st[i].type_id) {
index_type = i;
break;
}
}
if (index_module != MODULE_NONE && index_type != NONE_ERROR)
dev_err(dev,
"found %s %s, is %s error.\n",
hclge_hw_module_id_st[index_module].msg,
hclge_hw_type_id_st[index_type].msg,
is_ras ? "ras" : "msix");
else
dev_err(dev,
"unknown module[%u] or type[%u].\n", mod_id, type_id);
dev_err(dev, "reg_value:\n");
for (i = 0; i < type_reg_info->reg_num; i++)
dev_err(dev, "0x%08x\n", type_reg_info->hclge_reg[i]);
}
static void hclge_handle_error_module_log(struct hnae3_ae_dev *ae_dev,
const u32 *buf, u32 buf_size)
{
struct hclge_type_reg_err_info *type_reg_info;
struct hclge_dev *hdev = ae_dev->priv;
struct device *dev = &hdev->pdev->dev;
struct hclge_mod_err_info *mod_info;
struct hclge_sum_err_info *sum_info;
u8 mod_num, err_num, i;
u32 offset = 0;
sum_info = (struct hclge_sum_err_info *)&buf[offset++];
if (sum_info->reset_type &&
sum_info->reset_type != HNAE3_NONE_RESET)
set_bit(sum_info->reset_type, &ae_dev->hw_err_reset_req);
mod_num = sum_info->mod_num;
while (mod_num--) {
if (offset >= buf_size) {
dev_err(dev, "The offset(%u) exceeds buf's size(%u).\n",
offset, buf_size);
return;
}
mod_info = (struct hclge_mod_err_info *)&buf[offset++];
err_num = mod_info->err_num;
for (i = 0; i < err_num; i++) {
if (offset >= buf_size) {
dev_err(dev,
"The offset(%u) exceeds buf size(%u).\n",
offset, buf_size);
return;
}
type_reg_info = (struct hclge_type_reg_err_info *)
&buf[offset++];
hclge_handle_error_type_reg_log(dev, mod_info,
type_reg_info);
offset += type_reg_info->reg_num;
}
}
}
static int hclge_query_all_err_bd_num(struct hclge_dev *hdev, u32 *bd_num)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc_bd;
int ret;
hclge_cmd_setup_basic_desc(&desc_bd, HCLGE_QUERY_ALL_ERR_BD_NUM, true);
ret = hclge_cmd_send(&hdev->hw, &desc_bd, 1);
if (ret) {
dev_err(dev, "failed to query error bd_num, ret = %d.\n", ret);
return ret;
}
*bd_num = le32_to_cpu(desc_bd.data[0]);
if (!(*bd_num)) {
dev_err(dev, "The value of bd_num is 0!\n");
return -EINVAL;
}
return 0;
}
static int hclge_query_all_err_info(struct hclge_dev *hdev,
struct hclge_desc *desc, u32 bd_num)
{
struct device *dev = &hdev->pdev->dev;
int ret;
hclge_cmd_setup_basic_desc(desc, HCLGE_QUERY_ALL_ERR_INFO, true);
ret = hclge_cmd_send(&hdev->hw, desc, bd_num);
if (ret)
dev_err(dev, "failed to query error info, ret = %d.\n", ret);
return ret;
}
int hclge_handle_error_info_log(struct hnae3_ae_dev *ae_dev)
{
u32 bd_num, desc_len, buf_len, buf_size, i;
struct hclge_dev *hdev = ae_dev->priv;
struct hclge_desc *desc;
__le32 *desc_data;
u32 *buf;
int ret;
ret = hclge_query_all_err_bd_num(hdev, &bd_num);
if (ret)
goto out;
desc_len = bd_num * sizeof(struct hclge_desc);
desc = kzalloc(desc_len, GFP_KERNEL);
if (!desc) {
ret = -ENOMEM;
goto out;
}
ret = hclge_query_all_err_info(hdev, desc, bd_num);
if (ret)
goto err_desc;
buf_len = bd_num * sizeof(struct hclge_desc) - HCLGE_DESC_NO_DATA_LEN;
buf_size = buf_len / sizeof(u32);
desc_data = kzalloc(buf_len, GFP_KERNEL);
if (!desc_data) {
ret = -ENOMEM;
goto err_desc;
}
buf = kzalloc(buf_len, GFP_KERNEL);
if (!buf) {
ret = -ENOMEM;
goto err_buf_alloc;
}
memcpy(desc_data, &desc[0].data[0], buf_len);
for (i = 0; i < buf_size; i++)
buf[i] = le32_to_cpu(desc_data[i]);
hclge_handle_error_module_log(ae_dev, buf, buf_size);
kfree(buf);
err_buf_alloc:
kfree(desc_data);
err_desc:
kfree(desc);
out:
return ret;
}