blob: b7fbadc5c973c928e531cf6d701f1520e4809812 [file] [log] [blame]
/*
* NTP state machine interfaces and logic.
*
* This code was mainly moved from kernel/timer.c and kernel/time.c
* Please see those files for relevant copyright info and historical
* changelogs.
*/
#include <linux/capability.h>
#include <linux/clocksource.h>
#include <linux/workqueue.h>
#include <linux/hrtimer.h>
#include <linux/jiffies.h>
#include <linux/math64.h>
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/mm.h>
#include <linux/module.h>
#include "tick-internal.h"
/*
* NTP timekeeping variables:
*/
DEFINE_SPINLOCK(ntp_lock);
/* USER_HZ period (usecs): */
unsigned long tick_usec = TICK_USEC;
/* ACTHZ period (nsecs): */
unsigned long tick_nsec;
static u64 tick_length;
static u64 tick_length_base;
#define MAX_TICKADJ 500LL /* usecs */
#define MAX_TICKADJ_SCALED \
(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
/*
* phase-lock loop variables
*/
/*
* clock synchronization status
*
* (TIME_ERROR prevents overwriting the CMOS clock)
*/
static int time_state = TIME_OK;
/* clock status bits: */
static int time_status = STA_UNSYNC;
/* TAI offset (secs): */
static long time_tai;
/* time adjustment (nsecs): */
static s64 time_offset;
/* pll time constant: */
static long time_constant = 2;
/* maximum error (usecs): */
static long time_maxerror = NTP_PHASE_LIMIT;
/* estimated error (usecs): */
static long time_esterror = NTP_PHASE_LIMIT;
/* frequency offset (scaled nsecs/secs): */
static s64 time_freq;
/* time at last adjustment (secs): */
static long time_reftime;
static long time_adjust;
/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
static s64 ntp_tick_adj;
#ifdef CONFIG_NTP_PPS
/*
* The following variables are used when a pulse-per-second (PPS) signal
* is available. They establish the engineering parameters of the clock
* discipline loop when controlled by the PPS signal.
*/
#define PPS_VALID 10 /* PPS signal watchdog max (s) */
#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
increase pps_shift or consecutive bad
intervals to decrease it */
#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
static int pps_valid; /* signal watchdog counter */
static long pps_tf[3]; /* phase median filter */
static long pps_jitter; /* current jitter (ns) */
static struct timespec pps_fbase; /* beginning of the last freq interval */
static int pps_shift; /* current interval duration (s) (shift) */
static int pps_intcnt; /* interval counter */
static s64 pps_freq; /* frequency offset (scaled ns/s) */
static long pps_stabil; /* current stability (scaled ns/s) */
/*
* PPS signal quality monitors
*/
static long pps_calcnt; /* calibration intervals */
static long pps_jitcnt; /* jitter limit exceeded */
static long pps_stbcnt; /* stability limit exceeded */
static long pps_errcnt; /* calibration errors */
/* PPS kernel consumer compensates the whole phase error immediately.
* Otherwise, reduce the offset by a fixed factor times the time constant.
*/
static inline s64 ntp_offset_chunk(s64 offset)
{
if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
return offset;
else
return shift_right(offset, SHIFT_PLL + time_constant);
}
static inline void pps_reset_freq_interval(void)
{
/* the PPS calibration interval may end
surprisingly early */
pps_shift = PPS_INTMIN;
pps_intcnt = 0;
}
/**
* pps_clear - Clears the PPS state variables
*
* Must be called while holding a write on the ntp_lock
*/
static inline void pps_clear(void)
{
pps_reset_freq_interval();
pps_tf[0] = 0;
pps_tf[1] = 0;
pps_tf[2] = 0;
pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
pps_freq = 0;
}
/* Decrease pps_valid to indicate that another second has passed since
* the last PPS signal. When it reaches 0, indicate that PPS signal is
* missing.
*
* Must be called while holding a write on the ntp_lock
*/
static inline void pps_dec_valid(void)
{
if (pps_valid > 0)
pps_valid--;
else {
time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
STA_PPSWANDER | STA_PPSERROR);
pps_clear();
}
}
static inline void pps_set_freq(s64 freq)
{
pps_freq = freq;
}
static inline int is_error_status(int status)
{
return (time_status & (STA_UNSYNC|STA_CLOCKERR))
/* PPS signal lost when either PPS time or
* PPS frequency synchronization requested
*/
|| ((time_status & (STA_PPSFREQ|STA_PPSTIME))
&& !(time_status & STA_PPSSIGNAL))
/* PPS jitter exceeded when
* PPS time synchronization requested */
|| ((time_status & (STA_PPSTIME|STA_PPSJITTER))
== (STA_PPSTIME|STA_PPSJITTER))
/* PPS wander exceeded or calibration error when
* PPS frequency synchronization requested
*/
|| ((time_status & STA_PPSFREQ)
&& (time_status & (STA_PPSWANDER|STA_PPSERROR)));
}
static inline void pps_fill_timex(struct timex *txc)
{
txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
PPM_SCALE_INV, NTP_SCALE_SHIFT);
txc->jitter = pps_jitter;
if (!(time_status & STA_NANO))
txc->jitter /= NSEC_PER_USEC;
txc->shift = pps_shift;
txc->stabil = pps_stabil;
txc->jitcnt = pps_jitcnt;
txc->calcnt = pps_calcnt;
txc->errcnt = pps_errcnt;
txc->stbcnt = pps_stbcnt;
}
#else /* !CONFIG_NTP_PPS */
static inline s64 ntp_offset_chunk(s64 offset)
{
return shift_right(offset, SHIFT_PLL + time_constant);
}
static inline void pps_reset_freq_interval(void) {}
static inline void pps_clear(void) {}
static inline void pps_dec_valid(void) {}
static inline void pps_set_freq(s64 freq) {}
static inline int is_error_status(int status)
{
return status & (STA_UNSYNC|STA_CLOCKERR);
}
static inline void pps_fill_timex(struct timex *txc)
{
/* PPS is not implemented, so these are zero */
txc->ppsfreq = 0;
txc->jitter = 0;
txc->shift = 0;
txc->stabil = 0;
txc->jitcnt = 0;
txc->calcnt = 0;
txc->errcnt = 0;
txc->stbcnt = 0;
}
#endif /* CONFIG_NTP_PPS */
/**
* ntp_synced - Returns 1 if the NTP status is not UNSYNC
*
*/
static inline int ntp_synced(void)
{
return !(time_status & STA_UNSYNC);
}
/*
* NTP methods:
*/
/*
* Update (tick_length, tick_length_base, tick_nsec), based
* on (tick_usec, ntp_tick_adj, time_freq):
*/
static void ntp_update_frequency(void)
{
u64 second_length;
u64 new_base;
second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
<< NTP_SCALE_SHIFT;
second_length += ntp_tick_adj;
second_length += time_freq;
tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
/*
* Don't wait for the next second_overflow, apply
* the change to the tick length immediately:
*/
tick_length += new_base - tick_length_base;
tick_length_base = new_base;
}
static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
{
time_status &= ~STA_MODE;
if (secs < MINSEC)
return 0;
if (!(time_status & STA_FLL) && (secs <= MAXSEC))
return 0;
time_status |= STA_MODE;
return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
}
static void ntp_update_offset(long offset)
{
s64 freq_adj;
s64 offset64;
long secs;
if (!(time_status & STA_PLL))
return;
if (!(time_status & STA_NANO))
offset *= NSEC_PER_USEC;
/*
* Scale the phase adjustment and
* clamp to the operating range.
*/
offset = min(offset, MAXPHASE);
offset = max(offset, -MAXPHASE);
/*
* Select how the frequency is to be controlled
* and in which mode (PLL or FLL).
*/
secs = get_seconds() - time_reftime;
if (unlikely(time_status & STA_FREQHOLD))
secs = 0;
time_reftime = get_seconds();
offset64 = offset;
freq_adj = ntp_update_offset_fll(offset64, secs);
/*
* Clamp update interval to reduce PLL gain with low
* sampling rate (e.g. intermittent network connection)
* to avoid instability.
*/
if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
secs = 1 << (SHIFT_PLL + 1 + time_constant);
freq_adj += (offset64 * secs) <<
(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
time_freq = max(freq_adj, -MAXFREQ_SCALED);
time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
}
/**
* ntp_clear - Clears the NTP state variables
*/
void ntp_clear(void)
{
unsigned long flags;
spin_lock_irqsave(&ntp_lock, flags);
time_adjust = 0; /* stop active adjtime() */
time_status |= STA_UNSYNC;
time_maxerror = NTP_PHASE_LIMIT;
time_esterror = NTP_PHASE_LIMIT;
ntp_update_frequency();
tick_length = tick_length_base;
time_offset = 0;
/* Clear PPS state variables */
pps_clear();
spin_unlock_irqrestore(&ntp_lock, flags);
}
u64 ntp_tick_length(void)
{
unsigned long flags;
s64 ret;
spin_lock_irqsave(&ntp_lock, flags);
ret = tick_length;
spin_unlock_irqrestore(&ntp_lock, flags);
return ret;
}
/*
* this routine handles the overflow of the microsecond field
*
* The tricky bits of code to handle the accurate clock support
* were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
* They were originally developed for SUN and DEC kernels.
* All the kudos should go to Dave for this stuff.
*
* Also handles leap second processing, and returns leap offset
*/
int second_overflow(unsigned long secs)
{
s64 delta;
int leap = 0;
unsigned long flags;
spin_lock_irqsave(&ntp_lock, flags);
/*
* Leap second processing. If in leap-insert state at the end of the
* day, the system clock is set back one second; if in leap-delete
* state, the system clock is set ahead one second.
*/
switch (time_state) {
case TIME_OK:
if (time_status & STA_INS)
time_state = TIME_INS;
else if (time_status & STA_DEL)
time_state = TIME_DEL;
break;
case TIME_INS:
if (!(time_status & STA_INS))
time_state = TIME_OK;
else if (secs % 86400 == 0) {
leap = -1;
time_state = TIME_OOP;
time_tai++;
printk(KERN_NOTICE
"Clock: inserting leap second 23:59:60 UTC\n");
}
break;
case TIME_DEL:
if (!(time_status & STA_DEL))
time_state = TIME_OK;
else if ((secs + 1) % 86400 == 0) {
leap = 1;
time_tai--;
time_state = TIME_WAIT;
printk(KERN_NOTICE
"Clock: deleting leap second 23:59:59 UTC\n");
}
break;
case TIME_OOP:
time_state = TIME_WAIT;
break;
case TIME_WAIT:
if (!(time_status & (STA_INS | STA_DEL)))
time_state = TIME_OK;
break;
}
/* Bump the maxerror field */
time_maxerror += MAXFREQ / NSEC_PER_USEC;
if (time_maxerror > NTP_PHASE_LIMIT) {
time_maxerror = NTP_PHASE_LIMIT;
time_status |= STA_UNSYNC;
}
/* Compute the phase adjustment for the next second */
tick_length = tick_length_base;
delta = ntp_offset_chunk(time_offset);
time_offset -= delta;
tick_length += delta;
/* Check PPS signal */
pps_dec_valid();
if (!time_adjust)
goto out;
if (time_adjust > MAX_TICKADJ) {
time_adjust -= MAX_TICKADJ;
tick_length += MAX_TICKADJ_SCALED;
goto out;
}
if (time_adjust < -MAX_TICKADJ) {
time_adjust += MAX_TICKADJ;
tick_length -= MAX_TICKADJ_SCALED;
goto out;
}
tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
<< NTP_SCALE_SHIFT;
time_adjust = 0;
out:
spin_unlock_irqrestore(&ntp_lock, flags);
return leap;
}
#ifdef CONFIG_GENERIC_CMOS_UPDATE
static void sync_cmos_clock(struct work_struct *work);
static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
static void sync_cmos_clock(struct work_struct *work)
{
struct timespec now, next;
int fail = 1;
/*
* If we have an externally synchronized Linux clock, then update
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
* This code is run on a timer. If the clock is set, that timer
* may not expire at the correct time. Thus, we adjust...
*/
if (!ntp_synced()) {
/*
* Not synced, exit, do not restart a timer (if one is
* running, let it run out).
*/
return;
}
getnstimeofday(&now);
if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
fail = update_persistent_clock(now);
next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
if (next.tv_nsec <= 0)
next.tv_nsec += NSEC_PER_SEC;
if (!fail)
next.tv_sec = 659;
else
next.tv_sec = 0;
if (next.tv_nsec >= NSEC_PER_SEC) {
next.tv_sec++;
next.tv_nsec -= NSEC_PER_SEC;
}
schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
}
static void notify_cmos_timer(void)
{
schedule_delayed_work(&sync_cmos_work, 0);
}
#else
static inline void notify_cmos_timer(void) { }
#endif
/*
* Propagate a new txc->status value into the NTP state:
*/
static inline void process_adj_status(struct timex *txc, struct timespec *ts)
{
if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
time_state = TIME_OK;
time_status = STA_UNSYNC;
/* restart PPS frequency calibration */
pps_reset_freq_interval();
}
/*
* If we turn on PLL adjustments then reset the
* reference time to current time.
*/
if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
time_reftime = get_seconds();
/* only set allowed bits */
time_status &= STA_RONLY;
time_status |= txc->status & ~STA_RONLY;
}
/*
* Called with ntp_lock held, so we can access and modify
* all the global NTP state:
*/
static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
{
if (txc->modes & ADJ_STATUS)
process_adj_status(txc, ts);
if (txc->modes & ADJ_NANO)
time_status |= STA_NANO;
if (txc->modes & ADJ_MICRO)
time_status &= ~STA_NANO;
if (txc->modes & ADJ_FREQUENCY) {
time_freq = txc->freq * PPM_SCALE;
time_freq = min(time_freq, MAXFREQ_SCALED);
time_freq = max(time_freq, -MAXFREQ_SCALED);
/* update pps_freq */
pps_set_freq(time_freq);
}
if (txc->modes & ADJ_MAXERROR)
time_maxerror = txc->maxerror;
if (txc->modes & ADJ_ESTERROR)
time_esterror = txc->esterror;
if (txc->modes & ADJ_TIMECONST) {
time_constant = txc->constant;
if (!(time_status & STA_NANO))
time_constant += 4;
time_constant = min(time_constant, (long)MAXTC);
time_constant = max(time_constant, 0l);
}
if (txc->modes & ADJ_TAI && txc->constant > 0)
time_tai = txc->constant;
if (txc->modes & ADJ_OFFSET)
ntp_update_offset(txc->offset);
if (txc->modes & ADJ_TICK)
tick_usec = txc->tick;
if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
ntp_update_frequency();
}
/*
* adjtimex mainly allows reading (and writing, if superuser) of
* kernel time-keeping variables. used by xntpd.
*/
int do_adjtimex(struct timex *txc)
{
struct timespec ts;
int result;
/* Validate the data before disabling interrupts */
if (txc->modes & ADJ_ADJTIME) {
/* singleshot must not be used with any other mode bits */
if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
return -EINVAL;
if (!(txc->modes & ADJ_OFFSET_READONLY) &&
!capable(CAP_SYS_TIME))
return -EPERM;
} else {
/* In order to modify anything, you gotta be super-user! */
if (txc->modes && !capable(CAP_SYS_TIME))
return -EPERM;
/*
* if the quartz is off by more than 10% then
* something is VERY wrong!
*/
if (txc->modes & ADJ_TICK &&
(txc->tick < 900000/USER_HZ ||
txc->tick > 1100000/USER_HZ))
return -EINVAL;
}
if (txc->modes & ADJ_SETOFFSET) {
struct timespec delta;
delta.tv_sec = txc->time.tv_sec;
delta.tv_nsec = txc->time.tv_usec;
if (!capable(CAP_SYS_TIME))
return -EPERM;
if (!(txc->modes & ADJ_NANO))
delta.tv_nsec *= 1000;
result = timekeeping_inject_offset(&delta);
if (result)
return result;
}
getnstimeofday(&ts);
spin_lock_irq(&ntp_lock);
if (txc->modes & ADJ_ADJTIME) {
long save_adjust = time_adjust;
if (!(txc->modes & ADJ_OFFSET_READONLY)) {
/* adjtime() is independent from ntp_adjtime() */
time_adjust = txc->offset;
ntp_update_frequency();
}
txc->offset = save_adjust;
} else {
/* If there are input parameters, then process them: */
if (txc->modes)
process_adjtimex_modes(txc, &ts);
txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
NTP_SCALE_SHIFT);
if (!(time_status & STA_NANO))
txc->offset /= NSEC_PER_USEC;
}
result = time_state; /* mostly `TIME_OK' */
/* check for errors */
if (is_error_status(time_status))
result = TIME_ERROR;
txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
PPM_SCALE_INV, NTP_SCALE_SHIFT);
txc->maxerror = time_maxerror;
txc->esterror = time_esterror;
txc->status = time_status;
txc->constant = time_constant;
txc->precision = 1;
txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
txc->tick = tick_usec;
txc->tai = time_tai;
/* fill PPS status fields */
pps_fill_timex(txc);
spin_unlock_irq(&ntp_lock);
txc->time.tv_sec = ts.tv_sec;
txc->time.tv_usec = ts.tv_nsec;
if (!(time_status & STA_NANO))
txc->time.tv_usec /= NSEC_PER_USEC;
notify_cmos_timer();
return result;
}
#ifdef CONFIG_NTP_PPS
/* actually struct pps_normtime is good old struct timespec, but it is
* semantically different (and it is the reason why it was invented):
* pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
* while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
struct pps_normtime {
__kernel_time_t sec; /* seconds */
long nsec; /* nanoseconds */
};
/* normalize the timestamp so that nsec is in the
( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
{
struct pps_normtime norm = {
.sec = ts.tv_sec,
.nsec = ts.tv_nsec
};
if (norm.nsec > (NSEC_PER_SEC >> 1)) {
norm.nsec -= NSEC_PER_SEC;
norm.sec++;
}
return norm;
}
/* get current phase correction and jitter */
static inline long pps_phase_filter_get(long *jitter)
{
*jitter = pps_tf[0] - pps_tf[1];
if (*jitter < 0)
*jitter = -*jitter;
/* TODO: test various filters */
return pps_tf[0];
}
/* add the sample to the phase filter */
static inline void pps_phase_filter_add(long err)
{
pps_tf[2] = pps_tf[1];
pps_tf[1] = pps_tf[0];
pps_tf[0] = err;
}
/* decrease frequency calibration interval length.
* It is halved after four consecutive unstable intervals.
*/
static inline void pps_dec_freq_interval(void)
{
if (--pps_intcnt <= -PPS_INTCOUNT) {
pps_intcnt = -PPS_INTCOUNT;
if (pps_shift > PPS_INTMIN) {
pps_shift--;
pps_intcnt = 0;
}
}
}
/* increase frequency calibration interval length.
* It is doubled after four consecutive stable intervals.
*/
static inline void pps_inc_freq_interval(void)
{
if (++pps_intcnt >= PPS_INTCOUNT) {
pps_intcnt = PPS_INTCOUNT;
if (pps_shift < PPS_INTMAX) {
pps_shift++;
pps_intcnt = 0;
}
}
}
/* update clock frequency based on MONOTONIC_RAW clock PPS signal
* timestamps
*
* At the end of the calibration interval the difference between the
* first and last MONOTONIC_RAW clock timestamps divided by the length
* of the interval becomes the frequency update. If the interval was
* too long, the data are discarded.
* Returns the difference between old and new frequency values.
*/
static long hardpps_update_freq(struct pps_normtime freq_norm)
{
long delta, delta_mod;
s64 ftemp;
/* check if the frequency interval was too long */
if (freq_norm.sec > (2 << pps_shift)) {
time_status |= STA_PPSERROR;
pps_errcnt++;
pps_dec_freq_interval();
pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
freq_norm.sec);
return 0;
}
/* here the raw frequency offset and wander (stability) is
* calculated. If the wander is less than the wander threshold
* the interval is increased; otherwise it is decreased.
*/
ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
freq_norm.sec);
delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
pps_freq = ftemp;
if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
time_status |= STA_PPSWANDER;
pps_stbcnt++;
pps_dec_freq_interval();
} else { /* good sample */
pps_inc_freq_interval();
}
/* the stability metric is calculated as the average of recent
* frequency changes, but is used only for performance
* monitoring
*/
delta_mod = delta;
if (delta_mod < 0)
delta_mod = -delta_mod;
pps_stabil += (div_s64(((s64)delta_mod) <<
(NTP_SCALE_SHIFT - SHIFT_USEC),
NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
/* if enabled, the system clock frequency is updated */
if ((time_status & STA_PPSFREQ) != 0 &&
(time_status & STA_FREQHOLD) == 0) {
time_freq = pps_freq;
ntp_update_frequency();
}
return delta;
}
/* correct REALTIME clock phase error against PPS signal */
static void hardpps_update_phase(long error)
{
long correction = -error;
long jitter;
/* add the sample to the median filter */
pps_phase_filter_add(correction);
correction = pps_phase_filter_get(&jitter);
/* Nominal jitter is due to PPS signal noise. If it exceeds the
* threshold, the sample is discarded; otherwise, if so enabled,
* the time offset is updated.
*/
if (jitter > (pps_jitter << PPS_POPCORN)) {
pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
jitter, (pps_jitter << PPS_POPCORN));
time_status |= STA_PPSJITTER;
pps_jitcnt++;
} else if (time_status & STA_PPSTIME) {
/* correct the time using the phase offset */
time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
NTP_INTERVAL_FREQ);
/* cancel running adjtime() */
time_adjust = 0;
}
/* update jitter */
pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
}
/*
* hardpps() - discipline CPU clock oscillator to external PPS signal
*
* This routine is called at each PPS signal arrival in order to
* discipline the CPU clock oscillator to the PPS signal. It takes two
* parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
* is used to correct clock phase error and the latter is used to
* correct the frequency.
*
* This code is based on David Mills's reference nanokernel
* implementation. It was mostly rewritten but keeps the same idea.
*/
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
struct pps_normtime pts_norm, freq_norm;
unsigned long flags;
pts_norm = pps_normalize_ts(*phase_ts);
spin_lock_irqsave(&ntp_lock, flags);
/* clear the error bits, they will be set again if needed */
time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
/* indicate signal presence */
time_status |= STA_PPSSIGNAL;
pps_valid = PPS_VALID;
/* when called for the first time,
* just start the frequency interval */
if (unlikely(pps_fbase.tv_sec == 0)) {
pps_fbase = *raw_ts;
spin_unlock_irqrestore(&ntp_lock, flags);
return;
}
/* ok, now we have a base for frequency calculation */
freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
/* check that the signal is in the range
* [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
if ((freq_norm.sec == 0) ||
(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
time_status |= STA_PPSJITTER;
/* restart the frequency calibration interval */
pps_fbase = *raw_ts;
spin_unlock_irqrestore(&ntp_lock, flags);
pr_err("hardpps: PPSJITTER: bad pulse\n");
return;
}
/* signal is ok */
/* check if the current frequency interval is finished */
if (freq_norm.sec >= (1 << pps_shift)) {
pps_calcnt++;
/* restart the frequency calibration interval */
pps_fbase = *raw_ts;
hardpps_update_freq(freq_norm);
}
hardpps_update_phase(pts_norm.nsec);
spin_unlock_irqrestore(&ntp_lock, flags);
}
EXPORT_SYMBOL(hardpps);
#endif /* CONFIG_NTP_PPS */
static int __init ntp_tick_adj_setup(char *str)
{
ntp_tick_adj = simple_strtol(str, NULL, 0);
ntp_tick_adj <<= NTP_SCALE_SHIFT;
return 1;
}
__setup("ntp_tick_adj=", ntp_tick_adj_setup);
void __init ntp_init(void)
{
ntp_clear();
}