blob: 62bdb8d29fc05191750c7f1033a802e24f445d4d [file] [log] [blame]
/*
* arch/v850/kernel/setup.c -- Arch-dependent initialization functions
*
* Copyright (C) 2001,02,03,05 NEC Electronics Corporation
* Copyright (C) 2001,02,03,05 Miles Bader <miles@gnu.org>
*
* This file is subject to the terms and conditions of the GNU General
* Public License. See the file COPYING in the main directory of this
* archive for more details.
*
* Written by Miles Bader <miles@gnu.org>
*/
#include <linux/mm.h>
#include <linux/bootmem.h>
#include <linux/swap.h> /* we don't have swap, but for nr_free_pages */
#include <linux/irq.h>
#include <linux/reboot.h>
#include <linux/personality.h>
#include <linux/major.h>
#include <linux/root_dev.h>
#include <linux/mtd/mtd.h>
#include <linux/init.h>
#include <asm/irq.h>
#include <asm/setup.h>
#include "mach.h"
/* These symbols are all defined in the linker map to delineate various
statically allocated regions of memory. */
extern char _intv_start, _intv_end;
/* `kram' is only used if the kernel uses part of normal user RAM. */
extern char _kram_start __attribute__ ((__weak__));
extern char _kram_end __attribute__ ((__weak__));
extern char _init_start, _init_end;
extern char _bootmap;
extern char _stext, _etext, _sdata, _edata, _sbss, _ebss;
/* Many platforms use an embedded root image. */
extern char _root_fs_image_start __attribute__ ((__weak__));
extern char _root_fs_image_end __attribute__ ((__weak__));
char command_line[COMMAND_LINE_SIZE];
/* Memory not used by the kernel. */
static unsigned long total_ram_pages;
/* System RAM. */
static unsigned long ram_start = 0, ram_len = 0;
#define ADDR_TO_PAGE_UP(x) ((((unsigned long)x) + PAGE_SIZE-1) >> PAGE_SHIFT)
#define ADDR_TO_PAGE(x) (((unsigned long)x) >> PAGE_SHIFT)
#define PAGE_TO_ADDR(x) (((unsigned long)x) << PAGE_SHIFT)
static void init_mem_alloc (unsigned long ram_start, unsigned long ram_len);
void set_mem_root (void *addr, size_t len, char *cmd_line);
void __init setup_arch (char **cmdline)
{
/* Keep a copy of command line */
*cmdline = command_line;
memcpy (saved_command_line, command_line, COMMAND_LINE_SIZE);
saved_command_line[COMMAND_LINE_SIZE - 1] = '\0';
console_verbose ();
init_mm.start_code = (unsigned long) &_stext;
init_mm.end_code = (unsigned long) &_etext;
init_mm.end_data = (unsigned long) &_edata;
init_mm.brk = (unsigned long) &_kram_end;
/* Find out what mem this machine has. */
mach_get_physical_ram (&ram_start, &ram_len);
/* ... and tell the kernel about it. */
init_mem_alloc (ram_start, ram_len);
printk (KERN_INFO "CPU: %s\nPlatform: %s\n",
CPU_MODEL_LONG, PLATFORM_LONG);
/* do machine-specific setups. */
mach_setup (cmdline);
#ifdef CONFIG_MTD
if (!ROOT_DEV && &_root_fs_image_end > &_root_fs_image_start)
set_mem_root (&_root_fs_image_start,
&_root_fs_image_end - &_root_fs_image_start,
*cmdline);
#endif
}
void __init trap_init (void)
{
}
#ifdef CONFIG_MTD
/* From drivers/mtd/devices/slram.c */
#define SLRAM_BLK_SZ 0x4000
/* Set the root filesystem to be the given memory region.
Some parameter may be appended to CMD_LINE. */
void set_mem_root (void *addr, size_t len, char *cmd_line)
{
/* Some sort of idiocy in MTD means we must supply a length that's
a multiple of SLRAM_BLK_SZ. We just round up the real length,
as the file system shouldn't attempt to access anything beyond
the end of the image anyway. */
len = (((len - 1) + SLRAM_BLK_SZ) / SLRAM_BLK_SZ) * SLRAM_BLK_SZ;
/* The only way to pass info to the MTD slram driver is via
the command line. */
if (*cmd_line) {
cmd_line += strlen (cmd_line);
*cmd_line++ = ' ';
}
sprintf (cmd_line, "slram=root,0x%x,+0x%x", (u32)addr, (u32)len);
ROOT_DEV = MKDEV (MTD_BLOCK_MAJOR, 0);
}
#endif
static void irq_nop (unsigned irq) { }
static unsigned irq_zero (unsigned irq) { return 0; }
static void nmi_end (unsigned irq)
{
if (irq != IRQ_NMI (0)) {
printk (KERN_CRIT "NMI %d is unrecoverable; restarting...",
irq - IRQ_NMI (0));
machine_restart (0);
}
}
static struct hw_interrupt_type nmi_irq_type = {
.typename = "NMI",
.startup = irq_zero, /* startup */
.shutdown = irq_nop, /* shutdown */
.enable = irq_nop, /* enable */
.disable = irq_nop, /* disable */
.ack = irq_nop, /* ack */
.end = nmi_end, /* end */
};
void __init init_IRQ (void)
{
init_irq_handlers (0, NUM_MACH_IRQS, 1, 0);
init_irq_handlers (IRQ_NMI (0), NUM_NMIS, 1, &nmi_irq_type);
mach_init_irqs ();
}
void __init mem_init (void)
{
max_mapnr = MAP_NR (ram_start + ram_len);
num_physpages = ADDR_TO_PAGE (ram_len);
total_ram_pages = free_all_bootmem ();
printk (KERN_INFO
"Memory: %luK/%luK available"
" (%luK kernel code, %luK data)\n",
PAGE_TO_ADDR (nr_free_pages()) / 1024,
ram_len / 1024,
((unsigned long)&_etext - (unsigned long)&_stext) / 1024,
((unsigned long)&_ebss - (unsigned long)&_sdata) / 1024);
}
void free_initmem (void)
{
unsigned long ram_end = ram_start + ram_len;
unsigned long start = PAGE_ALIGN ((unsigned long)(&_init_start));
if (start >= ram_start && start < ram_end) {
unsigned long addr;
unsigned long end = PAGE_ALIGN ((unsigned long)(&_init_end));
if (end > ram_end)
end = ram_end;
printk("Freeing unused kernel memory: %ldK freed\n",
(end - start) / 1024);
for (addr = start; addr < end; addr += PAGE_SIZE) {
struct page *page = virt_to_page (addr);
ClearPageReserved (page);
set_page_count (page, 1);
__free_page (page);
total_ram_pages++;
}
}
}
/* Initialize the `bootmem allocator'. RAM_START and RAM_LEN identify
what RAM may be used. */
static void __init
init_bootmem_alloc (unsigned long ram_start, unsigned long ram_len)
{
/* The part of the kernel that's in the same managed RAM space
used for general allocation. */
unsigned long kram_start = (unsigned long)&_kram_start;
unsigned long kram_end = (unsigned long)&_kram_end;
/* End of the managed RAM space. */
unsigned long ram_end = ram_start + ram_len;
/* Address range of the interrupt vector table. */
unsigned long intv_start = (unsigned long)&_intv_start;
unsigned long intv_end = (unsigned long)&_intv_end;
/* True if the interrupt vectors are in the managed RAM area. */
int intv_in_ram = (intv_end > ram_start && intv_start < ram_end);
/* True if the interrupt vectors are inside the kernel's RAM. */
int intv_in_kram = (intv_end > kram_start && intv_start < kram_end);
/* A pointer to an optional function that reserves platform-specific
memory regions. We declare the pointer `volatile' to avoid gcc
turning the call into a static call (the problem is that since
it's a weak symbol, a static call may end up trying to reference
the location 0x0, which is not always reachable). */
void (*volatile mrb) (void) = mach_reserve_bootmem;
/* The bootmem allocator's allocation bitmap. */
unsigned long bootmap = (unsigned long)&_bootmap;
unsigned long bootmap_len;
/* Round bootmap location up to next page. */
bootmap = PAGE_TO_ADDR (ADDR_TO_PAGE_UP (bootmap));
/* Initialize bootmem allocator. */
bootmap_len = init_bootmem_node (NODE_DATA (0),
ADDR_TO_PAGE (bootmap),
ADDR_TO_PAGE (PAGE_OFFSET),
ADDR_TO_PAGE (ram_end));
/* Now make the RAM actually allocatable (it starts out `reserved'). */
free_bootmem (ram_start, ram_len);
if (kram_end > kram_start)
/* Reserve the RAM part of the kernel's address space, so it
doesn't get allocated. */
reserve_bootmem (kram_start, kram_end - kram_start);
if (intv_in_ram && !intv_in_kram)
/* Reserve the interrupt vector space. */
reserve_bootmem (intv_start, intv_end - intv_start);
if (bootmap >= ram_start && bootmap < ram_end)
/* Reserve the bootmap space. */
reserve_bootmem (bootmap, bootmap_len);
/* Reserve the memory used by the root filesystem image if it's
in RAM. */
if (&_root_fs_image_end > &_root_fs_image_start
&& (unsigned long)&_root_fs_image_start >= ram_start
&& (unsigned long)&_root_fs_image_start < ram_end)
reserve_bootmem ((unsigned long)&_root_fs_image_start,
&_root_fs_image_end - &_root_fs_image_start);
/* Let the platform-dependent code reserve some too. */
if (mrb)
(*mrb) ();
}
/* Tell the kernel about what RAM it may use for memory allocation. */
static void __init
init_mem_alloc (unsigned long ram_start, unsigned long ram_len)
{
unsigned i;
unsigned long zones_size[MAX_NR_ZONES];
init_bootmem_alloc (ram_start, ram_len);
for (i = 0; i < MAX_NR_ZONES; i++)
zones_size[i] = 0;
/* We stuff all the memory into one area, which includes the
initial gap from PAGE_OFFSET to ram_start. */
zones_size[ZONE_DMA]
= ADDR_TO_PAGE (ram_len + (ram_start - PAGE_OFFSET));
/* The allocator is very picky about the address of the first
allocatable page -- it must be at least as aligned as the
maximum allocation -- so try to detect cases where it will get
confused and signal them at compile time (this is a common
problem when porting to a new platform with ). There is a
similar runtime check in free_area_init_core. */
#if ((PAGE_OFFSET >> PAGE_SHIFT) & ((1UL << (MAX_ORDER - 1)) - 1))
#error MAX_ORDER is too large for given PAGE_OFFSET (use CONFIG_FORCE_MAX_ZONEORDER to change it)
#endif
NODE_DATA(0)->node_mem_map = NULL;
free_area_init_node (0, NODE_DATA(0), zones_size,
ADDR_TO_PAGE (PAGE_OFFSET), 0);
}
/* Taken from m68knommu */
void show_mem(void)
{
unsigned long i;
int free = 0, total = 0, reserved = 0, shared = 0;
int cached = 0;
printk(KERN_INFO "\nMem-info:\n");
show_free_areas();
i = max_mapnr;
while (i-- > 0) {
total++;
if (PageReserved(mem_map+i))
reserved++;
else if (PageSwapCache(mem_map+i))
cached++;
else if (!page_count(mem_map+i))
free++;
else
shared += page_count(mem_map+i) - 1;
}
printk(KERN_INFO "%d pages of RAM\n",total);
printk(KERN_INFO "%d free pages\n",free);
printk(KERN_INFO "%d reserved pages\n",reserved);
printk(KERN_INFO "%d pages shared\n",shared);
printk(KERN_INFO "%d pages swap cached\n",cached);
}