blob: d44f7829968e801cf6b32d41be0c5f297971900d [file] [log] [blame]
/*
* Common interrupt code for 32 and 64 bit
*/
#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/of.h>
#include <linux/seq_file.h>
#include <linux/smp.h>
#include <linux/ftrace.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <asm/apic.h>
#include <asm/io_apic.h>
#include <asm/irq.h>
#include <asm/idle.h>
#include <asm/mce.h>
#include <asm/hw_irq.h>
atomic_t irq_err_count;
/* Function pointer for generic interrupt vector handling */
void (*x86_platform_ipi_callback)(void) = NULL;
/*
* 'what should we do if we get a hw irq event on an illegal vector'.
* each architecture has to answer this themselves.
*/
void ack_bad_irq(unsigned int irq)
{
if (printk_ratelimit())
pr_err("unexpected IRQ trap at vector %02x\n", irq);
/*
* Currently unexpected vectors happen only on SMP and APIC.
* We _must_ ack these because every local APIC has only N
* irq slots per priority level, and a 'hanging, unacked' IRQ
* holds up an irq slot - in excessive cases (when multiple
* unexpected vectors occur) that might lock up the APIC
* completely.
* But only ack when the APIC is enabled -AK
*/
ack_APIC_irq();
}
#define irq_stats(x) (&per_cpu(irq_stat, x))
/*
* /proc/interrupts printing for arch specific interrupts
*/
int arch_show_interrupts(struct seq_file *p, int prec)
{
int j;
seq_printf(p, "%*s: ", prec, "NMI");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
seq_printf(p, " Non-maskable interrupts\n");
#ifdef CONFIG_X86_LOCAL_APIC
seq_printf(p, "%*s: ", prec, "LOC");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
seq_printf(p, " Local timer interrupts\n");
seq_printf(p, "%*s: ", prec, "SPU");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
seq_printf(p, " Spurious interrupts\n");
seq_printf(p, "%*s: ", prec, "PMI");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
seq_printf(p, " Performance monitoring interrupts\n");
seq_printf(p, "%*s: ", prec, "IWI");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
seq_printf(p, " IRQ work interrupts\n");
seq_printf(p, "%*s: ", prec, "RTR");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
seq_printf(p, " APIC ICR read retries\n");
#endif
if (x86_platform_ipi_callback) {
seq_printf(p, "%*s: ", prec, "PLT");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
seq_printf(p, " Platform interrupts\n");
}
#ifdef CONFIG_SMP
seq_printf(p, "%*s: ", prec, "RES");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
seq_printf(p, " Rescheduling interrupts\n");
seq_printf(p, "%*s: ", prec, "CAL");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
seq_printf(p, " Function call interrupts\n");
seq_printf(p, "%*s: ", prec, "TLB");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
seq_printf(p, " TLB shootdowns\n");
#endif
#ifdef CONFIG_X86_THERMAL_VECTOR
seq_printf(p, "%*s: ", prec, "TRM");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
seq_printf(p, " Thermal event interrupts\n");
#endif
#ifdef CONFIG_X86_MCE_THRESHOLD
seq_printf(p, "%*s: ", prec, "THR");
for_each_online_cpu(j)
seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
seq_printf(p, " Threshold APIC interrupts\n");
#endif
#ifdef CONFIG_X86_MCE
seq_printf(p, "%*s: ", prec, "MCE");
for_each_online_cpu(j)
seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
seq_printf(p, " Machine check exceptions\n");
seq_printf(p, "%*s: ", prec, "MCP");
for_each_online_cpu(j)
seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
seq_printf(p, " Machine check polls\n");
#endif
seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
#if defined(CONFIG_X86_IO_APIC)
seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
#endif
return 0;
}
/*
* /proc/stat helpers
*/
u64 arch_irq_stat_cpu(unsigned int cpu)
{
u64 sum = irq_stats(cpu)->__nmi_count;
#ifdef CONFIG_X86_LOCAL_APIC
sum += irq_stats(cpu)->apic_timer_irqs;
sum += irq_stats(cpu)->irq_spurious_count;
sum += irq_stats(cpu)->apic_perf_irqs;
sum += irq_stats(cpu)->apic_irq_work_irqs;
sum += irq_stats(cpu)->icr_read_retry_count;
#endif
if (x86_platform_ipi_callback)
sum += irq_stats(cpu)->x86_platform_ipis;
#ifdef CONFIG_SMP
sum += irq_stats(cpu)->irq_resched_count;
sum += irq_stats(cpu)->irq_call_count;
sum += irq_stats(cpu)->irq_tlb_count;
#endif
#ifdef CONFIG_X86_THERMAL_VECTOR
sum += irq_stats(cpu)->irq_thermal_count;
#endif
#ifdef CONFIG_X86_MCE_THRESHOLD
sum += irq_stats(cpu)->irq_threshold_count;
#endif
#ifdef CONFIG_X86_MCE
sum += per_cpu(mce_exception_count, cpu);
sum += per_cpu(mce_poll_count, cpu);
#endif
return sum;
}
u64 arch_irq_stat(void)
{
u64 sum = atomic_read(&irq_err_count);
#ifdef CONFIG_X86_IO_APIC
sum += atomic_read(&irq_mis_count);
#endif
return sum;
}
/*
* do_IRQ handles all normal device IRQ's (the special
* SMP cross-CPU interrupts have their own specific
* handlers).
*/
unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs(regs);
/* high bit used in ret_from_ code */
unsigned vector = ~regs->orig_ax;
unsigned irq;
irq_enter();
exit_idle();
irq = __this_cpu_read(vector_irq[vector]);
if (!handle_irq(irq, regs)) {
ack_APIC_irq();
if (printk_ratelimit())
pr_emerg("%s: %d.%d No irq handler for vector (irq %d)\n",
__func__, smp_processor_id(), vector, irq);
}
irq_exit();
set_irq_regs(old_regs);
return 1;
}
/*
* Handler for X86_PLATFORM_IPI_VECTOR.
*/
void smp_x86_platform_ipi(struct pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs(regs);
ack_APIC_irq();
irq_enter();
exit_idle();
inc_irq_stat(x86_platform_ipis);
if (x86_platform_ipi_callback)
x86_platform_ipi_callback();
irq_exit();
set_irq_regs(old_regs);
}
EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
#ifdef CONFIG_HOTPLUG_CPU
/* A cpu has been removed from cpu_online_mask. Reset irq affinities. */
void fixup_irqs(void)
{
unsigned int irq, vector;
static int warned;
struct irq_desc *desc;
struct irq_data *data;
struct irq_chip *chip;
for_each_irq_desc(irq, desc) {
int break_affinity = 0;
int set_affinity = 1;
const struct cpumask *affinity;
if (!desc)
continue;
if (irq == 2)
continue;
/* interrupt's are disabled at this point */
raw_spin_lock(&desc->lock);
data = irq_desc_get_irq_data(desc);
affinity = data->affinity;
if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
cpumask_subset(affinity, cpu_online_mask)) {
raw_spin_unlock(&desc->lock);
continue;
}
/*
* Complete the irq move. This cpu is going down and for
* non intr-remapping case, we can't wait till this interrupt
* arrives at this cpu before completing the irq move.
*/
irq_force_complete_move(irq);
if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
break_affinity = 1;
affinity = cpu_online_mask;
}
chip = irq_data_get_irq_chip(data);
if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
chip->irq_mask(data);
if (chip->irq_set_affinity)
chip->irq_set_affinity(data, affinity, true);
else if (!(warned++))
set_affinity = 0;
/*
* We unmask if the irq was not marked masked by the
* core code. That respects the lazy irq disable
* behaviour.
*/
if (!irqd_can_move_in_process_context(data) &&
!irqd_irq_masked(data) && chip->irq_unmask)
chip->irq_unmask(data);
raw_spin_unlock(&desc->lock);
if (break_affinity && set_affinity)
pr_notice("Broke affinity for irq %i\n", irq);
else if (!set_affinity)
pr_notice("Cannot set affinity for irq %i\n", irq);
}
/*
* We can remove mdelay() and then send spuriuous interrupts to
* new cpu targets for all the irqs that were handled previously by
* this cpu. While it works, I have seen spurious interrupt messages
* (nothing wrong but still...).
*
* So for now, retain mdelay(1) and check the IRR and then send those
* interrupts to new targets as this cpu is already offlined...
*/
mdelay(1);
for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
unsigned int irr;
if (__this_cpu_read(vector_irq[vector]) < 0)
continue;
irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
if (irr & (1 << (vector % 32))) {
irq = __this_cpu_read(vector_irq[vector]);
desc = irq_to_desc(irq);
data = irq_desc_get_irq_data(desc);
chip = irq_data_get_irq_chip(data);
raw_spin_lock(&desc->lock);
if (chip->irq_retrigger)
chip->irq_retrigger(data);
raw_spin_unlock(&desc->lock);
}
__this_cpu_write(vector_irq[vector], -1);
}
}
#endif