blob: 914495783c06e2c23362d7137fec6cd9b55b3d1a [file] [log] [blame]
/*
* Copyright (c) Realtek Semiconductor Corp. All rights reserved.
*
* Module Name:
* r8185b_init.c
*
* Abstract:
* Hardware Initialization and Hardware IO for RTL8185B
*
* Major Change History:
* When Who What
* ---------- --------------- -------------------------------
* 2006-11-15 Xiong Created
*
* Notes:
* This file is ported from RTL8185B Windows driver.
*
*
*/
/*--------------------------Include File------------------------------------*/
#include <linux/spinlock.h>
#include "r8180_hw.h"
#include "r8180.h"
#include "r8180_rtl8225.h" /* RTL8225 Radio frontend */
#include "r8180_93cx6.h" /* Card EEPROM */
#include "r8180_wx.h"
#include "ieee80211/dot11d.h"
/* #define CONFIG_RTL8180_IO_MAP */
#define TC_3W_POLL_MAX_TRY_CNT 5
static u8 MAC_REG_TABLE[][2] = {
/*PAGA 0: */
/* 0x34(BRSR), 0xBE(RATE_FALLBACK_CTL), 0x1E0(ARFR) would set in HwConfigureRTL8185() */
/* 0x272(RFSW_CTRL), 0x1CE(AESMSK_QC) set in InitializeAdapter8185(). */
/* 0x1F0~0x1F8 set in MacConfig_85BASIC() */
{0x08, 0xae}, {0x0a, 0x72}, {0x5b, 0x42},
{0x84, 0x88}, {0x85, 0x24}, {0x88, 0x54}, {0x8b, 0xb8}, {0x8c, 0x03},
{0x8d, 0x40}, {0x8e, 0x00}, {0x8f, 0x00}, {0x5b, 0x18}, {0x91, 0x03},
{0x94, 0x0F}, {0x95, 0x32},
{0x96, 0x00}, {0x97, 0x07}, {0xb4, 0x22}, {0xdb, 0x00},
{0xf0, 0x32}, {0xf1, 0x32}, {0xf2, 0x00}, {0xf3, 0x00}, {0xf4, 0x32},
{0xf5, 0x43}, {0xf6, 0x00}, {0xf7, 0x00}, {0xf8, 0x46}, {0xf9, 0xa4},
{0xfa, 0x00}, {0xfb, 0x00}, {0xfc, 0x96}, {0xfd, 0xa4}, {0xfe, 0x00},
{0xff, 0x00},
/*PAGE 1: */
/* For Flextronics system Logo PCIHCT failure: */
/* 0x1C4~0x1CD set no-zero value to avoid PCI configuration space 0x45[7]=1 */
{0x5e, 0x01},
{0x58, 0x00}, {0x59, 0x00}, {0x5a, 0x04}, {0x5b, 0x00}, {0x60, 0x24},
{0x61, 0x97}, {0x62, 0xF0}, {0x63, 0x09}, {0x80, 0x0F}, {0x81, 0xFF},
{0x82, 0xFF}, {0x83, 0x03},
{0xC4, 0x22}, {0xC5, 0x22}, {0xC6, 0x22}, {0xC7, 0x22}, {0xC8, 0x22}, /* lzm add 080826 */
{0xC9, 0x22}, {0xCA, 0x22}, {0xCB, 0x22}, {0xCC, 0x22}, {0xCD, 0x22}, /* lzm add 080826 */
{0xe2, 0x00},
/* PAGE 2: */
{0x5e, 0x02},
{0x0c, 0x04}, {0x4c, 0x30}, {0x4d, 0x08}, {0x50, 0x05}, {0x51, 0xf5},
{0x52, 0x04}, {0x53, 0xa0}, {0x54, 0xff}, {0x55, 0xff}, {0x56, 0xff},
{0x57, 0xff}, {0x58, 0x08}, {0x59, 0x08}, {0x5a, 0x08}, {0x5b, 0x08},
{0x60, 0x08}, {0x61, 0x08}, {0x62, 0x08}, {0x63, 0x08}, {0x64, 0x2f},
{0x8c, 0x3f}, {0x8d, 0x3f}, {0x8e, 0x3f},
{0x8f, 0x3f}, {0xc4, 0xff}, {0xc5, 0xff}, {0xc6, 0xff}, {0xc7, 0xff},
{0xc8, 0x00}, {0xc9, 0x00}, {0xca, 0x80}, {0xcb, 0x00},
/* PAGA 0: */
{0x5e, 0x00}, {0x9f, 0x03}
};
static u8 ZEBRA_AGC[] = {
0,
0x7E, 0x7E, 0x7E, 0x7E, 0x7D, 0x7C, 0x7B, 0x7A, 0x79, 0x78, 0x77, 0x76, 0x75, 0x74, 0x73, 0x72,
0x71, 0x70, 0x6F, 0x6E, 0x6D, 0x6C, 0x6B, 0x6A, 0x69, 0x68, 0x67, 0x66, 0x65, 0x64, 0x63, 0x62,
0x48, 0x47, 0x46, 0x45, 0x44, 0x29, 0x28, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21, 0x08, 0x07,
0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x15, 0x16,
0x17, 0x17, 0x18, 0x18, 0x19, 0x1a, 0x1a, 0x1b, 0x1b, 0x1c, 0x1c, 0x1d, 0x1d, 0x1d, 0x1e, 0x1e,
0x1f, 0x1f, 0x1f, 0x20, 0x20, 0x20, 0x20, 0x21, 0x21, 0x21, 0x22, 0x22, 0x22, 0x23, 0x23, 0x24,
0x24, 0x25, 0x25, 0x25, 0x26, 0x26, 0x27, 0x27, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F
};
static u32 ZEBRA_RF_RX_GAIN_TABLE[] = {
0x0096, 0x0076, 0x0056, 0x0036, 0x0016, 0x01f6, 0x01d6, 0x01b6,
0x0196, 0x0176, 0x00F7, 0x00D7, 0x00B7, 0x0097, 0x0077, 0x0057,
0x0037, 0x00FB, 0x00DB, 0x00BB, 0x00FF, 0x00E3, 0x00C3, 0x00A3,
0x0083, 0x0063, 0x0043, 0x0023, 0x0003, 0x01E3, 0x01C3, 0x01A3,
0x0183, 0x0163, 0x0143, 0x0123, 0x0103
};
static u8 OFDM_CONFIG[] = {
/* OFDM reg0x06[7:0]=0xFF: Enable power saving mode in RX */
/* OFDM reg0x3C[4]=1'b1: Enable RX power saving mode */
/* ofdm 0x3a = 0x7b ,(original : 0xfb) For ECS shielding room TP test */
/* 0x00 */
0x10, 0x0F, 0x0A, 0x0C, 0x14, 0xFA, 0xFF, 0x50,
0x00, 0x50, 0x00, 0x00, 0x00, 0x5C, 0x00, 0x00,
/* 0x10 */
0x40, 0x00, 0x40, 0x00, 0x00, 0x00, 0xA8, 0x26,
0x32, 0x33, 0x06, 0xA5, 0x6F, 0x55, 0xC8, 0xBB,
/* 0x20 */
0x0A, 0xE1, 0x2C, 0x4A, 0x86, 0x83, 0x34, 0x00,
0x4F, 0x24, 0x6F, 0xC2, 0x03, 0x40, 0x80, 0x00,
/* 0x30 */
0xC0, 0xC1, 0x58, 0xF1, 0x00, 0xC4, 0x90, 0x3e,
0xD8, 0x3C, 0x7B, 0x10, 0x10
};
/*---------------------------------------------------------------
* Hardware IO
* the code is ported from Windows source code
*---------------------------------------------------------------
*/
void PlatformIOWrite1Byte(struct net_device *dev, u32 offset, u8 data)
{
write_nic_byte(dev, offset, data);
read_nic_byte(dev, offset); /* To make sure write operation is completed, 2005.11.09, by rcnjko. */
}
void PlatformIOWrite2Byte(struct net_device *dev, u32 offset, u16 data)
{
write_nic_word(dev, offset, data);
read_nic_word(dev, offset); /* To make sure write operation is completed, 2005.11.09, by rcnjko. */
}
u8 PlatformIORead1Byte(struct net_device *dev, u32 offset);
void PlatformIOWrite4Byte(struct net_device *dev, u32 offset, u32 data)
{
if (offset == PhyAddr) {
/* For Base Band configuration. */
unsigned char cmdByte;
unsigned long dataBytes;
unsigned char idx;
u8 u1bTmp;
cmdByte = (u8)(data & 0x000000ff);
dataBytes = data>>8;
/*
* 071010, rcnjko:
* The critical section is only BB read/write race condition.
* Assumption:
* 1. We assume NO one will access BB at DIRQL, otherwise, system will crash for
* acquiring the spinlock in such context.
* 2. PlatformIOWrite4Byte() MUST NOT be recursive.
*/
/* NdisAcquireSpinLock( &(pDevice->IoSpinLock) ); */
for (idx = 0; idx < 30; idx++) {
/* Make sure command bit is clear before access it. */
u1bTmp = PlatformIORead1Byte(dev, PhyAddr);
if ((u1bTmp & BIT7) == 0)
break;
else
mdelay(10);
}
for (idx = 0; idx < 3; idx++)
PlatformIOWrite1Byte(dev, offset+1+idx, ((u8 *)&dataBytes)[idx]);
write_nic_byte(dev, offset, cmdByte);
/* NdisReleaseSpinLock( &(pDevice->IoSpinLock) ); */
} else {
write_nic_dword(dev, offset, data);
read_nic_dword(dev, offset); /* To make sure write operation is completed, 2005.11.09, by rcnjko. */
}
}
u8 PlatformIORead1Byte(struct net_device *dev, u32 offset)
{
u8 data = 0;
data = read_nic_byte(dev, offset);
return data;
}
u16 PlatformIORead2Byte(struct net_device *dev, u32 offset)
{
u16 data = 0;
data = read_nic_word(dev, offset);
return data;
}
u32 PlatformIORead4Byte(struct net_device *dev, u32 offset)
{
u32 data = 0;
data = read_nic_dword(dev, offset);
return data;
}
void SetOutputEnableOfRfPins(struct net_device *dev)
{
write_nic_word(dev, RFPinsEnable, 0x1bff);
}
static int HwHSSIThreeWire(struct net_device *dev,
u8 *pDataBuf,
u8 nDataBufBitCnt,
int bSI,
int bWrite)
{
int bResult = 1;
u8 TryCnt;
u8 u1bTmp;
do {
/* Check if WE and RE are cleared. */
for (TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++) {
u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
if ((u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0)
break;
udelay(10);
}
if (TryCnt == TC_3W_POLL_MAX_TRY_CNT) {
printk(KERN_ERR "rtl8187se: HwThreeWire(): CmdReg:"
" %#X RE|WE bits are not clear!!\n", u1bTmp);
dump_stack();
return 0;
}
/* RTL8187S HSSI Read/Write Function */
u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);
if (bSI)
u1bTmp |= RF_SW_CFG_SI; /* reg08[1]=1 Serial Interface(SI) */
else
u1bTmp &= ~RF_SW_CFG_SI; /* reg08[1]=0 Parallel Interface(PI) */
write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);
if (bSI) {
/* jong: HW SI read must set reg84[3]=0. */
u1bTmp = read_nic_byte(dev, RFPinsSelect);
u1bTmp &= ~BIT3;
write_nic_byte(dev, RFPinsSelect, u1bTmp);
}
/* Fill up data buffer for write operation. */
if (bWrite) {
if (nDataBufBitCnt == 16) {
write_nic_word(dev, SW_3W_DB0, *((u16 *)pDataBuf));
} else if (nDataBufBitCnt == 64) {
/* RTL8187S shouldn't enter this case */
write_nic_dword(dev, SW_3W_DB0, *((u32 *)pDataBuf));
write_nic_dword(dev, SW_3W_DB1, *((u32 *)(pDataBuf + 4)));
} else {
int idx;
int ByteCnt = nDataBufBitCnt / 8;
/* printk("%d\n",nDataBufBitCnt); */
if ((nDataBufBitCnt % 8) != 0) {
printk(KERN_ERR "rtl8187se: "
"HwThreeWire(): nDataBufBitCnt(%d)"
" should be multiple of 8!!!\n",
nDataBufBitCnt);
dump_stack();
nDataBufBitCnt += 8;
nDataBufBitCnt &= ~7;
}
if (nDataBufBitCnt > 64) {
printk(KERN_ERR "rtl8187se: HwThreeWire():"
" nDataBufBitCnt(%d) should <= 64!!!\n",
nDataBufBitCnt);
dump_stack();
nDataBufBitCnt = 64;
}
for (idx = 0; idx < ByteCnt; idx++)
write_nic_byte(dev, (SW_3W_DB0+idx), *(pDataBuf+idx));
}
} else { /* read */
if (bSI) {
/* SI - reg274[3:0] : RF register's Address */
write_nic_word(dev, SW_3W_DB0, *((u16 *)pDataBuf));
} else {
/* PI - reg274[15:12] : RF register's Address */
write_nic_word(dev, SW_3W_DB0, (*((u16 *)pDataBuf)) << 12);
}
}
/* Set up command: WE or RE. */
if (bWrite)
write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_WE);
else
write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_RE);
/* Check if DONE is set. */
for (TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++) {
u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
if ((u1bTmp & SW_3W_CMD1_DONE) != 0)
break;
udelay(10);
}
write_nic_byte(dev, SW_3W_CMD1, 0);
/* Read back data for read operation. */
if (bWrite == 0) {
if (bSI) {
/* Serial Interface : reg363_362[11:0] */
*((u16 *)pDataBuf) = read_nic_word(dev, SI_DATA_READ) ;
} else {
/* Parallel Interface : reg361_360[11:0] */
*((u16 *)pDataBuf) = read_nic_word(dev, PI_DATA_READ);
}
*((u16 *)pDataBuf) &= 0x0FFF;
}
} while (0);
return bResult;
}
void RF_WriteReg(struct net_device *dev, u8 offset, u32 data)
{
u32 data2Write;
u8 len;
/* Pure HW 3-wire. */
data2Write = (data << 4) | (u32)(offset & 0x0f);
len = 16;
HwHSSIThreeWire(dev, (u8 *)(&data2Write), len, 1, 1);
}
u32 RF_ReadReg(struct net_device *dev, u8 offset)
{
u32 data2Write;
u8 wlen;
u32 dataRead;
data2Write = ((u32)(offset & 0x0f));
wlen = 16;
HwHSSIThreeWire(dev, (u8 *)(&data2Write), wlen, 1, 0);
dataRead = data2Write;
return dataRead;
}
/* by Owen on 04/07/14 for writing BB register successfully */
void WriteBBPortUchar(struct net_device *dev, u32 Data)
{
/* u8 TimeoutCounter; */
u8 RegisterContent;
u8 UCharData;
UCharData = (u8)((Data & 0x0000ff00) >> 8);
PlatformIOWrite4Byte(dev, PhyAddr, Data);
/* for(TimeoutCounter = 10; TimeoutCounter > 0; TimeoutCounter--) */
{
PlatformIOWrite4Byte(dev, PhyAddr, Data & 0xffffff7f);
RegisterContent = PlatformIORead1Byte(dev, PhyDataR);
/*if(UCharData == RegisterContent) */
/* break; */
}
}
u8 ReadBBPortUchar(struct net_device *dev, u32 addr)
{
/*u8 TimeoutCounter; */
u8 RegisterContent;
PlatformIOWrite4Byte(dev, PhyAddr, addr & 0xffffff7f);
RegisterContent = PlatformIORead1Byte(dev, PhyDataR);
return RegisterContent;
}
/*
* Description:
* Perform Antenna settings with antenna diversity on 87SE.
* Created by Roger, 2008.01.25.
*/
bool SetAntennaConfig87SE(struct net_device *dev,
u8 DefaultAnt, /* 0: Main, 1: Aux. */
bool bAntDiversity) /* 1:Enable, 0: Disable. */
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
bool bAntennaSwitched = true;
/* printk("SetAntennaConfig87SE(): DefaultAnt(%d), bAntDiversity(%d)\n", DefaultAnt, bAntDiversity); */
/* Threshold for antenna diversity. */
write_phy_cck(dev, 0x0c, 0x09); /* Reg0c : 09 */
if (bAntDiversity) { /* Enable Antenna Diversity. */
if (DefaultAnt == 1) { /* aux antenna */
/* Mac register, aux antenna */
write_nic_byte(dev, ANTSEL, 0x00);
/* Config CCK RX antenna. */
write_phy_cck(dev, 0x11, 0xbb); /* Reg11 : bb */
write_phy_cck(dev, 0x01, 0xc7); /* Reg01 : c7 */
/* Config OFDM RX antenna. */
write_phy_ofdm(dev, 0x0D, 0x54); /* Reg0d : 54 */
write_phy_ofdm(dev, 0x18, 0xb2); /* Reg18 : b2 */
} else { /* use main antenna */
/* Mac register, main antenna */
write_nic_byte(dev, ANTSEL, 0x03);
/* base band */
/* Config CCK RX antenna. */
write_phy_cck(dev, 0x11, 0x9b); /* Reg11 : 9b */
write_phy_cck(dev, 0x01, 0xc7); /* Reg01 : c7 */
/* Config OFDM RX antenna. */
write_phy_ofdm(dev, 0x0d, 0x5c); /* Reg0d : 5c */
write_phy_ofdm(dev, 0x18, 0xb2); /* Reg18 : b2 */
}
} else {
/* Disable Antenna Diversity. */
if (DefaultAnt == 1) { /* aux Antenna */
/* Mac register, aux antenna */
write_nic_byte(dev, ANTSEL, 0x00);
/* Config CCK RX antenna. */
write_phy_cck(dev, 0x11, 0xbb); /* Reg11 : bb */
write_phy_cck(dev, 0x01, 0x47); /* Reg01 : 47 */
/* Config OFDM RX antenna. */
write_phy_ofdm(dev, 0x0D, 0x54); /* Reg0d : 54 */
write_phy_ofdm(dev, 0x18, 0x32); /* Reg18 : 32 */
} else { /* main Antenna */
/* Mac register, main antenna */
write_nic_byte(dev, ANTSEL, 0x03);
/* Config CCK RX antenna. */
write_phy_cck(dev, 0x11, 0x9b); /* Reg11 : 9b */
write_phy_cck(dev, 0x01, 0x47); /* Reg01 : 47 */
/* Config OFDM RX antenna. */
write_phy_ofdm(dev, 0x0D, 0x5c); /* Reg0d : 5c */
write_phy_ofdm(dev, 0x18, 0x32); /*Reg18 : 32 */
}
}
priv->CurrAntennaIndex = DefaultAnt; /* Update default settings. */
return bAntennaSwitched;
}
/*
*--------------------------------------------------------------
* Hardware Initialization.
* the code is ported from Windows source code
*--------------------------------------------------------------
*/
void ZEBRA_Config_85BASIC_HardCode(struct net_device *dev)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
u32 i;
u32 addr, data;
u32 u4bRegOffset, u4bRegValue, u4bRF23, u4bRF24;
u8 u1b24E;
int d_cut = 0;
/*
*===========================================================================
* 87S_PCIE :: RADIOCFG.TXT
*===========================================================================
*/
/* Page1 : reg16-reg30 */
RF_WriteReg(dev, 0x00, 0x013f); mdelay(1); /* switch to page1 */
u4bRF23 = RF_ReadReg(dev, 0x08); mdelay(1);
u4bRF24 = RF_ReadReg(dev, 0x09); mdelay(1);
if (u4bRF23 == 0x818 && u4bRF24 == 0x70C) {
d_cut = 1;
printk(KERN_INFO "rtl8187se: card type changed from C- to D-cut\n");
}
/* Page0 : reg0-reg15 */
RF_WriteReg(dev, 0x00, 0x009f); mdelay(1);/* 1 */
RF_WriteReg(dev, 0x01, 0x06e0); mdelay(1);
RF_WriteReg(dev, 0x02, 0x004d); mdelay(1);/* 2 */
RF_WriteReg(dev, 0x03, 0x07f1); mdelay(1);/* 3 */
RF_WriteReg(dev, 0x04, 0x0975); mdelay(1);
RF_WriteReg(dev, 0x05, 0x0c72); mdelay(1);
RF_WriteReg(dev, 0x06, 0x0ae6); mdelay(1);
RF_WriteReg(dev, 0x07, 0x00ca); mdelay(1);
RF_WriteReg(dev, 0x08, 0x0e1c); mdelay(1);
RF_WriteReg(dev, 0x09, 0x02f0); mdelay(1);
RF_WriteReg(dev, 0x0a, 0x09d0); mdelay(1);
RF_WriteReg(dev, 0x0b, 0x01ba); mdelay(1);
RF_WriteReg(dev, 0x0c, 0x0640); mdelay(1);
RF_WriteReg(dev, 0x0d, 0x08df); mdelay(1);
RF_WriteReg(dev, 0x0e, 0x0020); mdelay(1);
RF_WriteReg(dev, 0x0f, 0x0990); mdelay(1);
/* Page1 : reg16-reg30 */
RF_WriteReg(dev, 0x00, 0x013f); mdelay(1);
RF_WriteReg(dev, 0x03, 0x0806); mdelay(1);
RF_WriteReg(dev, 0x04, 0x03a7); mdelay(1);
RF_WriteReg(dev, 0x05, 0x059b); mdelay(1);
RF_WriteReg(dev, 0x06, 0x0081); mdelay(1);
RF_WriteReg(dev, 0x07, 0x01A0); mdelay(1);
/* Don't write RF23/RF24 to make a difference between 87S C cut and D cut. asked by SD3 stevenl. */
RF_WriteReg(dev, 0x0a, 0x0001); mdelay(1);
RF_WriteReg(dev, 0x0b, 0x0418); mdelay(1);
if (d_cut) {
RF_WriteReg(dev, 0x0c, 0x0fbe); mdelay(1);
RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1);
RF_WriteReg(dev, 0x0e, 0x0807); mdelay(1); /* RX LO buffer */
} else {
RF_WriteReg(dev, 0x0c, 0x0fbe); mdelay(1);
RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1);
RF_WriteReg(dev, 0x0e, 0x0806); mdelay(1); /* RX LO buffer */
}
RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1);
RF_WriteReg(dev, 0x00, 0x01d7); mdelay(1); /* 6 */
RF_WriteReg(dev, 0x03, 0x0e00); mdelay(1);
RF_WriteReg(dev, 0x04, 0x0e50); mdelay(1);
for (i = 0; i <= 36; i++) {
RF_WriteReg(dev, 0x01, i); mdelay(1);
RF_WriteReg(dev, 0x02, ZEBRA_RF_RX_GAIN_TABLE[i]); mdelay(1);
}
RF_WriteReg(dev, 0x05, 0x0203); mdelay(1); /* 203, 343 */
RF_WriteReg(dev, 0x06, 0x0200); mdelay(1); /* 400 */
RF_WriteReg(dev, 0x00, 0x0137); mdelay(1); /* switch to reg16-reg30, and HSSI disable 137 */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1); /* Z4 synthesizer loop filter setting, 392 */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x00, 0x0037); mdelay(1); /* switch to reg0-reg15, and HSSI disable */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x04, 0x0160); mdelay(1); /* CBC on, Tx Rx disable, High gain */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x07, 0x0080); mdelay(1); /* Z4 setted channel 1 */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x02, 0x088D); mdelay(1); /* LC calibration */
mdelay(200); /* Deay 200 ms. */ /* 0xfd */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x00, 0x0137); mdelay(1); /* switch to reg16-reg30 137, and HSSI disable 137 */
mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x07, 0x0000); mdelay(1);
RF_WriteReg(dev, 0x07, 0x0180); mdelay(1);
RF_WriteReg(dev, 0x07, 0x0220); mdelay(1);
RF_WriteReg(dev, 0x07, 0x03E0); mdelay(1);
/* DAC calibration off 20070702 */
RF_WriteReg(dev, 0x06, 0x00c1); mdelay(1);
RF_WriteReg(dev, 0x0a, 0x0001); mdelay(1);
/* For crystal calibration, added by Roger, 2007.12.11. */
if (priv->bXtalCalibration) { /* reg 30. */
/*
* enable crystal calibration.
* RF Reg[30], (1)Xin:[12:9], Xout:[8:5], addr[4:0].
* (2)PA Pwr delay timer[15:14], default: 2.4us, set BIT15=0
* (3)RF signal on/off when calibration[13], default: on, set BIT13=0.
* So we should minus 4 BITs offset.
*/
RF_WriteReg(dev, 0x0f, (priv->XtalCal_Xin<<5) | (priv->XtalCal_Xout<<1) | BIT11 | BIT9); mdelay(1);
printk("ZEBRA_Config_85BASIC_HardCode(): (%02x)\n",
(priv->XtalCal_Xin<<5) | (priv->XtalCal_Xout<<1) | BIT11 | BIT9);
} else {
/* using default value. Xin=6, Xout=6. */
RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1);
}
RF_WriteReg(dev, 0x00, 0x00bf); mdelay(1); /* switch to reg0-reg15, and HSSI enable */
RF_WriteReg(dev, 0x0d, 0x08df); mdelay(1); /* Rx BB start calibration, 00c//+edward */
RF_WriteReg(dev, 0x02, 0x004d); mdelay(1); /* temperature meter off */
RF_WriteReg(dev, 0x04, 0x0975); mdelay(1); /* Rx mode */
mdelay(10); /* Deay 10 ms.*/ /* 0xfe */
mdelay(10); /* Deay 10 ms.*/ /* 0xfe */
mdelay(10); /* Deay 10 ms.*/ /* 0xfe */
RF_WriteReg(dev, 0x00, 0x0197); mdelay(1); /* Rx mode*/ /*+edward */
RF_WriteReg(dev, 0x05, 0x05ab); mdelay(1); /* Rx mode*/ /*+edward */
RF_WriteReg(dev, 0x00, 0x009f); mdelay(1); /* Rx mode*/ /*+edward */
RF_WriteReg(dev, 0x01, 0x0000); mdelay(1); /* Rx mode*/ /*+edward */
RF_WriteReg(dev, 0x02, 0x0000); mdelay(1); /* Rx mode*/ /*+edward */
/* power save parameters. */
u1b24E = read_nic_byte(dev, 0x24E);
write_nic_byte(dev, 0x24E, (u1b24E & (~(BIT5|BIT6))));
/*=============================================================================
*
*===========================================================================
* CCKCONF.TXT
*===========================================================================
*
* [POWER SAVE] Power Saving Parameters by jong. 2007-11-27
* CCK reg0x00[7]=1'b1 :power saving for TX (default)
* CCK reg0x00[6]=1'b1: power saving for RX (default)
* CCK reg0x06[4]=1'b1: turn off channel estimation related circuits if not doing channel estimation.
* CCK reg0x06[3]=1'b1: turn off unused circuits before cca = 1
* CCK reg0x06[2]=1'b1: turn off cck's circuit if macrst =0
*/
write_phy_cck(dev, 0x00, 0xc8);
write_phy_cck(dev, 0x06, 0x1c);
write_phy_cck(dev, 0x10, 0x78);
write_phy_cck(dev, 0x2e, 0xd0);
write_phy_cck(dev, 0x2f, 0x06);
write_phy_cck(dev, 0x01, 0x46);
/* power control */
write_nic_byte(dev, CCK_TXAGC, 0x10);
write_nic_byte(dev, OFDM_TXAGC, 0x1B);
write_nic_byte(dev, ANTSEL, 0x03);
/*
*===========================================================================
* AGC.txt
*===========================================================================
*/
write_phy_ofdm(dev, 0x00, 0x12);
for (i = 0; i < 128; i++) {
data = ZEBRA_AGC[i+1];
data = data << 8;
data = data | 0x0000008F;
addr = i + 0x80; /* enable writing AGC table */
addr = addr << 8;
addr = addr | 0x0000008E;
WriteBBPortUchar(dev, data);
WriteBBPortUchar(dev, addr);
WriteBBPortUchar(dev, 0x0000008E);
}
PlatformIOWrite4Byte(dev, PhyAddr, 0x00001080); /* Annie, 2006-05-05 */
/*
*===========================================================================
*
*===========================================================================
* OFDMCONF.TXT
*===========================================================================
*/
for (i = 0; i < 60; i++) {
u4bRegOffset = i;
u4bRegValue = OFDM_CONFIG[i];
WriteBBPortUchar(dev,
(0x00000080 |
(u4bRegOffset & 0x7f) |
((u4bRegValue & 0xff) << 8)));
}
/*
*===========================================================================
* by amy for antenna
*===========================================================================
*/
/* Config Sw/Hw Combinational Antenna Diversity. Added by Roger, 2008.02.26. */
SetAntennaConfig87SE(dev, priv->bDefaultAntenna1, priv->bSwAntennaDiverity);
}
void UpdateInitialGain(struct net_device *dev)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
/* lzm add 080826 */
if (priv->eRFPowerState != eRfOn) {
/* Don't access BB/RF under disable PLL situation.
* RT_TRACE(COMP_DIG, DBG_LOUD, ("UpdateInitialGain - pHalData->eRFPowerState!=eRfOn\n"));
* Back to the original state
*/
priv->InitialGain = priv->InitialGainBackUp;
return;
}
switch (priv->InitialGain) {
case 1: /* m861dBm */
write_phy_ofdm(dev, 0x17, 0x26); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfa); mdelay(1);
break;
case 2: /* m862dBm */
write_phy_ofdm(dev, 0x17, 0x36); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfa); mdelay(1);
break;
case 3: /* m863dBm */
write_phy_ofdm(dev, 0x17, 0x36); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfb); mdelay(1);
break;
case 4: /* m864dBm */
write_phy_ofdm(dev, 0x17, 0x46); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfb); mdelay(1);
break;
case 5: /* m82dBm */
write_phy_ofdm(dev, 0x17, 0x46); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x96); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfb); mdelay(1);
break;
case 6: /* m78dBm */
write_phy_ofdm(dev, 0x17, 0x56); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x96); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfc); mdelay(1);
break;
case 7: /* m74dBm */
write_phy_ofdm(dev, 0x17, 0x56); mdelay(1);
write_phy_ofdm(dev, 0x24, 0xa6); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfc); mdelay(1);
break;
case 8:
write_phy_ofdm(dev, 0x17, 0x66); mdelay(1);
write_phy_ofdm(dev, 0x24, 0xb6); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfc); mdelay(1);
break;
default: /* MP */
write_phy_ofdm(dev, 0x17, 0x26); mdelay(1);
write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
write_phy_ofdm(dev, 0x05, 0xfa); mdelay(1);
break;
}
}
/*
* Description:
* Tx Power tracking mechanism routine on 87SE.
* Created by Roger, 2007.12.11.
*/
void InitTxPwrTracking87SE(struct net_device *dev)
{
u32 u4bRfReg;
u4bRfReg = RF_ReadReg(dev, 0x02);
/* Enable Thermal meter indication. */
RF_WriteReg(dev, 0x02, u4bRfReg|PWR_METER_EN); mdelay(1);
}
void PhyConfig8185(struct net_device *dev)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
write_nic_dword(dev, RCR, priv->ReceiveConfig);
priv->RFProgType = read_nic_byte(dev, CONFIG4) & 0x03;
/* RF config */
ZEBRA_Config_85BASIC_HardCode(dev);
/* Set default initial gain state to 4, approved by SD3 DZ, by Bruce, 2007-06-06. */
if (priv->bDigMechanism) {
if (priv->InitialGain == 0)
priv->InitialGain = 4;
}
/*
* Enable thermal meter indication to implement TxPower tracking on 87SE.
* We initialize thermal meter here to avoid unsuccessful configuration.
* Added by Roger, 2007.12.11.
*/
if (priv->bTxPowerTrack)
InitTxPwrTracking87SE(dev);
priv->InitialGainBackUp = priv->InitialGain;
UpdateInitialGain(dev);
return;
}
void HwConfigureRTL8185(struct net_device *dev)
{
/* RTL8185_TODO: Determine Retrylimit, TxAGC, AutoRateFallback control. */
u8 bUNIVERSAL_CONTROL_RL = 0;
u8 bUNIVERSAL_CONTROL_AGC = 1;
u8 bUNIVERSAL_CONTROL_ANT = 1;
u8 bAUTO_RATE_FALLBACK_CTL = 1;
u8 val8;
write_nic_word(dev, BRSR, 0x0fff);
/* Retry limit */
val8 = read_nic_byte(dev, CW_CONF);
if (bUNIVERSAL_CONTROL_RL)
val8 = val8 & 0xfd;
else
val8 = val8 | 0x02;
write_nic_byte(dev, CW_CONF, val8);
/* Tx AGC */
val8 = read_nic_byte(dev, TXAGC_CTL);
if (bUNIVERSAL_CONTROL_AGC) {
write_nic_byte(dev, CCK_TXAGC, 128);
write_nic_byte(dev, OFDM_TXAGC, 128);
val8 = val8 & 0xfe;
} else {
val8 = val8 | 0x01 ;
}
write_nic_byte(dev, TXAGC_CTL, val8);
/* Tx Antenna including Feedback control */
val8 = read_nic_byte(dev, TXAGC_CTL);
if (bUNIVERSAL_CONTROL_ANT) {
write_nic_byte(dev, ANTSEL, 0x00);
val8 = val8 & 0xfd;
} else {
val8 = val8 & (val8|0x02); /* xiong-2006-11-15 */
}
write_nic_byte(dev, TXAGC_CTL, val8);
/* Auto Rate fallback control */
val8 = read_nic_byte(dev, RATE_FALLBACK);
val8 &= 0x7c;
if (bAUTO_RATE_FALLBACK_CTL) {
val8 |= RATE_FALLBACK_CTL_ENABLE | RATE_FALLBACK_CTL_AUTO_STEP1;
/* <RJ_TODO_8185B> We shall set up the ARFR according to user's setting. */
PlatformIOWrite2Byte(dev, ARFR, 0x0fff); /* set 1M ~ 54Mbps. */
}
write_nic_byte(dev, RATE_FALLBACK, val8);
}
static void MacConfig_85BASIC_HardCode(struct net_device *dev)
{
/*
*==========================================================================
* MACREG.TXT
*==========================================================================
*/
int nLinesRead = 0;
u32 u4bRegOffset, u4bRegValue, u4bPageIndex = 0;
int i;
nLinesRead = sizeof(MAC_REG_TABLE)/2;
for (i = 0; i < nLinesRead; i++) { /* nLinesRead=101 */
u4bRegOffset = MAC_REG_TABLE[i][0];
u4bRegValue = MAC_REG_TABLE[i][1];
if (u4bRegOffset == 0x5e)
u4bPageIndex = u4bRegValue;
else
u4bRegOffset |= (u4bPageIndex << 8);
write_nic_byte(dev, u4bRegOffset, (u8)u4bRegValue);
}
/* ============================================================================ */
}
static void MacConfig_85BASIC(struct net_device *dev)
{
u8 u1DA;
MacConfig_85BASIC_HardCode(dev);
/* ============================================================================ */
/* Follow TID_AC_MAP of WMac. */
write_nic_word(dev, TID_AC_MAP, 0xfa50);
/* Interrupt Migration, Jong suggested we use set 0x0000 first, 2005.12.14, by rcnjko. */
write_nic_word(dev, IntMig, 0x0000);
/* Prevent TPC to cause CRC error. Added by Annie, 2006-06-10. */
PlatformIOWrite4Byte(dev, 0x1F0, 0x00000000);
PlatformIOWrite4Byte(dev, 0x1F4, 0x00000000);
PlatformIOWrite1Byte(dev, 0x1F8, 0x00);
/* Asked for by SD3 CM Lin, 2006.06.27, by rcnjko. */
/* power save parameter based on "87SE power save parameters 20071127.doc", as follow. */
/* Enable DA10 TX power saving */
u1DA = read_nic_byte(dev, PHYPR);
write_nic_byte(dev, PHYPR, (u1DA | BIT2));
/* POWER: */
write_nic_word(dev, 0x360, 0x1000);
write_nic_word(dev, 0x362, 0x1000);
/* AFE. */
write_nic_word(dev, 0x370, 0x0560);
write_nic_word(dev, 0x372, 0x0560);
write_nic_word(dev, 0x374, 0x0DA4);
write_nic_word(dev, 0x376, 0x0DA4);
write_nic_word(dev, 0x378, 0x0560);
write_nic_word(dev, 0x37A, 0x0560);
write_nic_word(dev, 0x37C, 0x00EC);
write_nic_word(dev, 0x37E, 0x00EC); /* +edward */
write_nic_byte(dev, 0x24E, 0x01);
}
u8 GetSupportedWirelessMode8185(struct net_device *dev)
{
u8 btSupportedWirelessMode = 0;
btSupportedWirelessMode = (WIRELESS_MODE_B | WIRELESS_MODE_G);
return btSupportedWirelessMode;
}
void ActUpdateChannelAccessSetting(struct net_device *dev,
WIRELESS_MODE WirelessMode,
PCHANNEL_ACCESS_SETTING ChnlAccessSetting)
{
struct r8180_priv *priv = ieee80211_priv(dev);
struct ieee80211_device *ieee = priv->ieee80211;
AC_CODING eACI;
AC_PARAM AcParam;
u8 bFollowLegacySetting = 0;
u8 u1bAIFS;
/*
* <RJ_TODO_8185B>
* TODO: We still don't know how to set up these registers, just follow WMAC to
* verify 8185B FPAG.
*
* <RJ_TODO_8185B>
* Jong said CWmin/CWmax register are not functional in 8185B,
* so we shall fill channel access realted register into AC parameter registers,
* even in nQBss.
*/
ChnlAccessSetting->SIFS_Timer = 0x22; /* Suggested by Jong, 2005.12.08. */
ChnlAccessSetting->DIFS_Timer = 0x1C; /* 2006.06.02, by rcnjko. */
ChnlAccessSetting->SlotTimeTimer = 9; /* 2006.06.02, by rcnjko. */
ChnlAccessSetting->EIFS_Timer = 0x5B; /* Suggested by wcchu, it is the default value of EIFS register, 2005.12.08. */
ChnlAccessSetting->CWminIndex = 3; /* 2006.06.02, by rcnjko. */
ChnlAccessSetting->CWmaxIndex = 7; /* 2006.06.02, by rcnjko. */
write_nic_byte(dev, SIFS, ChnlAccessSetting->SIFS_Timer);
write_nic_byte(dev, SLOT, ChnlAccessSetting->SlotTimeTimer); /* Rewrited from directly use PlatformEFIOWrite1Byte(), by Annie, 2006-03-29. */
u1bAIFS = aSifsTime + (2 * ChnlAccessSetting->SlotTimeTimer);
write_nic_byte(dev, EIFS, ChnlAccessSetting->EIFS_Timer);
write_nic_byte(dev, AckTimeOutReg, 0x5B); /* <RJ_EXPR_QOS> Suggested by wcchu, it is the default value of EIFS register, 2005.12.08. */
{ /* Legacy 802.11. */
bFollowLegacySetting = 1;
}
/* this setting is copied from rtl8187B. xiong-2006-11-13 */
if (bFollowLegacySetting) {
/*
* Follow 802.11 seeting to AC parameter, all AC shall use the same parameter.
* 2005.12.01, by rcnjko.
*/
AcParam.longData = 0;
AcParam.f.AciAifsn.f.AIFSN = 2; /* Follow 802.11 DIFS. */
AcParam.f.AciAifsn.f.ACM = 0;
AcParam.f.Ecw.f.ECWmin = ChnlAccessSetting->CWminIndex; /* Follow 802.11 CWmin. */
AcParam.f.Ecw.f.ECWmax = ChnlAccessSetting->CWmaxIndex; /* Follow 802.11 CWmax. */
AcParam.f.TXOPLimit = 0;
/* lzm reserved 080826 */
/* For turbo mode setting. port from 87B by Isaiah 2008-08-01 */
if (ieee->current_network.Turbo_Enable == 1)
AcParam.f.TXOPLimit = 0x01FF;
/* For 87SE with Intel 4965 Ad-Hoc mode have poor throughput (19MB) */
if (ieee->iw_mode == IW_MODE_ADHOC)
AcParam.f.TXOPLimit = 0x0020;
for (eACI = 0; eACI < AC_MAX; eACI++) {
AcParam.f.AciAifsn.f.ACI = (u8)eACI;
{
PAC_PARAM pAcParam = (PAC_PARAM)(&AcParam);
AC_CODING eACI;
u8 u1bAIFS;
u32 u4bAcParam;
/* Retrieve paramters to update. */
eACI = pAcParam->f.AciAifsn.f.ACI;
u1bAIFS = pAcParam->f.AciAifsn.f.AIFSN * ChnlAccessSetting->SlotTimeTimer + aSifsTime;
u4bAcParam = ((((u32)(pAcParam->f.TXOPLimit)) << AC_PARAM_TXOP_LIMIT_OFFSET) |
(((u32)(pAcParam->f.Ecw.f.ECWmax)) << AC_PARAM_ECW_MAX_OFFSET) |
(((u32)(pAcParam->f.Ecw.f.ECWmin)) << AC_PARAM_ECW_MIN_OFFSET) |
(((u32)u1bAIFS) << AC_PARAM_AIFS_OFFSET));
switch (eACI) {
case AC1_BK:
/* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
break;
case AC0_BE:
/* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
break;
case AC2_VI:
/* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
break;
case AC3_VO:
/* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
break;
default:
DMESGW("SetHwReg8185(): invalid ACI: %d !\n", eACI);
break;
}
/* Cehck ACM bit. */
/* If it is set, immediately set ACM control bit to downgrading AC for passing WMM testplan. Annie, 2005-12-13. */
{
PACI_AIFSN pAciAifsn = (PACI_AIFSN)(&pAcParam->f.AciAifsn);
AC_CODING eACI = pAciAifsn->f.ACI;
/*for 8187B AsynIORead issue */
u8 AcmCtrl = 0;
if (pAciAifsn->f.ACM) {
/* ACM bit is 1. */
switch (eACI) {
case AC0_BE:
AcmCtrl |= (BEQ_ACM_EN|BEQ_ACM_CTL|ACM_HW_EN); /* or 0x21 */
break;
case AC2_VI:
AcmCtrl |= (VIQ_ACM_EN|VIQ_ACM_CTL|ACM_HW_EN); /* or 0x42 */
break;
case AC3_VO:
AcmCtrl |= (VOQ_ACM_EN|VOQ_ACM_CTL|ACM_HW_EN); /* or 0x84 */
break;
default:
DMESGW("SetHwReg8185(): [HW_VAR_ACM_CTRL] ACM set failed: eACI is %d\n", eACI);
break;
}
} else {
/* ACM bit is 0. */
switch (eACI) {
case AC0_BE:
AcmCtrl &= ((~BEQ_ACM_EN) & (~BEQ_ACM_CTL) & (~ACM_HW_EN)); /* and 0xDE */
break;
case AC2_VI:
AcmCtrl &= ((~VIQ_ACM_EN) & (~VIQ_ACM_CTL) & (~ACM_HW_EN)); /* and 0xBD */
break;
case AC3_VO:
AcmCtrl &= ((~VOQ_ACM_EN) & (~VOQ_ACM_CTL) & (~ACM_HW_EN)); /* and 0x7B */
break;
default:
break;
}
}
write_nic_byte(dev, ACM_CONTROL, 0);
}
}
}
}
}
void ActSetWirelessMode8185(struct net_device *dev, u8 btWirelessMode)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
struct ieee80211_device *ieee = priv->ieee80211;
u8 btSupportedWirelessMode = GetSupportedWirelessMode8185(dev);
if ((btWirelessMode & btSupportedWirelessMode) == 0) {
/* Don't switch to unsupported wireless mode, 2006.02.15, by rcnjko. */
DMESGW("ActSetWirelessMode8185(): WirelessMode(%d) is not supported (%d)!\n",
btWirelessMode, btSupportedWirelessMode);
return;
}
/* 1. Assign wireless mode to switch if necessary. */
if (btWirelessMode == WIRELESS_MODE_AUTO) {
if ((btSupportedWirelessMode & WIRELESS_MODE_A)) {
btWirelessMode = WIRELESS_MODE_A;
} else if (btSupportedWirelessMode & WIRELESS_MODE_G) {
btWirelessMode = WIRELESS_MODE_G;
} else if ((btSupportedWirelessMode & WIRELESS_MODE_B)) {
btWirelessMode = WIRELESS_MODE_B;
} else {
DMESGW("ActSetWirelessMode8185(): No valid wireless mode supported, btSupportedWirelessMode(%x)!!!\n",
btSupportedWirelessMode);
btWirelessMode = WIRELESS_MODE_B;
}
}
/*
* 2. Swtich band: RF or BB specific actions,
* for example, refresh tables in omc8255, or change initial gain if necessary.
* Nothing to do for Zebra to switch band.
* Update current wireless mode if we switch to specified band successfully.
*/
ieee->mode = (WIRELESS_MODE)btWirelessMode;
/* 3. Change related setting. */
if( ieee->mode == WIRELESS_MODE_A ) {
DMESG("WIRELESS_MODE_A\n");
} else if( ieee->mode == WIRELESS_MODE_B ) {
DMESG("WIRELESS_MODE_B\n");
} else if( ieee->mode == WIRELESS_MODE_G ) {
DMESG("WIRELESS_MODE_G\n");
}
ActUpdateChannelAccessSetting( dev, ieee->mode, &priv->ChannelAccessSetting);
}
void rtl8185b_irq_enable(struct net_device *dev)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
priv->irq_enabled = 1;
write_nic_dword(dev, IMR, priv->IntrMask);
}
void DrvIFIndicateDisassociation(struct net_device *dev, u16 reason)
{
/* nothing is needed after disassociation request. */
}
void MgntDisconnectIBSS(struct net_device *dev)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
u8 i;
DrvIFIndicateDisassociation(dev, unspec_reason);
for (i = 0; i < 6 ; i++)
priv->ieee80211->current_network.bssid[i] = 0x55;
priv->ieee80211->state = IEEE80211_NOLINK;
/*
* Stop Beacon.
*
* Vista add a Adhoc profile, HW radio off until OID_DOT11_RESET_REQUEST
* Driver would set MSR=NO_LINK, then HW Radio ON, MgntQueue Stuck.
* Because Bcn DMA isn't complete, mgnt queue would stuck until Bcn packet send.
*
* Disable Beacon Queue Own bit, suggested by jong
*/
ieee80211_stop_send_beacons(priv->ieee80211);
priv->ieee80211->link_change(dev);
notify_wx_assoc_event(priv->ieee80211);
}
void MlmeDisassociateRequest(struct net_device *dev, u8 *asSta, u8 asRsn)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
u8 i;
SendDisassociation(priv->ieee80211, asSta, asRsn);
if (memcmp(priv->ieee80211->current_network.bssid, asSta, 6) == 0) {
/* ShuChen TODO: change media status. */
/* ShuChen TODO: What to do when disassociate. */
DrvIFIndicateDisassociation(dev, unspec_reason);
for (i = 0; i < 6; i++)
priv->ieee80211->current_network.bssid[i] = 0x22;
ieee80211_disassociate(priv->ieee80211);
}
}
void MgntDisconnectAP(struct net_device *dev, u8 asRsn)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
/*
* Commented out by rcnjko, 2005.01.27:
* I move SecClearAllKeys() to MgntActSet_802_11_DISASSOCIATE().
*
* 2004/09/15, kcwu, the key should be cleared, or the new handshaking will not success
*
* In WPA WPA2 need to Clear all key ... because new key will set after new handshaking.
* 2004.10.11, by rcnjko.
*/
MlmeDisassociateRequest(dev, priv->ieee80211->current_network.bssid, asRsn);
priv->ieee80211->state = IEEE80211_NOLINK;
}
bool MgntDisconnect(struct net_device *dev, u8 asRsn)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
/*
* Schedule an workitem to wake up for ps mode, 070109, by rcnjko.
*/
if (IS_DOT11D_ENABLE(priv->ieee80211))
Dot11d_Reset(priv->ieee80211);
/* In adhoc mode, update beacon frame. */
if (priv->ieee80211->state == IEEE80211_LINKED) {
if (priv->ieee80211->iw_mode == IW_MODE_ADHOC)
MgntDisconnectIBSS(dev);
if (priv->ieee80211->iw_mode == IW_MODE_INFRA) {
/*
* We clear key here instead of MgntDisconnectAP() because that
* MgntActSet_802_11_DISASSOCIATE() is an interface called by OS,
* e.g. OID_802_11_DISASSOCIATE in Windows while as MgntDisconnectAP() is
* used to handle disassociation related things to AP, e.g. send Disassoc
* frame to AP. 2005.01.27, by rcnjko.
*/
MgntDisconnectAP(dev, asRsn);
}
/* Indicate Disconnect, 2005.02.23, by rcnjko. */
}
return true;
}
/*
* Description:
* Chang RF Power State.
* Note that, only MgntActSet_RF_State() is allowed to set HW_VAR_RF_STATE.
*
* Assumption:
* PASSIVE LEVEL.
*/
bool SetRFPowerState(struct net_device *dev, RT_RF_POWER_STATE eRFPowerState)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
bool bResult = false;
if (eRFPowerState == priv->eRFPowerState)
return bResult;
bResult = SetZebraRFPowerState8185(dev, eRFPowerState);
return bResult;
}
void HalEnableRx8185Dummy(struct net_device *dev)
{
}
void HalDisableRx8185Dummy(struct net_device *dev)
{
}
bool MgntActSet_RF_State(struct net_device *dev, RT_RF_POWER_STATE StateToSet, u32 ChangeSource)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
bool bActionAllowed = false;
bool bConnectBySSID = false;
RT_RF_POWER_STATE rtState;
u16 RFWaitCounter = 0;
unsigned long flag;
/*
* Prevent the race condition of RF state change. By Bruce, 2007-11-28.
* Only one thread can change the RF state at one time, and others should wait to be executed.
*/
while (true) {
spin_lock_irqsave(&priv->rf_ps_lock, flag);
if (priv->RFChangeInProgress) {
spin_unlock_irqrestore(&priv->rf_ps_lock, flag);
/* Set RF after the previous action is done. */
while (priv->RFChangeInProgress) {
RFWaitCounter++;
udelay(1000); /* 1 ms */
/* Wait too long, return FALSE to avoid to be stuck here. */
if (RFWaitCounter > 1000) { /* 1sec */
printk("MgntActSet_RF_State(): Wait too long to set RF\n");
/* TODO: Reset RF state? */
return false;
}
}
} else {
priv->RFChangeInProgress = true;
spin_unlock_irqrestore(&priv->rf_ps_lock, flag);
break;
}
}
rtState = priv->eRFPowerState;
switch (StateToSet) {
case eRfOn:
/*
* Turn On RF no matter the IPS setting because we need to update the RF state to Ndis under Vista, or
* the Windows does not allow the driver to perform site survey any more. By Bruce, 2007-10-02.
*/
priv->RfOffReason &= (~ChangeSource);
if (!priv->RfOffReason) {
priv->RfOffReason = 0;
bActionAllowed = true;
if (rtState == eRfOff && ChangeSource >= RF_CHANGE_BY_HW && !priv->bInHctTest)
bConnectBySSID = true;
} else
;
break;
case eRfOff:
/* 070125, rcnjko: we always keep connected in AP mode. */
if (priv->RfOffReason > RF_CHANGE_BY_IPS) {
/*
* 060808, Annie:
* Disconnect to current BSS when radio off. Asked by QuanTa.
*
* Calling MgntDisconnect() instead of MgntActSet_802_11_DISASSOCIATE(),
* because we do NOT need to set ssid to dummy ones.
*/
MgntDisconnect(dev, disas_lv_ss);
/* Clear content of bssDesc[] and bssDesc4Query[] to avoid reporting old bss to UI. */
}
priv->RfOffReason |= ChangeSource;
bActionAllowed = true;
break;
case eRfSleep:
priv->RfOffReason |= ChangeSource;
bActionAllowed = true;
break;
default:
break;
}
if (bActionAllowed) {
/* Config HW to the specified mode. */
SetRFPowerState(dev, StateToSet);
/* Turn on RF. */
if (StateToSet == eRfOn) {
HalEnableRx8185Dummy(dev);
if (bConnectBySSID) {
/* by amy not supported */
}
}
/* Turn off RF. */
else if (StateToSet == eRfOff)
HalDisableRx8185Dummy(dev);
}
/* Release RF spinlock */
spin_lock_irqsave(&priv->rf_ps_lock, flag);
priv->RFChangeInProgress = false;
spin_unlock_irqrestore(&priv->rf_ps_lock, flag);
return bActionAllowed;
}
void InactivePowerSave(struct net_device *dev)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
/*
* This flag "bSwRfProcessing", indicates the status of IPS procedure, should be set if the IPS workitem
* is really scheduled.
* The old code, sets this flag before scheduling the IPS workitem and however, at the same time the
* previous IPS workitem did not end yet, fails to schedule the current workitem. Thus, bSwRfProcessing
* blocks the IPS procedure of switching RF.
*/
priv->bSwRfProcessing = true;
MgntActSet_RF_State(dev, priv->eInactivePowerState, RF_CHANGE_BY_IPS);
/*
* To solve CAM values miss in RF OFF, rewrite CAM values after RF ON. By Bruce, 2007-09-20.
*/
priv->bSwRfProcessing = false;
}
/*
* Description:
* Enter the inactive power save mode. RF will be off
*/
void IPSEnter(struct net_device *dev)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
RT_RF_POWER_STATE rtState;
if (priv->bInactivePs) {
rtState = priv->eRFPowerState;
/*
* Do not enter IPS in the following conditions:
* (1) RF is already OFF or Sleep
* (2) bSwRfProcessing (indicates the IPS is still under going)
* (3) Connected (only disconnected can trigger IPS)
* (4) IBSS (send Beacon)
* (5) AP mode (send Beacon)
*/
if (rtState == eRfOn && !priv->bSwRfProcessing
&& (priv->ieee80211->state != IEEE80211_LINKED)) {
priv->eInactivePowerState = eRfOff;
InactivePowerSave(dev);
}
}
}
void IPSLeave(struct net_device *dev)
{
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
RT_RF_POWER_STATE rtState;
if (priv->bInactivePs) {
rtState = priv->eRFPowerState;
if ((rtState == eRfOff || rtState == eRfSleep) && (!priv->bSwRfProcessing) && priv->RfOffReason <= RF_CHANGE_BY_IPS) {
priv->eInactivePowerState = eRfOn;
InactivePowerSave(dev);
}
}
}
void rtl8185b_adapter_start(struct net_device *dev)
{
struct r8180_priv *priv = ieee80211_priv(dev);
struct ieee80211_device *ieee = priv->ieee80211;
u8 SupportedWirelessMode;
u8 InitWirelessMode;
u8 bInvalidWirelessMode = 0;
u8 tmpu8;
u8 btCR9346;
u8 TmpU1b;
u8 btPSR;
write_nic_byte(dev, 0x24e, (BIT5|BIT6|BIT0));
rtl8180_reset(dev);
priv->dma_poll_mask = 0;
priv->dma_poll_stop_mask = 0;
HwConfigureRTL8185(dev);
write_nic_dword(dev, MAC0, ((u32 *)dev->dev_addr)[0]);
write_nic_word(dev, MAC4, ((u32 *)dev->dev_addr)[1] & 0xffff);
write_nic_byte(dev, MSR, read_nic_byte(dev, MSR) & 0xf3); /* default network type to 'No Link' */
write_nic_word(dev, BcnItv, 100);
write_nic_word(dev, AtimWnd, 2);
PlatformIOWrite2Byte(dev, FEMR, 0xFFFF);
write_nic_byte(dev, WPA_CONFIG, 0);
MacConfig_85BASIC(dev);
/* Override the RFSW_CTRL (MAC offset 0x272-0x273), 2006.06.07, by rcnjko. */
/* BT_DEMO_BOARD type */
PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x569a);
/*
*---------------------------------------------------------------------------
* Set up PHY related.
*---------------------------------------------------------------------------
*/
/* Enable Config3.PARAM_En to revise AnaaParm. */
write_nic_byte(dev, CR9346, 0xc0); /* enable config register write */
tmpu8 = read_nic_byte(dev, CONFIG3);
write_nic_byte(dev, CONFIG3, (tmpu8 | CONFIG3_PARM_En));
/* Turn on Analog power. */
/* Asked for by William, otherwise, MAC 3-wire can't work, 2006.06.27, by rcnjko. */
write_nic_dword(dev, ANAPARAM2, ANAPARM2_ASIC_ON);
write_nic_dword(dev, ANAPARAM, ANAPARM_ASIC_ON);
write_nic_word(dev, ANAPARAM3, 0x0010);
write_nic_byte(dev, CONFIG3, tmpu8);
write_nic_byte(dev, CR9346, 0x00);
/* enable EEM0 and EEM1 in 9346CR */
btCR9346 = read_nic_byte(dev, CR9346);
write_nic_byte(dev, CR9346, (btCR9346 | 0xC0));
/* B cut use LED1 to control HW RF on/off */
TmpU1b = read_nic_byte(dev, CONFIG5);
TmpU1b = TmpU1b & ~BIT3;
write_nic_byte(dev, CONFIG5, TmpU1b);
/* disable EEM0 and EEM1 in 9346CR */
btCR9346 &= ~(0xC0);
write_nic_byte(dev, CR9346, btCR9346);
/* Enable Led (suggested by Jong) */
/* B-cut RF Radio on/off 5e[3]=0 */
btPSR = read_nic_byte(dev, PSR);
write_nic_byte(dev, PSR, (btPSR | BIT3));
/* setup initial timing for RFE. */
write_nic_word(dev, RFPinsOutput, 0x0480);
SetOutputEnableOfRfPins(dev);
write_nic_word(dev, RFPinsSelect, 0x2488);
/* PHY config. */
PhyConfig8185(dev);
/*
* We assume RegWirelessMode has already been initialized before,
* however, we has to validate the wireless mode here and provide a
* reasonable initialized value if necessary. 2005.01.13, by rcnjko.
*/
SupportedWirelessMode = GetSupportedWirelessMode8185(dev);
if ((ieee->mode != WIRELESS_MODE_B) &&
(ieee->mode != WIRELESS_MODE_G) &&
(ieee->mode != WIRELESS_MODE_A) &&
(ieee->mode != WIRELESS_MODE_AUTO)) {
/* It should be one of B, G, A, or AUTO. */
bInvalidWirelessMode = 1;
} else {
/* One of B, G, A, or AUTO. */
/* Check if the wireless mode is supported by RF. */
if ((ieee->mode != WIRELESS_MODE_AUTO) &&
(ieee->mode & SupportedWirelessMode) == 0) {
bInvalidWirelessMode = 1;
}
}
if (bInvalidWirelessMode || ieee->mode == WIRELESS_MODE_AUTO) {
/* Auto or other invalid value. */
/* Assigne a wireless mode to initialize. */
if ((SupportedWirelessMode & WIRELESS_MODE_A)) {
InitWirelessMode = WIRELESS_MODE_A;
} else if ((SupportedWirelessMode & WIRELESS_MODE_G)) {
InitWirelessMode = WIRELESS_MODE_G;
} else if ((SupportedWirelessMode & WIRELESS_MODE_B)) {
InitWirelessMode = WIRELESS_MODE_B;
} else {
DMESGW("InitializeAdapter8185(): No valid wireless mode supported, SupportedWirelessMode(%x)!!!\n",
SupportedWirelessMode);
InitWirelessMode = WIRELESS_MODE_B;
}
/* Initialize RegWirelessMode if it is not a valid one. */
if (bInvalidWirelessMode)
ieee->mode = (WIRELESS_MODE)InitWirelessMode;
} else {
/* One of B, G, A. */
InitWirelessMode = ieee->mode;
}
priv->eRFPowerState = eRfOff;
priv->RfOffReason = 0;
{
MgntActSet_RF_State(dev, eRfOn, 0);
}
/*
* If inactive power mode is enabled, disable rf while in disconnected state.
*/
if (priv->bInactivePs)
MgntActSet_RF_State(dev , eRfOff, RF_CHANGE_BY_IPS);
ActSetWirelessMode8185(dev, (u8)(InitWirelessMode));
/* ----------------------------------------------------------------------------- */
rtl8185b_irq_enable(dev);
netif_start_queue(dev);
}
void rtl8185b_rx_enable(struct net_device *dev)
{
u8 cmd;
/* for now we accept data, management & ctl frame*/
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
if (dev->flags & IFF_PROMISC)
DMESG("NIC in promisc mode");
if (priv->ieee80211->iw_mode == IW_MODE_MONITOR || \
dev->flags & IFF_PROMISC) {
priv->ReceiveConfig = priv->ReceiveConfig & (~RCR_APM);
priv->ReceiveConfig = priv->ReceiveConfig | RCR_AAP;
}
if (priv->ieee80211->iw_mode == IW_MODE_MONITOR)
priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACF | RCR_APWRMGT | RCR_AICV;
if (priv->crcmon == 1 && priv->ieee80211->iw_mode == IW_MODE_MONITOR)
priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACRC32;
write_nic_dword(dev, RCR, priv->ReceiveConfig);
fix_rx_fifo(dev);
cmd = read_nic_byte(dev, CMD);
write_nic_byte(dev, CMD, cmd | (1<<CMD_RX_ENABLE_SHIFT));
}
void rtl8185b_tx_enable(struct net_device *dev)
{
u8 cmd;
u8 byte;
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
write_nic_dword(dev, TCR, priv->TransmitConfig);
byte = read_nic_byte(dev, MSR);
byte |= MSR_LINK_ENEDCA;
write_nic_byte(dev, MSR, byte);
fix_tx_fifo(dev);
cmd = read_nic_byte(dev, CMD);
write_nic_byte(dev, CMD, cmd | (1<<CMD_TX_ENABLE_SHIFT));
}